
1

Mining Expressive Rules in Knowledge Graphs

NASER AHMADI, Eurecom, France
VIET-PHI HUYNH, Eurecom, France
VAMSI MEDURI, Arizona State University, USA
STEFANO ORTONA,Meltwater, UK
PAOLO PAPOTTI, Eurecom, France

We describe RuDiK, an algorithm and a system for mining declarative rules over RDF knowledge graphs (KGs).
RuDiK can discover rules expressing both positive relationships between KG elements, e.g., “if two persons
share at least one parent, they are likely to be siblings”, and negative patterns identifying data contradictions,
e.g., “if two persons are married, one cannot be the child of the other" or “the birth year for a person cannot
be bigger than her graduation year". While the first kind of rules identify new facts in the KG, the second
kind enables the detection of incorrect triples and the generation of (training) negative examples for learning
algorithms. High quality rules are also critical for any reasoning task involving the KGs.

Our approach increases the expressive power of the supported rule language w.r.t. the existing systems.
RuDiK discovers rules containing (i) comparisons among literal values and (ii) selection conditions with
constants. Richer rules increase the accuracy and the coverage over the facts in the KG for the task at hand.
This is achieved with aggressive pruning of the search space and with disk-based algorithms, which enable
the execution of the system in commodity machines. Also, RuDiK is robust to errors and missing data in the
input graph. It discovers approximate rules with a measure of support that is aware of the quality issues. Our
experimental evaluation with real-world KGs shows that RuDiK does better than existing solutions in terms
of scalability and that it can identify effective rules for different target applications.

CCS Concepts: • Information systems→ Data mining; Data cleaning.

Additional Key Words and Phrases: rule mining, knowledge graphs, graph dependencies

ACM Reference Format:
Naser Ahmadi, Viet-Phi Huynh, Vamsi Meduri, Stefano Ortona, and Paolo Papotti. 2019. Mining Expressive
Rules in Knowledge Graphs. ACM J. Data Inform. Quality 1, 1, Article 1 (January 2019), 25 pages. https:
//doi.org/10.1145/3371315

1 INTRODUCTION
The creation of RDF knowledge graphs (KGs) is an important activity in modern information
systems. KGs organize information in the form of triples with predicate expressing a binary relation
between a subject and an object. KG triples, or facts, represent information about real-world entities,
their properties, and their relationships, such as “Larry Page is the founder of Google". Research has
been conducted on KG creation both in the research community (NELL [13], DBPedia [8], Yago [39],
Wikidata [43], FreeBase [9], DeepDive [38]) and in the industry (Google [19], Wal-Mart [18]). A
major challenge with KGs is the quality of their data. This is because of the processes involved in

Authors’ addresses: Naser Ahmadi, Eurecom, France, Naser.Ahmadi@eurecom.fr; Viet-Phi Huynh, Eurecom, France,
viet-phi.huynh@eurecom.fr; Vamsi Meduri, Arizona State University, USA, vmeduri@asu.edu; Stefano Ortona, Meltwater,
UK, stefano.ortona@meltwater.com; Paolo Papotti, Eurecom, France, papotti@eurecom.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1936-1955/2019/1-ART1 $15.00
https://doi.org/10.1145/3371315

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://doi.org/10.1145/3371315
https://doi.org/10.1145/3371315
https://doi.org/10.1145/3371315

1:2 Ahmadi et al.

their creation and update. The structured data in the KGs is usually extracted from multiple sources,
possibly from the Web, without human validation. This raises two main issues. The first problem
is factual mistakes. Incorrect or outdated data can be transmitted from the sources to the KGs, or
noise can originate from the automatic extractors [12, 19]. The second issue is incompleteness. As
a graph is rarely complete in practice, closed world assumption (CWA) does not hold in KGs [19, 25],
i.e., it is not possible to conclude that a missing fact is false. We therefore follow the open world
assumption (OWA) and consider it as unknown. Also, in many cases the KG schema is not fixed, i.e.,
the set of predicates changes over time and new facts can be inserted without integrity checks.

Because of these issues, the quantity of incompleteness and errors in KGs can be large, with up
to 30% errors reported for data extracted from Web sources [1, 40]. KGs can have lots of data, e.g.,
Wikidata has over a billion facts and millions of entities, therefore it is not feasible to manually
verify triples to find mistakes and add missing facts. Tools are needed to assist humans in the KG
curation. A natural approach in this direction is to mine declarative rules. Once validated, these can
be run at scale on the KG to increase the quality of its data [2, 4, 14, 18, 25]. We study the mining
and the applications for two kinds of rules: (i) positive rules, which can be executed to add new
facts to the KG with the aim of increasing its coverage of the reality; (ii) negative rules, which can
be used to identify logical inconsistencies in the KG, ultimately detecting incorrect triples.
Example 1: Assume a given KG containing people and facts for child and parent connections. A
simple positive rule is expressed with the formula:

r1 : hasParent(b,a)⇒ hasChild(a,b)

which states that for any person a reported as parent of a person b, there should also be a fact
reporting that b is a child of a. If the KG has the fact “Scott Eastwood has a parent named Clint
Eastwood", we can infer the fact that “Clint Eastwood has a child named Scott Eastwood". A negative
rule is similar in shape, but expresses different semantics. In the following rule, predicate birthYear
stands for “Year of birth” for a person:

r2 : birthYear(a,v0) ∧ birthYear(b,vi) ∧v0 > vi ∧ hasChild(a,b)⇒ ⊥

The rule states that if person b was born before person a, then it cannot be that b is a child of a. By
running the rule on the hasChild triples in the KG, it is possible to identify incorrect facts.
While intuitive to humans, the above rules must be manually crafted to be executed over KGs.

This process can be difficult because the domain experts, who know the semantics for the dataset
at hand, may miss the CS background to formally express rules. Moreover, the task of writing a
set of rules is time consuming, as there can be thousands of them that are needed to achieve good
quality results [41]. In this context, a system to mine rules is important to assist the users in data
curation, as well as in any task involving reasoning over the KG [7, 24]. Unfortunately, three main
issues make the mining of rules from KGs challenging.
Quality of the Data.Most rule mining algorithms assume that input data has very small amounts
of errors [3, 5, 15, 28], but KGs are incomplete and can have high percentages of mistakes.
Open World Assumption. Some methods assume that positive and negative examples are avail-
able [17, 32]. However KGs contain only positive statements, and it is not possible to assume CWA,
as there is no obvious solution to derive negative facts acting as counter examples.
Data Volume. Several existing algorithms for rule mining exploit the premise that the input graph
can fit entirely in the main central memory [4, 14, 23, 25]. As KGs can have a very large size, existing
methods limit the size of the search space by restricting the mining to a simple rule language, which
can miss some of the important patterns in the data.
We address the above challenges by introducing declarative rule mining algorithms over noisy

and incomplete KGs. We implement such algorithms in RuDiK, a system that exploits disk based

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:3

solutions to enable the mining of a larger search space over KGs. The ability to mine with a more
expressive language leads to the discovery of rules with comparisons across elements beyond
equality and the mining for graph predicates involving literal values (e.g., birthDate). More patterns
enable the identification of a bigger number of both errors and new facts with high accuracy. Such
improvements are obtained by building our system around four main contributions.

(i) Approximate Rule Mining. We specify the problem of robust rule mining over incomplete
and erroneous KGs. The input of the mining is a KG predicate and positive and negative examples for
it. In terms of output, in contrast to the long lists of rules ranked on a measure of support [17, 25, 37],
in Section 3 we give a definition that identifies a subset of approximate rules, i.e., patterns that may
not hold over all examples because of missing and incorrect triples in KGs. The solution is then the
smallest set of rules covering most of the positive examples and few negative examples.

(ii) Generation of the Examples. The input examples for a predicate strongly affect the quality
of the output rules in our approach. While positive example are available from the graph, manually
creating negative examples is an expensive task. Section 4 introduces example generation techniques
that are aware of the issues due to inconsistencies and missing data in the KG. Our generated
examples enable the discovery of better rules than the examples from alternative techniques.

(iii) A Greedy Algorithm for Rule Mining. We describe a log(k)-approximation algorithm
for the rule mining problem, where k is the maximum number of positive examples covered by a
rule. The disk-based algorithm, described in Section 5, incrementally materializes the KG in the
mining process by traversing only paths that can generate promising rules. The resulting low
memory footprint allows the mining with a more expressive rule language.

(iv) Conditional Rules. In many cases, rules are correct when defined for a specific geographical
area, in a certain time, or for specific types of entities. To capture these more subtle patterns, in
Section 6 we extend the core mining algorithms to discover conditional rules, i.e., rules that apply
only for a subset of the data, identified by a selection with a constant over the values of an entity
or of a type. By exploiting clustering of the entities, we are able to identify subsets of the data for
which the mining leads to new rules that are not identified with the general algorithm.

We test our system experimentally on three popular andwidely used KGs (DBPedia [8], Yago [39],
andWikidata [43]). Results in Section 7 demonstrate that RuDiK discovers rules of high quality,
with a relative increase in average precision by 45% w.r.t. the existing systems. The system can
be executed successfully over large KGs on a commodity laptop. We report results showing that
negative rules mined by the system generate training examples of high quality comparable to
manually crafted examples for learning algorithms. In Section 8, we describe our system and results
in the context of the related literature and in Section 9 we conclude with open directions for research
in this topic. We open sourced the code of the system online, together with the experimental results
and discovered rules at https://github.com/stefano-ortona/rudik.
This article extends the original RuDiK system [33, 34] with the support for the discovery of

rules for object properties, such as birthDate (person, date); the discovery of type conditional rules
holding only for a subset of the elements in the KG, such as politicians or artists; and a more
extensive experimental evaluation of our solution.

2 BACKGROUND AND DEFINITIONS
We study how to mine declarative rules from RDF KGs. An RDF KG is a database representing
information with triples (or facts) ⟨s,p,o⟩, where a predicate p connects a subject s and an object o.
For example, the fact that Hillary Clinton has a child named Chelsea Clinton is expressed with a
triple ⟨Hillary_Clinton,hasChild,Chelsea_Clinton⟩. In a triple, the subject is an entity, i.e., a real

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://github.com/stefano-ortona/rudik

1:4 Ahmadi et al.

world concept; the object is either an entity or a literal, i.e., primitive type such as number, date,
and string; and the triple predicate specifies a relationship between subject and object.

Several KGs do not limit the allowed instances with a fixed schema, i.e., triples can be inserted for
any new predicate. While this operation allows flexibility, it increases the likelihood of introducing
mistakes compared to traditional (relational) databases guided by schema. KGs offer constructs to
express TBox statements defining classes, domain types for predicates, and relationships among
classes. These constructs can be used for integrity checks, but most graphs do not come with such
information. For this reason, we focus our attention on the triples describing instance data, i.e.,
ABox statements.

2.1 Rule Language
We aim at the automatic discovery of first-order logical formulas in KGs. Our focus is on mining
Horn Rules with universally quantified variables only. A Horn Rule is a disjunction of atoms with at
most one unnegated atom. In the implication form, they have the following format:

A1 ∧A2 ∧ · · · ∧An ⇒ B

where A1 ∧A2 ∧ · · · ∧An is the body of the rule (a conjunction of atoms) and B is the head of the
rule (a single atom). It is possible to express the rule in a logically equivalent form by rewriting the
atom in the head of the rule in its negated form in the body to emphasize contradictions:

A1 ∧A2 ∧ · · · ∧An ∧ ¬B ⇒ ⊥

We therefore distinguish two kinds of rules. Positive rules, or definite clauses, determine new candi-
date triples, such as r1 in Example 1. Negative rules, such as r2 in Example 1, identify contradicting
triples, with a role similar to denial constraints in tabular data [15]. An atom is a predicate connect-
ing two variables, two elements of the graph (entities or literal values), or an element and a variable.
We use the notation rel(a,b) to write an atom, where rel is a KG predicate and a, b are either
variables or elements. Given a rule r , for the body and the head of the rule we use rbody and rhead ,
respectively, and name the variables in the head of the rule as target variables, e.g., a and b in r1.

Our algorithm is designed to mine rules with one atom in the head. This means that for negative
rule discovery, the problem is defined as the mining of rules for an atom in its negated form in the
head. It can be interpreted as a formula generating false facts. Negative rule r2 in Example 1 is the
result of rewriting the notHasChild atom in the body of the rule:

r ′2 : birthYear(a,v0) ∧ birthYear(b,vi) ∧v0 > vi ⇒ notHasChild(a,b)

The negative rule contains an example of the literal comparisons allowed in the rule language. A
literal comparison is expressed as an atom rel(a,b), with rel ∈ {<, ≤,,, >, ≥}, and a and b that
can only be assigned to literal values except if rel is equal to ,, i.e., inequality comparisons for
entities are allowed. We may use the form a rel b in some examples for clarity.
Given KG kд and atom A = rel(a,b) where a and b are two KG elements, A holds over kд iff
⟨a, rel,b⟩ ∈ kд. Given an atom A = rel(a,b) with at least one variable, A can be instantiated over
kд if there exists at least one element from kд for each variable in A s.t. if we substitute all variables
in A with these elements, A holds over kд. Transitively, rbody can be instantiated over kд if every
atom (with elements) in rbody can be instantiated and every literal comparison is logically true.

We do not discover rules with negated atoms in the body.We define a rule valid iff every variable in
it appears at least twice [14, 25]. This restriction avoids mining rules that we consider not interesting,
such as those with unrelated atoms and cross-products, e.g., hasChild(a,v0)∧hasChild(b,vi)⇒
spouse(a,b).

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:5

2.2 Rule Coverage
Given a pair of elements (x ,y) from a KG kд and a Horn Rule r , we say that rbody covers (x ,y)
if (x ,y) |= rbody . More specifically, given a rule r : rbody ⇒ r(a,b), rbody covers a pair of
elements (x ,y) ∈ kд iff we can substitute a with x , b with y, and the rest of the body can be
instantiated over kд. Given a set of pair of elements E = {(x1,y1), (x2,y2), · · · , (xn ,yn)} and a rule
r , we denote by Cr (E) the coverage of rbody over E as the set of elements in E covered by rbody :
Cr (E) = {(x ,y) ∈ E |(x ,y) |= rbody }.

Given the body rbody of a rule r , we denote by r ∗body the unbounded body of r . The unbounded
body of a rule is obtained by keeping only atoms that contain a target variable and substituting such
atoms with new atomswhere the target variable is paired with a new unique variable. As an example,
given rbody = rel1(a,v0)∧rel2(v0,b)wherea andb are the target variables, r ∗body = rel1(a,vi)∧

rel2(vii ,b). While in rbody the target variables are bounded to be connected by variable v0, in
r ∗body they are unbounded. Given a set of pair of elements E = {(x1,y1), (x2,y2), · · · , (xn ,yn)} and
a rule r , we denote by Ur (E) the unbounded coverage of r ∗body over E as the set of elements in E

covered by r ∗body :Ur (E) = {(x ,y) ∈ E |(x ,y) |= r
∗
body }. Given a set E, Cr (E) ⊆ Ur (E).

Example 2: Let E be the set of all possible element pairs in kд. The coverage of r2 of Example 1
over E (Cr (E)) is the set of all pairs of entities (x ,y) ∈ kд s.t. both x and y are the subject for a birth
year triple and the year for x is higher. The unbounded coverage of r2 over E (Ur (E)) is the set of all
pairs of entities (x ,y) s.t. both x and y are the subject for a birth year triple without any condition
on the relationships between such year values.

Unbounded coverage plays a crucial role in distinguishing inconsistent and missing data. Given
entities (x ,y) in a pair, if the birth year is missing for at least one of them, it is not possible to state
who was born first. Only if both entities have their birth years and x is born before y, we conclude
that r2 does not cover (x ,y). Given that KGs are largely incomplete [31], the ability to discriminate
missing and conflicting information is of paramount importance. We extend next the definitions for
coverage and unbounded coverage to a set of rules R = {r1, r2, · · · , rn} as the union of individual
coverages:

CR (E) =
⋃
r ∈R

Cr (E) UR (E) =
⋃
r ∈R

Ur (E)

3 RULE DISCOVERY FOR NOISY KGS
For the sake of simplicity, we define the discovery problem for a given target predicate. To obtain
all rules for a KG, we compute rules for every predicate in it. We characterize a predicate with two
sets of pairs of elements, where an element is either an entity or a literal value. The generation set
G contains examples for the predicate, while the validation set V contains counter examples for
the same. Consider the discovery of positive rules for the hasChild predicate between entities;
G contains true pairs of parents and children and V contains pairs of people who are not in such
relation. If we want to identify errors (negative rules), the sets of examples are the same, but they
switch role. To discover negative rules for hasChild, G contains pairs of people not in a child
relation and V contains pairs of entities in a child relation. As another example, consider predicate
birthDate, which has a literal value as object. For mining positive rules,G contains true pairs with
subject entities and their birth dates and V contains pairs with subjects and literal values that are
not their birth dates. Again, for identifying negative rules, we switch the role of the sets.
We formalize next the exact discovery problem. In the following definitions, we assume for the

sake of simplicity that all possible valid rules and the sets of examples have been already generated,
we detail in the rest of the article how they are efficiently obtained from the KG.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 Ahmadi et al.

Definition 1: Given a KG kд, two sets of pairs of elements G and V from kд with G ∩V = ∅, and
all the valid Horn Rules R for kд, a solution for the exact discovery problem is a subset R′ of R s.t.:

argmin
R′
(size(R′)|(CR′(G) = G) ∧ (CR′(V) = ∅))

The minimal set of rules covering all pairs in G and none of the pairs in V forms the exact
solution. It minimizes the number of rules in the output (size(R′)) to favour generic rules that
can affect large portions of the graph. In fact, given a pair of elements (x ,y), there is always an
overfitting rule whose body covers only pair (x ,y) by assigning target variables to literal values x
and y.
Example 3: Assume we are mining positive rules for the predicate couple by using examples from
the people forming the Obama family. We are given only two couple examples. The positive one is
the pair (Barack,Michelle) and the negative one contains their daughters (Natasha,Malia). Consider
now the three rules below.

r3 : livesIn(a,v0) ∧ livesIn(b,v0)⇒ couple(a,b)

r4 : hasChild(a,vi) ∧ hasChild(b,vi)⇒ couple(a,b)

r5 : hasChild(Michelle,Natasha) ∧ hasChild(Barack,Natasha)⇒ couple(Barack,Michelle)

Positive rule r3 states that two individuals are likely to be a couple if they live in the same location,
while rule r4 states that this is the case when they have at least one child in common. Assuming
triples for predicates livesIn and hasChild are in the KG, both r3 and r4 cover the positive example.
While r4 is an exact solution (not covering the negative example), r3 is not, as the daughters also
reside in the same location. Rule r5 explicitly mentions entity values (constants) in its head and body.
It is also an exact solution, but, in contrast to r3, it only applies for the given positive example.
If any hasChild triple is missing in G, the exact discovery finds only r5 as a solution. This

example demonstrates why the exact discovery is not robust to data quality issues in KGs. Even
in cases in which a valid rule exists, missing or incorrect triples associated to the examples in G
and V lead to misleading coverage. In the worst case, the exact solution may collapse to a set of
rules where every one of them covers only one example in G , effectively discovering rules with no
coverage outside of the examples when executed on the graph.

3.1 Weight Function
Being aware of errors and missing data in the graph, we remove the requirement of (not) covering
(V)G exactly with the rules. We instead identify rules that hold for most of the data (soft-constraints)
to be robust w.r.t. incompleteness and noise. Coverage still guides our assessment of the rule quality:
good rules should cover as many example pairs in G as possible, while covering very few to zero
pairs in V . We implement these ideas with a weight computed for every rule.
Definition 2: Given a KG kд, two sets of element pairs G and V from kд with G ∩V = ∅, and a
Horn Rule r , the weight of r is defined as follow:

w(r) = α · (1 −
| Cr (G) |

| G |
) + β · (

| Cr (V) |

| Ur (V) |
) (1)

with α , β ∈ [0, 1] and α + β = 1, thusw(r) ∈ [0, 1].
The weight models rule quality w.r.t.G and V – a rule covering all generation elements ofG and

none of the V validation elements has a weight of 0. Therefore, the better the rule, the smaller its
weight. The weight has two parts normalized by parameters α and β . The first part quantifies the
coverage over generation set G – the ratio between the coverage of r over G and the size of G. If r
covers all elements in G, this component becomes 0. The second part measures the coverage of r
over the unbounded coverage of the rule over V , instead of the total elements in V . Since some

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:7

elements in V might not satisfy the predicates in rbody , we restrict V with unbounded coverage to
validate on “qualifying" example pairs that have the information tested by the rule’s body.

Parameters α and β set the relevance of each part. A high value for β guides the mining towards
rules with high precision by penalizing the ones that coverV pairs, while a high value for α favours
the recall by championing rules that cover more G pairs.
Example 4: We use rule r2 from Example 1. Assume two sets of element pairs G and V from a KG
kд. The first part of w(r2) corresponds to 1 minus the number of examples (x ,y) ∈ G where x is
born after y divided by the size of G. The second part is the number of examples (x ,y) ∈ V with x
born after y divided by the number of examples (x ,y) ∈ V having birth date values for both x and
y in kд, i.e.,Ur2 (V) does not contain pairs without birth date values.
Definition 3: Given a KG kд, two sets of element pairsG andV from kд withG ∩V = ∅, and a set
of rules R, the weight for R is:

w(R) = α · (1 −
| CR (G) |

| G |
) + β · (

| CR (V) |

| UR (V) |
)

Weights model the presence of errors in KGs. Consider the case of negative rule discovery, where
V contains positive examples from the graph. We report in the experimental evaluation several
negative rules with significant coverage over V , which corresponds to errors in the KG.

3.2 Problem Definition
We can now state the approximate version of the problem.
Definition 4: Given a KG kд, two sets of element pairs G and V from kд with G ∩V = ∅, all the
valid Horn Rules R for kд, and a weight functionw for R, a solution for the robust discovery problem
is a subset R′ of R such that:

argmin
R′
(w(R′)|CR′(G) = G)

The robust version of the discovery problem aims at identifying rules covering all elements in G
and as few elements as possible inV . As we want to avoid overfitting rules in R, we do not allow in
the solution rules with constants in the target variables.

Our problem definition can be mapped to the NP–complete weighted set cover problem [16]. The
reduction follows from the following mapping: the set of elements (universe) corresponds to the
generation pairs in G, the input sets are identified by the rules in R (where each rule covers a
subset of G), the non-negative weight functionw : r → IR isw(r) (Definition 2), and the cost of R
is defined to be its total weight (Definition 3).

4 GENERATION OF RULES AND EXAMPLES
We start by discussing the generation of the universe of all possible rules. We first assume that
examples in G and V are available, and then discuss methods to obtain them automatically. Our
solution does not depend on how examples are obtained. We explicitly generate them in our
approach, but the same rule mining algorithms apply if humans provide pairs for G and V .
We describe the mining of positive rules with correct facts in G and incorrect ones in V . When

mining negative rules, our rule generation and mining algorithms are the same: it is enough to
swap the role of generation setG (therefore containing false facts) and validation setV (in this case
containing true facts). The example generation algorithm also applies in both scenarios.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 Ahmadi et al.

4.1 Rule Generation
We represent a KG kд as a directed graph: elements (entities and literals) form the nodes with a
directed edge from node a to node b for each fact ⟨a, rel ,b⟩ ∈ kд. The relation rel that connects
subject to object is used as label for the corresponding edge. We report four facts in Figure 1.

child
parent

birthDate birthDate

Clint
Eastwood

Scott
Eastwood

May 31,
1930

March 21,
1986

Fig. 1. Four DBpedia facts in the graph representation.

If we allow navigation of edges independently of the edge direction, we can navigate kд as an
undirected graph. The body of a rule can be seen as a path in the undirected graph. In Figure 1, the
body child(a,b) ∧ parent(b,a) corresponds to the path Clint Eastwood − Scott Eastwood − Clint
Eastwood. As defined in Section 2.1, a valid body contains target variables a and b at least once,
every other variable at least twice, and atoms are transitively connected. Given a pair of elements
(x ,y), a valid body is a valid path p on the undirected graph s.t.: (i) p starts at the node x ; (ii) p
covers y at least once; (iii) p ends in x , in y, or in a different node that has been already visited.
Given the body of a rule rbody , rbody covers a pair of elements (x ,y) iff there exists a valid path on
the graph that corresponds to rbody . This implies that for a pair of elements (x ,y), we can generate
bodies of all possible valid rules by computing all valid paths that start from x with a breadth-first
search. The ability to navigate each edge in any direction by turning the original directed graph
into an undirected one is key for the generation task, but we must preserve information about the
original direction of the edges. This is used when translating paths to rule bodies. In fact, an edge
directed from a to b produces the atom rel(a,b), while b to a produces rel(b,a), according to
the direction in the original directed graph.
Since every node can be traversed multiple times, for two elements x and y there might exist

a large number of valid paths starting from x . This number is constrained with a maxPathLen
parameter that limits the search space by determining the maximum number of edges in the path,
i.e., the maximum number of atoms in the body of the corresponding rule.

We are now ready to describe the generation of all possible rules. Every rule in R (universe of all
possible rules) must cover at least one example in the generation setG . The universe of all possible
rules is therefore created by analyzing G elements.
(i) Path Generation. Given an example with elements (x ,y), we retrieve all nodes from x or y
at distancemaxPathLen − 1 or less. We collect also the edges in this navigation. The retrieval is
a recursive exploration with a queue of elements. The queue is initialized with x and y. For each
node e in the queue we run a SPARQL query against the graph to get nodes (and edges) at distance
1 from e (single hop queries). At the n-th step, we add the new nodes to the queue iff they are at a
distance less than (maxPathLen − n) from x or y. Given the graph for every (x ,y), we compute all
valid paths that start from every x with a simple DFS exploration.
(ii) Path Evaluation. Computing paths for every example in G is related to the computation of
the rule coverage. The coverage of a rule r corresponds to the number of G pairs for which there
exists a path corresponding to rbody . Given that the universe of rules and their coverage over G
have been computed, the unbounded coverage is computed over V with a simple execution for
each rule of two SPARQL queries over the KG.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:9

Example 5: Consider a scenario where we mine the sibling predicate for positive rules. Starting
from a positive example with a pair (Natasha, Malia), one path can traverse three nodes such as:
Natasha− Barack−Malia. If several pairs in G have this path (siblings have one common parent),
the corresponding rule would be hasParent(b,a) ∧ hasParent(c,a)⇒ sibling(b, c).
In the example, the shared variable a between two hasParent atoms corresponds to a join,

therefore a comparison based on value equality. Since one of our goals is to mine rich rules, we
make use of more atom types during the path generation, as discussed next.
Literal comparison. To discover rich rules with comparisons beyond equalities, the graph should
have edges connecting literals with a symbol from {<, ≤,,, >, ≥}, e.g., Figure 1 would contain an
edge ‘<’ from node “March 31, 1930” to node “March 21, 1986". Unfortunately, the original KG does
not have this information explicitly, and materializing such edges among all literals is infeasible.
However, in our algorithm we discover paths for a pair of elements from G in isolation. The

graph for a pair of elements has a size that is orders of magnitude smaller than the KG. The
very small number of nodes for a single example graph enables us to represent all the literal
pairwise comparisons across them. Besides equality comparisons expressed in joins, we add explicit
relationships with comparisons ‘>’,‘≥’,‘<’,‘≤’ between numbers and dates, and , between all literals.
These comparisons are added to the graph as normal edges (atoms in the formula): x ≥ y leads
to rel(x ,y), where rel is ≥. Once we add comparison edges for every input example graph, the
discovery of literal comparisons is equivalent to the discovery with predicate atoms.
Not equal entities.We introduce “not equal” comparison for literal values, but this comparison
is useful also for entities. For example, a negative rule may state that if a person a was born
in a location different from b, then such person cannot be the president of b (bornIn(a,x) ∧ x ,
b ∧ president(a,b)⇒ ⊥). One way to introduce inequalities among entities in the graph is to add
edges among all entity pairs. It is clear that this strategy is inefficient and may actually introduce
obvious edges, e.g., person are different from locations. To limit the search space while aiming
at meaningful rules, we therefore exploit the rdf:type triples associated to elements, which is
usually available in KGs. We add a new inequality edge in the input example graph only between
pairs of elements of the same type. In the example, x and b are compared as they are both locations.

4.2 Negative Examples Generation
Given a KG kд and a predicate rel ∈ kд, generation set G and validation set V are generated in our
approach. For positive rulemining, we follow the traditional silver standard creation and setG equals
to the facts for predicate rel [35], i.e., all pairs of elements (x ,y) such that ⟨x , rel ,y⟩ ∈ kд. These
are going to be mostly correct, depending on the quality of kд. Set V contains counter examples
for rel . These must be generated because of the open world assumption in KGs. Differently from
mining in relational databases, it is not possible to make the assumption that anything not in a KG
is false (closed world assumption), thus in our graphs missing information is unknown. However,
it is unlikely that two randomly selected elements are a true positive example for any predicate.
This intuition leads to a simple way of creating counter examples for any predicate by randomly
selecting pairs from the cross-product of the elements [32].
While the simple generation “at random” can generate negative examples with high accuracy,

a very small percentage of these element pairs will be semantically related. In other terms, the
elements will be unrelated in time, space, and topic. This data aspect is of crucial importance when
mining negative rules. In fact, two unrelated elements have a smaller number of paths between
them than semantically related ones; this is reflected by a lower number of rules that can be mined
when counter examples are in G. As we show experimentally, unrelated elements are less likely to
lead to meaningful patterns in the KG, and therefore the rules are of lower quality.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 Ahmadi et al.

It is important to notice that there is no such issue whenG contains correct examples, i.e., mining
positive rules. In fact, at least one semantic connection is present for any example by generation,
since pairs in G are obtained from the triples of the predicate of interest. To generate negative
examples that are likely to be correct (truly false facts) and that are semantically related, we generate
queries over the graph that identify elements that satisfy these requirements.
First, we exploit the notion of Local-Closed World Assumption (LCWA) [19, 25] to identify the

elements that are likely to be completely described in the KG. The assumption states that if for a
given subject and predicate the KG contains at least one object value, then it contains all possible
object values; e.g., if a graph has one spouse for Barack Obama, then we assume that all his spouses
are in the graph. While this is always the case for functional predicates (e.g., capital), it might not
hold for non-functional ones (e.g., hasChild). Under this assumption, we identify elements that
are likely to be complete and create negative examples by taking the union of elements satisfying
the LCWA. For a predicate rel , a negative example is a pair (x ,y) where either x is the subject of
at least one triple ⟨x , rel ,y ′⟩ with y , y ′, or y is the object of one or more triples ⟨x ′, rel ,y⟩ with
x , x ′. For example, if rel = hasChild, a query would identify as negative example any pair (x ,y)
s.t. x has some children in the graph who are not y, or y is the child of someone who is not x .
Second, for a candidate negative example over elements (x ,y), x must be connected to y via a

predicate that is different from the target predicate. In other words, given a KG kд and a target
predicate rel , (x ,y) is a negative example if ⟨x , rel ′,y⟩ ∈ kд, with rel ′ , rel . These restrictions
make the size of V of the same order of magnitude as G and guarantee that, for every (x ,y) ∈ V , x
and y are semantically related by at least one predicate.
Example 6: A negative example (x ,y) for the target predicate hasChild has the following char-
acteristics: (i) x and y are not connected by the hasChild predicate; (ii) either x has one or more
children (different fromy) ory has one or more parents (different from x); (iii) x andy are connected
by a predicate that is different from hasChild (e.g., colleague).

Similarly, for a negative example (x ,y) for predicate birthDate: (i) x andy are not in a birthDate
relationship; (ii) x has a birth date (different from y) or y appears in a birth date relation with a
subject (different from x); (iii) x and y are connected by a predicate different from birthDate.

To enhance the quality of the input examples and avoid cases of mixed types, we require that for
every example pair (x ,y), either in G or V , all the x (y) occurrences have the same type.

5 DISCOVERY ALGORITHM
We introduce a greedy approach to solve the approximate discovery problem (Section 3.2). Since
the number of possible rules can be very large, we introduce an algorithm that generates only
promising rules from the KG, while preserving the quality guaranteed by the exhaustive generation.

5.1 A Greedy Algorithm Based on Marginal Weight
Our goal is to discover a set of rules to produce a weighted set cover for the given examples. We
therefore follow the intuition behind the greedy algorithm for weighted set cover by defining a
marginal weight for rules that are not yet included in the solution [16].
Definition 5: Given a set of rules R and a rule r such that r < R, the marginal weight of r w.r.t. R is
defined as:

wm(r) = w(R ∪ {r }) −w(R)

The marginal weight quantifies the weight increase by adding r to R. It measures the contribution
of r to R in terms of new elements covered inG andV . Since we aim at minimizing the total weight,
a rule is not added to the solution if its marginal weight is greater than or equal to 0.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:11

child

livesIn
x1 y1livesIn

child chil
d

worksAtx2 y2
partner

child
worksAtg1: g2:

Fig. 2. Two positive examples.

When all rules have been generated, the algorithm for greedy rule selection is simple: given G,
V , and the universe of rules R, select the rule r with minimum marginal weight, add it to solution
R′, and iterate over R \ r . Algorithm stops when at least one of the three termination conditions is
met: 1) all R rules are in the solution; 2) R′ covers all elements ofG; 3) among the remaining rules
in R, none of them has a negative marginal weight.
The greedy algorithm has quadratic complexity over the number of rules and guarantees a

log(k) approximation to the optimal solution [16], where k is the largest number of elements
covered in G by a rule in R. If the optimal solution is made of rules that cover disjoint sets over G,
then the greedy solution coincides with the optimal one.

5.2 Graph Traversal with A∗ Search
The greedy algorithm for weighted set cover is based on the fact that the universe of rules R is
available. We could generate R by traversing all valid paths from a node x to a node y, for each pair
(x ,y) ∈ G. However, generating all these paths is not actually needed for every example.
Example 7: Suppose we discover positive rules for predicate spouse. The generation setG includes
entitiesд1 andд2 shown as graphs in Figure 2. Assume that all rules in R have the same coverage and
unbounded coverage over the validation setV . One possible rule is r : child(x ,v0)∧ child(y,v0)⇒
spouse(x ,y), stating that entities x and y with a child in common are also married. In the graph,
r covers both д1 and д2. Since all rules have the same coverage and unbounded coverage over V ,
any other rule will not bring any benefit to the current solution. In fact, any other candidate will
not cover new elements in G, therefore their marginal weights will be negative. Therefore, the
exploration of edges livesIn in д1, worksAt in д2, and partner in д2 is superfluous.
Based on the above observation, we avoid generating the entire universe R, but rather follow

at each iteration the most promising path on the graph. For each example (x ,y) ∈ G, we start the
exploration from x . Inspired by the A∗ graph traversal algorithm [26], we use a queue of invalid
paths (which would lead to invalid rules), and at each iteration we pick the path with the minimum
marginal weight so far, which corresponds to several paths in the graphs. We expand the path by
following the edges and add new paths to the back of the queue. Unlike A∗, we do not stop when
a path reaches the target node y, i.e., becomes valid. The algorithm adds the valid path (which
would turn into a valid rule) to the solution and keeps looking for other valid paths until one of the
termination conditions of the greedy set cover algorithm is met.

To guarantee the optimality of the solution inA∗, the estimation function must be admissible [26],
i.e., the estimated cost must be less than or equal to the actual cost. We define an admissible
estimation of the marginal weight for an invalid path that can still be expanded.
Definition 6: Given a rule r : A1 ∧A2 · · ·An ⇒ B, we say that a rule r ′ is an expansion of r iff r ′

has the form A1 ∧A2 · · ·An ∧An+1 ⇒ B.
In the graph exploration, expanding r means traversing one further edge on the path constructed

by rbody . To guarantee optimality, the estimated marginal weight for a rule r that is invalid must

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 Ahmadi et al.

Algorithm 1: RuDiK Rule Discovery.
input :G (generation set), V (validation set),maxPathLen (maximum rule body length)
output :Ropt – union of rules in the solution

1 Ropt ← ∅;
2 Nf ← {x |(x ,y) ∈ G};
3 Qr ← expandFrontiers(Nf);
4 r ← argmin

r ∈Qr

(w∗m (r));

5 repeat
6 Qr ← Qr \ {r };
7 if isValid(r) then
8 Ropt ← Ropt ∪ {r };

9 else
// rules expansion

10 if length(rbody) < maxPathLen then
11 Nf ← frontiers(r);
12 Qr ← Qr ∪ expandFrontiers(Nf);

13 r ← argmin
r ∈Qr

(w∗m (r));

14 until Qr = ∅ ∨CRopt (G) = G ∨w
∗
m (r) ≥ 0;

15 if CRopt (G) , G then
16 Ropt ← Ropt ∪ singleInstanceRule(G \CRopt (G));

17 return Ropt

be less than or equal to the actual weight of any valid rule that is generated by means of expanding
r . Given a rule and some expansions of it, we can derive the following.
Lemma 1:Given a rule r and a set of pair of elements E, then for each r ′ expansion of r ,Cr ′(E) ⊆ Cr (E)
andUr ′(E) ⊆ Ur (E).

The above Lemma states that the coverage and unbounded coverage of an expansion r ′ of r are
contained in the coverage and unbounded coverage of r , respectively, and directly derives from
the augmentation inference rule for functional dependencies [5], i.e., expanding a rule with a new
atom to its body makes the rule more selective.

The only positive contribution to marginal weights is given by |CR∪{r }(V)|, which is equivalent
to |CR (V)| + |Cr (V) \ CR (V)|. If we set |Cr (V) \ CR (V)| = 0 for any invalid r , we guarantee an
admissible estimation of the marginal weight. We estimate the coverage over the validation set to
be 0 for any rule that can be further expanded, since expanding it may bring the coverage to 0.
Definition 7: Given an invalid rule r and a set of rules R, we define the estimated marginal weight
of r as:

w∗m(r) = −α ·
|Cr (G) \CR (G) |

|G |
+ β · (

|CR (V) |

|UR∪{r }(V) |
−
|CR (V) |

|UR (V) |
)

The estimated marginal weight for a valid rule is equal to the actual marginal weight from
Definition 5. Given Lemma 1, we can easily see that w∗m(r) ≤ w∗m(r

′), for any r ′ expansion of r .
Thus our marginal weight estimation is admissible.

We now introduce Algorithm 1, a modified set cover procedure including the A∗-like rule
expansion. For simplicity, we blur the difference between paths and rules in the description,
however the search is on the undirected graph. For a rule r , we call frontier nodes, Nf (r), the

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:13

last visited nodes in the paths that correspond to rbody from every example graph covered by r .
Expanding r means navigating a single edge from any of the frontier nodes. The set of frontier
nodes is initialized with starting nodes x , for every (x ,y) ∈ G (Line 2). The algorithm keeps a queue
of rules Qr , from which it picks at each iteration the rule with minimum estimated weight. The
function expandFrontiers selects all nodes (along with edges) at distance 1 from frontier nodes
and returns the set of all rules constructed with this expansion. Qr is thus initialized with all rules
of length 1 starting at x (Line 3). In the main loop, the algorithm checks if the current best rule r
is valid or not. If r is valid, it is added to the output and it is not further expanded (Line 8). If r is
invalid, it is expanded iff the length of its body is less thanmaxPathLen (Line 10). The termination
conditions and the last part of the algorithm are the same of the greedy set-cover algorithm.

The combined generation and selection of the rules has two main advantages. First, the algorithm
does not materialize the entire graph for everyG pair. The algorithm gradually materializes parts of
the graph whenever they are needed for navigation (Lines 3 and 12). Second, the weight estimation
enables the pruning of unpromising rules that do not cover neither new G or new V pairs.

5.3 Algorithm Analysis
Complexity. Each iteration of the algorithm picks the next best rule r according to the marginal
weight, and then expands r by (possibly) generating new rules. The procedure of expanding a rule
is the following: for each example e in G covered by r , it takes the frontier node of e and navigates
the outgoing and incoming edges of the node in the graph. Each navigated edge might lead to a new
rule to be added to the queueQr , and for each new discovered rule we compute its marginal weight
by issuing a single query against the KG in order to compute its coverage over the validation set. If
we consider the cost of the query as constant, the asymptotic complexity of the expansion step is
O (2 · p · |G |), where p is the total number of different predicates in the KG, and the multiplier 2 is
given by the fact that each predicate can generate two new rules, one for each navigation direction.
The expansion step is repeated at most k times, where k is the number of all possible rules we can
generate from G. Because each atom in the body of the rule can be either a predicate from the KG
or one of the six literal comparisons (Section 4.1), the total number of rules is at most (2p + 6)1 (rule
with one atom) +(2p+6)2 (rule with two atoms) +...+ (2p+6)maxPathLen . Therefore the asymptotic
runtime complexity of Algorithm 1 is O

(
pmaxPathLen · |G |

)
. As we will outline in the experimental

section, themaxPathLen parameter plays a crucial role in the runtime of the algorithm.
Optimality. A∗ algorithm is guaranteed to return the cheapest path from start to goal if the
heuristic function is admissible, meaning the heuristic function will never overestimates the actual
cost [26]. In our settings, our heuristic is admissible iff the estimated marginal weight for a rule r is
always less or equal to the actual marginal weight of r . Because in the estimated weight we set the
coverage of r over the validation set to 0 (Definition 7), and since the coverage over the validation
set is the only positive contribution to the actual marginal weight, then for every possible rule
the estimated marginal weight will always be less or equal to the actual marginal weight. This
guarantees that the output of Algorithm 1 will always be equal to the output of the greedy set
cover algorithm applied on the universe of all possible rules (Section 5.1).

6 CONDITIONAL RULES
In the previous section, we described an algorithm that discovers rules with only universal variables
in the head of the rule. Let us denote them as generic rules. These rules are the most applicable, as
they can be satisfied by a large number of facts in the KGs. However, an important problem with
generic rules is that several of them do not hold semantically in all cases.
This problem is reflected by low accuracy for some of the tasks involving the generic rules,

regardless of the mining algorithm. Stating that two persons in a child relationship cannot be in a

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 Ahmadi et al.

spouse relationship is correct in most of the cases (child(x ,y)∧spouse(x ,y)⇒ ⊥), but there are
triples in KGs for which this generic rule does not hold, such as facts whose entities are fictional
characters. Indeed, the rule becomes more accurate if we restrict its scope by constraining the type
of the entities, such as child(x ,y) ∧ spouse(x ,y) ∧ type(x , Royalty) ∧ type(y, Royalty)⇒ ⊥.
This observation leads to the idea of improving the quality of the discovered rules by extending
them with type selection.
A similar reasoning applies for rules that apply only for a certain entity. For example, the rule

we discussed above for presidents and place of birth does not apply for all countries. The correct
rule should be discovered for specific countries, such as the one stating that only someone born in
U.S.A. can become an American president (bornIn(a,b) ∧ b , U.S.A.⇒ ¬president(a,U.S.A.)).

There is an important trade off with conditional rules. On the one hand, a more specific context
decreases the rule applicability, but, on the other hand, the rule becomes immediately more accurate.
We therefore extend the rule mining algorithm to discover conditional rules.

6.1 Type condition
We start by using constraints on the element types, such as Date for literals and Organization for
entities. The idea is to group the subject and the object instances by their type and run the mining
on each combination of groups. As every element can have one or more types associated, the same
entity or literal can belong to different groups.

We rely on the following algorithm to identify the subject and object types for the triples involved
in a predicate and then group them according to the different subject-object type combinations:
(i) Extract the types for subject and object elements in the triples for a predicate;
(ii) Create subject and object type groups;
(iii) Create all combinations between type groups, each combination has a type assigned for subject

and a (possibly equal) type for object;
(iv) For each combination, generate positive and negative examples (G and V sets), drop the

combination if the number of generated examples is smaller than a threshold;
(v) Run generic rule mining for the examples in every remaining combination.
The grouping process leads to discovery of rules that do not apply in general, such as:

party(x ,v0) ∧ party(y,v1) ∧v0 , v1 ∧ type(x , Politician) ∧ type(y,OfficeHolder) ∧ spouse(x ,y)⇒ ⊥

It is much rarer to have politicians from different parties who are married, while it is more common
for people (typed only with a generic Person) who are just registered with different parties.
While the method above is intuitive and already leads to accurate rules with type selection,

there are pre-processing steps that better characterize the group types for the triples in the KG.
One approach is to use entity embeddings [11]. Embeddings encode entities in the KG into a
low-dimensional vector space while preserving structural information about the graph [10]. A
relationship in the graph can then be interpreted as a translation from subject entity to object entity
in such space.

Embeddings characterize entities with hundreds of (learned) features and lead to clusters that are
of high quality. Specifically for our application, the clusters can be used to obtain groups that are
characterized beyond type information. In clusters from embeddings, entities with popular types,
such as Person andAgent can be spread across multiple clusters, but types with finer granularity, such
as Politician and OfficeHolder are grouped together. At the same time, clusters from embeddings are
more uniform in other properties that are not captured by type information, such as the structural
properties of the entities when expressed as nodes in the graph.

Embeddings can therefore be used to improve the group creation steps (i) and (ii) above: we start
by clustering triples with the embeddings and then find subject and object types for each cluster.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:15

Table 1. Dataset characteristics.

KG Version Size #Triples #Predicates
DBPedia 3.7 10.06GB 68,364,605 1,424
Yago 3 3.0.2 7.82GB 88,360,244 74
Wikidata 20160229 12.32GB 272,129,814 4,108

6.2 Entity condition
We allow the discovery of rules with constant selections over the entities. Suppose that for a rule
r that states that a person cannot be president of a given country if she was not born in it, all
examples of r are people born in “U.S.A.”, and there is at least one country for which this rule is not
valid. According to our problem statement, the right rule is therefore:

bornIn(a,b) ∧ b , U.S.A.⇒ ¬president(a,U.S.A.)

To discover such atoms, we introduce a refinement of the rule generation. For a given rule r ,
we promote a variable v in a given rule r to an element e iff for every (x ,y) ∈ G covered by r ,
v can always be instantiated with the same value e . We allow the substitution of every variable
indiscriminately, including variables in the head of the rule. This could potentially lead to rules
having only constants, but we do not accept them in our solutions.

7 EXPERIMENTS
The discussed techniques have been implemented in RuDiK [34], our rule mining system (https:
//github.com/stefano-ortona/rudik). We group the results for our system evaluation into five parts:
(i) showing the accuracy of our discovered rules; (ii) comparing our techniques with related systems;
(iii) demonstrating how discovered rules create valid training examples for learning; (iv) discussing
examples and quality of conditional rules; (v) evaluating the effects of RuDiK parameters.
Setup.We run our evaluation on a desktop with a quad-core i5 CPU at 2.80GHz and 16GB RAM.

We deployed on the same machine a SPARQL endpoint through OpenLink Virtuoso, optimized
for 8GB RAM of available memory. Whenever not reported explicitly, we use weight parameters
α = 0.3 (β = 0.7) for positive rules, α = 0.4 (β = 0.6) for negative rules, and allow at most 3 atoms
in the body of a rule (maxPathLen = 3). We discuss in detail these parameters in Section 7.5.

Metrics. We evaluated the quality of the discovered rules as the main metric to judge the
effectiveness of the mining. For each KG, we started by sorting predicates w.r.t. their popularity,
i.e., the number of facts for the predicate. We then chose the top 3 predicates for which we knew
there existed at least one significant rule, and other 2 top predicates for which we were not aware
of the existence of significant rules.
We carried out the evaluation of the discovered rules according to the best practice for rule

evaluation [25]. If for a rule it was possible to declare it semantically correct in all cases, we marked
all the triples coming from the application of the rule over the KG as true. Similarly for rules that
were clearly incorrect, all its output triples would be marked as false. If a rule correctness was not
clear just by reading its formula, we randomly sampled 30 triples from the application of the rule,
which would be either new facts (positive rules) or detected errors (negative rules), and manually
checked each of the facts. The precision of a rule is then computed as the ratio of correct triples to
all of its output triples.

7.1 Quality of Generic Rules Discovered by RuDiK
The first set of experiments computed the accuracy of output rules over three widely used KGs:
DBPedia, Yago, and Wikidata. Table 1 shows the characteristics of these KGs.
The size of a KG matters, as loading all the triples in memory requires to either use powerful

machines [14, 23], or to drastically shrink it by eliminating literal values [25]. Given the small

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

https://github.com/stefano-ortona/rudik
https://github.com/stefano-ortona/rudik

1:16 Ahmadi et al.

memory footprint of our algorithm, we are able to discover rules with commodity HW resources
without dropping the literals, which are crucial for obtaining meaningful rules. While RuDiK works
with a target predicate at a time, we can use it to discover rules on the entire KG by using each
predicate as input. Next results are discussed for subsets of predicates since the manual annotation
of the computed new facts and errors is an expensive process. However, when RuDiK is executed
on all the predicates of a KG, results are consistent in terms of size of the output and execution
times. For example, for roughly 600 predicates in DBPedia, we mined about 3000 positive rules,
with at most 26 rules per predicate, and 4000 negative rules, with at most 32 rules per predicate.

Table 2. RuDiK Rule Precision.

Positive Rules Negative Rules
KG Avg Exec. Avg Precision Predicates # Avg Exec. # Detected Avg Precision #

Time with Rules (All) Labels Time Errors All Predicates Labels
DBPedia 35min 97.14% (63.99%) 139 19min 499 92.38% 84
Yago 3 59min 84.44% (62.86%) 150 10min 2,237 90.61% 90

Wikidata 141min 98.95% (73.33%) 180 65min 1,776 73.99% 105

PositiveRules.We evaluate the precision for the discovered positive rules on the top 5 predicates
for each KG. The number of new triples varies significantly across rules. To avoid the overall
precision to be dominated by rules with big output, we first compute the precision for each rule,
and then average values over all discovered rules. Table 2 shows precision values, along with
average running time (per predicate), and the number of manually annotated facts. We distinguish
predicates for which there existed at least one meaningful rule (in bold), and all predicates.

For predicates such as academicAdvisor, child, and spouse, the output rules show a precision
above 95% in all KGs. However, when we consider other predicates, average values are brought
down by few cases, such as founder, where valid positive rules probably do not exist at all. When a
valid rule existed, the system was able to find it, but it did not recognize all cases where no positive
rules existed. In our experience, it was sufficient to read the rules to identify semantically incorrect
rules. Also, results show that the more accurate is the KG, the better is the quality of the positive
rules.Wikidata contains few errors, since it is manually curated, while DBPedia and Yago are
automatically generated by information extractors, hence their quality is lower.
The size of the KG and the target predicate at hand have impact on the run time. The more

the connections of a node (KG element), the more paths we traverse in the graph. Some elements
have a large number of incoming edges, e.g., entity “China” in Wikidata has more than 600K.
When the generation set includes such popular elements, the traversal of the graph becomes slower.
Parameter maxPathLen also has a big impact on the run time (as we discuss in Section 7.5).

Negative Rules. Negative rules are evaluated as the percentage of actual incorrect triples over
all discovered triples. Table 2 reports, for every KG, the total number of potential erroneous facts
discovered with the output rules, whereas the precision is given as the percentage of actual errors
among all the triples identified as possibly incorrect.

Generic negative rules have better accuracy than positive ones when averaging all predicates, as
there are more in reality. While the quality of the rules is good, especially on the noisy KGs, we also
discover rules that are supported by the vast majority of the data but do not hold semantically. As an
example, RuDiK identifies the rule that two people cannot be married if they have the same gender
both in Yago and Wikidata. Such rule has a precision of 94% in Yago and of 57% in Wikidata.
Literals’ role is bigger in negative rules, compared to the positive case. In fact, several valid negative
rules rely on temporal aspects where something cannot take place before/after something else.
Temporal data is usually encoded through dates and years literal values.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:17

Table 3. Datasets for the Comparison with AMIE.

KG Size # Triples # Predicates # rdf:type
DBPedia-NL 551M 7M 10,342 22.2M
Yago 2-NL 48M 948.3K 38 77.9M

Mining negative rules is usually faster than mining positive ones because of the different nature
of the examples covered by validation queries. Whenever we identify a potentially valid rule, we
translate its body to a SPARQL query against the KG in order to obtain its coverage over V . Such
queries are faster for the negative case because V has only entities connected by one predicate,
whereas this is not the case in the mining of positive rules.

7.2 Comparison to Existing Systems
We evaluated our techniques against AMIE [25], a rule mining system for KGs. AMIE is based on
the assumption that the target KG fits into memory and mines positive rules for every predicate in
the KG. It then ranks rules according to a support function.

Given its in-memory implementation, AMIE could not compute a solution on the KGs of Table 1.
Therefore, we used their reduced versions, which do not include literals and rdf:type triples [25]:
DBPedia-NL, Yago 2-NL. Without literals and rdf:type facts, the size of the KG drops drastically.
We run AMIE on its original datasets. Since our method needs type information (for the generation
ofG and V and inequality atoms exploration), for our case we used the reduced, NL versions plus
rdf:type triples. Last column of Table 3 shows the number of such triples.

Positive Rules.We first compare against AMIE on positive rule discovery. In this setting, we
ran RuDiK withmaxPathLen = 2 (AMIE default setting).

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 50000	 100000	 150000	 200000	 250000	

Pr
ec
is
io
n	

#	New	Facts	

RuDiK	

AMIE	

11 Rules

Manually Annotated Sample Size: 920

Fig. 3. Precision for new triples obtained by running rules in descending AMIE’s score on Yago 2-NL.

AMIE’s output consisted of 75 rules in Yago, and 6090 in DBPedia. Following their experiments,
we picked the top 30 rules according to their score. We then chose the rules produced by our method
involving the same head predicates of the top 30 rules produced by AMIE.

Figures 3 and 4 report the results on Yago-NL and DBPedia-NL, respectively. We plot the total
cumulative number of new unique triples (x-axis) versus the averaged precision (y-axis) when
incrementally including in the output the rules according to their descending (AMIE’s) score.
Overall, rules from AMIE output more facts, but with significantly lower accuracy in both KGs.
This is because many valid rules are preceded by meaningless ones in the ranking, and it is not
easy to set a proper k to get the best output. RuDiK relies on a coverage function that identifies
inherently meaningful rules with enough support. As a consequence, RuDiK outputs only 11 rules
for 8 predicates on the entire Yago – no rules with enough support are discovered for the remaining
predicates. If we limit the output of AMIE to the top 11 rules in Yago (same size as our approach),
its final accuracy is still 29% below our approach, with just 10K more facts predicted.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 Ahmadi et al.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 5000	 10000	 15000	 20000	 25000	 30000	 35000	 40000	

Pr
ec
is
io
n	

#	New	Facts	

RuDiK	
AMIE	

Manually Annotated Sample Size: 934

Fig. 4. Precision for new triples obtained by running rules in descending score on DBPedia-NL.

Negative Rules. Even though AMIE is not designed to mine negative rules, we created a baseline
solution on top of it. First, we generated negative examples (Section 4.2) for each predicate in the
top-5. For each negative pair, we added a triple to the KG by connecting the two elements with the
negation of the predicate. For example, we injected a triple for the notSpouse predicate for every
pair of not married people. We then executed AMIE on these negated predicates.

Table 4. Quality of the Negative Rules in the Comparison vs AMIE.

AMIE RuDiK (no literals)
KG # Errors Precision # Errors Precision

DBPedia-NL 457 (157) 38.85% 148 (73) 57.76%
Yago 2-NL 633 (100) 48.81% 550 (35) 68.73%

Table 4 reports that RuDiK outperforms AMIE in both KGs with an overall precision gain of
roughly 20% (41-49% relative). The drop in quality for RuDiKw.r.t. the results in Section 7.1 is due to
the absence of literal values. When RuDiK exploits literals, its benefit in accuracy is more than 50%
absolute. Numbers in brackets show the number of facts manually annotated for the evaluation.

Execution Time. On our machine, AMIE could complete its mining only on Yago 2-NL, while
for other KGs it got stuck after some hours. For these cases, we stopped the mining if there were no
changes in the interactive output for more than 2 hours. Running times for AMIE differ from [25],
where the computation was done on a 48GB RAM server.

Table 5. Comparison of the Total Execution Times.

KG # Predicates AMIE RuDiK Types
Yago 2-NL 20 30s 18m,15s 12s
Yago 2s-NL 26 (38) > 8h 47m,10s 11s

DBPedia 2.0-NL 904 (10342) > 10h 7h,12m 77s
DBPedia 3.8-NL 237 (649) > 15h 8h,10m 37s
Wikidata-NL 118 (430) > 25h 8h,2m 11s

Yago 3 72 - 2h,35m 128s

Table 5 reports the running time on several KGs. Five KGs have been removed of the literal
values (NL), while Yago 3 is complete. The second column reports the total number of predicates
for which AMIE computed at least one rule before getting stuck, while in brackets is the total
number of predicates in the KG. The third and fourth columns show the total running time of the
two techniques. Despite being disk-based, RuDiK successfully completes the mining faster than
AMIE in all cases, with the exception of Yago 2. This is due to the small size of this KG, which
fits in memory, but complete KGs (such as Yago 3) could not be loaded because of out of memory
errors. The last column shows the running time to collect rdf:type triples for all predicates.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:19

Other Systems. There are other available systems to discover rules in KGs. In [4], the approach
discovers rules that are more specific than our technique; on Yago 2, it discovers 2K new triples
with a precision lower than 70%, while the first rule we discover on Yago 2 already discovers more
than 4K triples with a 100% precision. Another system [14] implements AMIE algorithm with a
focus on distribution and scalability. The mining part is not modified hence the output is the same
as AMIE. We did not compare against classic Inductive Logic Programming systems [17, 42], as
these are already significantly outperformed by AMIE both in accuracy and run time.

7.3 Using the Rules in a Learning Algorithm
The focus of these experiments is to demonstrate the applicability of our approach in providing
Machine Learning (ML) algorithms meaningful training examples. We picked DeepDive [38], an ML
framework for relation extraction. DeepDive extracts entities and relations from free text articles
using distant supervision. The main idea behind distant supervision is to use an external source of
truth (e.g., a KG) to provide training examples for supervised algorithms. For example, DeepDive
can extract mentions of married people from text documents. It first uses DBPedia to label some
pairs of entities as true positive (pairs of married couples found in DBPedia). Unfortunately, KGs
can provide positive examples only. We compared the accuracy of DeepDive on the spouse example
trained with three different negative examples sets over two datasets. To evaluate our approach,
we created negative examples with the rules obtained on DBPedia with RuDiK.

0	

0.2	

0.4	

0.6	

0.8	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

Ac
cu
ra
cy
	

Probability	

IDEAL	
RuDiK	
OnlyPos	
Manual	
ManualSampl	 0	

0.2	

0.4	

0.6	

0.8	

1	

0	 0.2	 0.4	 0.6	 0.8	 1	

Ac
cu
ra
cy
	

Probability	

IDEAL	
RuDiK	
OnlyPos	
Manual	
ManualSampl	

Fig. 5. DeepDive accuracy results with different training examples – 1K (left) and 1M (right) articles.

The plot in the left hand side of Figure 5 reports DeepDive accuracy plot run on the first dataset
(1K documents). The plot shows the fraction of correct positive predictions over total predictions
(y-axis), for each probability value (x-axis). The dotted blue line marks the perfect algorithm, which
would predict all new facts with 100% probability and zero facts with 0%. The less a technique
deflects from the dotted line, the better is its accuracy. We report 4 approaches: RuDiK represents
DeepDive trained with negative examples generated by our rules; OnlyPos leverages only on
positive examples from DBPedia; Manual uses positive examples from DBPedia and manually
crafted rules to generate negative examples; ManualSampl randomly samples a subset of the negative
examples generated manually equal in size to the positive set. OnlyPos and Manual cannot provide
valid training, as they either have only positive examples and thus label everything as true, or have
way more negative examples than positive and label everything as false. ManualSampl is the clear
winner, while RuDiK suffers from the absence of data: over the given 1K articles, we found only 20
positive and 15 negative examples from DBPedia. Missing points for RuDiK are also caused by the
lack of evidence in the training data, with no predictions in the 25-45% range.
The plot in the right hand side of Figure 5 shows how with the second dataset (1M articles) all

methods except OnlyPos successfully steer DeepDive in the training, with RuDiK leading to the
best result. This is due to the quality of the negative examples: our rules identify diverse enough
examples that enable DeepDive to understand distinctive features. We can use our technique to
simulate user behavior and automatically produce qualitative negative rules.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 Ahmadi et al.

Table 6. Sample of Discovered Rules from DBPedia.

Generic Rules
e1 : foundedBy(v0,y) ∧ foundedBy(v0,v1) ∧ foundedBy(x ,v1)⇒ foundedBy(x ,y)
e2 : birthDate(y,v0) ∧v0 > v1 ∧ foundingYear(x ,v1) ∧ foundedBy(x ,y)⇒ ⊥
e3 : parent(v0,x) ∧ parent(v0,y)⇒ spouse(x ,y)
e4 : spouse(y,v0) ∧ parent(x ,v0) ∧ spouse(x ,y)⇒ ⊥

Conditional Rules from Type Grouping
e5 : foundedBy(x ,v0) ∧ associatedBand(v0,v1) ∧ associatedBand(y,v1) ∧ type(x ,Company)∧

type(y,Artist)⇒ foundedBy(x ,y)
e6 : parentCompany(y,v0) ∧ owningCompany(v0,v1) ∧ owningCompany(x ,v1) ∧ type(x ,Company)∧

type(y,Organisation) ∧ foundedBy(x ,y)⇒ ⊥
e7 : parent(v0,x) ∧ parent(v0,y) ∧ type(x ,BritishRoyalty) ∧ type(y, Royalty)⇒ spouse(x ,y)
e8 : party(y,v0) ∧ party(x ,v1) ∧v0 , v1 ∧ type(x , Politician) ∧ type(y,OfficeHolder)∧

spouse(x ,y)⇒ ⊥

Conditional Rules from Entity Clustering and Type Grouping
e9 : occupation(y,v0) ∧ occupation(v1,v0) ∧ foundedBy(x ,v1) ∧ type(x ,Organisation)∧

type(y,Artist)⇒ foundedBy(x ,y)
e10 : foundingYear(x ,v0) ∧v0 < v1 ∧ foundingYear(y,v1) ∧ type(y,Organisation)∧

type(x ,Organisation) ∧ foundedBy(x ,y)⇒ ⊥
e11 : parent(v0,x) ∧ parent(v0,y) ∧ type(x , Royalty) ∧ type(y, Royalty)⇒ spouse(x ,y)
e12 : activeYearStartYear(x ,v0) ∧v0 > v1 ∧ deathDate(y,v1) ∧ type(x ,Artist)∧

type(y, Person) ∧ spouse(x ,y)⇒ ⊥

7.4 Conditional Rules
We now compare the results for the discovery of generic rules with the RuDiK, the conditional
rules coming from the type group analysis, and the conditional rules coming from clustering with
embeddings followed by type grouping. The experiment has been executed on the full DBPedia
for the 6 largest clusters obtained with TransE [10], we then kept the type groups with at least 20
subject (object) elements.

From the rules reported in Table 6, it is easy to see that mining with grouping leads to meaningful
rules for a subset of the entities. For example, a positive one stating that two artists in the same
band are likely to be its co-founders (e5), or the negative rule stating that two politicians in different
parties are unlikely to be married (e8). Similarly for the rules coming from clustering and grouping,
where rules for artists are identified both for spouse and foundedBy (e9, e12). It is interesting to see
that different pre-processing algorithms lead to different sets of rules. As there is no clear winner,
we argue that all methods should be executed to get the richest possible set of rules.

Evaluating the Quality of Conditional Rules. We evaluate the quality of conditional rules versus
generic rules by comparing the outcome of the rules for two DBPedia predicates: spouse and
foundedBy. For each predicate, we consider both positive and negative rules. Evaluation of the
quality of rules is based on three different metrics: number of rules extracted, average of manually
estimated precision for the rules, and average number of triples in the output of the rules. For
computing the estimated precision of a given rule r , we randomly choose 20 triples from DBPedia
that satisfy r and then check to see how many of those triples are true (or errors in the case r is a
negative rule). The estimated precision is the number of correct instances divided by 20.

From the results reported in Table 7, it is clear that we identify a larger number of rules with our
proposed extension for a given predicate. For grouping and clustering rules, the precision is higher
than generic ones, but their scope is obviously lower. For all predicates, except negFoundedBy, the

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:21

Table 7. Comparison between conditional and generic rules.

Conditional Rules Generic Rules
Predicate #Rules Avg Precision Avg #Triples #Rules Avg Precision Avg #Triples
spouse 25 81.8% 2,785 4 77.5% 57,314

negSpouse 78 99.7% 4,977 13 98.5% 13,602
foundedBy 22 57.0% 902 5 38.0% 15,071

negFoundedBy 31 95.8% 786 6 95.8% 13,146

precision of conditional rules is higher. As expected, an absolute average precision improvement of
6.1% comes at the cost of a lower number of triples in the output, e.g., 70K vs 229K for spouse.

7.5 In Depth Evaluation
We study the impact of individual internal components and methods in RuDiK.
KG Noise. In terms of kg quality, the percentages of erroneous facts discovered
by our methods are 0.23% for Wikidata, 0.26% for DBPedia, and 0.6% for Yago.

Ac
cu

ra
cy

 D
eg

ra
da

tio
n

0.2
0.4
0.6
0.8
1.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

POSITIVE RULES
NEGATIVE RULES

�6

Ac
cu

ra
cy

Fig. 6. Impact of KG Noise on Rules Quality.

To evaluate the impact of noise in the kg, we
first manually removed errors from the top
five predicates in DBPedia to generate clean
examples. We mined rules from such exam-
ples and fixed the result as the best outcome.
We then injected errors by switching positive
and negative facts between the sets and did
the mining. Figure 6 reports the degradation
in accuracy averaged over predicates (y-axis)

from 0% to 100% injected noise (x-axis). The accuracy decreases with increasing amount of noise,
but RuDiK is robust enough to compute mostly valid rules until 40% of errors, followed then by a
significant drop in accuracy. RuDiK is able to mine some valid rules even with 90% of errors.

Table 8. Effect of Negative Examples Generation Strategy on RuleQuality.

Strategy # Potential Errors Precision
Random 247 95.95%
LCWA 263 95.82%
RuDiK 499 92.38%

Local Completeness Assumption. We study the impact of the negative examples generation
on rules’ quality. For a predicate p, we compare three generation techniques: RuDiK strategy (as
explained in Section 4.2), Random (randomly select k pairs (x ,y) from the Cartesian product s.t.
⟨x ,p,y⟩ < kд), and LCWA (RuDiK strategy without the constraint that x and y must be connected
by a predicate not equal to p). Table 8 reports the quality results for negative rules. Random and
LCWA have similar accuracy, with slightly better results than RuDiK. This is because whenever we
pick examples from the Cartesian product, the likelihood of picking entities from different time
periods is very high, and negative rules relying on time features are usually correct. Instead, if
we force x and y to be connected with a different predicate, the two elements are semantically
related and lead to different types of rules. A rule such as parent(a,b)⇒ notSpouse(a,b) is not
generated with random strategies, since the likelihood of choosing two persons in a parent relation
is extremely low. The technique in RuDiK enables the mining of different types of rules.
Literals. Since previous rule discovery approaches exclude literals from the mining [4, 14, 25],
we quantify the impact of literal rules. Table 9 shows the precision obtained by running RuDiK

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 Ahmadi et al.

Table 9. Impact of Literals on DBPedia.

With Literals Without Literals
Rules Run Time Precision Run Time Precision
Pos. ∼35min 63.99% ∼54min 60.49%
Neg. ∼19min 92.38% (499) ∼25min 84.85% (235)

including and excluding the use of literal comparisons. Enabling literal values has a tangible impact
on accuracy, both for positive and negative cases. Negative rules without literals find less than
half potentially erroneous facts (numbers in brackets) with a lower accuracy. Predicate founder
is the most evident example: 79 potential errors with a 95% accuracy are discovered with literal
values, while 0 are computed without using literals. Another prominent example is birthDate, for
which almost all negative rules included literal comparisons (e.g., activeYearsStartDate(x ,v0)∧
birthDate(x ,y) ∧ y > v0 ⇒ ⊥). The pruning effect of the A∗ search also reduces the running
time with literal values: RuDiK can find valid rules earlier and hence stop the computation.

Table 10. Impact of themaxPathLen Parameter on DBPedia.

MaxPathLen = 2 MaxPathLen = 3
Rules Run Time Precision Run Time Precision
Pos. ∼3min 49.2% ∼35min 64.0%
Neg. ∼56sec 90,0% ∼20min 92.4%

MaxPathLen = 4
Run Time Precision
∼>24h 66.0%
∼>24h 92.7%

Rules Length. ThemaxPathLen parameter fixes the maximum number of atoms in the body of
a generic rule. Low values formaxPathLen may exclude from the search space meaningful rules,
while high values exponentially increase the search space and consequently the running time. We
show in Table 10 that withmaxPathLen = 2, the run time significantly improves, at the expense
of losing several meaningful rules and a drop of precision to 49% for positive rules and 90% for
negative rules. Specifically, rules with literal comparisons are lost, as these require at least three
atoms in the body. At the other side of the spectrum, withmaxPathLen = 4 RuDiK could not finish
the computation within 24 hours for any predicate. The accuracy of rules discovered in 24 hours of
computation is comparable to the one obtained withmaxPathLen = 3, with only a small increase
for positive rules. Generic rules with 4 atoms oftentimes return an empty result when executed over
the KG, i.e., they are less useful as they have a narrower scope. We identifiedmaxPathLen = 3 as a
good compromise between running time and rule accuracy. However, we also discover conditional
rules with up to 5 atoms.
Weight Parameters. We validated the choice of the values for α and β .

Fig. 7. Impact of α onQuality Performance.

Given a manually crafted set of rules, Figure 7
shows that for positive rules, the best assign-
ment is α = 0.3 (β = 0.7), while for negative
rules is α = 0.4 (β = 0.6). Since discovering
valid positive rules is more difficult than the
negative case, giving more weight to precision
over recall produces the best result, whereas
for negative rules we maximize F-measure by
favouring the recall. In both cases, the varia-
tion in quality for α ∈ [0.1, 0.9] is small (≤ 12%),

proving the ability of the set cover formulation to provide high quality rules in most settings.
Greedy Search. We show the impact of A∗ algorithm in the rule generation step. Figure 8 reports
the running time, for each predicate, of the A∗ algorithm (light-colored bars) against a different

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:23

0

12

24

36

48

60

ac
Adv

iso
r (P

)

ch
ild

(P)

sp
ou

se
 (P

)

fou
nd

er
(P)

ce
rem

Cou
nty

 (N
)

ac
Adv

iso
r (N

)

fou
nd

er
(N

)

ch
ild

(N
)

A* Full

m
in

ut
es

240

192

144

 96

 48

 0

m
inutes

su
cce

sso
r (P

)

sp
ou

se
 (N

)

Fig. 8. Runtime for Rule Generation.

version that first computes the universe of all possible rules, and then applies the greedy set cover
on it (dark-colored bars). The last two columns refer to the y-axis on the right hand side, as they
have significantly different run times. (P) refers to positive rules, while (N) to negative ones. The
A∗ navigation allows the pruning of several unpromising paths and avoids the exploration of such
paths thus saving upon querying the corresponding RDF entities from disk. This is reflected in the
running times with an average of 50% improvement.
Ranking vs Set Cover. The set cover problem formulation leads to a compact set of rules, which
is preferable to the large output obtained via a ranking based solution. To support our argument,
we observe that oftentimes valid rules are hidden low in the ranking, and we report cases where the
correct rules were below the 100th position. For the mining of negative rules for predicate founder,
there was only one valid rule in the output, i.e., a person cannot be the founder of a company if
the company was founded before the person was born. The rule appeared at position 127 in the
ranking-based version of RuDiK, whereas it was included in output of the classic variant of RuDiK.

8 RELATEDWORK
For relational data, dependencies are discovered over the attributes of a given schema and encoded
into formalisms, such as Functional Dependencies [3, 5, 28] andDenial Constraints [15, 20]. However,
these techniques cannot be applied to KGs for three main reasons: (i) the schema-less nature of
RDF data and the open world assumption; (ii) traditional approaches rely on the assumption that
data is either clean or has a small amount of errors, which is not the case with KGs; (iii) even
when the algorithms are designed to support more errors [1, 30], there are scalability issues on
large RDF datasets: a direct application of relational database techniques on the graph requires
the materialization of all possible predicate combinations into relational tables. Recently, Fan et.
al. [22] laid the theoretical foundations of Functional Dependencies on Graphs (GFDs) and have
introduced an algorithm for their discovery [21]. However, their language does not include general
literal comparisons, which we have shown to be useful when detecting errors in KGs.

RuDiK is the first approach that is generic enough to mine both positive and negative rules in RDF
KGs. Rule mining approaches designed for positive rule discovery in KGs, such as AMIE [25] and OP
algorithm [14], load the entire graph into memory prior to the traversal step. This is a constraint for
their applicability over large KGs, and neither of these two approaches can afford value comparison.
In contrast to them, by generating the graph on-demand, RuDiK discovers rules on a small fraction
of the graph. This makes it scalable and the low memory footprint enables a bigger search space
with rules that can have literal comparisons. We showed in the experimental section how RuDiK

outperforms AMIE both in final accuracy and running time. Finally, [4] recommends new facts by

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 Ahmadi et al.

using association rule mining techniques. Their rules are made only of constants and are therefore
less general than the rules generated by RuDiK.

ILP systems such as WARMR [17] work under the CWA and require the definition of error-free
positive and negative examples. These assumptions do not hold in KGs and AMIE outperforms these
two systems [25]. Sherlock [37] is an ILP system that extracts first-order Horn Rules from Web
text. While extending RuDiK to free text is an interesting future work, the statistical significance
estimate needs a threshold to discover meaningful rules. Error detection in KGs has also been studied
by using ILP methods to discover axioms concerning properties’ domain and range restrictions
that identify contradictions [42]. Another approach identifies outliers after grouping subjects by
type [44]. For example, for “population” it groups by “city” and “state” and then detects anomalies.
Both methods are orthogonal and complementary to our negative rules. Finally, the generation of
new facts in a graph is related to the task of link prediction [10].

9 CONCLUSION
We introduced a rule mining system that discovers generic and conditional declarative rules from
noisy and incomplete KGs. The system discovers both positive rules, which suggest new potential
facts for the KG, and negative rules, which identify inconsistent triples. Negative rules not only
identify potential errors in KGs, but also generate representative training data for ML algorithms.
We showed experimentally that our system generates concise sets of precise rules and can scale
nicely with the size of existing KGs.

Given the recent efforts in the interactive discovery of the rules for relational data [27, 36], open
questions are related to similar tasks in KGs. The size of G has a direct impact on the search space
and hence on the running time. Since we generate all valid rules for each example in G, the search
space grows roughly linearly with its size. If we could identify a subset of examples that lead to
the generation of all valid rules, then we could use only those few examples. However, it is not
clear how to sample examples while not compromising on the quality of the mined rules. A second
promising research direction is the expressiveness of the language. We aim at mining even richer
rules that better exploit spatial and temporal information through a smart analysis of literal values’
distributions and correlations [1], e.g., “if two person have age difference greater than 100 years,
then they cannot be married". Finally, we are exploring how to use rules generated by our system
in application beyond data curation, such as fact checking of textual content [6, 29].

REFERENCES
[1] Z. Abedjan, C. G. Akcora, M. Ouzzani, P. Papotti, and M. Stonebraker. Temporal rules discovery for web data cleaning.

PVLDB, 9(4):336–347, 2015.
[2] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang. Detecting

data errors: Where are we and what needs to be done? PVLDB, 9(12):993–1004, 2016.
[3] Z. Abedjan, L. Golab, and F. Naumann. Data profiling: A tutorial. In SIGMOD, pages 1747–1751, 2017.
[4] Z. Abedjan and F. Naumann. Amending RDF entities with new facts. In ESWC, pages 131–143, 2014.
[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[6] N. Ahmadi, J. Lee, P. Papotti, and M. Saeed. Explainable fact checking with probabilistic answer set programming. In

Conference for Truth and Trust Online (TTO), 2019.
[7] L. Bellomarini, E. Sallinger, and G. Gottlob. The vadalog system: Datalog-based reasoning for knowledge graphs.

PVLDB, 11(9):975–987, 2018.
[8] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann. DBpedia-A crystallization point

for the web of data. Web Semantics: science, services and agents on the WWW, 7(3):154–165, 2009.
[9] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for

structuring human knowledge. In SIGMOD, pages 1247–1250, 2008.
[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-

relational data. In NIPS, 2013.
[11] A. Bordes, J. Weston, R. Collobert, and Y. Bengio. Learning structured embeddings of knowledge bases. In AAAI, 2011.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

Mining Expressive Rules in Knowledge Graphs 1:25

[12] M. Bronzi, V. Crescenzi, P. Merialdo, and P. Papotti. Extraction and integration of partially overlapping web sources.
PVLDB, 6(10):805–816, 2013.

[13] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M. Mitchell. Toward an architecture for
never-ending language learning. In AAAI, pages 1306–1313, 2010.

[14] Y. Chen, S. Goldberg, D. Z. Wang, and S. S. Johri. Ontological pathfinding. In SIGMOD, pages 835–846, 2016.
[15] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB, 6(13):1498–1509, 2013.
[16] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations research, 4(3):233–235, 1979.
[17] L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. DMKD, 3(1):7–36, 1999.
[18] O. Deshpande, D. S. Lamba, M. Tourn, S. Das, S. Subramaniam, A. Rajaraman, V. Harinarayan, and A. Doan. Building,

maintaining, and using knowledge bases: a report from the trenches. In SIGMOD, pages 1209–1220, 2013.
[19] X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang. From data fusion to knowledge fusion.

PVLDB, 7(10):881–892, 2014.
[20] W. Fan and F. Geerts. Foundations of Data Quality Management. Synthesis Lectures on Data Management. Morgan &

Claypool Publishers, 2012.
[21] W. Fan, C. Hu, X. Liu, and P. Lu. Discovering graph functional dependencies. In SIGMOD, pages 427–439, 2018.
[22] W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In SIGMOD, pages 1843–1857, 2016.
[23] M. H. Farid, A. Roatis, I. F. Ilyas, H. Hoffmann, and X. Chu. CLAMS: bringing quality to data lakes. In SIGMOD, pages

2089–2092, 2016.
[24] M. H. Gad-Elrab, D. Stepanova, J. Urbani, and G. Weikum. Exfakt: A framework for explaining facts over knowledge

graphs and text. In WSDM, pages 87–95, 2019.
[25] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining in ontological knowledge bases with AMIE+.

The VLDB Journal, 24(6):707–730, 2015.
[26] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE

transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.
[27] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, and N. Tang. Interactive and deterministic data cleaning. In

SIGMOD, pages 893–907, 2016.
[28] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: An efficient algorithm for discovering functional and

approximate dependencies. The computer journal, 42(2):100–111, 1999.
[29] V. Huynh and P. Papotti. Buckle: Evaluating fact checking algorithms built on knowledge bases. PVLDB, 12(12):1798–

1801, 2019.
[30] S. Kruse and F. Naumann. Efficient discovery of approximate dependencies. PVLDB, 11(7):759–772, 2018.
[31] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek. Distant supervision for relation extraction with an incomplete

knowledge base. In HLT-NAACL, pages 777–782, 2013.
[32] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. The Journal of Logic Programming,

19:629–679, 1994.
[33] S. Ortona, V. V. Meduri, and P. Papotti. Robust discovery of positive and negative rules in knowledge bases. In ICDE,

pages 1168–1179, 2018.
[34] S. Ortona, V. V. Meduri, and P. Papotti. Rudik: Rule discovery in knowledge bases. PVLDB, 11(12):1946–1949, 2018.
[35] H. Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web, 8(3):489–

508, 2017.
[36] J. Rammelaere and F. Geerts. Explaining repaired data with CFDs. PVLDB, 11(11):1387–1399, 2018.
[37] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning first-order horn clauses from web text. In Empirical

Methods in Natural Language Processing, pages 1088–1098, 2010.
[38] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré. Incremental knowledge base construction using DeepDive.

PVLDB, 8(11):1310–1321, 2015.
[39] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A core of semantic knowledge unifying wordnet and wikipedia.

In WWW, pages 697–706, 2007.
[40] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: A self-organizing framework for information extraction. In WWW,

pages 631–640, 2009.
[41] P. Suganthan GC, C. Sun, H. Zhang, F. Yang, N. Rampalli, S. Prasad, E. Arcaute, G. Krishnan, et al. Why big data

industrial systems need rules and what we can do about it. In SIGMOD, pages 265–276, 2015.
[42] G. Töpper, M. Knuth, and H. Sack. Dbpedia ontology enrichment for inconsistency detection. In I-SEMANTICS, pages

33–40, 2012.
[43] D. Vrandečić and M. Krötzsch. Wikidata: A free collaborative knowledgebase. Comm. of the ACM, 57(10):78–85, 2014.
[44] D. Wienand and H. Paulheim. Detecting incorrect numerical data in dbpedia. In ESWC, 2014.

ACM J. Data Inform. Quality, Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Background and Definitions
	2.1 Rule Language
	2.2 Rule Coverage

	3 Rule Discovery for Noisy KGs
	3.1 Weight Function
	3.2 Problem Definition

	4 Generation of Rules and Examples
	4.1 Rule Generation
	4.2 Negative Examples Generation

	5 Discovery Algorithm
	5.1 A Greedy Algorithm Based on Marginal Weight
	5.2 Graph Traversal with A* Search
	5.3 Algorithm Analysis

	6 Conditional Rules
	6.1 Type condition
	6.2 Entity condition

	7 Experiments
	7.1 Quality of Generic Rules Discovered by RuDiK
	7.2 Comparison to Existing Systems
	7.3 Using the Rules in a Learning Algorithm
	7.4 Conditional Rules
	7.5 In Depth Evaluation

	8 Related Work
	9 Conclusion
	References

