
ElasticSDK: A Monitoring Software Development
Kit for enabling Data-driven Management and

Control in 5G
Xenofon Vasilakos1,2, Berkay Köksal1, Dwi Hartati Izaldi1,3,4, Navid Nikaein1, Robert Schmidt1,

Nasim Ferdosian1, Riri Fitri Sari3, and Ray-Guang Cheng4

1EURECOM, France, Email: firstname.lastname@eurecom.fr
2Department of Electrical and Electronic Engineering, University of Bristol, UK

3University of Indonesia, Indonesia Email: riri@ui.ac.id
4National Taiwan University of Science and Technology, Taiwan,

Email: crg@mail.ntust.edu.tw

Abstract—5G networks generate massive (quasi-) real-time
data streams that different network apps can exploit to im-
plement sophisticated single- or cross-domain control and man-
agement logic. This paper presents ElasticSDK, a Software
Development Kit specially designed to abstract the development
and chaining of such agile 5G monitoring apps for the control,
management, and coordination of the underlying 5G network
heterogeneous modules. Custom apps can collect, incrementally
process and further expose flows in a flexible Pub/Sub fashion
via appropriate SDK API calls, thus sharing both raw and
complex data flows among themselves. Furthermore, the design
of ElasticSDK allows respecting typical 5G data ownership
and privacy models, as desired by the different 5G stakeholders
ranging from physical infrastructure providers up to service
providers over slicing. Finally, we provide two important con-
tributions to the 5G open-source research community: (i) a RAN
monitoring prototype implementation over the ElasticSearch and
FlexRAN platforms that allows to demonstrate ElasticSDK
app development and capturing hierarchical control features
of typical SDN-enabled 5G architectures, and (ii) a first-ever
publicly available dataset of realistic 5G RAN monitoring traces.

Index Terms—5G mobile communication, network monitoring,
SDK

I. INTRODUCTION

The anticipated complexity of 5th Generation (5G) mobile
networks pushes towards minimizing human engagement and
relying on vast amounts of (quasi-) real-time monitoring data
in a new era of Data-Driven Control & Management (DDCM).
A crucial aspect of DDCM regards delivering network mon-
itoring as a service on a per-use-case basis. Currently, there
are different monitoring tools targeting specific use cases and
network domains, namely, the 5G Core Network (CN), the
transport network, and the Radio Access Network (RAN),
hence a requirement for a multiservice execution environment
to unify all of the earlier into customized virtual views tailored

This work has received funding from the European Union Horizon 2020
Framework Programme under grant agreement No. 761913 (SliceNet) and
762057 (5G-PICTURE).

to use case requirements. Dynamic bit rate video optimization
poses such a representative example, requiring to utilize both
User Equipments (UEs) and RAN information, each monitored
by different tools. Last, complexity gets further amplified
by the concept of network “slicing” into multiple (possibly
recursive) logical networks (a.k.a. “slices”) composed of vir-
tual and/or physical resources over a common infrastructure,
with implications on monitoring spanning from practical up
to policy contradictions between the various stakeholders.

The topic is highly important and contemporary, with var-
ious recent works relying on the combination of existing
Monitoring Frameworks (MFs), e.g. the Machine Learning
(ML)-based works of [1]–[4] or the knowledge-defined net-
works of [5], [6]. Nevertheless, none of these works is meant
to address, nor can address, these challenges in 5G. What
we need instead, is a properly designed monitoring Software
Development Kit (SDK).

To cover a gap in the 5G literature and open-source com-
munity, this paper presents ElasticSDK, an SDK adopting
the design principals discussed [7] for abstracting the de-
velopment as well as the chaining of agile and/or use case-
specific monitoring apps. Based on this main contribution, we
further discuss and contribute to the 5G open-source research
community a publicly available RAN monitoring prototype
SDK implementation, namely ElasticSDKv1.0, and (to
the best of our knowledge) a first-ever publicly available
dataset of realistic 5G RAN monitoring traces. In a nutshell,
our main points of contribution can be summarized as:
• SDK design: ElasticSDK abstracts both the devel-

opment and the chaining of agile monitoring apps in order
to enable the formation of a technology-agnostic application
plane for (i) implementing sophisticated control and man-
agement logics; (ii) providing a unified monitoring view to
higher software layers; and (iii) satisfying the conflicting
interests of all involved stakeholders with respect to (w.r.t.)
data privacy/ownership, monitoring cost, accountability, etc.
All above are enabled across single or multiple domains, over978-1-7281-4973-820$31.00 © 2020 IEEE

flat or hierarchical architectures. Major consideration is put on
the elasticity properties of our design. This refers to the ability
to cope with the anticipated massive scale of data flows from
heterogeneous sources in dynamic 5G environments, and the
low time-scales and high frequency of raw and/or processed
monitoring data.

• Prototype: We contribute a prototype SDK implemen-
tation, namely ElasticSDKv1.0, which cooperates fully
with ElasticSearch (ES) distributed search and analytics engine
and Mosaic5G FlexRAN platform [8], [9]. Due to the SDK
abstraction, ElasticSDKv1.0 remains applicable to other
underlying platforms and can be extended to cover the CN,
as well. The prototype comes with an execution environment
including a group of specific functions and methods that
facilitates the life-cycle of ML apps for an intelligent, proactive
and adaptive DDCM. Apps can interact with the underlying
network modules via our SDK to access resource/state and
control the corresponding behaviors, meeting with most typical
hierarchical features of SDN-based 5G network architectures.
This translates to the ability of ElasticSDKv1.0 to gather
monitoring data in both a local, e.g. a Base Station (BS), and a
global/regional level (multiple BSs), matching the hierarchical
structure of the underlying FlexRAN controller. Last, the pro-
totype considers a hierarchical data-ownership model, allowing
both infrastructure providers and slice owners to share only the
data they wish to share with other stakeholders through add-on
filters.

• Demonstration & Publicly available 5G RAN traces:
Our demonstration shows that our design allows to produce,
store and retrieve a rich set of monitoring data in a flexible
manner by tuning the Pub/Sub monitoring frequency and ad-
justing data granularity, while identifying performance trade-
offs and possible implications on (quasi-) real-time DDCM.

We further contribute [10] raw and processed 5G RAN
monitoring data from the MAC, RRC and PDCP layers to
the Community Resource for Archiving Wireless Data At
Dartmouth (CRAWDAD). To our knowledge, this is still a
rare contribution of real 5G RAN monitoring data to the 5G
community.

For the rest of this paper, Sec. II outlines and compares the
features of popular community monitoring tools. Sec. III anal-
yses the design challenges of our proposed design, followed
by our demo prototype implementation in Sec. IV. Sec. V
presents a data processing use case followed by a prototype
demonstration in Sec. VI, before we conclude in Sec. VII.

II. BACKGROUND

Standard messaging queues such as RabbitMQ can be
used to add a Publish/Subscribe (Pub/Sub) feature to a MF.
However, such queues do not operate as storage units. They
are designed for transferring queue content as a whole, but not
for tuning the rate of data consumption by monitoring clients.
Tools like Apache Kafka employ offset features allowing to
skip queue messages; yet the clients remain responsible for
processing the data received, as aggregation queries are not
a common use case for messaging queue-based frameworks.

Monasca is a fault-tolerant MF using a Rest Application
Program Interface (API) for storing and querying metrics,
as well as for history information. It uses only the HTTP
protocol to simplify its design and to allow for a rich data
description via the concept of “dimensions”, i.e metrics in the
form of (key, value) pairs. Last, Monasca employs real-time
thresholding and alarms on metrics.

The work of [11] presents a generic comparison between
agent-based and agent-less cloud-based monitoring. The au-
thors discuss in depth the cloud configurations for both
schemes alongside challenges and requirements. The proposed
prototype uses Raspberry Pie to push data from the network
to a data store monitored the Prometheus monitoring API.
This design is claimed to scale well on small/medium-sized
networks and with reasonably-sized data. Nevertheless, this
assumption does not meet the massive size and frequency
of the anticipated 5G network measurements. In addition,
Prometheus does not offer sophisticated horizontal scaling
or user management features that medium-large scale en-
vironments would require. ES is an Apache License-based
distributed text search engine, hiding complexity behind a
RESTful API [12] that can index data in very high frequencies.
Moreover, it splits data into fields, so that client apps send
complex read/write/aggregate queries in different granularity
levels to different fields. While not integrating a Pub/Sub
scheme, community-based solutions exist using Redis, Apache
Kafka or Google Cloud Functions, which utilize the Logstash
to facilitate Pub/Sub operations or database triggering func-
tionality between ES clients. All solutions above are crafted

Tool / Criteria Storage Filtering Scalability Delay
Apache Kafka ++ N/A +++ +++
RabbitMQ N/A N/A + ++
Monasca +++ ++ ++ +
Prometheus +++ +++ ++ +
InfluxDB +++ +++ ++ +
ElasticSearch +++ +++ +++ +

TABLE I: Empirical performance of well-known platforms with useful
features for monitoring systems as presented in Table 5.4 of [13]. Plus signs
denote performance merit: fair (+); good (++); best (+++). “N/A” denotes
non-applicability or lack of merit.

to operate on a set of specific use cases up to a certain
level of frequency and granularity. Taking a step forward,
ElasticSDK addresses the challenges in 5G by covering
the gaps related to monitoring, as identified in [13] and sum-
marized in Table I. In further, ElasticSDK greatly covers
the needs of heterogeneous 5G networks that generate massive
and (quasi-) real-time data streams for DDCM purposes.

III. SDK & PROTOTYPE DESIGN PRINCIPALS

We elaborate on the challenges for designing a proper SDK
along with a detailed description of ElasticSDK1,2 and our
prototype implementation ElasticSDKv1.03.

1Code access: gitlab.eurecom.fr/mosaic5g/store/blob/mon-sdk/sdk/lib/
elasticmon sdk.py.

2Tutorial wiki for the prototype: hackmd.io/zaLGcuLyROWP1O-Vu0bM
g#Install-and-configure-ElasticSearch-and-Kibana

3https://gitlab.eurecom.fr/mosaic5g/elasticmon/tree/develop

A. Challenges

1) Seamless Data Flow: This is, perhaps, the greatest
requirement for 5G monitoring due to a multitude of important
parameters involved: (i) the massive data scale combined with
(ii) very high recording frequencies and (iii) different levels
of monitoring data granularity; the (iv) short time-scales such
as during a 1 ms Transmission Time Interval (TTI); last, the
necessity for the different control and management apps to
(v) seamlessly exchange raw or structured data. The SDK
must take all above into consideration and natively offer
a set of fundamental processed data values, i.e. minimum,
maximum and range values. From the implementation side, an
appropriate data store must be selected to maintain a seamless
data flow between the network controller and the custom apps
that require online or history data, and network statistics.

2) Stakeholders tussles and costs: The cost of monitoring is
high in 5G for the reasons mentioned above. At the same time,
it is not always clear which stakeholder (i.e., the network slice
owners and the infrastructure providers) has the responsibility,
the capability and the will for bearing the cost of gathering
and maintaining the monitoring data. Despite their conflicting
interests (avoiding costs, and privacy and security policies),
shareholders can still want to share monitoring data in trade for
a mutually beneficial DDCM. A main SDK design challenge
here regards enabling stakeholders with appropriate APIs that
allow to flexibly share costs and responsibility. This can be
done through customized views, levels of granularity and
aggregation of shared data after stakeholder-defined rules.

3) Monitoring APIs: Custom apps must be provided with a
proper set of APIs and abstraction layers that hide the technical
aspects of the framework, while allowing essential filtering and
aggregation operations on data, and to support heterogeneous
underlying data store systems. A proper API must not only
encourage the development of innovative operations, but also
enable to set up rules and access limitation policies against
damaging data or the network itself. Even more importantly,
using appropriate Monitoring APIs in different network/slice
instances can enable the collaboration of various MFs, as
the latter become capable of processing same requests from
monitoring apps via well-known API calls.

4) Scalability & other 5G challenges: The SDK APIs,
the framework as a whole and, particularly, the components
related to the underlying data store, must scale w.r.t. data
volumes and the high frequency of interactions with the data
processing apps. A 5G MF must have the right features for
enabling alarms on time or even act proactively by reporting
predicted future measurements and network states. The under-
lying design challenge here is to allow add-on ML/Artificial
Intelligence (AI) app components such as Long Short-Term
Memory Networks (LSTM) models to report important events
for DDCM ahead of time, which is very significant for (quasi-)
real-time network control decisions.

B. SDK architecture & prototype components

Figure 1a presents a high-level design overview of our SDK
and its interfaces with the southbound Control Plane (CP)

and the northbound custom monitoring apps. The producer
API of the controller writes the measured data and statistics
from the CP to the data store. These measurements are in
an adjustable granularity. Consumer apps such as Control
Applications (C-Apps) in the case of [8] pass their requests via
a “FILTER” module internal to the SDK that performs filtering
operations such as selecting desired data or aggregating results
(max, min, range, count, per user, slice, cell, etc). The filtering
module enables to also control the access and perform CRUD
(Create, Read, Update, and Delete) operations to the underly-
ing data store. Consumer apps retrieve data when a message is
published on a subscribed channel or when a database watcher
fires due to some metric threshold breach. It is important to
note that ElasticSDK APIs allow a diverse set of monitoring
systems and data store frameworks, to be used under the hood,
as the APIs remain responsible for the conversion of client
requests to the underlying monitoring modules and data stores.

As previously stated, facilitating different frameworks with
a Pub/Sub module or database watchers can be handled by the
ElasticSDK APIs to deliver the response over a different
channel. Similarly, CP measurements should be sent over a
separate channel forming a direct communication line with
a higher write performance to the data store. ElasticSDK
accepts requests from any platform able to send applicable
requests via its monitoring APIs. Clients send requests and
retrieve data through the Pub/Sub module by subscribing to
channels or Database Triggers. After parsing incoming data,
consumer apps can process input and generate more complex
data. Note that consumers are responsible for both identifying
the consumption method and for adjusting the required time
between incoming data. Requests can also refer to aggregated
results in-between time points to provide mean, median, min,
max, range or count values to consumers, which may switch to
producers to output data back to data store via ElasticSDK
for other apps to consume.

IV. PROTOTYPE FRAMEWORK IMPLEMENTATION

The current prototype version, ElasticSDKv1.0 works
on top of the ES search engine, the hierarchical controller [8]
of FlexRAN’s programmable SD-RAN platform, and the Ope-
nAirInterface (OAI) [14]. ElasticSDKv1.0 can currently
monitor RAN data as part of the Mosaic5G [15] community-
led consortium for building agile 5G service platforms and
opening fast wireless innovation. Figure 1b portrays the mod-
ules of ElasticSDKv1.0. FlexRAN’s controller runs over
an OAI user plane network infrastructure, while ES is used
to store the control plane data from the southbound API
(the FlexRAN producer). The FlexRAN Producer API is a
dedicated lightweight app deployed over FlexRAN that stores
raw monitoring data to ES. Once data get stored, apps can
consume it through ElasticSDK’s API.
ElasticSDKv1.0 can already support the most impor-

tant envisioned features. First off, ElasticSDKv1.0 em-
ploys a configurable FlexRAN producer app, in the southbound
of ElasticSDKv1.0 that can be configured using a REST

ElasticSDK APIs

Data Store

Filter

Watchers

Pub/Sub Module

Database Triggers

Custom Apps
Producer Consumer

Producer Consumer
Control Plane

X Y Z

Pub/Sub

(a)

Custom Apps

Virtualization Tools

KIBANA GRAFANA

ElasticSDK v1.0

Data Store

ElasticSearch

XPACK

BEATS

LOGSTASH

FlexRAN Controller

Control Plane

OpenAirInterface Infrasatructure

FlexRAN Producer

(b)

Fig. 1: (a) ElasticSDK design & interfaces. Notice the emphasized
“Filter” and “Pub/Sub” modules in the SDK layer. (b) Prototype SDK
implementation lying underneath Custom Apps and Visualization Tools.

north-bound API, holding the crucial role of continuously
feeding ElasticSDK with monitoring data.

Second, the current version supports multi-UE monitoring
with per slice aggregation regarding arbitrary numbers of UEs.
UEs can be indexed by the FlexRAN producer app, hence
monitored by the prototype. Data monitoring aggregation both
per slice and UE is supported. In further, different instances
of ElasticSDK can be used together over one or more data
store instances, thus enhancing privacy guarantees via data
storing isolation, alongside the filtering mechanisms that are
native to ES or any other data store to be supported as well
in future prototype versions.

Third, the prototype comes with all necessary sample mon-
itoring apps for testing purposes such as for aggregation,
filtering, selection, etc. It, also, comes with a webserver for
API calls used to send/process API requests and a set of
fundamental API calls including get/post/delete examples, UE
count and other aggregation operations on monitoring fields
like average, sum or mean. In addition, it contains all the
necessary documentation about the usage and the configuration
setup of FlexRAN Producer App.

Last, ElasticSDKv1.0 employs useful modules and
plugins, which we discuss in detail in Sections IV-A and IV-B.

A. ElasticSearch

By leveraging ES API, ElasticSDKv1.0 offers a flex-
ible and scalable monitoring system based on a distributed
data store that allows concurrent data-access to monitoring
apps generating and exchanging (quasi-) real-time data. The
data store can be effortlessly composed of many nodes with
horizontal scaling, due to the ability of ES to manage multiple
nodes. A clustered ES can store CP data from the southbound
API. ElasticSDKv1.0 provides bidirectional communica-
tion with clients, addressing the requirement of serial chain
or parallel app development. ES is a text search engine that
provides support for the filtering module required for data
aggregation and pre-processing. Similarly, the security module
corresponds to the X-Pack plugin, which provides user
management features to provide authentication and privilege
control. Next, the Beats plugin is used to monitor the health

App 1
App 2

App 3 App 4

ElasticSDK v0.1

Controller
Time

1 2 3 2,3 4 4

1

Fig. 2: Data exchange between the CP and custom apps.

of the nodes via observing resource usage, latency and so forth.
Finally, the Logstash plugin is used for logging data store
cluster events on node devices. Event listeners, alarms and
triggers facilitate Logstash data in order to operate.

B. FlexRAN Producer API

This is a dedicated app deployed over FlexRAN for storing
data gathered from agents to the data store. It is lightweight to
prevent any performance bottlenecks on other FlexRAN apps.
Once data get stored, apps can consume it, thus ElasticSDK
takes over the network load from the controller by becoming
the end-point for apps. We note two critical performance points
for this app: (i) high write granularity, and (ii) the delay
between saving data to the data store and the data becoming
available for consumption. We note an unavoidable delay
between separate requests to ES, posing consideration about
high frequency operations; yet ES includes the “Bulk API”,
which enables to perform multiple operations with single API
calls.4

V. DATA PROCESSING USE CASE

Figure 2 exemplifies data exchange over time between apps
running over the northbound API and their interaction with
the controller. Apps can fetch data from the data store to
generate further data by mining the original statistics and
reports of the controller resulting in new data indexed back
to ElasticSDK. Any app on the outer level of the network
could fetch processed data for further processing and/or mod-
ify the state of the controller. In this context we identify a use
case that combines (i) serial-chain and (ii) parallel data flows
between apps. For common queries, practical apps can write
processed data in the data store for other apps to use, thus
avoiding unnecessary queries. This forms a serial app chain
for write & read actions, using ElasticSDK as a pipeline.

Figure 3 shows a use case that combines both serial and
parallel data flow pipelining. Notice the chain of control
apps including Positioning, Crowd distribution, Tracking and
Handover control, which are in a similar form to the one
of Fig. 2. The pipeline starts with the FlexRAN controller
writing raw data types and statistics of connected UEs. Such
data include numerous metrics explained in [8]. Notice the
use of a blue layer in the data flow pipeline at this stage.
Positioning and Crowd apps consume mobility-related data
in parallel from that blue layer such as Power Headroom
Report (PHR), Reference Signal Received Power (RSRP),

4mosaic-5g.io/apidocs/flexran/

FlexRAN Positioning App Tracking App
Crowd App

Handover App

Fig. 3: Sample use case with serial and parallel data flow pipelining. Notice
the three layers of the serial part of the chain from left to right: blue, feeding
Positioning and Crowd Apps in parallel; yellow feeding the Tracking app;
orange, feeding the Handover App.

Reference Signal Received Quality (RSRQ), Channel Quality
Indicator (CQI). Based on this, the Positioning App computes
the mobility status of each UE while the Crowd App computes
an estimated positioning map of the UEs. Positioning and
Crowd apps’ output is stored back in the pipeline (yellow
part). Then the Tracking App fetches the former joint output
to compute things like the motion statistics of UEs over time,
stored to the next (orange) layer of the data flow pipeline.
This includes position changes, movement direction, velocity
and other relevant motion statistics. Finally, a Handover App
fetches the time series of the previous outputs to trigger a
handover back to the CP for a subset of UEs based on the
metric of interests such as Quality-of-Service (QoS), cell load,
or user mobility.

Considering a common UE behaviour in the OAI LTE
platforms with FlexRAN controller, we concluded that the
connected devices have RSRP values between -75dBm to -
128dBm and usually lose connection around -120dBm. A
similar analysis is also made to the other metrics related to
UE mobility. The total knowledge acquired from our own
monitoring data enabled our network to develop a simple app
chain that performs handover operations before QoS drops
below a threshold.

VI. PROTOTYPE DEMONSTRATION

We demonstrate in practice data flows exchange based
on “read” and “write” app actions. We record delay and
disk space measurements under high frequency usage by the
FlexRAN Producer API. Due to space restrictions, we
outline the essentials of our demo scenario below, and provide
a meticulous description online at CRAWDAD [10] along with
our publicly available RAN monitoring data traces.

A. Data exchange delay

We adapt a serial chain data flow use case scenario, de-
ploying 5 serial C-Apps that use ElasticSDK as a pipeline
for exchanging data, and measure round-trip delay between
“layers”. A layer denotes one write action from a C-App
and one read action from a sequence of C-App, yielding
one measurement sample. In overall, we measure 700 data

50 25
0

55
0

10
50

13
00

15
50

30
00

Payload Size (Characters)

5

10

15

20

25

30

35

40

D
el

ay
 p

er
 la

ye
r (

m
s)

(a) Common payload sizes.

40
00

0
50

00
0

80
00

0

10
00

00

Payload Size (Characters)

20

40

60

80

D
el

ay
 p

er
 la

ye
r (

m
s)

(b) Large and massive payload
sizes.

Fig. 4: Payload size (x-axis) in number of characters against round-trip
delay (y-axis). Boxes include median values. Whiskers correspond to 95%
confidence intervals with outliers marked with dots beyond whiskers.

exchange delay samples using different payload sizes. The
C-Apps are deployed on one machine that is equipped with a
I7 7700HQ CPU with a clock speed of 2.8 GHz, a 16 GB of
RAM, and a stable 50 Mbps Ethernet connection. To provide
a more realistic evaluation, C-Apps communication is handled
via an ElasticSDK instance running on a remote network,
rather than a low latency local network MF instance.

Figure 4 depicts two boxplot diagrams of the measured
round-trip delay times against the payload size of the ex-
changed data. Boxplot (a) regards common payload sizes (50
up to 3K characters of monitoring data), whereas boxplot (b)
large and massive payload sizes (40K up to 100K characters)
to investigate the delay performance under heavy monitoring
load conditions. An average FlexRAN measurement of one
UE is approximately 1.5K characters long in JSON format,
having a round-trip time close to 15 ms. As the number of
connected UEs increases, the data size grows as well, hence
increasing the round-trip delay close to 50 ms for 30 UEs.

The results show an unavoidable delay cost even with
very small payload sizes (Fig. 4(a)) and a direct impact of
payload size on round-trip time from/to ElasticSDK. Both
round-trip delay values and delay variability increase with
payload size, particularly for ones ≥ 3K. This is due to the
large character sizes used to stress our system, particularly, in
Fig. 4(b). The input generated by the first C-App arrives to the
fifth C-App of the chain in 5x the round-trip delay for the given
payload size. The cumulative delay of the chain creates a time
offset to the output of the chain. This can lead to late or faulty
decisions by consumers, thus it is strongly recommended for
serial C-Apps to avoid exchanging unnecessary data and to
preserve low payload sizes. Another way to decrease delay
is by splitting the workload to fewer C-Apps. Based on the
above, this would decrease the overall delay of the chain at
the cost of a computational overhead per C-App.

0 10 20 30 40 50 60 70 80 90
Time(Minutes)

2

5

10

15

20

25

St
or

ag
e

us
ed

(G
B)

 1 UE
5 UE
10 UE

Fig. 5: Disk usage of FlexRAN Producer

B. Disk space requirements

We record real-time data from the FlexRAN controller,
using different numbers of connected UEs. Figure 5 portrays
the storage amount used by the FlexRAN Producer API
to store statistics with 1 measurement per 1 ms. This translates
to 1000 measurements from each UE per second. Given this
frequency and without any data replication, ElasticSDK
requires ∼2GB of storage per hour to store the data of one
UE. Note that the size of FlexRAN statistics in JSON format
can change w.r.t. different variations of activated southbound
network apps; yet we omit this change to provide a stable
behaviour of the resource usage during our evaluation.

Providers can lower the recording frequency of statistics
as well as of configuration settings that are rarely updated
over long periods of time. This enables to fine-tune storage
space and network traffic savings against a resulting time
offset between latest actual metric changes and the time of
consumed metric updates. To provide an example, we tuned
ElasticSDK to record the configuration settings of the
FlexRAN Agent once every 5 seconds. Within 3 hours of
recording time merely 3 MB of storage was used for 2200 mea-
surements. On a worst case scenario, this implies that a C-App
can recognize a configuration change with a 5 second delay.
On the contrary, increasing the recording frequency enables a
more sensitive/precise monitoring analysis over metric changes
at the cost of increased disk space consumption. Likewise,
measurement sizes increase with the number of connected
UEs, implying a higher storage demand (see Fig. 5).

The former verifies a dual trade-off: (i) between the data
recording frequency and the update status of monitoring
measurements, with the latter having implications on (quasi-)
real-time DDCM; (ii) between the number of connected UEs
and total storage consumption. We opt for dynamic recording
frequency schemes that can be adjusted after metric changes.
Nonetheless, such a system can be computationally costly
for producer apps, and difficult to develop and adjust to
network requirements. Finally, we note that UEs can arbitrarily
(dis)connect to (from) the network, thus the needed resources
should be available to support monitoring at all times.

C. 5G RAN monitoring trace datasets

We collected 5G RAN monitoring data using our prototype
implementation, which we contributed [10] to CRAWDAD.
To our knowledge, this is still a rare contribution of real 5G
RAN monitoring data to the 5G community, containing over a
100 metric categories from the MAC, RRC, and PDCP layers,
as exposed by the FlexRAN controller5 in JSON format. Data
are organized in 5 different raw and 5 different corresponding
processed datasets recorded for one enhanced NodeB (eNB)
w.r.t. 5 different UE motion and distance patterns.

VII. CONCLUSION

We present ElasticSDK, an SDK design for abstracting
the development and the chaining of agile monitoring apps
to enable the formation of a technology-agnostic application
plane for implementing sophisticated control and management
logics, as well as for providing a unified monitoring view
and satisfying the conflicting interests of different stake-
holders. Special design consideration is taken to facilitate
massive scales of data coming from heterogeneous sources
in dynamic 5G environments, in low time-scales and with a
high frequency. Also, the SDK design employs a Pub/Sub
data flow model for custom apps. Furthermore, we present
a prototype RAN monitoring implementation to demonstrate
our SDKs merits, and to produce and publicly contribute RAN
monitoring dataset traces.

Future work includes exploring the potential of deploying
multiple interacting ElasticSDK implementation instances
to enable regional monitoring, hence enable different operators
and slices to merge their network data into larger datasets.
Additionally, we aim to investigate the implications of delay
between processing apps in a serial chain, and try to lower it
by, e.g., establishing direct communication channels between
apps. Last, our prototype implementation will be extended to
cover the 5G CN segment using the LL-MEC [16] platform.

REFERENCES

[1] S. Ayoubi et al., “Machine Learning for Cognitive Network Manage-
ment,” IEEE Communications Magazine, vol. 56, pp. 158–165, 2018.

[2] M. Zorzi, A. Zanella et al., “Cognition-Based Networks: A New Per-
spective on Network Optimization Using Learning and Distributed
Intelligence,” IEEE Access, vol. 3, pp. 1512–1530, 2015.

[3] S. Zander et al., “Sub-flow packet sampling for scalable ML classification
of interactive traffic,” in IEEE Local Computer Networks, USA, 2012.

[4] T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Communications Surveys
and Tutorials, vol. 10, no. 1-4, pp. 56–76, 2008.

[5] A. Mestres, A. Rodrı́guez-Natal et al., “Knowledge-Defined Network-
ing,” Computer Communication Review, vol. 47, no. 3, pp. 2–10, 2017.

[6] D. Clark et al., “A Knowledge Plane for the Internet,” in ACM SIG-
COMM 2003 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, pp. 3–10, 2003.

[7] C. Chang and N. Nikaein, “Closing in on 5G Control Apps: Enabling
Multiservice Programmability in a Disaggregated Radio Access Net-
work,” IEEE Vehicular Technology Magazine, pp. 80–93, Dec 2018.

[8] X. Foukas, N. Nikaein et al., “FlexRAN: A Flexible and Programmable
Platform for Software-Defined Radio Access Networks,” in 12th Intern.
Conference on emerging Networking EXperiments and Technologies,
CoNEXT, Irvine, California, USA, December 12-15, pp. 427–441, 2016.

5For details, visit here: http://mosaic-5g.io/apidocs/flexran/#api-Stats

[9] R. Schmidt, C.-Y. Chang, and N. Nikaein, “FlexVRAN: A flexible
controller for virtualized RAN over heterogeneous deployments,” in ICC
2019, 53rd IEEE International Conference on Communications, 20-24
May 2019, Shanghai, China, 2019.

[10] B. Köksal, R. Schmidt, X. Vasilakos, and N. Nikaien, “CRAWDAD
dataset eurecom/elasticmon5g2019 (v. 2019-08-29).” Downloaded from
https://crawdad.org/eurecom/elasticmon5G2019/20190829, Aug. 2019.

[11] M. Brattstrom and P. Morreale, “Scalable Agentless Cloud Network
Monitoring,” in 4th IEEE Intern. Conference on Cyber Security and
Cloud Computing, New York, NY, USA, pp. 171–176, 2017.

[12] U. Thacker et al., “Performance of Elasticsearch in cloud environment
with nGram and non-nGram indexing,” in IEEE Intern. Conference on
Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016.

[13] J. Lessmann, M. Bredel et al., “D2.2 Architecture Design,” 2015. H2020
SONATA project, Deliverable 2.2.

[14] N. Nikaein, M. Marina, S. Manickam, A. Dawson, R. Knopp and
C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,” ACM
Sigcomm Computer Communication Review, Vol. 44, N5, October, 2014.

[15] N. Nikaein and A. K. Chang, Chia-Yu, “Mosaic5G: Agile and flexible
service platforms for 5G research,” ACM Sigcomm Computer Commu-
nication Review, Volume 48, N°3, July 2018, 2018.

[16] N. Nikaein, X. Vasilakos, and A. Huang, “LL-MEC: Enabling Low
Latency Edge Applications,” in IEEE 7th International Conference on
Cloud Networking (CloudNet), Tokyo, Japan, October 22-24, 2018.

