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Abstract—In this paper, we propose a secure visual-thermal
fused face recognition system using non-linear hashing. To extract
features from both thermal and visible facial images, a deep
neural network model pre-trained by visible images, namely
InsightFace, is utilized in extracting deep features from both
thermal and visible images. Next, we investigate into the effec-
tiveness of using nonlinear hashing in protecting deep features
extracted from both thermal and visible face images. To further
boost the accuracy performance of the facial recognition system
under unfavorable environment, feature- and score-level fusion
of thermal and visible images for face matching are studied.
The performance of different application scenarios are tested on
the EURECOM VIS-TH face dataset. Experiment results suggest
that: 1) feature- and score-level fusion techniques are effective
in achieving higher accuracy under unfavorable situation; 2)
non-linear hashing offers additional layer of protection, namely,
privacy preservation, to face image. We also found that the deep
model trained by using visible images is applicable to thermal
images for feature extraction, which is particularly useful because
there is no large thermal dataset available to train deep neural
network.

Index Terms—Face recognition, thermal face, fusion, biometric
template protection

I. INTRODUCTION

Face recognition (FR) has been a long-standing interest for
identity management since the first publication in Nature [1]
in year 1888. Recent trend shows that FR has huge poten-
tial beyond identity management, such as human computer
interaction and entertainment. This is attributed mainly to the
acquisition process of face biometrics, which is easy and non-
intrusive, while other biometric modalities such as fingerprint
cannot always be captured, e.g., heavy labor worker or born
without fingerprint (i.e., adermatoglyphia). Furthermore, face
biometrics is compliant with human minds and do not require
much cooperation from the user in order to function.

FR technology evolves from handcraft method such as
eigenface [2] and local binary pattern [3] to deep learning
approach [4]. Currently, deep learning approach outperforms
handcraft methods in most FR contests [5]. However, the
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accuracy performance can still be affected by many factors,
which can generally be divided into the environmental and
user factors. Specifically, environmental factor includes light
changes and unfavorable illumination, while user factor in-
cludes emotions, occlusions and head pose variation. Another
key challenges regarding the FR deep model are the issues of
privacy and security. In [6], a neighborly de-convolutional neu-
ral network (NbNet) is proposed to reconstruct the face images
from deep features. It is reported that face image reconstructed
by NbNet can be easily matched with the original counterpart,
where the true accept rate (TAR) can achieve 95.20% when
comparing the reconstructed images against the original face
images, which is a serious threat.

Cancelable biometrics is one of the approaches for biometric
template protection. It is developed to address the security
and privacy risks when a biometric template is compromised.
It refers to the irreversible transformation that can alter the
biometric templates for ensuring security and privacy. A can-
celable biometrics scheme should satisfy four requirements,
namely, non-invertibility, revocability, non-linkability, and per-
formance preservation [7].

To address the aforementioned environmental issues, the
combination of visible and thermal information has been
demonstrated to increase face recognition rates, particularly
in the presence of adverse conditions [8]. We also believe
that the combination of visible and thermal image will be a
promising technique in future FR system, e.g. cross-spectral
forensics, mobile face identification. Here, we also show that
dual acquisition can achieve better accuracy in the design
of a cancelable FR system when compared to traditional
approaches based on a single modality (visible or thermal).
Specifically, facial features are extracted from both visible and
thermal images using the public software InsightFace [9]. The
features are then encrypted by NMDSH, which is a recently
proposed non-invertible transformation function within the
context of concealable face templates [10].

Our work makes the following contributions:

• We propose a framework of visible and thermal fused
FR system which can overcome the drawbacks of using
visible face under limited or unfavorable illumination
condition. Both feature- and score-level fusion techniques
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Fig. 1: Visualizing non-linear function q(x).

are effective in achieving higher accuracy under unfavor-
able situation.

• Non-linear hashing is used in the system to achieve pri-
vacy preservation. The face features are protected against
privacy invasion.

• Both visible and thermal face images can be processed
by same deep learning model pre-trained by using visible
face images. The findings in this study could be beneficial
toward a secure FR system with high accuracy perfor-
mance.

II. NON-LINEAR HASHING

The deployment of various FR applications leads to the
creation of many databases of faces. Once compromised, these
databases will lead to security and privacy issues. There-
fore, biometric template protection technology is developed
to address these issues. In this paper, we investigate into
the effectiveness of non-linear hashing in protecting deep
features generated from both thermal and visible face images.
The non-linear hashing considered here is based on multi-
dimensional spectral hashing (MDSH) for face template pro-
tection proposed in [10]. Specifically, MDSH is extended from
the graph-based hamming embedding [11], [12] for cancelable
biometrics.

In our current work, two realizations in [10], namely, slim
multi-dimensional spectral hashing (SMDSH), and non-linear
multi-dimensional spectral hashing (NMDSH) are studied to
protect deep face features.

In MDSH scheme, assume that xi and xj are two data
point in Euclidean space. A hashing function should generate
their corresponding hash code yi and yj in Hamming space
by approximating the Hamming distance between yi and
yj to the Euclidean distance of xi and xj . The Euclidean
distance between data points xi and xj is represented as

affinity matrix W (i, j) = e
−‖xi−xj‖

2

2σ2 . In addition, each bit
should be independently and uniformly distributed. Based on
this assumption, MDSH can be taken as a binary matrix
factorization problem of the affinity matrix, and it can be
solved by the spectral relaxation technique, hence becomes
a eigenvector problem [12].

The SMDSH algorithm generally consists of three steps as
the original MDSH does:

1) Compute the single-dimension eigen functions φij(x(i))
and the corresponding eigen value λij on the training

dataset using:
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where φij(x(i)) is the j-th eigen function of the i-th
coordinate, and λij is the corresponding eigenvalue.

2) Sort λij in ascending order, and select the top k indices
to form the set A = {(i1, i1), (i2, i2), · · · , (ik, ik)}.

3) Encode each data point x in the test dataset using
yij(x) = sin(φij(x)) for all (i, j) ∈ A.

Although MDSH maintains the accuracy of the deep face
feature, it is vulnerable to similarity-based attack (SA) due
to its distance preserving property [13]. Therefore, inspired
by [13], a softmod activation layer is added to SMDSH
to achieve a nonlinear MDSH (hereinafter referred to as
‘NMDSH’) as follows:

y = q(φij(x)), (3)

and
q(x) =

2

1 + e−8 sin(απ x)
− 2, (4)

where q(x) is a nonlinear softmod activation function (see
Fig. 1) and the nonlinear rate α is an empirical parameter
defined by user. In a nutshell, both SMDSH and NMDSH
employ one-way function to transform the original features
into some binary forms, hence achieving the template protec-
tion goal. In addition, the generated binary vectors can also
be used for indexing or searching due to efficient computation
of Hamming distance.

III. THERMAL IMAGERY

Visible face image is largely sensitive to illumination.
This leads to the deterioration of recognition accuracy when
operating under unfavorable illumination. Therefore, most FR
systems can only achieve high recognition accuracy under
constrained environment [14]. On the other hand, infrared
spectrum (IR) imagery is known to be robust against illumi-
nation effect. It can capture image under both day and night
conditions, hence it is widely regarded as a plausible option
in case of unfavorable illumination.

Generally, the IR spectrum can be divided into active IR
band and passive (thermal) IR band according to the response
of various detectors (see Fig. 2) [15]. The active band (0.7-
2.5µm) consists of near infrared (NIR) and the short wave in-
frared (SWIR) spectrum, while thermal IR band includes Mid-
Wave (MWIR, 3-5µm) and the Long-Wave infrared (LWIR, 7-
14µm) bands. MWIR captures reflective and emissive proper-
ties of the face skin while LWIR primarily captures the emitted
radiation or heat energy. Therefore, LWIR is insensitive to
variation in illumination.

However, datasets containing thermal LWIR face images
are rare. EURECOM VIS-TH Face (VIS-TH) [8] is a recently



Fig. 2: Electromagnetic spectrum map.

TABLE I: Different variation in VIS-TH

Category Variations

Expression Neutral (N), Happy (EH), Angry (EA),
Sad (ES), Surprised (ESp)

Action Eyes Closed (AEC), Open Mouth (AOM)
Pose Up (PU), Down (PD), Left (PL), Right (PR)

Occlusion Optical Glasses (OOG), Sunglasses (OSG),
Hat (OH), Hand on Mouth (OHM), Hand on Eye (OHE)

Light Light Up (LLU), Light Right (LLR),
Light Left (LLL),Dark (LD), Room light (LR)

proposed face dataset which uses a newly developed dual
sensor, namely FLIR®Duo™ R (2017), to simultaneously
capture face images and videos in both visible and thermal
LWIR spectra. This guarantees that face image of visible and
thermal spectra can be captured from the same person (i.e.
synchronized). A total of 2100 images under various settings
(see Table I) were collected via FLIR®Duo™ R from 50
subjects of different age, gender and ethnicity.

IV. FUSION OF VISIBLE AND THERMAL IMAGES

It is known that biometric fusion can lead to performance
gain [16]. An evidence of fusion for thermal and visible face
images has been reported in [8], showing the improvement
of rank-1 recognition accuracy. However, the performance
evaluation of the fusion strategies have not been investigated
on the secure FR system (e.g., FR with biometric template
protection). Here, FR with only visible or thermal image is
called single modality FR, while FR with both visible and
thermal images is called multi-modalities. Typically, a single
modality cancelable FR system consists of sensor, feature
extractor, non-invertible parameterized transformation function
and the matcher. Fig. 3(a) shows a typical single modality
cancelable FR system, where F is a one-way transformation
function (e.g., SMDSH and NMDSH). Note that the visible
and thermal face images are used independently to implement
the single modality scheme. On the other hand, for the multi-
modalities cancelable FR, three schemes (one cross-spectral,
two fusion schemes) are designed:

1) The hashed code generated from the visible face features
are enrolled in the gallery while the hashed code from
thermal face is used as a probe;

2) The fused feature is formed by concatenating the visible
and thermal face features, which is then hashed and
stored in the database as the template. At the query stage,
the visible and thermal face images undergo the identical
process, and the resulting hash is matched against the
template in the database (see Fig. 3(b));

3) The visible and thermal face features are hashed and
enrolled in the gallery independently. At the query stage,

the query visible and thermal face features are hashed to
output the tuple (V ′, T ′), which is then matched against
the templates (V, T ). Two matching scores are fused by
taking the average, and the final decision (viz., yes/no)
is made based on the average score and the predefined
threshold value (see Fig. 3(c)).

V. EXPERIMENT

In this section, the feature extraction of thermal and visible
images are first detailed. The accuracy of SMDSH is evaluated
on thermal and visible face images. Next, the parameter opti-
mization for NMDSH is performed. Finally, the performance
of different application scenarios are reported.

A. Feature extraction
For experiment purposes, the InsightFace face feature ex-

traction method [9] is considered, and its open source codes
from GitHub [17] are utilized. Visible and thermal images
are co-registered by edge-based image registration approach
according to [18]. The images are cropped to 112 × 112 so
that they can be fed into the deep model for feature extraction.
InsightFace model [19] pre-trained by MS-Celebrities [20] is
employed to generate the 512-dimension embedding for both
visible and thermal face images.

Here, we utilized the visible face images to train and build
the deep model. The model is then deployed to extract features
from thermal images. The results in the following experiment
suggests that such deep model can also achieve satisfactory
accuracy performance in face recognition for thermal images.

B. SMDSH bits length optimization
The effect of SMDSH bit length on accuracy for single

modality system is investigated using equal error rate (EER).
Specifically, EER is the rate at which both False Rejection
Rate (FRR) and False Acceptance Rate (FAR) are equal,
where lower EER indicates better system performance, and
vice versa. Images of neutral face will be taken as gallery,
and another emotion (e.g., emotion-happy, denoted as N-EH)
will be taken as a probe. EER will be calculated for each
case of variations. Take N-vs-EH as an example, firstly, 50
images of emotion-neutral are enrolled as the gallery subjects,
then 50 images of emotion-happy are taken as probes. The
N and EH features from the same person will be matched to
generate the genuine score (i.e., 50 scores), while the EH and
N features from different person will be matched to generate
the imposter scores (i.e., C2

50 = 1, 225 pairs). The average
EER results are shown in Fig. 4, but due to space limitation,
only EH, ESP, PR, OHE, LD and LR are reported. Results
suggest that, for both visible and thermal faces, the accuracy
performance stabilizes when the SMDSH bit length is ≥ 1024.
For the rest of the discussion, unless specified otherwise, the
length of 1024 bits is considered. To further investigate, the
EER scores for matching emotion-neutral to other variations
using SMDSH are recorded in Table II. Results suggest that
the performance after applying SMDSH is slightly inferior (but
still comparable) to that of the original features for the visible
image scenario.



(a) Traditional visual image FR system (b) Feature fusion FR system (c) Score fusion FR system

Fig. 3: Cancelable facial recognition systems. The boxed letter F in each figure refers to a transformation function (e.g.,
NMDSH), where the generated template is stored in the database denoted as DB. (a) shows a traditional FR system without
fusion; (b) shows a FR system with feature fusion and hashing protection, and; (c) shows a FR system with hashing protection
and score-level fusion.

(a) Visible face (b) Thermal face

Fig. 4: EER (in %) vs bit length on EURECOM VIS-TH dataset.

TABLE II: EER of matching neutral face to other variations with SMDSH for bit lengths of 1024.

Image example
Image spectral Visible Thermal
Gallery-Probea N-EH N-ESP N-PR N-OHE N-LR N-LD N-EH N-ESP N-PR N-OHE N-LR N-LD

Original features 0.04 1.98 10.39 4 2.06 34.02 0.33 2.02 19.8 14.14 4.04 4.45
SMDSH 0.09 2.41 14.97 4.03 1.52 32.73 0.05 3.22 16.56 13.75 4.05 4.5

a N represents Neutral while EH, ESP and etc. correspond to other categories in Table I.

TABLE III: EER (in %) and inter-class variations under different nonlinear rate α values with NMDSH on visible face.

SMDSH NMDSH
α - 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

EER 1.3 1.12 1.25 1.16 1.17 1.63 3.9 5.52 11.54 14.29 18.13
V [d−] 903.23 893.7 894.01 880.58 691.24 455.67 327.86 298.51 299.17 297.37 301.53

C. Robustness of NMDSH against SA

As discussed in our previous work [10], SMDSH may be
vulnerable to similarity-based attack although a many-to-one
mapping function is employed. Hence, NMDSH is proposed
to withstand SA. The inter-class variation [13], denoted by
V [d−], is utilized here. Note that an ideal system should
achieve small inter-class variation while maintaining low EER
value as indicated in [13]. Here, the value of V [d−] in
Hamming distance and EER under different nonlinear rate α
are computed by using emotion related samples. The result

is shown in Table III. It can be seen that large value of α
can lead to a small inter-class variation, but a large α will
lead to a drastic drop in accuracy. Therefore, it is necessary
to strike a balance where the system preserves the accuracy
while achieving small inter-class variation. It is also observed
that α = 0.5 is optimal for EURECOM visible face. When
α = 0.5 is set, EER does not degrade much and V [d−] reaches
an optimal value.



TABLE IV: EER (in %) of different scheme scenarios with SMDSH and NMDSH (value in parenthesis) for bit lengths of
1024.

Scenario N-EH N-ESP N-PR N-OHE N-LR N-LDGallery Probes
Single visible visible 0.05 (0.03) 2.69 (3.18) 12.58 (18.73) 4.02 (4.12) 1.62 (2.00) 31.83 (34.8)

Modality thermal thermal 0.11 (0.10) 3.01 (2.56) 17.52 (20.78) 13.56 (15.18) 3.81 (4.25) 5.08 (5.36)
Multi- visible thermal 47.57 (51.7) 50.49 (50.7) 48.96 (51.5) 50.68 (52.2) 49.27 (51.4) 50.13 (48.14)

Modalitiesb visible||thermal visible||thermal 0.00 (0.00) 1.86 (0.97) 13.70 (13.97) 2.47 (3.47) 0.73 (0.65) 7.23 (7.68)
visible&thermal visible&thermal 0.00 (0.00) 1.44 (1.16) 12.83 (15.72) 2.41 (3.27) 0.47 (0.96) 6.76 (7.19)

b || represents feature fusion by concatenation, and & represents score level fusion by averaging two matching scores.

D. Accuracy for different application scenarios
In a typical face biometric recognition system (verification

system), several scenarios are possible and some representative
scenarios are listed in Table IV. Here, || represents feature
fusion by concatenation, and & represents score level fusion by
averaging two matching scores. According to the discussions
in Section II, we test the accuracy performance on two scenar-
ios, namely, single modality and multi-modalities. Results in
Table IV suggest that the highest accuracy is achieved by score
level fusion of visible and thermal images. However, under
the poor illumination situation (i.e. N-LD), single modality of
thermal image provides the best results.

It is noteworthy that visible image features in the gallery
do not match well with the thermal image features, which is
evidenced by the results in Table IV (see first row under multi-
modalities). This observation suggests that features extracted
from thermal and visible images, although using the same
deep model, show different characteristics. Finding a universal
feature extractor for both visible and thermal images is still
a challenging task. However, we can conclude that the deep
model trained by visible images (e.g., InsightFace in this work)
can also be utilized to extract features from the thermal face
images, and the performances appear to be promising. For
the deep model utilized in this work, it is still challenging to
achieve satisfactory performance on pose variation images. In
addition, for thermal image, it is also non-straightforward to
generate discriminative features on occlusion variations, since
LWIR can only capture the heat emitted from skin under
no occlusion situation. Nevertheless, multi-modalities score
level fusion on the transformed domain shows comparable
performance in general. This suggests that fusion of visible
and thermal can be a promising solution to address the issues
discussed above.

VI. CONCLUSIONS

In this paper, we proposed a secure visual-thermal fused FR
system using the newly developed VIS-TH face dataset by EU-
RECOM. Moreover, a non-invertible transformation function
is adopted to hash the deep features extracted by a pre-trained
deep model. One cross-modality and two multi-modalities
schemes with hashing function are explored. Results suggest
that the utilization of thermal face can overcome the drawbacks
of using visible face under limited or unfavorable illumination
condition. Specifically, both score fusion and feature fusion

show improvement in accuracy, but each type of fusion scheme
can be applied under different situations. On one hand, feature
fusion generates only one feature vector and a binary protected
template as the final output, hence being economic on storage
space. On the other hand, score level fusion achieves higher
accuracy, and it is practical when some modalities are absence,
e.g., no visible face available. It is noteworthy that although
the InsightFace model is trained by using visible facial images,
the model still exhibits comparable performance when applied
on thermal images. We also demonstrate that NMDSH can
preserve the performance of the FR system while offering extra
layer of protection to face features.

As future work, we shall investigate into transfer learning
for improving the accuracy of deep models on thermal face.
In addition, we are also working on universal facial landmarks
for both visible and thermal facial images, which potentially
leads to cross-spectral matching.
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