
1

Towards Slicing-Enabled Multi-Access Edge

Computing in 5G
Adlen Ksentini∗ and Pantelis A. Frangoudis‡

∗EURECOM, Sophia Antipolis, France
‡Distributed Systems Group, TU Wien, Vienna, Austria

Email: ∗adlen.ksentini@eurecom.fr, ‡pantelis.frangoudis@tuwien.ac.at

Abstract

Multi-access Edge Computing (MEC) and Network Slicing are two key enablers for 5G, particularly

to empower low-latency services, known as Ultra-Reliable Low Latency Communications (URLLC).

However, MEC and Network Slicing are evolving in parallel, and are being defined by two different

standardization bodies, ETSI and 3GPP, which limits their integration and their benefits as complementary

solutions. In this paper, we fill this gap by providing a novel scheme, compliant with both ETSI and

3GPP, that integrates these two key technologies and brings enhanced slicing capabilities to the edge

of the 5G network. In particular, we devise a novel management and orchestration architecture, based

on the latest 3GPP specifications, which integrates MEC as a 5G sub-slice. Furthermore, we highlight

several issues that emerge when extending Network Slicing to the edge, security and isolation included,

providing a solution for each issue.

I. INTRODUCTION

Network Slicing (NS)1 is envisioned as one of the key enablers of the 5G system. It allows sharing a

common physical infrastructure to provide virtual networks tailored to services’ (or applications’) needs.

NS relies on network softwarization, i.e., Software Defined Networking (SDN) and Network Functions

Virtualization (NFV), to provide flexible and dynamic virtual networks. A network slice, in the context

of 5G, is composed of sub-slices covering the Radio Access Network (RAN), Core Network (CN) and

the transport network. Each sub-slice is composed of a set of VNFs chained together (e.g., parts of the

RAN or CN elements), or a mix of Virtual Network Functions (VNFs) and Physical Network Functions

(PNFs); the latter typically are RAN components.

1For the sake of readability, abbreviations used in this paper are listed in Table I.

March 3, 2020 DRAFT



2

Edge computing is a complementary solution to sustain low latency for time-critical services, known

in 5G as URLLC services. In this context, ETSI is leading standardization activities around Multi-access

Edge Computing (MEC). Several 5G use cases are expected to rely on MEC to deliver added value

services to the end users. In addition to providing an execution environment for running applications at

the edge, MEC provides services that supply information on end user and base station (eNB) context, such

as the radio channel quality of users and their location in the network, allowing to build context-aware

applications.

Meanwhile, 3GPP has put efforts [1], [2] into integrating NS in the future specification of both the

RAN and CN. Importantly, 3GPP has created three Service and System Aspects (SA) groups, SA1, SA2

and SA5, which aim to, respectively, update the RAN, the CN, and describe a management framework

for Network Slicing in 5G. First results of these groups are: (i) the usage of a slice identifier (S-

NSSAI: Single-Network Slice Selection Assistance Information), when the User Equipment (UE) first

connects to the RAN; (ii) the introduction of a new CN architecture, which is virtualization-ready, and

integrates a Network Slice Selection Function (NSSF) that aims to help the RAN select the CN functions

corresponding to a UE’s S-NSSAI; (iii) a new framework that manages the life cycle of 5G network

slices. However, the support of NS in MEC is in its infancy. ETSI MEC GR 024 [3] presents some use-

cases, requirements, and recommendations to support NS at the MEC level, but many points are left open.

First, a new MEC architecture should be devised and aligned with (i) the current 3GPP specifications to

fit with the 5G architecture at both the RAN and CN, and (ii) the integration of MEC in NFV, while

considering the new Network Slicing management framework as introduced by 3GPP. Second, the MEC

service model should be revised in order to guarantee security and isolation for network slices. Finally,

the registration and discovery of MEC services, provided by third-party MEC applications, need to be

adapted to the context of sliced MEC.

We address the aforementioned gaps by proposing a novel orchestration/management architecture that

allows to deploy a MEC platform and MEC applications in a 5G environment that supports NS, while be-

ing aligned with the new MEC-in-NFV ETSI recommendations [4]. Furthermore, we discuss and provide

solutions to issues regarding NS security and isolation, as well as the registration of MEC services by

third-party application providers when slicing MEC. Finally, we report on our experiences implementing

a fully fledged, standards-compliant MEC system, providing technical solutions and extensions for the

support of NS in MEC-in-NFV, and presenting early performance results from our testbed. To the best

of our knowledge, this article is the first to introduce solutions for sliced MEC, and the integration of

the latter in the 5G NS model.

DRAFT March 3, 2020



3

TABLE I

GLOSSARY

Abbreviation Name

3GPP 3rd Generation Partnership Project

AF Application Function

AMF Access and Mobility management Function

API Application Programming Interface

AppD Application Descriptor

BSS Business Support System

CN Core Network

CSMF Communication Service Management Function

DN Data Network

DNS Domain Name System

eNB evolved Node B

ETSI European Telecommunications Standards Institute

ISG Industry Specification Group

MANO Management and Orchestration

MEAO MEC Application Orchestrator

MEC Multi-access Edge Computing

MEO MEC Orchestrator

MEP MEC Platform

MEPM MEP Manager

NEF Network capability Exposure Function

NFV Network Functions Virtualization

NFVI NFV Infrastructure

NFVO NFV Orchestrator

NS Network Slicing

NSD Network Service Descriptor (NSD)

NSI Network Slice Instance

NSMF Network Slice Management Function

NSSI Network Slice Subnet Instance

NSSMF Network Slice Subnet Management Function

NST Network Slice Template

OAI OpenAirInterface

OSS Operations Support System

PCF Policy Control Function

PKI Public Key Infrastructure

PNF Physical Network Function

RAN Radio Access Network

RAM Random Access Memory

RNIS Radio Network Information Service

SA System Aspects

SDN Software Defined Networking

S-NSSAI Single-Network Slice Selection Assistance Information

UDM User Data Management

UE User Equipment

URLLC Ultra Reliable and Low Latency Communication

UPF User Plane Function

VIM Virtualized Infrastructure Manager

VNF Virtual Network Function

VNFD VNF Descriptor
March 3, 2020 DRAFT



4

Fig. 1. High-level representation of the MEC architecture (based on [5]).

II. RELATED WORK

A. ETSI MEC

The ETSI MEC ISG has been working on the development of standardization activities around MEC

since 2013. Its first released document covers the reference architecture [5]. A high-level representation

of this architecture is shown in Fig. 1. It introduces three main entities:

• The MEC host, which provides the virtualization environment to run MEC applications, while

interacting with mobile network entities via the MEC platform (MEP) to provide MEC services

and data offload to MEC applications.

• The MEP, which acts as an interface between the mobile network and the MEC applications. It has

an interface (Mp1) for MEC applications to expose and consume MEC services, and another (Mp2)

to interact with the mobile network. The latter is used to obtain statistics from the RAN on UEs and

eNBs, e.g., in order to provide the Radio Network Information Service (RNIS) and the Location

Service, and to appropriately steer user-plane traffic to MEC applications.

• MEC applications that run on top of a virtualized platform.

ETSI MEC also introduces MEC services, which are either provided natively by the MEP, such as

the RNIS, or by a MEC application, e.g., video transcoding. MEC services provided by third-party

MEC applications should be registered with the MEP and made available over the Mp1 reference point.

Once registered, a service may be discovered and consumed by other MEC applications. Regarding the

management plane, ETSI MEC defines the Mobile Edge Orchestrator (MEO) as the entity in charge of the

DRAFT March 3, 2020



5

Fig. 2. Updated version of the MEC architecture featuring MEC in NFV (based on [4] and [5]).

life cycle of MEC applications, acting as the interface between the MEC host and the Operations/Business

Support System (OSS/BSS).

Considering the advantages brought by NFV, and aiming to integrate and run all MEC entities in a

common NFV environment, the ETSI MEC 017 working group drafted a document [4] to update the

reference architecture as shown in Fig. 2. These updates have been included as an NFV-oriented variant

in the most recent version of the MEC framework and reference architecture specification [5]. In this

variant, the MEP and MEPM are run as VNFs. The MEO is renamed to MEAO (Mobile Edge Application

Orchestrator), maintaining the same functionality, but using the NFVO to instantiate MEC applications

as well as the MEP and MEPM. Consequently, all the processes of instantiation and management of

resources follow the well-defined NFV interfaces. By doing so, edge resources can be seen as classical

computation and storage ones, and can be managed by the same Virtualized Infrastructure Manager

(VIM).

B. Network slicing support in 5G networks

Release 15 of the 3GPP standard includes NS specifications for 5G. Remarkably, the CN has been

decomposed into fine-granular Network Functions (NFs), moving from a monolithic core network to a

modular one. Fig. 3 illustrates the service-based 5G reference architecture. The most prominent NFs are

Access and Mobility Management Function (AMF), Session Management Function (SMF), User Plane

Function (UPF), User Data Management (UDM), Network Slice Selection Function (NSSF), Network

capability Exposure Function (NEF), Policy Control Function (PCF), and Application Function (AF). All

March 3, 2020 DRAFT



6

Fig. 3. 5G Core Network service-oriented architecture.

the NFs expose APIs to provide one or more services to other NFs, following the producer-consumer

concept.

In this article, we focus on user-plane functions (SMF, PCF and UPF), as MEC requires the definition

of traffic policies to redirect traffic to the appropriate MEC applications. The UPF is in charge of routing

user plane traffic to the appropriate Data Network (DN). It gets its configuration from the SMF, which

is one of the key elements for user-plane traffic management. Among the various functions of the SMF,

such as IP address allocation and management, and session management, is the control of the UPF by

configuring traffic rules. The SMF exposes service operations to allow another function or 5G AF to use

policy and traffic rules to reconfigure the UPF via (i) the PCF, if the 5G AF is a trusted application, or

(ii) the NEF, for untrusted AFs.

In the 5G architecture, the MEP will be integrated as a 5G AF [6], trusted or not, depending on the

use-case. It may request traffic redirection for a MEC application as per the request of the MEAO via

the MEPM. Therefore, if MEP is a trusted 5G AF, it can use directly the PCF to generate a policy to

offload traffic towards the MEC application. Otherwise, it uses the NEF to access the SMF via its traffic

filter policy API and requests traffic redirection.

The 3GPP, via the SA5 group, has also defined a framework for the orchestration and management of

the network slice life cycle. The 3GPP approach is based on two key concepts: Network Slice Instance

(NSI) and Network Slice Subnet Instance (NSSI). The NSI, at the fundamental level, is composed of NFs

(both AN and CN ones), realized with corresponding physical and logical resources, and its composition

DRAFT March 3, 2020



7

is described by a NS Template (NST) that can be individually enriched with some instance-specific

information (parameters, policies).

The 3GPP approach defines the following management functions related to NSSI, listed below in the

order corresponding to their hierarchy:

• Communication Service Management Function (CSMF). The CSMF manages Communication Ser-

vices provided by the network operator according to the requirements of the Communication Service

Customer, converts these requirements to NS requirements (e.g., network type/capacity, QoS require-

ments, etc.), and delegates the management of NSIs to NSMFs.

• Network Slice Management Function (NSMF). The NSMF manages NSIs, according to the re-

quirements from the CSMF, and further converts/splits them to NSS requirements and delegates

management of NSSIs to NSSMFs.

• Network Slice Subnet Management Function (NSSMF). NSSMF manages NSSIs based on the

requirements received from the NSMF.

Note that the NST describing a network slice is composed when the vertical (i.e., slice owner) requests

the creation and deployment of a NSI.

III. NETWORK SLICING INCLUDING MEC

With the release by the 3GPP of a new architecture model to integrate NS in 5G and a new framework

to manage NS, and ETSI MEC’s solution to integrate MEC in NFV, there is a need to update the current

MEC architecture to align with these developments and support NS at the MEC level. We distinguish two

models for the support of Network Slicing in MEC. The first assumes that the MEP is already deployed at

the edge NFVI and is shared among the slices; we term it the multi-tenancy model. In the second, the MEP

is deployed inside the slice. This is what we call in-slice deployment. For both models we assume that

the MEP is deployed as a VNF. The MEP and MEC applications are described using a VNF Descriptor

(VNFD) and Application Descriptors (AppDs), respectively. VNFDs and AppDs describe the necessary

information for the NFV Orchestrator (NFVO) and VIM to deploy instances of virtual applications, either

at centralized clouds or the edge. AppD is specific to MEC applications, containing special fields such

as traffic steering rules and MEC services required by the application. Note that we consider the MEPM

as the Element Manager (EM) of the MEP. Fig. 4 shows the global picture highlighting the envisioned

Network Slicing orchestration/management architecture as proposed by 3GPP and featuring MEC slicing.

In terms of interfaces, we mainly highlight those needed to orchestrate and manage core and edge virtual

applications. The RAN controller is the element that provides a northbound control interface to manage

eNBs, while using a southbound protocol, such as FlexRAN [7], to remotely configure eNBs (e.g., to

March 3, 2020 DRAFT



8

Fig. 4. The proposed Network Slicing orchestration/management architecture, including MEC, in a 5G environment.

associate to a new AMF of a slice) or to obtain RAN-level information, such as UE statistics, which can

be used by the operator or exposed to interested applications over the RNIS API.

We assume that a vertical first accesses a front end (e.g., a web portal) to request the creation of

a network slice, using the NST made available by the CSMF. The NST can be extended according to

the vertical needs, and by integrating network functions displayed by the CSMF through its network

functions store or catalogue (i.e., add more MEC applications). The CSMF forwards the NST to request

the creation of an end-to-end network slice composed of several sub-slices that span the RAN, CN, MEC

and transport network. The NSMF organizes the NST into sections corresponding to each sub-slice. The

Management and Orchestration (MANO) NSSMF component covers the CN functions and VNFs that

need to be deployed over the cloud. All the NFs that need to be deployed over MEC should be managed

by the MEC NSSMF. The NSSMF accepts as input a Network Service Descriptor (NSD) [8] that contains

VNFDs and AppDs. The NSMF requests the creation of each sub-slice to the corresponding NSSMF, as

illustrated in Fig. 4. The RAN NSSMF is in charge of updating the configuration of the RAN via a RAN

controller that interacts with the involved eNBs (PNFs) indicated in the NST. The NSSMF responsible for

CN and VNF instantiation, requests the instantiation of the NSD to the NFVO using the Os-Ma-NFVO

interface [9]. The MEC NSSMF interacts with the MEAO by providing the AppDs of the applications

DRAFT March 3, 2020



9

that need to be deployed at the edge NFVI. The MEAO will use the same NFVO (as specified in [4]) to

request the creation of the AppD instance at the selected edge NFVI. Among the available edge NFVIs,

the MEAO can pick the appropriate by executing its internal placement algorithm, considering different

criteria such as latency and service availability [10]. Once the application is instantiated, the MEAO is

informed of the its IP address, which it communicates to the MEP along with parameters such as specific

traffic filters to enforce traffic steering. The last sub-slice is about the transport part, where we assume

that the NSSMF managing it interacts with Software Defined Networking (SDN) controllers to isolate

and forward NS traffic to the Internet.

Once each sub-slice is created, the NSMF is in charge of stitching them together to build the end-to-

end slice. Stitching consists in interconnecting the different sub-slices using a sub-slice border API, as

described in [11].

A. Multi-tenancy model

In the case of MEP multi-tenancy, the MEP and UPF are already deployed. The MEP is aware of

the IP addresses and interface endpoints of the NEF or PCF for traffic redirection, as well as those of

the RAN controller, from which it can gather the necessary RAN-level data to provide MEC services

such as the RNIS. Once the MEC application is deployed by the NFVO, the latter informs the MEAO

about the successful instantiation of the MEC application, along with its IP address. The MEAO then,

via Mm3, requests the MEP to enforce traffic redirection rules as indicated in the AppD. Based on the

description presented in Section II-B, the MEP, via the PCF’s API, requests the redirection of specific

traffic (via a traffic policy) toward the newly created MEC application. Here, the MEP uses the PCF, as

it is considered a trusted 5G AF: the MEP has been deployed by the network operator as a common 5G

AF for all slices.

B. In-slice deployment model

Here, the MEP is deployed along with the MEC application at the edge NFVI. Unlike the multi-tenancy

model, the MEAO requests the instantiation of both the MEP and MEC application at the same time. The

NFVO deploys both, and ensures that there is a virtual link between them. The NFVO then acknowledges

their creation and indicates their IP addresses.

We differentiate between two cases: (i) all the CN elements, including the UPF, are deployed inside

the slice; (ii) the UPF is already deployed. In the first case, the UPF is deployed also at the edge for the

sake of performance, and the MEP can implement traffic redirection using the internal PCF of the slice.

For the second scenario, the MEP has to discover the NEF of the operator, as the MEP is not considered

March 3, 2020 DRAFT



10

as a trusted 5G AF. To solve this, we propose that the DNS service running at the edge NFVI is used:

Once instantiated, the MEP sends a DNS request to discover the NEF’s IP address, and communicates

with the latter to apply traffic redirection rules.

For the necessary access to eNBs to provide specific MEC services (e.g., RNIS, Location Service),

we propose to use the concept of zones [12]. A zone indicates an area covered by a group of eNBs

associated with a MEC host. These eNBs are assumed to be managed by a single RAN controller. For

both scenarios, the MEP can use DNS to discover the RAN controller that corresponds to the zone where

it is instantiated, which in turn allows the MEP to retrieve RAN-level information from all eNBs of the

zone.

IV. SECURITY AND ISOLATION

A major Network Slicing requirement is traffic isolation and security enforcement. Each NS should

not be able to access the traffic or other information of other slices. Two challenges thus arise with

respect to MEC slicing: (i) The traffic redirection mechanism should ensure that a NS (i.e., the MEC

application instances it includes) cannot specify a traffic redirection policy for traffic it does not “own”;

(ii) a network slice should not be able to use MEC services in a way that it gets unauthorized access

to information on other running network slices, or consume MEC services not available for it. In the

following, we propose solutions to overcome these issues.

A. Traffic redirection

An AppD may include appTrafficRule elements, which specify the characteristics of the traffic

to offload to the MEC application via a traffic filter. Also, the MEC application provider may add

appDNSRule elements, which, combined with appTrafficRule ones, allow traffic offloading using

DNS domains. If a slice owner encodes in the AppD DNS rules for domains it does not own, or use

a traffic filter that matches traffic flows of another running network slice, this may introduce significant

security threats. A malicious application instance can (i) intercept traffic flows it is not supposed to

have access to, causing confidentiality breaches, and (ii) perform “black hole” or other denial of service

attacks by diverting and dropping UE traffic destined for victim MEC instances. Therefore, we argue for

augmenting the MEC NSSMF with security and access control functionality so that it can check that each

MEC application has the necessary permissions to request traffic redirection as indicated in its AppD. To

mitigate these threats and offer sufficient protection to MEC slice instances, Public Key Infrastructure

(PKI) technologies can be used. In particular, we propose the use of a trusted third party, which may

coincide with the network operator and which can guarantee that the slice owner has the appropriate

DRAFT March 3, 2020



11

permissions to indicate specific DNS entries and traffic filters in the AppD. This necessitates extending

the AppD with a field where a signature of the trusted third party over the set of appDNSRule and

appTrafficRule entries will be placed.

B. MEC services: RNIS and Location Service

Another important issue for MEC slicing is related to MEC services that expose privacy-sensitive

information about the UEs of a slice, such as their (coarse) location or channel quality. Depending on

the considered use case, access to this type of information should be restricted only to the slice’s MEC

applications. To this end, we propose two solutions, which depend on the considered deployment scenario

(multi-tenancy vs. in-slice).

In the case of multi-tenancy, the MEP should check the identifier of the MEC application, and whether

the latter can have access to the specific MEC service. Furthermore, it should check which are the users

that the MEC application can request information about. We propose that along with any MEC service

request, the S-NSSAI identifier of the slice where the requesting MEC application belongs is included.

The RNIS and location APIs should be modified to integrate the S-NSSAI of the UE in addition to

the UE identifier, allowing to restrict applications to access only information on UEs of their slice. The

proposed solutions improve the MEP, by allowing it to obtain more information on the network slices

along with their associated users and authorizations. The MEP will be S-NSSAI-aware, in order to know

to which network slice an application or set of UEs belong to, and maintain a mapping of MEC services

to the slices authorized to access them and the respective permissions.

The solution is slightly different for in-slice deployment. It is not the MEP that should implement the

access control mechanism, as it belongs itself to the slice. We propose in this case to rely on the RAN

controller. That is, when the MEP discovers the RAN controller in charge of the zone, it includes its

S-NSSAI with the request. The RAN controller can be considered a 5G AF, which can access the NSSF

via the NEF to check which are the users with this S-NSSAI, and filter accordingly the information

provided to the MEP.

V. SERVICE REGISTRATION AND DISCOVERY

A MEC application can register to expose a service (e.g., video transcoding) to other MEC applications

using the MEP’s Mp1 interface. However, in case of a sliced MEC, we can identify the following issues: (i)

For a MEP deployed in-slice, MEC applications can provide services only to the other MEC applications

inside the same slice. Thus, a vertical (tenant) cannot directly expose a service to another vertical. (ii)

In the multi-tenant MEP case, the problem stems from the fact that the new MEC service should be

March 3, 2020 DRAFT



12

advertised to the MEAO, as well as to the CSMF, which need to include it in their available function

catalogues.

For the first case, if a vertical wants to provide a MEC service, it should indicate it to the CSMF,

which updates accordingly its catalogue by advertising the availability of the service to other verticals.

When a vertical requests a MEC service provided by another MEC application, it should indicate it via

the NST. The MEAO should then keep track of the location of the MEC application providing the service

and place the new MEC application in the same edge NFVI, ensuring that there is a link between the two

applications. The creation of this (virtual) link should be requested by the MEAO to the NFVO. Regarding

the second case, our approach is that the MEP, upon the registration of a new MEC service, provides

this information to the MEAO via the Mm3 reference point. The latter updates a registry database, which

indicates the MEP hosting a MEC service provided by another MEC application. The MEAO informs

the MEC NSSMF about the new MEC service. The information is forwarded towards the CSMF, which

updates its function catalogue. The MEAO places the MEC application at the edge host where a MEP

is providing the MEC service. In this case, the discovery process is done at the CSMF level, while

the registration process is kept at the MEP level, whereas in the in-slice scenario both registration and

discovery happen at the CSMF level.

VI. IMPLEMENTATION EXPERIENCES

We have implemented a ME(A)O with an Mm1 interface that fully complies with ETSI MEC 010-

2 [13], and a fully fledged MEP, featuring traffic rule management, DNS, and RNI services with standard

interfaces, as well as service registration and discovery APIs. Our system is tailored to OpenAirInterface

(OAI)2: We have extended the OAI core network with the appropriate functionality for control-user plane

separation [14] and for communicating with our MEP over the Mp2 reference point (REST API, in

our case). At the same time, we are using the OAI RAN, after extending it for RAN slicing support,

and with some additional features for the FlexRAN-based Mp2 interface. At the MEC host level, we

have implemented a lightweight VIM appropriate for resource-constrained edge deployments, building on

lxd3 and allowing the execution of MEC application instances as containers. Our edge VIM is written in

python, interacts with lxd using the latter’s REST API, and provides interfaces to the MEO for onboarding

and deleting MEC application container images, as well as instantiating, querying, and terminating MEC

application containers, also managing their network configuration. Notably, it has been tested with edge

compute nodes of different footprints, from Raspberry PIs to powerful workstations.

2https://www.openairinterface.org
3https://linuxcontainers.org/lxd/

DRAFT March 3, 2020



13

USRP B210
(RF board)

1G eth

OAI eNodeB
x86 Server

USB3

1G eth

1G eth Internet/external networks

UE1
slice 1

S/PGW-C

OAI vEPC host
(MME, HSS, S/PGW-C/U)

x86 Server (kvm hypervisor)

UE bearer info
(REST)

RAN info
(FlexRAN)

MME

UE MME state
(REST)

S/PGW-U

Virtual 
instance

Physical 
host

Mp2 ref. 
point

User-plane 
traffic

GTP tunnel

UE2
slice 2

Mp1 ref. 
point

MEC host
(x86 server)

MEP-V
(multi-tenant)

MEC apps
(slice 1, slice 2)

Edge VIM 
(lxd)

ME(A)O
(runs natively, or as a VM/

container)

Mm1 ref. 
point

OSS/Customer facing web portal

SGW-U ctrl (OpenFlow)

Fig. 5. MEC system implementation and testbed. In this figure, the MEP is deployed in its multi-tenant version and two MEC

application instances, corresponding to the two different deployed slices, are sharing it. Traffic from two UEs (each belonging

to a different slice) connected to a slicing-capable OAI eNB is appropriately redirected to the MEC applications after the MEP

has installed traffic rules at the Serving GW-U (4G equivalent of a UPF), which in our case is a modified version of Open

vSwitch (OVS).

Fig. 5 presents our implementation and testbed.

While the related standard interfaces are evolving, in our MEAO API implementation we take advantage

of placeholder fields in the information model specified in ETSI MEC 010-2 to support slicing and to give

hints on how to handle special types of MEC application instances (e.g., a virtualized MEP). In particular,

during application package onboarding, we exploit the userDefinedData field of the standard package

onboarding request message to signal that the package is a virtualized MEP component (MEP-V). Then,

at application instantiation time, we use the selectedMEHostInfo element to add slice identification

information (S-NSSAI); the MEAO can then use the slice identifier to select the appropriate virtualized

MEP(M) instance and communicate with it in order to, e.g., configure traffic steering rules for the MEC

application or discover the API endpoints for other services provided by this MEP instance, and configure

the MEC application appropriately, so that the latter is able to consume them or expose its own.

To experiment with the two MEP deployment scenarios, we prepared our MEP software for deployment

on our edge VIM. As an example of a MEC application, we used a robot control tool that we have

implemented for demonstration purposes. The size of the application images was 514 and 285 MB,

respectively. During package onboarding, the MEAO downloads the image from the URL indicated in

March 3, 2020 DRAFT



14

the AppD, which in our case pointed to a locally hosted HTTP server. The in-slice deployment scenario

involves the onboarding and instantiation of one distinct (virtualized) MEP per application instance. In

this case, the MEAO first deploys the MEP, and, as soon as it is up and running, it spins up the MEC

application. In order to set up the necessary DNS and traffic rules, it discovers the appropriate MEP

instance by the slice ID included with the instantiation request. On the contrary, in a multi-tenant MEP

scenario, the default MEP instance is used.

As a performance metric, we use the time it takes for a MEC slice to be operational from the moment

this is requested to the MEAO over the Mm1 reference point, breaking it down to onboarding and

instantiation time. We further decompose application instantiation to the individual interactions among

the involved entities over the standard ETSI MEC reference points, and measure the execution time of

each interaction in our setup. Apart from the time it takes to launch the instance on the edge VIM, this

includes (i) interacting with the MEAO to create an application instance identifier that will be used in

all future life cycle management operations, as per ETSI MEC 010-2, and requesting the actual instance

creation, (ii) communicating with the MEP to set up traffic offloading and DNS rules, and (iii) applying

these rules to the data plane over the Mp2 interface (in our implementation, installing a set of rules

remotely on the virtual switch (OVS) that is controlling user plane traffic). For this latter step, we have

two distinct implementations in our platform: one where the MEP interfaces with a Ryu-based4 SDN

controller over a REST API endpoint, which in turn applies the rules to OVS remotely using OpenFlow,

and one where the MEP connects to the OVS host over SSH, and installs the OpenFlow rules using the

OVS command line interface. The results we present here correspond to the latter.

To demonstrate the feasibility of our design and implementation and stress its lightweight character-

istics, we chose to run our experiments on a low-end compute environment: Our MEC host is an AMD

FX-7500 Radeon R7, with 4 CPU cores at 2.1GHz (maximum CPU frequency) and 8GB RAM, running

Linux kernel 4.4.0-97. Table II summarizes the results of our tests.

Despite its qualitative advantages in terms of isolation, in-slice MEP deployment comes with the

inherent cost of instantiating one MEP per slice. This can be critical in some deployments, as edge

compute resources are typically scarce. Performance-wise, this significantly impacts slice deployment

time, especially if the MEP is not already onboarded, since this is the operation that in our implementation

dominates all overheads (it involves downloading a raw application image and computing its fingerprint).

4https://osrg.github.io/ryu/

DRAFT March 3, 2020



15

TABLE II

MULTI-TENANT VS. IN-SLICE MEP DEPLOYMENT: COMPARISON OF THE TIME TO DEPLOY A MEC APPLICATION. THE

REPORTED VALUES ARE IN SECONDS AND ARE AVERAGES OVER 30 ITERATIONS FOR EACH EXPERIMENT.

Scenario MEP onboarding App. onboarding MEP instantiation App. instantiation Total

In-slice 215.4 118.19 46.99 58.5 439.09

Multi-tenant - 116.4 - 56.6 173

Instantiation

step

Direction Reference point Protocol Time # messages

Create

instance ID a

OSS → MEAO Mm1 REST 0.14 in-slice: ×2

Instantiate a OSS → MEAO Mm1 REST 0.19 in-slice: ×2

Register

DNS rules b

MEAO/MEPM c→ MEP Mm5 REST 3.79 in-slice: +1

rule for the

MEP domain

name

MEP → DNS server Internal SSH

MEP → Data Plane Mp2 SSH, OpenFlow

Register

traffic rules

MEAO/MEPM → MEP Mm5 REST 0.762 d 2 OpenFlow

rules per

connected UE

MEP → Data Plane Mp2 SSH, OpenFlow

a Does not include the interaction over the CFS portal. MEC application instantiation is asynchronous; it returns an application

life cycle occurrence identifier and instantiation takes place in the background.
b This step includes remotely re-configuring and reloading the MEP DNS server over SSH, as well as the installation of a

necessary traffic management rule at the data plane.
c In our implementation, the MEAO also assumes the role of the MEPM and communicates with the MEP via the Mm5 reference

point (not further specified in the standards).
d The execution time for this step depends on number of slice UEs connected at instantiation time. In this case, OpenFlow rules

are pushed to OVS for each connected UE. For UEs not already connected, the rules are added at UE attachment time. The

reported time is for a slice with a single UE already connected at instantiation time. When a slice includes many UEs, their

IDs are batched in a single HTTP request towards the MEP.

VII. CONCLUSION

We introduced the latest developments on MEC and Network Slicing in 5G, addressing architectural,

but also security and isolation-related challenges to be faced towards sliced MEC. We proposed a novel

design compliant with both ETSI and 3GPP specifications that enables the integration of MEC as a sub-

slice, and presented solutions to critical security and isolation issues. Finally, we presented experimental

results from our MEC implementation to compare different deployment scenarios for MEC slicing.

March 3, 2020 DRAFT



16

ACKNOWLEDGEMENT

This work was partially supported by the European Union’s Horizon 2020 Research and Innova-

tion Program under the 5G-TRANSFORMER (Grant No. 761536) and 5G!Drones (Grant No. 857031)

projects.

REFERENCES

[1] Study on management and orchestration of network slicing for next generation network, 3GPP Technical Report TR 28.801,

V15.0.1, Jan. 2018, Release 15.

[2] System Architecture for the 5G System, 3GPP Technical Specification TS 25.501, Mar. 2019, Release 15.

[3] Multi-access Edge Computing (MEC); MEC support for network slicing, ETSI Group Report MEC 024, V2.1.1, Nov.

2019.

[4] Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing in an NVF environment, ETSI Group Report

MEC 017, V1.1.1, Feb. 2018.

[5] Mobile Edge Computing (MEC); Framework and Reference Architecture, ETSI Group Specification MEC 003, V2.1.1,

Jan. 2019.

[6] S. Kekki et al., “MEC in 5G Networks,” ETSI, White Paper 28, Jun. 2018.

[7] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. P. Kontovasilis, “Flexran: A flexible and programmable

platform for software-defined radio access networks,” in Proc. ACM CoNEXT, 2016.

[8] Network Functions Virtualisation (NFV); Management and Orchestration, ETSI Group Specification NFV-MAN 001, Dec.

2014.

[9] Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Os-Ma-Nfvo reference point - Interface

and Information Model Specification, ETSI Group Specification NFV-IFA 013, Aug. 2018.

[10] L. Yala, P. A. Frangoudis, and A. Ksentini, “Latency and availability driven VNF placement in a MEC-NFV environment,”

in Proc. IEEE Globecom, 2018.

[11] S. Kuklinski et al., “A reference architecture for network slicing,” in Proc. IEEE NetSoft, 2018.

[12] Mobile Edge Computing (MEC); Location API, ETSI Group Specification MEC 013, V1.1.1, Jul. 2017.

[13] Mobile Edge Computing (MEC); Mobile Edge Management; Part 2: Application lifecycle, rules and requirements

management, ETSI Group Specification MEC 010-2, V1.1.1, Jul. 2017.

[14] P. Schmitt, B. Landais, and F. Y. Yang, “Control and User Plane Separation of EPC nodes (CUPS),” 3GPP, Tech. Rep.,

Jul. 2018. [Online]. Available: http://www.3gpp.org/cups

Prof. Adlen Ksentini is an IEEE COMSOC Distinguished Lecturer on topics related to 5G and Network Softwarization. He

received the Ph.D. degree in computer science from the University of Cergy-Pontoise on QoS provisioning in IEEE 802.11-based

networks. Since 2106, he has been professor at the Communication Systems department of EURECOM. His current research

topics lie in the field of architectural enhancements to mobile core networks, mobile cloud networking, network functions

virtualization and software defined networking. He received the best paper award from the IEEE WCNC 2018, IEEE IWCMC

DRAFT March 3, 2020



17

2016, IEEE ICC 2012, ACM MSWiM 2005 and the IEEE Fred W. Ellersik Prize for the best IEEE Communications Magazine

for 2017.

Dr. Pantelis A. Frangoudis is a University Assistant at the Distributed Systems Group, TU Wien, Austria. He has been a

researcher with the Communication Systems Department, EURECOM, France, and with team DIONYSOS at IRISA/INRIA

Rennes, France, which he originally joined under an ERCIM “Alain Bensoussan” post-doctoral fellowship. He has a Ph.D.

(2012) in Computer Science from AUEB, Greece. His interests include mobile and wireless networking, network softwarization,

edge computing, network security and Internet multimedia.

March 3, 2020 DRAFT


