Cramér-Rao Bound for Joint Angle and Delay Estimators by Partial Relaxation

Ahmad Bazzi1, Dirk T.M. Slock2

1CEA-IRSTEBrioule, 404 avenue Raymond Les Bureaux, B-6, 38440 Biot Sophia Antipolis, France
2EURECOM Mobile Communications Department, 450 route des Chappes, 06410 Biot Sophia Antipolis, France

Abstract

Novel Fisher-Information Matrix (FIM) and Cramér-Rao Bound (CRB) expressions for the problem of the “partially relaxed” Joint Angle and Delay Estimation (JADE) are derived and analyzed in this paper. In particular, exact closed-form expressions of the CRB on the Angles and Times of Arrival of multiple sources are presented. Furthermore, interesting asymptotic and desirable properties are demonstrated, such as high SNR behavior and lower bound expressions on the CRBs of Angles and Times of Arrival of multiple sources. Computer simulations are also given to visualize CRB behavior in regimes of interest.

Introduction

- Localization has been a challenging topic over the past 70 years. Applications include seismology, radar, sonar, communications, etc.
- Recently, the partial relaxation (PR) framework has been introduced as a novel framework for the Angle-of-Arrival (AoA) problem.
- This paper derives and analyzes the Cramér-Rao Bound (CRB) of the partially-relaxed JADE problem.

Contributions

- The Fisher-Information-Matrix (FIM) and CRB of the partially relaxed JADE problem are derived. Exact closed form expressions are given.
- Some interesting asymptotic properties are revealed, i.e. lower bounds on the CRBs of the AoAs/AoDs are given.
- The cross-correlation CRB between ToA and AoA vanishes exponentially with linear increase of number of subcarriers/antennas.

System Model

Consider an OFDM symbol \(s(t) \) composed of \(M \) subcarriers and centered at a carrier frequency \(f_c \), impinging an antenna array of \(N \) antennas via \(q \) multipath components, each arriving at different AoAs \(\{\theta_1, \theta_2, \ldots, \theta_q\} \) and AoDs \(\{\tau_1, \tau_2, \ldots, \tau_q\} \). In baseband, we could write the \(8 \) received OFDM symbol at the \(k \)th antenna as:

\[
x(k,t) = H[k](\theta_1, \tau_1), \ldots, x(k,t) = H[k](\theta_q, \tau_q)
\]

where \(H[k](\theta, \tau) \) is the response of the channel to the ToA/AoA and \(x(k,t) \) is the multipath complex gains. The problem is to estimate \(\theta \) and \(\tau \) given all observations \(x(k,t) \).

JADE by Partial Relaxation

We generalize the notion of partial relaxation to the JADE case by optimizing the following cost

\[
\begin{align*}
I_{\theta_\ell} = & \sum_k \left| H[k](\theta) \right|^2 \\
I_{\tau_\ell} = & \sum_k \left| H[k](\tau) \right|^2 \\
I_{\theta_\ell, \tau_\ell} = & \sum_k \left| \{H[k](\theta,\tau)\} \right|^2
\end{align*}
\]

under suitable constraints. In the above cost, we parametrize only one column in terms of the times and angles of arrivals, whereas the other \(q - 1 \) columns, captured by an term \(B \), are relaxed to have an arbitrary structure. The matrix \(B \) could be seen as an interference term in which \(q - 1 \) sources contribute to, when beamforming at the remaining one source. For example, in the neighbourhood of \((\theta_1, \tau_1) \), the matrix \(B \) will play the role of an unstructured approximation of the last \(q - 1 \) columns of \(H[k](\theta, \tau) \).

Cramér-Rao Bound for Times and Angles of Arrival

The Fisher-Information Matrix (FIM) measures the quantity of information embedded in random parameters. We find it useful to partition the FIM into smaller block FIMs to separate the nuisance from parameters of interest as follows

\[
\begin{align*}
I_{\theta_\ell} = & \sum_k \left| H[k](\theta) \right|^2 \\
I_{\tau_\ell} = & \sum_k \left| H[k](\tau) \right|^2 \\
I_{\theta_\ell, \tau_\ell} = & \sum_k \left| \{H[k](\theta,\tau)\} \right|^2
\end{align*}
\]

In compact matrix form, the above could be expressed as

\[
\begin{align*}
I_{\theta_\ell} = & \sum_k \left| \{H[k](\theta)\} \right|^2 \\
I_{\tau_\ell} = & \sum_k \left| \{H[k](\tau)\} \right|^2 \\
I_{\theta_\ell, \tau_\ell} = & \sum_k \left| \{H[k](\theta,\tau)\} \right|^2
\end{align*}
\]

where \(\Pi(\theta, \tau) \) is the response of the channel to the ToA/AoA and \(\gamma(\theta, \tau) \) are the multipath complex gains. The problem is to estimate \(\theta \) and \(\tau \) given all observations \(x(k,t) \).

In this section, we discuss some useful insights related to the derived CRBs. First and foremost, we note that the cross-correlation CRB term, \(C_{\theta \tau} \), vanishes in the large regime (either in space or frequency). This is easily seen as the term \(\text{Re}(\{H[k](\theta, \tau)\}) \) (i.e. for large \(M \) given a fixed \(N \), or vice versa. Even more, this regime allows us to lower bound the CRBs on \(\theta \) and \(\tau \), i.e. \(C_{\theta \theta} > C_{\theta \tau} \) and \(C_{\tau \tau} > C_{\theta \tau} \). Finally, it is worth noting that the traditional CRB of the Joint Angle and Delay Estimation problem serves as a lower bound on \(C_{\theta \theta} \) and \(C_{\tau \tau} \), i.e. \(C_{\theta \theta} > C_{\theta \tau} > C_{\tau \tau} \) and \(C_{\theta \theta} > C_{\theta \tau} > C_{\tau \tau} \) where \(C_{\theta \theta}, C_{\tau \tau} \) are extracted from the following quantity

\[
\text{CRB}(\theta, \tau) = \frac{1}{\sigma^2} \sum_k |H[k]^{\dagger}(\theta)H[k](\tau)|^2 B[k]
\]

where \(\sigma^2 \) is the estimation noise variance and \(F = \{d_{\theta}, d_{\tau}\} \). Figure 1: CRB (left) and CRB (right). Note that \(C_{\theta \theta} \) and \(C_{\tau \tau} \) is attained only for large \(N \) or \(M \) and at high SNR for uncorrelated sources, i.e. when \(\Gamma \) is diagonal.

Simulations

Figure 1: CRB (left) and CRB (right).
Conclusions

- We have extended the CRB of the partial relaxation framework to the case of joint angle and delay estimation (JADE).
- The exact closed form expressions of the Fisher Information Matrix (FIM), as well as the Cramér-Rao Bound (CRB) are derived.
- Some interesting asymptotic results are presented, which reveals desired properties and results of the partial relaxation framework, in the context of JADE.

References