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ABSTRACT

Decentralized decisional networks are composed of agents
that take coordinated decisions on the basis of individual
noisy information about the system state, i.e. under a so
called distributed state information configuration. In such
scenarios, the application of algorithms directly derived from
classical centralized optimization often incurs severe perfor-
mance degradation. This is because the agents fail to predict
each other’s decision due to local state information noise,
hence they do not coordinate properly. On the other hand
coordination can be easily enhanced by letting one agent re-
duce its dependency with respect to its state information, thus
making its decision more predictable but less adapted to the
system state. This observation naturally leads to formulating
a fundamental trade-off, coined here predictability-distortion
trade off. The goal of this paper is to formulate this trade-off
and propose a framework to explore it, based on a concept of
quantization under predictability constraint.

Index Terms— quantization, coordination, multi-agent
systems, team decision problems, Lloyd algorithm

1. INTRODUCTION

Many types of networks benefit from the cooperating behav-
ior of its agents. Examples include car networks, energy net-
works, interference limited radio networks [1], etc. Unfortu-
nately, agents are often limited in the quality of the system
state information over which they seek to adapt their decision
so as to maximize system performance. More importantly,
noisy state information (with possibly unequal noise levels)
at the agents prevents them from reliably predict each other
decision hence coordinate. For instance, a reliable distributed
resource allocation scheme in an interference limited mobile
network is difficult to obtain when the available channel state
information is very noisy at some of the radio devices.

In this paper we consider a system where two agents
wish to cooperatively coordinate their decisions based on
possibly imperfect observations of the system state X , a so
called distributed state information configuration. When the
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Fig. 1. System model

state information is perfectly shared among all agents, perfect
coordination is achieved by simply running at each agent
an instance of a centralized decision algorithm. We call in
fact such a configuration a logically centralized configura-
tion. However, when this condition is not met, the situation
becomes significantly more complex as each agent needs to
take its decision as a function of its beliefs over the actions of
the other agents [2]. This fall into the framework of so-called
team decision problems [3], which have remained vastly un-
solved despite significant efforts (see [4] for an overview
related to wireless communications). An alternative approach
to alleviate the complexity of such problems is to consider
systems with hierarchical state information, in which one
agent has access to the state information of the other agent, or
equivalently, to the decision taken at the other agent. In that
setting, the coordination task is alleviated and efficient low
complexity heuristics are known [4].

In this work, we focus on enforcing hierarchical state in-
formation through quantization. Indeed, it is clear that quan-
tizing the information (or the decision) makes it easier to suc-
cessfully guess it at the other node. However, it is intuitive
that there is a trade-off between the information loss, or dis-
tortion, introduced by the quantizer, and the predictability,
which is here measured in terms of the probability that the
other agent guesses the right value.

The main goal of this paper is precisely to investigate the



fundamental interplay between distortion and predictability,
and to discuss algorithms achieving performances as close as
possible to the fundamental limits.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Let us consider a source symbol X ∈ X , and two corre-
lated observations Y1 ∈ Y1, Y2 ∈ Y2 distributed according to
pXY1Y2

available at two different agents. We let then Z ∈ Z
be a quantized representation of X obtained from the obser-
vation Y1 at Agent 1, where Z ⊂ X is a finite codebook of
cardinality |Z| = M . Furthermore, we let Ẑ ∈ Z be an
estimate of Z obtained from Y2 at Agent 2.

We wish to design the quantizer at Agent 1 and the esti-
mator at Agent 2 such that Z can be reliably estimated, while
minimizing an expected distortion. More precisely, we look
at the problem

minimize D = E[d(X,Z)]

subject to Pe = P (Ẑ 6= Z) ≤ ε,
(1)

where d : X × X → R+ is an arbitrary distortion measure,
and where ε ∈ [0, 1] defines a given estimation reliability tol-
erance. The minimization is carried over the set of tuples
(α, β, γ), where α : Y1 → I = {1, . . . ,M} is an encoder
that maps Y1 into indexes, β : I → Z is a decoder that bi-
jectively maps the indexes into the reconstruction codewords
zi = β(i), and where γ : Y2 → I is an estimator that maps
Y2 into estimated indexes. We assume w.l.o.g. zi 6= zj , for all
i 6= j, so that, in order to estimate Z, Agent 2 needs only to
produce an estimate î = γ(y2) of i = α(y1) and then apply
ẑi = β(̂i).

Let us denote with D?(ε) the optimum of Problem (1)
for a given predictability ε. The function D?(ε) is non-
increasing, but in general non-convex. However, any point in
the convex envelope of D?(ε) can be achieved by allowing
time-sharing between two solutions (α, β, γ) and (α, β, γ)′.
Hence, the goal of this work is to provide a characterization
of the distortion-predictability function

D(ε) = Conv{D?(ε)}. (2)

A conventional technique for characterizing the convex
envelope (2) of the curveD?(ε) is to minimize the Lagrangian
functional

Lλ(α, β, γ) := E[d(X,β(α(Y1))] + λP (γ(Y2) 6= α(Y1))
(3)

for a fixed Lagrangian multiplier λ ∈ [0,∞). In fact, for
problems of the type of (1), the optimal L?(λ) identifies a line
of slope λ supporting the convex envelope of D?(ε). Hence,
by sweeping λ from zero to infinity, and given that we can
compute the minimum of Lλ(α, β, γ), it is possible to com-
pletely characterize D(ε).

For the aforementioned reasons, in the reminder of this
paper, we focus on the following unconstrained problem

minimize
(α,β,γ)

Lλ(α, β, γ), for λ ≥ 0. (4)

3. CHARACTERIZATION OF THE
DISTORTION-PREDICTABILITY FUNCTION

In this section we propose an algorithm for solving (4), here-
after referred to as the Predictability Constrained Quantizer
(PCQ), that guarantees convergence to a local optimum. The
proposed algorithm is a modification of the celebrated Lloyd
algorithm [5], in a similar spirit to [6], i.e. based on an alter-
nating minimization procedure.

3.1. Necessary conditions for optimality

We start by recalling a necessary conditions for the optimality
of the decoder β, known as the centroid condition, developed
for standard vector quantization [7] and readily extensible to
the problem considered in here.

Lemma 1. Let (α, γ) be any tuple of encoders and estima-
tors. Define the set Ieff := {i ∈ I |P (α(y1) = i) > 0}.
Then, the optimal decoder β?(i) = z?i that minimizes the La-
grangian (3) is given by

∀i ∈ Ieff , z?i ∈ argmin
z∈X

E[d(X, z) |α(Y1) = i].

The points z?i are called the centroids of the quantization re-
gions {y1 ∈ Y1 |α(y1) = i}.

Proof. Since the constraint set of problem (1) does not de-
pend on β, and so does the term λP (γ(Y2) 6= α(Y1)) of (3),
the proof follows directly from the classical result in [7] for
unconstrained minimization.

Note that for i ∈ I \ Ieff , the centroids are not well-
defined, but they can be selected arbitrarily without impact-
ing the cost function. Furthermore, if d(x, z) is convex in
z, the centroids can be easily computed by standard convex
optimization techniques. As a classical example, if the distor-
tion measure is the squared-error d(x, z) = ‖x− z‖22 over an
Euclidean space, then the centroids can be computed as

z?i = E[X|α(Y1) = i]. (5)

Next, we state a necessary condition for the optimality of
the encoder α.

Lemma 2. Let (β, γ) be any tuple of decoders and estima-
tors. Then, the optimal encoder α? that minimizes the La-
grangian (3) is given by

α?(y1) ∈ argmin
i

{
E[d(X, zi)|Y1 = y1]

+ λP (γ(Y2) 6= i|Y1 = y1)
}
. (6)



Proof. We lower bound the objective Lλ(α, β, γ) as

Lλ(α, β, γ) =

∫
Y1

{
E[d(X,β(α(y1))|Y1 = y1]

+ λP (γ(Y2) 6= α(y1)|Y1 = y1)
}
dPY1

(y1)

≥
∫
Y1

min
i

{
E[d(X, zi)|Y1 = y1]

+ λP (γ(Y2) 6= i|Y1 = y1)
}
dPY1

(y1),

which is achieved by a mapping α that minimizes the inte-
grand almost everywhere, i.e. by (6).

As an example, for the squared-error distortion we obtain

α?(y1) ∈ argmin
i

{
|E[X|Y1 = y1]− zi|2

+ λP (γ(Y2) 6= i|Y1 = y1)
}
.

Finally, we state a necessary condition for the optimality
of the estimator γ.

Lemma 3. Let (α, β) be any tuple of encoder and decoder.
Then, the optimal estimator γ? that minimizes the Lagrangian
(3) is given by

γ?(y2) ∈ argmax
i
P (α(Y1) = i|Y2 = y2),

which corresponds to the maximum a posteriori (MAP) esti-
mator.

Proof. Similar to the proof of Lemma 2, hence omitted.

We conclude this part by noticing that the above necessary
conditions can be equivalently stated by designing the quan-
tizer according to a modified distortion measure d̃ : Y1×X →
R+ operating directly on the noisy source Y1, given by [8]

d̃(y1, z) := E[d(X, z)|Y1 = y1], (7)

since D = E[d(X,Z)] = E[E[d(X,Z)|Y1]] = E[d̃(Y1, Z)].

3.2. The PCQ algorithm

We now describe the proposed PCQ algorithm for solving
Problem (4), based on the necessary conditions for optimality
developed in the previous section.

Starting from an arbitrary initial tuple (α(0), β(0), γ(0)),
and fixing a predictability weight λ ∈ [0,∞), we form a se-
quence {(α(k), β(k), γ(k))}∞k=0 defined by the following al-
ternating minimization procedure:

α(k+1) ∈ argmin
α
Lλ(α, β

(k), γ(k))

β(k+1) ∈ argmin
β
Lλ(α

(k+1), β, γ(k))

γ(k+1) ∈ argmin
γ
Lλ(α

(k+1), β(k+1), γ).

Every step of iteration k ≥ 1 is obtained by applying the
optimality conditions in Lemma 1, Lemma 2, and Lemma
3, and the modified distortion measure (7). In case of mul-
tiple minima, the algorithm picks one solution at random.
By definition, the sequence L

(k)
λ := Lλ(α

(k), β(k), γ(k))

satisfies 0 ≤ L
(k+1)
λ ≤ L

(k)
λ , hence the convergence of the

algorithm to a local minimum is guaranteed. In practice,
the algorithm is executed until a given stopping criterion(
L

(k+1)
λ − L(k)

λ

)
/L

(k+1)
λ ≤ δ is met. The algorithm is

summarized in Figure 2.
It is easy to see that for λ = 0 the PCQ algorithm re-

duces to the classical unconstrained quantizer of [7, 8]. For
λ → ∞ instead, where the distortion D becomes asymptot-
ically negligible, the Lagrangian is minimized by a perfectly
predictable quantizer of rate zero, where all the probability
mass is put on a single quantization point z ∈ argminz E[X].

As for the classical Lloyd algorithm, it is important to un-
derline that the PCQ algorithm does not specify the codebook
cardinality M . Indeed, the larger M , the more precise is the
characterization of D(ε), as the optimization problem (1) is
defined for any M , and it should be in principle optimized.
Clearly, for the extreme point D(1) the optimal number of
codewords is often unbounded. In practice, we set M as high
as possible with respect to the computation capabilities. How-
ever, for the region of interest of most applications, i.e. for ε
relatively small, the PCQ algorithm usually puts zero proba-
bility mass in most of the quantization regions, resulting in a
low-rate quantizer.

Finally, since the PCQ algorithm cannot guarantee global
optimality, the trade-off region D(ε) is characterized only in
terms of an achievable upper bound.

3.3. Statistical inference of the PCQ algorithm

In some applications the distribution pXY1Y2
might be un-

known, or the update rules in Figure 2 might be too difficult
to be treated analytically. However, given the availability of
a training sequence {xN1 , yN1 , yN2 } generated according to the
joint distribution

∏N
n=1 pXY1Y2

(x, y1, y2), it is still possible
to approximately infer the PCQ.

Similarly to [7], we can consider the minimization of the
functional

L̂λ(α, β, γ) :=
1

N

N∑
n=1

{
d̃ (y1n, β(α(y1n)))

+ λ1[γ(y2n) 6= α(y1n)]
}
, (8)

where 1[·] denotes the indicator function. This ‘empirical av-
erage’ functional corresponds to the ‘expected’ functional (3)
with respect to the sample distribution of the training data.
By the strong law of large number, we have that L̂λ → Lλ
for N → ∞ almost surely. It is possible to minimize (8) by
simply substituting all the statistical operators E[·] and P (·)



Algorithm 1: PCQ

Set (α(0), β(0), γ(0)), λ ≥ 0, M � 1, δ > 0,
L

(0)
λ =∞

while (L
(k+1)
λ − L(k)

λ )/L
(k+1)
λ > δ do

α(y1) = argmini{d̃(y1, β(i))
+λP (γ(Y2) 6= i|Y1 = y1)} ;

β(i) = argminz∈X E[d̃(Y1, z) |α(Y1) = i] ;
γ(y2) = argmaxi P (α(Y1) = i|Y2 = y2) ;

end

Fig. 2. The proposed PCQ algorithm for finding a local mini-
mum of Lλ(α, β, γ).

in Figure 2 with their respective empirical operators, i.e. their
expression with respect to the sample distribution of the train-
ing sequence {yN1 , yN2 }. Note that (α, γ) are defined over the
finite alphabets Ŷ1, Ŷ2 composed by the occurrences of Y1, Y2

in the training data. The resulting scheme is indeed a cluster-
ing algorithm over the training set.

The method described above has some important limita-
tions. Firstly, it cannot be applied to continuous alphabets.
In fact, due to the particular structure of the sample distri-
bution derived from continuous alphabets, it can be easily
seen that, ∀λ, the γ update step degenerates to γ(k+1)(y2n) =
α(k)(y1n) almost surely, leading to extremely suboptimal so-
lutions. Secondly, it requires the knowledge of d̃, i.e. at least
the knowledge of the marginal pXY1

. Similarly to [8], if this
information is not available, it is not possible to adapt the pre-
vious scheme in a straight-forward way.

A possible heuristic to address the first problem is to con-
sider instead a discretized version (Y1Q, Y2Q) of (Y1, Y2), ob-
tained by applying some quantizer of properly tuned (finite)
rate. For the second problem, one can obtain approximations
of d̃ from samples {xN1 , yN1 } by applying density estimation
techniques [9] (see [10] for the squared-error distortion).

4. EXAMPLE

We consider Y1 and Y2 to be Gaussian noisy measurements
of a Gaussian source X ∼ N (0, 1). More specifically, we let

Y1 = X +N1, N1 ∼ N (0,SNR−1
1 ),

Y2 = X +N2, N2 ∼ N (0,SNR−1
2 ),

for a given pair of signal-to-noise ratios (SNR), and where
N1, N2, and X are independent. As distortion measure, we
choose the squared-error distortion d(x, z) = (x− z)2.

Under these assumptions, it is easy to see that

d̃(y1, z) = (κy1 − z)2 + c,

where κ = σXY1
σ−2
Y1

is the minimum mean-square error
(MMSE) estimator of X given Y1, and where c is a constant
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(a) λ = 0, M = 8, SNR1 = 30dB, SNR2 = 20dB.

-5 0 5
0

0.1

0.2

0.3
pdf

thresholds

quantization points

(b) λ = 10, M = 8, SNR1 = 30dB, SNR2 = 20dB

Fig. 3. Illustration of the behaviour of the quantizer for 2 dif-
ferent choices of the predictability weight λ. In Figure (a),
for λ = 0, the solution is similar to the classical M -levels
Lloyd quantizer. In Figure (b), for λ = 10, we see that the
PCQ algorithm produces fewer quantization regions contain-
ing more probability mass.

that depends only on the conditional distribution pX|Y1
and

hence it can be neglected through the optimization steps of
the PCQ algorithms (it is indeed the MMSE value itself, i.e.
the distortion floor for every quantizer on Y1). The decoder
update rule is then given by

β(i) = κE[Y1|α(Y1) = i],

which is evaluated analytically in terms of Q-functions. The
encoder update is obtained numerically by discretizing the
alphabet Y1, by evaluating analytically the augmented dis-
tances d̃(y1, β(i)) + λP (γ(Y2) 6= i|Y1 = y1) for every i
and y1, and by solving the optimization problem through ex-
haustive search over i = 1, . . . ,M . The estimator update
rule is obtained in a similar way. The PCQ algorithm is run
several times with random initialization (α(0), β(0), γ(0)), and
for several λ. An achievable D(ε) curve is obtained by taking
the convex hull of the obtained (D, ε) points.

Figure 3 illustrates the effect of the choice of λ on the out-
put of the PCQ algorithm. Note that we only plot the thresh-
olds and the quantization points of the quantizer β(α(·)) ap-
plied at agent 1, since γ simply corresponds to a MAP esti-
mator.



Figure 4 shows the achievableD(ε) curve obtained via the
PCQ algorithm, normalized by the Minimum Mean Squared
Estimation error (MMSE) of X given Y1. We also show the
performance of a heuristic approach based on the Lloyd al-
gorithm for noisy sources [8], and where different degrees of
predictability are enforced by simply varying the number M
of quantization points. We denote this second approach as
Predictable Lloyd Quantizer (PLQ).
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Fig. 4. Achievable distortion-predictability function for the
considered jointly Gaussian example with squared-error dis-
tortion. M = 32, SNR1 = 30dB, SNR2 = 20dB.

5. DISCUSSION

In this preliminary study we describe a method for exploring
the trade-off between predictability and distortion in a setting
composed by a couple of distributed measurements Y1, Y2 of
a random system state X . As a natural next step, we are cur-
rently investigating the benefits of applying the quantizer de-
veloped in here to obtain suboptimal solutions to team de-
cision problems. Specifically, by limiting the optimization
space to the class of decision functions derived by hierarchi-
cal information structure, a close-to-optimal operating point
can be obtained by varying the parameter λ of the proposed
PCQ algorithm, applied to Y1 as a pre-processing step to en-
hance coordination. Note that a similar idea has been success-
fully applied in [11] for the problem of distributed precoding
in cooperative wireless networks.
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