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Abstract

This notebook reports the model and results of the EU-

RECOM runs at TRECVID AVS 2019.

1. Introduction

In our runs of TRECVid AVS 2019, we propose using
a fusion of two multimodal modules trained on different
datasets. Our runs are based on the work we introduced
in [4].

The remaining sections are organized as follows. Section
2 presents related works in AVS. Section 4 introduces the
cross-modal learning employed for training two different
modules, Section 4 describes the followed fusion method,
and Section 5 reports our results at TRECVid AVS 2019
[2].

2. Related Works

From AVS 2018, the general approaches from the par-
ticipants can be summarized as follows: linguistic analy-
sis for query understanding combining different techniques
for concept selection and fusion; or learning joint embed-
ding space of textual queries and images; or the integra-
tion of two mentioned approaches. From the results of ten
participants, we conclude that the approach of learning the
embedding space is the key of success for AVS task. Fol-
lowing up this direction, we propose to learn two embed-
ding spaces including objects counting and semantic con-
cepts separately, and a fusion method to incorporate these
models.

3. Cross-Modal Learning

In this section we will describe the multimodal models
we employed. More precisely we will first define their ar-
chitecture and then how we trained them.

3.1. Feature Representation

Let Q be a textual query and V an image or a video. We
want to build a model so that Q and V can be compared.

More precisely, we want to be able to assign a score to any
(Q, V ) to describe the relevance of V with respect to Q. For
that purpose, we use a similar model to [3].

For processing textual queries, we represent any query
Q of length L as a sequence (w1, ..., wL) of one-hot vectors
of dimension N , where N is the size of our vocabulary.
These one-hot vectors are then embedded in a vector space
of dimension D. More formally, we obtain a sequence of
word embeddings (x1, ..., xL) where xk = wkWe for each
k in {1, ..., L}. The weights of the embedding matrix We 2
RD⇥N are trainable.

The obtained sequence of word embeddings is then
processed by a GRU, whose last hidden state hL =
GRU(hL�1, xL) is kept and input to a Fully-Connected
layer to get a sentence embedding vs.

Regarding visual objects, the generic process we employ
is to extract a vector representation '(V ) of a visual object
V where ' corresponds to any relevant concepts or features
extractor. Then, we input '(V ) to a Fully-Connected layer
to obtain a visual embedding vv .

Our goal is to train these models to be able to compare
vs and vv . We will explain how these models are trained in
Section 3.2.

3.2. Model Training

The objective is to learn a mapping such that the rele-
vancy of a pair of a query and a video (Q, V ) can be evalu-
ated. As explained in Section 3.1, our model derives a query
representation vs from Q and a video representation vv from
V . Triplet loss is used as the loss function for model train-
ing. Mathematically, if we consider a query representation
vs, a positive video representation vv (corresponding to vs)
and a negative video representation v̄v (that does not corre-
spond to vs), the triplet loss L for (vs, vv, v̄v) to minimize
is defined as follows:

L(vs, vv, v̄v) = max(0,↵�cos(vs, vv)+cos(vs, v̄v)) (1)

where ↵ is a margin hyperparameter that we set to 0.2.
We chose to employ the hard-margin loss presented in [3],
where v̄v is chosen to be the representation of the negative



Figure 1. Proposed model derived from [4]. We extract embeddings from two modules: a counting module and a concepts module. These
embeddings are then concatenated and input to Fully-Connected layers to obtain new embeddings. That model is also trained using a triplet
loss.

video with the highest similarity with the query representa-
tion vs among all videos in the current training mini-batch.

4. Fusion Strategy

In this section we will describe the two multimodal mod-
ules we used and how we fused them.

4.1. Multimodal Modules

Our model relies on two multimodal modules: a count-
ing module and a concepts module (see Figure 1). Each of
them has the architecture we described in Section 3.1 and
has been trained according to the optimization scheme we
defined in Section 3.2.

The counting module is based on a Faster-RCNN [10]
trained on the OpenImagesv4 dataset [7]. It takes images
as inputs. For each input, it detects objects belonging to
the 600 classes of OpenImagesv4 and counts them to ob-
tain a vector of dimension 600, where the value at index
i corresponds to the number of detected objects of class i.
Embeddings are then derived from that vector.

The concepts module takes as input concepts detec-
tions coming from four different concept detectors. These
concept detectors are ResNet [5] models trained on Ima-
geNet1k, Places-365 [16], TRECVID SIN [15] and HAVIC
[12]. Following the same process as for other two modules,
we generate embeddings from the concatenation of the con-
cept detections coming from these four detectors.

4.2. Fusion Model

Instead of simply averaging similarity scores to compare
videos and queries, we chose to train a model to draw finer
similarities between them. For that purpose, we derived
embeddings from our modules for videos and queries, and
passed them through Fully-Connected layers to obtain new
embeddings. More formally, if v1v and v2v are video embed-
dings respectively generated by the counting module and
the concepts module, we derived the new video embedding
vv by inputting the concatenation of v1v and v2v to a fully-
connected layer. We obtained the new sentence embedding

vs similarly, based on v1s and v2s (sentence embeddings gen-
erated by the counting and the concepts modules, respec-
tively).

We trained our fusion models using the same triplet loss
as we did for multimodal modules, as decribed in Section
3.2.

5. Results of runs

In this section, we report the results we obtained at
TRECVid 2019.

5.1. Datasets

We trained our models based on the MSCOCO [9]
dataset the TGIF [8] dataset and the train and test splits of
the MSR-VTT [14] dataset. Validation has been performed
on the validation split of MSR-VTT.

5.2. Implementation details

We implemented our models using the Tensorflow [1]
framework for Python. Each of them has been trained for
150k iterations with mini-batches of size 64. We used the
RMSProp [13] algorithm, with gradients capped to values
between -5 and 5 and a learning rate of 10�4. Hidden di-
mensions of GRUs are always 1024, and embeddings output
by multimodal modules and fusion models are of dimen-
sion 512. The size of vocabularies has been set to 20k. We
applied dropout [11] with rate 0.3 to all outputs of Fully-
Connected layers, and batch normalization [6] to the inputs
of our models. In triplet losses, the ↵ parameter has been
set to 0.2.

MSR-VTT videos have been processed as follows: we
extracted uniformly one frame every fifteen frames, applied
the extractor on each frame (Faster-RCNN for the counting
module or concepts extractors for the concepts module) and
averaged obtained vectors.

5.3. Results of Runs

The runs we submitted were the following:



Run MAP

Run 1 0.014
Run 2 0.014
Run 3 0.020

Table 1. Results of our runs

• Run 1: Fusion of Concepts and Counting modules;

• Run 2: Concepts module alone;

• Run 3: If Q is a query, V a video, S1(Q, V ) the score
of the pair (Q, V ) computed in run 1 and S2(Q, V )
the score in run 2, the score in run 3 is S1(Q, V ) +
S2(Q, V ).

The scores we obtained with these three runs are reported
in Table 1.

Results of all automatic runs are reported in Figure 2.
Detailed results of Run 1, Run 2 and Run 3 are reported in
Figure 3, Figure 4 and Figure 5, respectively.

6. Conclusion

EURECOM runs performed badly with respect to other
runs. However, results got better when ensembling run
1 and run 2 into run 3. For future work, we think we
should investigate how other methods than multimodal em-
beddings perform. Moreover, we think that a finer sen-
tence processing method than using a single GRU should
be found, for instance putting emphasis on visual concepts.

Acknowledgments

This work was supported by ANR (the French Na-
tional Research Agency) via the ANTRACT project, the
European H2020 research and innovation programme via
the project MeMAD (Reference Np.: GA780069), a grant
from the Research Grants Council of the Hong Kong SAR,
China (Reference No.: CityU 11250716), and a grant from
the PROCORE-France/Hong Kong Joint Research Scheme
sponsored by the Research Grants Council of Hong Kong
and the Consulate General of France in Hong Kong (Refer-
ence No.: F-CityU104/17).

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-
flow: A system for large-scale machine learning. In 12th

{USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16), pages 265–283, 2016.
[2] G. Awad, A. Butt, K. Curtis, Y. Lee, J. Fiscus, A. Godil,

A. Delgado, A. F. Smeaton, Y. Graham, W. Kraaij, and
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Figure 2. AVS Results (Fully Automated runs only)

Figure 3. Detailed results of EURECOM run 1



Figure 4. Detailed results of EURECOM run 2

Figure 5. Detailed results of EURECOM run 3


