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Abstract— Within the context of coded caching, the work
reveals the interesting connection between having multiple trans-
mitters and having heterogeneity in the cache sizes of the re-
ceivers. Our work effectively shows that having multiple transmit
antennas – while providing full multiplexing gains – can also
simultaneously completely remove the performance penalties that
are typically associated to cache-size unevenness. Focusing on
the multiple-input single-output Broadcast Channel, the work
first identifies the performance limits of the extreme case where
cache-aided users coincide with users that do not have caches,
and then expands the analysis to the case where both user groups
are cache-aided but with heterogeneous cache-sizes. In the first
case, the main contribution is a new algorithm that employs
perfect matchings on a bipartite graph to offer full multiplexing
as well as full coded-caching gains to both cache-aided as well as
cache-less users. An interesting conclusion is that, starting from a
single-stream centralized coded caching setting with normalized
cache size γ, then adding L antennas allows for the addition
of approximately L/γ extra cache-less users, at no added delay
costs. Similarly surprising is the finding that, starting off with
a single-antenna hybrid system (with both cache-less and cache-
aided users), then adding L-1 antennas to the transmitter, as well
as endowing the cache-less uses with a cumulative normalized
cache size Γ2, increases the Degrees of Freedom by a multiplicative
factor of up to Γ2 + L.

Index Terms—Caching networks, coded caching, heteroge-
neous cache sizes, delivery rate, uncoded cache placement, index
coding, MISO broadcast channel, network coding.

I. INTRODUCTION

Coded caching is a technique — first introduced in [1]
for the single-stream bottleneck broadcast channel (BC) —
that exploits receiver-side caches in order to deliver cacheable
content to many users at a time. This technique initially
involved a setting where a single-antenna transmitter has
access to a library of N files, and serves (via a single
bottleneck link) K receivers, each having a cache of size equal
to the size of M files. The process involved a novel cache
placement method and a subsequent delivery phase during
which each user simultaneously requests one library file, while
the transmitter employs cache-dependent coded multicasting to
simultaneously deliver independent requested content to many
users at a time.

In the single stream setting (L = 1 transmit antenna), where
the bottleneck link has capacity equal to 1 file per unit of time,
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the work in [1] showed that any set of K simultaneous requests
can be served with normalized delay (worst-case completion
time, guaranteeing the delivery of any set of requested files)
which is at most

TL=1(K, γ) =
K(1− γ)

1 +Kγ
, (1)

where γ , M
N ∈ [0, 1) denotes the normalized cache size.

This implied the ability to treat Kγ + 1 cache-aided users at
a time; a number that is often referred to as the cache-aided
sum Degrees of Freedom (DoF)

DL=1(K, γ) ,
K(1− γ)

T1(K, γ)
= 1 +Kγ, (2)

corresponding to a caching gain of Kγ additional served users
due to caching.

A. Multi-antenna coded caching

Recently, coded caching has been explored in the presence
of multiple antennas/transmitters. In the context of a fully-
connected multiple-input single-output (MISO) BC, multi-
antenna (L antennas) techniques were combined with coded
caching to reveal new insights such as that i) multiplexing
and caching gains can be combined additively [3], [4] to yield
a sum-DoF of DL(K, γ) = L + Kγ, ii) multiple antennas
can dramatically reduce subpacketization, thus allowing for
multiplicative DoF gains in the finite file-size regime [5], that
iii) the feedback cost of combining the two gains need only be
a function of the number of antennas and not of the caching
gain [6], [7], iv) in the finite Signal-to-Noise-Ratio (SNR),
choosing a smaller amount of transmitted streams can increase
the performance [8]–[10] as well as other insights (cf. [11]–
[21], etc.).

B. Coded caching with heterogeneous cache sizes

While the first works on coded caching focused more
on the setting where users have identically sized caches, in
reality many communication systems may include users with
heterogeneous caching capabilities. It is expected, for example,
that users with different types of devices, such as laptops
and mobile phones which, naturally, have different storage
constraints, will be simultaneously active. Moreover, different
users may well decide to allocate different amounts of their
available storage (or none of it) for content caching.

These uneven storage constraints can conceivably hamper
the performance of coded caching systems. For example,
imagining a system that needs to treat cache-aided and cache-
less users, we can see that when users request different content,
transmitting coded messages to cache-aided users can preclude
the cache-less users from receiving any valuable information.



The expectation that users with uneven cache constraints
might co-exist, has sparked a number of recent works that
sought to ameliorate the effects of cache size unevenness [22]–
[29]. For example, the work in [22] adopts the approach of
splitting the caches into multiple layers while caching at each
layer according to the algorithm of [1], and adjusted to the
users’ cache sizes and to the size allocated to each cache layer.
Further, the work in [23] considered the uneven cache-size sce-
nario under decentralized placement1. Moreover, the work in
[26] explores the Device-to-Decive setting with heterogeneous
caches, while [24] investigates the fundamental limits of the
single-stream Coded Caching with 2 users and uneven cache
sizes. The works in [27]–[29] view the heterogeneous cache
problem as a set of optimization constraints, where the size of
each conceivable subfile is optimized in order to reduce the
transmission time. Another idea can be found in [30] which
adopts a coded placement approach in order to further increase
the coded caching gains in the heterogeneous cache setting.

While for the homogeneous case we know that the scheme
in [1] is optimal under the assumption of uncoded placement
[31] (and approximately optimal [32] under any placement
scheme), the optimal performance of the heterogeneous cache-
size setting is not known in general. What is known though,
from all the above works, is that cache-size heterogeneity
has always entailed performance penalties compared to the
homogeneous case.

C. Current setting, and brief summary of contributions

In the current setting, we will study the role of multiple
antennas in tackling the penalties associated with having het-
erogeneous caches. Specifically, we will first consider a system
where a set of K1 users are each assisted by caches of some
normalized size γ1 > 0, while the remaining K2 = K −K1

users are cache-less (γ2 = 0). In the single-antenna case we
will show that, under the assumption of uncoded placement,
the optimal strategy is to treat each set separately, thus
revealing that a single-stream system is severely penalized by
the presence of cache-less users.

Motivated by the above, we will then shift our focus to
the study of the multiple antenna case (L antennas), where
we will show that for a wide range of parameters, we
are able to simultaneously treat both user types with DoF
DL(K1, γ1,K2, γ2) = K1γ1 + L that will be equal to that
of the corresponding homogeneous setting. Moreover, for the
other case, where the DoF of the homogeneous system cannot
be achieved, we will show that the DoF performance is L times
higher than in the single antenna case, and we will show that
this performance is exactly optimal under the assumption of
uncoded cache placement.

We will then proceed to explore how the performance is
boosted when now the K2 = K − K1 users of the second
group are each endowed with a cache of normalized size

1The main idea behind decentralized placement is to circumvent the fact
that the identity of users needs to be known during the placement phase.
Thus, storing of content at the users migrates from the deterministic placement
introduced in [1] to a random placement.

γ2 ∈ (0, γ1). First, we will prove that the total DoF of
L + K1γ1 + K2γ2 can be achieved for a broad range of
parameters. Further, for the case when this gain cannot be
achieved, we will show that the same performance boost
experienced in the cache-less case when adding L−1 antennas
(by a multiplicative factor of L) can be also achieved by adding
caches to the cache-less group. Specifically, starting from the
single antenna setting with the cache-aided and cache-less
user sets, then adding a cumulative cache equal to Γ2 at
the cache-less group and L − 1 antennas we can achieve a
multiplicative DoF boost by a factor of up to Γ2 + L. The
above results will reveal the power of multiple antennas in
significantly or entirely removing the negative effects of cache-
size unevenness, as well as the powerful effect that modest
amounts of caching can have in uneven scenarios.

Again we stress that the above binary scenarios have partic-
ular practical pertinence. In the first scenario, the cache-less
users may reflect users that employ legacy devices that do
not support cache-aided decoding or that may wish to opt-out
of dedicating their storage for caching (cf. [33]). The second
scenario with two distinct cache sizes γ1, γ2 (γ1 > γ2 > 0)
reflects the expectation that users are split between those that
have laptop devices that can store more information, and those
with mobile devices which generally have more serious storage
constraints.

System Model

The goal of this work is to study the DoF performance of
the L-antenna MISO BC 2 with K single-antenna receiving
users, which are equipped with caches of heterogeneous sizes.
Specifically, we focus on a system where a user belongs to one
of two sets; the K1 users of set K1 are endowed with caches
of normalized size γ1 ∈ (0, 1), while each of the remaining
K2 = K − K1 users of set K2 have caches of normalized
size γ2 ∈ [0, γ1). Each user simultaneously asks for a single –
different – file, from a library of N ≥ K files, thus the metric
of interest is the worst-case delivery time. In order to satisfy
the users’ demands, the base station transmits an L×1 vector
x. Then the signal at each receiver k takes the form

yk = hHk x + wk, k ∈ {1, 2, ...,K} , [K]

where hk ∈ CL×1 denotes the channel between the trans-
mitter and receiver k, where x satisfies the power constraint
E{‖x‖2} = P , and where wk ∼ CN (0, 1) corresponds to the
noise observed at user k. We assume that each node has all
necessary channel-state information, and that for a given SNR,
each link has capacity of the form log(SNR)+o(log(SNR)).

2We note that, while here we focus on the MISO BC, the results can be
readily extended to the wired multiserver setting of [3], where a set of L
servers are connected to K users and where the transmitted messages are
linearly combined to form a full rank matrix between servers and users. The
results can also be readily extended to the multiple transmitter interference
setting where each of the KT transmitters stores fraction γT of the content,
such that KT γT = L (cf. [4]). Thus, all our results can be trivially applied
in the multiple-transmitter/multi-server settings.



Our aim is to design, for the heterogeneous system at hand,
a pre-fetching and delivery algorithm that minimizes the worst-
case completion time

TL(K1, γ1,K2, γ2) (3)

corresponding to each user asking for a different file.

II. MAIN RESULTS

We begin with the case where users of set K2 are cache-
less (γ2 = 0), and then we will generalize by treating the case
where γ2 ∈ (0, γ1).

A. Coexistence of cache-aided and cache-less users

We start with a result that exemplifies — in the single stream
case of L = 1 — the problem with having cache-aided users
coexisting with cache-less users. We will use notation

TKi ,
Ki(1− γi)
1 +Kiγi

(4)

to describe the delay needed to serve, in the single antenna
setting, Ki cache-aided users with caches of normalized size
γi (in the absence of any cache-less users) using 1 transmit
antenna, where this performance is exactly optimal under the
assumption of uncoded cache placement.

Theorem 1. In a single-stream BC with K1 cache-aided
users equipped with caches of normalized size γ1 and with
K2 additional cache-less users, the optimal delay, under the
assumption of uncoded placement, takes the form

T1(K1, γ1,K2, γ2 = 0) =
K1(1− γ1)

1 +K1γ1
+K2. (5)

Proof. The proof is relegated to Appendix A.

The above reveals that in the single stream case, every time
a single cache-less user is added, there is a delay penalty of an
entire unit of time, thus revealing that the two types of users
should be treated separately. If such separation were to be
applied in the multi-antenna case, the achievable performance
would be

TL(K1, γ1,K2, γ2 = 0) =
K1(1− γ1)

L+K1γ1
+
K2

L
(6)

so the K2 cache-less users would experience only a multiplex-
ing gain of L, and would experience no caching gain.

We proceed with the main result of this work.

Theorem 2. In the MISO BC with L ≥ 1 antennas, K1 cache-
aided users equipped with cache of fractional size γ1, and
K2 ≥ (L− 1)TK1

cache-less users, the delivery time

TL(K1, γ1,K2, γ2 = 0)= TK1
+
K2 − (L− 1)TK1

min{L,K2}
(7)

is achievable and within a factor of 2 from optimal, while if
K2 ≤ (L− 1)TK1

then

TL(K1, γ1,K2, γ2 = 0) =
K2 +K1(1− γ1)

K1γ1 + L
(8)

is achievable and within a factor of 3 from optimal under the
assumption of linear and one-shot schemes.

Proof. The achievability part of the proof can be found in
Section III, while the outer bound and gap calculations can be
found in Appendix B.

Furthermore, the following theorem accentuates the multi-
plicative and optimal nature of the gains from adding antennas.

Theorem 3. Starting from the single-antenna BC with K1

cache-aided users with caches of normalized size γ1 and K2 =
(L̃− 1)TK1

cache-less users (for any positive L̃), then going
from 1 to L ≤ L̃ antennas, reduces delay by L times, to a
delay that is optimal under the assumption of uncoded cache
placement.

Proof. The calculation of the performance comes directly from
Theorems 1 and 2, while the proof of optimality of the scheme
is proved in Appendix C.

Let us proceed with a few corollaries that explore some of
the ramifications of the above theorem. Eq. (6) helps us place
the following corollary into context.

Corollary 1. In the L-antenna, (K1, γ1,K2, γ2 = 0) MISO
BC with K2 ≤ (L − 1)TK1

, all cache-aided and cache-less
users can experience full multiplexing gain L as well as full
caching gain K1γ1.

Proof. The proof is direct from Eq. (8).

Example 1. Let us assume the setting with K2 = 2 cache-
less users, and with K1 = 5 cache-aided users each equipped
with a cache of normalized size γ1 = 1

5 . Transmitting with one
antenna can achieve an optimal delay, under the assumption
of uncoded placement, of

T1

(
5,

1

5
, 2, 0

)
=
K1(1− γ1)

K1γ1 + 1
+K2 = 4. (9)

Going from L = 1 to L = 2 antennas, reduces the delay by a
factor of 2, to the delay

T2

(
5,

1

5
, 2, 0

)
=
K1(1− γ1) +K2

K1γ1 + 2
= 2 (10)

which is optimal under the assumption of uncoded cache
placement.

We quickly note that the above multiplicative boost of
the DoF is in contrast to the additive DoF boost (additive
multiplexing gain) experienced in systems with only cache-
aided users [3]. This further advocates for the use of multiple
transmit antennas in heterogeneous cache systems.

We proceed with another corollary which can be placed
into context, by noting that in a system with L antennas and
K2 cache-less users, adding one more antenna would allow
(without added delay costs) the addition of only a diminishing
number of K2

L extra cache-less users.

Corollary 2. Let us start from the single-stream BC with K1

cache-aided users equipped with caches of normalized size γ1.



Then, adding an extra L−1 transmit antennas, allows for the
addition of

K2 = (L− 1)TK1
≈ L− 1

γ1
(11)

cache-less users, at no added delay costs.

Proof. This is direct from Theorem 2.

The following takes another point of view and explores the
benefits of injecting cache-aided users into legacy (cache-less)
MISO BC systems. To put the following corollary into context,
we recall that in a cache-less L transmit-antenna MISO BC
serving K2 ≥ L users, the optimal (normalized) delay is K2

L .

Corollary 3. In a MISO BC with K2 ≥ L cache-less users,
introducing K1 additional cache-aided users with γ1 ≥ L

K2
,

incurs delay

TL(K1, γ1,K2, γ2 = 0) ≤ K2

L− 1

and thus we can add an infinite number of cache-aided users
and only suffer a delay increase by a factor that is at most
L
L−1 .

Proof. This is direct from Theorem 2.

Multiple antennas for ‘balancing’ cache-size unevenness:
In the variety of works (cf. Sec. I-B) that explore the single-
stream coded caching setting in the presence of uneven cache
sizes, we see that having cache-size asymmetry induces delay
penalties and that the preferred cache-size allocation is the
uniform one. The following corollary addresses this issue, in
the multi-antenna setting.

Corollary 4. The L-antenna, (K1, γ1,K2, γ2 = 0) MISO BC
with K2 ≤ (L − 1)TK1

cache-less users, incurs the same
achievable delay

TL(K1, γ1,K2, γ2 = 0) =
K2 +K1(1− γ1)

L+K1γ1
=
K(1− γav)

L+Kγav

as the order optimal homogeneous K-user MISO BC with
homogeneous caches of normalized size γav = K1γ1

K (same
cumulative cache size K1γ1 = Kγav).

Proof. This is direct from Theorem 2.

Example 2. Let us assume the (K1 = 5, γ1 = 1/5,K2 =
2, γ2 = 0) MISO BC setting with L = 2 antennas. The
performance of this setting, as shown in a previous example
(Eq. (10)) is T2 = 2.

This matches the performance of the L = 2 antenna
homogeneous system with K = 7 users and γ = 1/7, whose
delay is again (cf. [3], [4])

T2

(
7,

1

7

)
=
K(1− γ)

L+Kγ
= 2. (12)

B. Coexistence of users with different cache sizes

We now proceed to lift the constraint of cache-less users
and consider the more general scenario of γ2 ∈ (0, γ1).

Theorem 4. In the L-antenna (K1, γ1,K2, γ2 > 0) MISO
BC, if TK1

≥ K2(1−γ2)
L−1+K2γ2

, then the achievable delivery time
matches that of the corresponding homogeneous system with
K users of equally sized caches γ = K1γ1+K2γ2

K , i.e.,

TL(K1, γ1,K2, γ2) =
K1(1− γ1) +K2(1− γ2)

L+K1γ1 +K2γ2
(13)

while else, the delay takes the form

TL(K1,γ1,K2, γ2) =
K1(1− γ1)

K1γ1 + 1
+

+
K2(1− γ2)− (L− 1 +K2γ2) · TK1

min{K2, L+K2γ2}
. (14)

Proof. The proof is constructive and is detailed in Section
III-B.

Remark 1. Theorems 2 and 4 show how adding either one
more antennas or providing caches to the cache-less users,
provides the same increase in the DoF. Most importantly, by
either increasing the number of antennas or increasing the
caches of the weaker users helps to decrease the penalty
due to the system heterogeneity and allows to achieve the
homogeneous performance. For example, let us assume the
L-antenna (K1, γ1, L · TK1

, γ2) MISO BC where the delay is
given by Eq. (7) to be

TL(K1, γ1, L · TK1 , 0) = TK1 +
TK1

L
= TK1

L+ 1

L
. (15)

We will show that increasing either the number of antennas
by 1, or adding a small cache to each of the cache-less users
such that K2γ2 = 1, will result in the same DoF performance.
First, increasing the number of antennas to L+1, corresponds
to the case described by Eq. (8) where

TL+1 (K1, γ1,K2, 0) = TK1 (16)

corresponding to a DoF of

DL+1(K1, γ1, L · TK1 , 0) = L+ 1 +K1γ1 (17)

Further, in the original setting with L transmit antennas, by
adding a small cache to each of the cache-less users such that
K2γ2 = 1, we can easily see that the achieved performance
corresponds to Eq. (13), thus

TL

(
K1, γ1, L · TK1

,
1

L · TK1

)
=
K1(1− γ1) +K2 − 1

L+K1γ1 + 1

which corresponds to the cache-aided DoF of

DL

(
K1, γ1, L · TK1

,
1

L · TK1

)
= L+K1γ1 + 1. (18)

From the above remark, we can see that adding antennas or
small caches to the cache-less users allows for the full DoF to
be achieved. In other words, we can see that the two resources
work in tandem to boost the DoF.



Further, the above multiplicative gains can also be achieved
in a setting with K1 users equipped with caches of normalized
size γ1 which coexist with some K2 = (L̃ − 1)TK1 , L̃ > 1
cache-less users, by increasing the transmit antennas and/or
adding cumulative cache of size Γ2 to the cache-less users.
Specifically, adding these two resources to the system can raise
the DoF by a multiplicative factor of L+ Γ2 ≤ L̃. As we will
see, this is a direct outcome of exploiting the multiple antennas
as a means of spatially separating users and hence treating in
the same transmission both user types.

Example 3. Let us assume the single antenna system with
K2 = 10 cache-less users and with K1 = 7 cache-aided users
equipped with caches of normalized size γ1 = 1

7 . First, we will
calculate the performance of the above setting and then we
will proceed to add one more antenna, i.e. L′ = 2 and finally,
we will add caches to the cache-less users.

The first setting’s performance is calculated (Eq. (5)) to be

T1 (7, 1/7, 10, 0) =
7− 1

2
+ 10 = 13 (19)

while the second setting’s performance, given by Eq. (7), is

T2 (7, 1/7, 10, 0) =
7− 1

2
+

7

2
=

13

2
. (20)

Finally, the third setting’s performance is given by Eq. (14)

T2 (7, 1/7, 10, 1/10) =
7− 1

2
+

3

3
= 4. (21)

From the above we can see that doubling the number of
antennas will halve the system delay. Furthermore, if we also
equip cache-less users with caches of cumulative size Γ2 = 1,
while having L′ = 2 antennas, we can see that the delay is
reduced by more than a multiplicative factor of 3, compared
to the original setting, which amounts to a multiplicative DoF
boost of L′+Γ2 = 3 and a further additive reduction attributed
to the local caching gain.

III. SCHEME DESCRIPTION

We begin with the scheme description for the case where
the cache-aided users co-exist with the cache-less users. This
scheme will then serve as the basis for the scheme for the case
where both user types have non-trivial cache sizes.

In both of these cases, the challenge of the algorithm lies
in properly combining the delivery of content towards each of
the two types of users, such that subfiles intended for one set
are either “cacheable” or can be “nulled-out” via Zero-Force
(ZF) precoding.

Notation: In describing the scheme, we will use the
following notation. The file requested by user k ∈ [K] will
be denoted by W dk . Symbol ⊕ denotes the bit-wise XOR
operator, N the set of natural numbers, and for n, k ∈ N
we denote with

(
n
k

)
the binomial coefficient. For set A we

denote its cardinality with |A|, while for sets A,B we will
use A \ B to denote the difference set. We denote with H−1

λ

the normalized inverse (L×L precoder matrix) of the channel
matrix between the L antennas and the L users of some set

λ ⊂ [K], |λ| = L, where the rows of the precoder matrix are
denoted by

{
h⊥λ\{l}

}
l∈λ and have the following property

hHk · h⊥λ\{l} =


1, if k = l

0, if k ∈ λ \ {l}
6= 0, if k ∈ [K] \ λ.

(22)

We remind that for some Ki = {K1,K2}, we denote by

TKi ,
Ki(1− γi)
1 +Kiγi

, i ∈ {1, 2} (23)

the delay required to treat only one set of users with a single
transmit antenna.

Finally for sets χ, β ⊂ [K], we define XORs Xχ and Xχ,β

as follows

Xχ =
⊕
k∈χ

W dk
χ\{k} (24)

Xχ,β =
⊕
k∈χ

W dk
β∪χ\{k}. (25)

A. Placement and delivery in the presence of cache-less users

We will first provide an overview of the algorithm, and will
then proceed to describe this algorithm in detail.

1) Overview of Algorithm: The first scheme that we will
present is designed to serve demands of both cache-aided and
cache-less users in the same transmission.

a) Placement Phase: The placement phase follows the
algorithm in [1] and starts by breaking each file into

S =

(
K1

K1γ1

)
(26)

subfiles and then proceeds with storing each subfile at exactly
K1γ1 receivers.

b) Transmission Design: A transmitted vector is built
by first forming an information vector of length L. The first
element of this information vector is a XOR, intended for
some K1γ1 +1 cache-aided users, which is designed as in the
algorithm of [1] (cf. Eq. (24)), and thus can be decoded by all
involved cache-aided users. Further, the remaining messages
are L−1 uncoded subfiles, each intended for a different cache-
less user. These subfiles are carefully picked to match the file
indices associated with the XOR.

Due to the inability of a cache-less user to remove inter-
ference, we need to Zero-Force the L− 1 unwanted messages
(the XOR as well as the L−2 other uncoded messages) to that
user. Thus the XOR is Zero-Forced away from the cache-less
users, while each uncoded message is Zero-Forced away from
L− 2 cache-less users and away from one cache-aided user.

As suggested above, thus far we have used-up all the L−1
spatial degrees of freedom for Zero-Forcing the XOR, but we
have 1 remaining spatial degree of freedom for each of the
uncoded messages. This spatial degree of freedom will be used
to ZF all the uncoded messages away from a single cache-
aided user. This allows all cache-less users to be able to receive
interference-free their intended message, as well as allows one
cache-aided user to receive without interference the XORed



message, which it can naturally decode. Most importantly, this
last part will allow for the other K1γ1 cache-aided users to be
able to have one subfile (per file) in common, which is crucial
as we will see.

Since there are no remaining spatial degrees of freedom
to exploit, the residual K1γ1 cache-aided users will receive
a linear combination of all the L symbols, and will need to
exclusively use their cached content to remove these inter-
fering messages. To this end, we need to pick the indices
of the uncoded messages in a way such that these messages
are completely known to these users. Since a subfile can be
cached at a maximum of K1γ1 users and, conversely, a set of
K1γ1 cache-aided users can have only one subfile (per file)
in common, it follows that the subfile index that is delivered
in every cache-less user is the same and is defined exactly by
the K1γ1 cache-aided users that we are treating.

c) Verification that all subfiles are transmitted: As we
saw in the previous paragraph, each transmission is responsible
for communicating one XOR for a set χ of K1γ1 + 1 cache-
aided users, as well as L− 1 subfiles intended for cache-less
users, where these subfiles share the same index τ .

As mentioned before, in order for all K1γ1 users to decode
their intended subfile, it suffices to choose the subfile index
such that τ ⊂ χ. The pairing between a XOR and a subfile
index can be viewed as a perfect matching problem over a
bipartite graph. In this bipartite graph, a node of the left-hand-
side represents one of the XORs (χ), while a node of the right-
hand-side represents L − 1 subfiles with the same index (τ )
that are desired by some L− 1 cache-less users.

As we will show later on, this problem is guaranteed to have
a solution in our case. While such a solution can be constructed
numerically, in the following paragraph we will describe an
algorithm that can provide an explicit perfect matching to our
problem for any set of parameters. This perfect matching can
be achieved by a slight increase of the subpacketization.

2) Algorithm Details: In this section we describe the details
of the algorithm, starting from the placement phase. Further,
we continue with the delivery algorithm in a pseudo-code
format (Alg. 1) accompanied by its description.

a) Placement Phase: Initially, each file Wn, n ∈ [N ],
is divided into

Snc = K1(1− γ1)

(
K1

K1γ1

)
(27)

subfiles, where these subfiles are named according to

Wn → {Wn,φ
τ , τ ⊂ K1, |τ | = K1γ1, φ ∈ K1 \ τ}.

Then, cache Zk of cache-aided user k ∈ K1 is filled according
to

Zk ={Wn,φ
τ : k ∈ τ,∀φ ∈ K1 \ τ, ∀n ∈ [N ]}. (28)

This is identical to the original placement in [1], and the extra
subpacketization (corresponding to index φ) will facilitate
the aforementioned combinatorial problem of matching XORs
with uncoded subfiles.

b) Delivery Phase: We will first focus on the case of
K2 = (L− 1)TK1

, where the delay

TL(K1, γ1,K2, γ2 = 0) =
K1(1− γ1) +K2

L+K1γ1
(29)

can be achieved by simultaneously treating K1γ1 +L users.
The extension to an arbitrary number of cache-less users is
based on the algorithm of the above case, and will be described
later on.

Matching Problem: As we have argued, the demands of
the cache-aided users are treated by default via each XOR Xχ.
At the same time, we are able to treat L− 1 cache-less users,
under the condition that their received subfile index τ is the
same and that τ ⊂ χ.

Thus, the challenge presented in the creation of a transmit-
ted vector is to match a XOR index χ with a subfile index τ
such that τ ⊂ χ and at the end each χ is matched to a unique
τ , in the case where TK1

= 1 while if TK1
> 1, then χ needs

to be matched to one of the TK1
different3 τ . This constitutes

a perfect matching over a bipartite graph, where the left-hand-
side (LHS) nodes represent the

(
K1

K1γ1+1

)
different χ indices,

while a node of the right-hand-side (RHS) represents one of
the TK1

copies of the
(
K1

K1γ1

)
different τ intended for some

L− 1 cache-less recipients.
This type of problem is guaranteed to have a solution when

each node from the LHS is connected to exactly d ∈ N nodes
of the RHS (see [34]). In our problem, it is easy to see that
each node of the LHS is connected to d = TK1

·(K1γ1 +1) =
K1(1− γ1) nodes of the RHS.

Since an algorithm that finds such a solution may have
high complexity (for example see [35]) we, instead, present an
algorithm that requires a slightly higher subpacketization, but
can provide an instant solution to the above matching problem.
Specifically, the subpacketization of Eq. (27) contains the term
K1(1 − γ1), thus creating K1(1 − γ1) copies of each XOR
Xχ, while the same holds for every subfile τ intended for the
cache-less users. Our algorithm achieves a perfect matching
by matching node (φ, τ) of the RHS, where φ ∈ K1 \ τ , with
one of the XORs X{φ}∪τ of the LHS.

c) Transmission: The delivery phase, in the form of
pseudo-code, is presented in Alg. 1, which we describe in this
paragraph. Transmission commences by splitting the cache-
less users into TK1 sets with L− 1 users each (Step 2). Then
we pick set τ ⊂ K1, |τ | = K1γ1 (Step 3), where this set
serves two purposes. First, it identifies the cache-aided users
that will not be assisted by precoding, and second, it identifies
the subfile index that the selected cache-less users will receive.
Next, cache-aided user φ is picked from the remaining set of
cache-less users K1\τ (Step 4). Then, set gt, containing some
L− 1 cache-less users, is picked (Step 6).

The transmitted vector is created by calculating the precoder
matrixH−1

{φ}∪gt such that it forms the normalized inverse of the
channel matrix between the L-antenna transmitter and users
of set {φ} ∪ gt. The precoder matrix is multiplied by the

3We note here that, as discussed before, this index τ is the common index
of all subfiles meant for the L− 1 cache-less users during this transmission.



Algorithm 1: Transmission in the Cache-less Case

1 Assume TK1 ∈ N.
2 Group cache-less users:

g1 = {K1 + 1,K1 + 2, ...,K1 + L− 1}, ...,
gTK1

= {K1 + (L− 1) · (TK1
− 1), ...,K}.

3 for all τ ⊂ K1, |τ | = K1γ1 (pick file index) do
4 for all φ ∈ K1 \ τ (pick precoded user) do
5 Set χ = τ ∪ {φ}
6 for all t ∈ [TK1

] (pick cache-less group) do
7 Transmit:

xtτ,φ=H−1
{φ}∪gt


Xχ

W
dgt(1),φ
τ

...
W

dgt(L−1),φ
τ

 .

information vector, which is comprised of XOR Xχ (intended
for users τ ∪ {φ}) and the L − 1 uncoded subfiles that are
all indexed by τ (intended for the cache-less users of set gt)
(Step 7).

d) Decodability: In each transmitted vector, we can iden-
tify two sets of users, i) those that are assisted by precoding
(set {φ} ∪ gt) and ii) those that are not (set τ ). For the
“precoding-aided” set, we can immediately recognize that due
to the form of the precoder, these users will receive only their
intended message. In the special case of the cache-aided user
φ, decoding the received XOR will also require the use of its
cache.

Users belonging to the second set (set τ ) will be receiving
a linear combination of all L messages i.e.,

yk∈τ = hHk h⊥gtXχ +

L−1∑
i=1

hHk h⊥λ\{gt(i)}W
dgt(i),φ
τ + wk (30)

where λ = φ ∪ gt. We can see that all the terms in the
summation are cached at all users in set τ , thus can be removed
from the equation. What remains is XOR Xχ, which can be
decoded (this is direct from [1]) by all members of set χ.

e) Transmitting unique subfiles every time: At this point
the reader may have noticed that the secondary subfile index,
associated with the subfile of the cache-aided users, is not
identified in Alg. 1. This is intentional, since every time we
transmit subfile W dk

τ , we pick a new upper index such that all
such indices have been picked. We continue to show that the
number of times a subfile is transmitted is exactly K1−K1γ1.

Proof. Let us assume we are interested in delivering W dk
µ to a

user belonging to the set of cache-less users. We can see that
subfile index µ uniquely defines Step 3, i.e. τ = µ, while the
user’s number, k, uniquely defines Step 6. The algorithm goes
over all possible φ ∈ K1 \µ (Step 4), thus at the end, different

parts of subfile W dk
µ will be delivered exactly K1(1 − γ1)

times to cache-less user k.
Now we turn our focus to some cache-aided user k and

examine how many times this user will receive something
from subfile W dk

µ . We need to count the number of times
something from this subfile is delivered when user k is assisted
by precoding, as well as the number of times parts of this
same subfile are transmitted when user k is not assisted by
precoding.

When user k is assisted by precoding, it follows that the
remaining cache-aided users are uniquely defined by µ, i.e.
τ = µ. Thus, the user’s number defines Step 3 while the user’s
request defines Step 4. Then, Algorithm 1 will iterate Step 6
a total of TK1

times.
Further, let us look at the case when user k is not assisted

by precoding, which means that χ = {k} ∪ µ. As we know,
the set of precoded users τ satisfies τ ⊂ χ, while there are a
total of K1γ1 + 1 different τ for a specific χ. Since user k is
not assisted by precoding, it follows that k ∈ τ , which further
means that the number of possible and different τ is K1γ1.
For each of these τ , there is a unique φ (Step 4) and for each
pair (φ, τ) Step 6 is iterated a total of TK1 times.

In total, the number of times parts of subfile W dk
µ are

transmitted – when k is a cache-aided user – is equal to

TK1 +K1γ1 · TK1 = K1(1− γ1) (31)

which concludes the proof.

3) Scheme generalization and delay calculation: In this
section, we will generalize Alg. 1 to the case of TK1 /∈ N
and we will further calculate the delay of the scheme.

a) Scheme generalization: We remind that (L− 1) ·TK1

represents the threshold beyond which we cannot serve all
cache-less users with the maximum DoF. In the case where
(L−1)·TK1

/∈ N, it follows that the number of cache-less users
K2 that we can serve using the maximum DoF must be either
smaller or higher than (L− 1) · TK1

, with both of these cases
being treated in the following paragraph. If, on the other hand,
(L−1)·TK1 ∈ N, while TK1 /∈ N, then we can simply increase
the subpacketization by a multiplicative factor of L− 1. This
will create a bipartite graph with (L− 1)K1(1− γ1)

(
K1

K1γ1+1

)
nodes on the LHS and (L − 1)(K1γ1 + 1)

(
K1

K1γ1

)
nodes on

the RHS, which means that both numbers are integers, which
means that the perfect matching can be achieved.

The other two constraints that we need to address, in order
to generalize our algorithm, are the cases where K2 ≷ (L −
1)TK1

, also corresponding to the case where (L−1)·TK1
/∈ N.

First, if K2 < (L−1)TK1
, we proceed as in Alg. 1 but when

the demands of the cache-less users have been completely
satisfied, then we move to treat only the cache-aided users
(through any multi-antenna algorithm, such as [3]–[6]), at a
rate of DL(K1, γ1) = L+K1γ1 users at a time, thus yielding
the overall DoF of DL(K1, γ1,K2, γ2 = 0) = L + K1γ1 for
the whole duration of the transmission.

Finally, for the case of K2 > (L− 1)TK1 , delivery is split
into two sub-phases. During the first sub-phase, we simply



employ Alg. 1 on the first (L− 1)TK1
cache-less users while

simultaneously completing the delivery to all K1 cache-aided
users. This is done at a rate of K1γ1 +L users at a time. Then
in the second sub-phase, we treat the remaining K2 − (L −
1)TK1

cache-less users via ZF-precoding, L users at a time.
The above sums up to a total delay

TL(K1, γ1,K2, γ2 = 0) = TK1 +
K2−(L− 1)TK1

min{L,K2}
.

b) Delay Calculation: Following the steps of Alg. 1,
corresponding to the case of K2 = (L− 1)TK1 , we have

TL

(
K1,γ1, (L− 1)

K1(1− γ1)

K1γ1 + 1
, 0

)
=

=

Step 3︷ ︸︸ ︷(
K1

K1γ1

) Step 4︷ ︸︸ ︷
K1(1− γ1)

Step 6︷ ︸︸ ︷
K1(1− γ1)

K1γ1 + 1

K1(1− γ1)

(
K1

K1γ1

)
︸ ︷︷ ︸

Subpacketization

(32)

=
K1(1− γ1)

K1γ1 + 1
=
K1(1− γ1) +K2

K1γ1 + L
. (33)

B. Scheme description for setting with heterogeneous cache-
aided users

In this section we consider the L-antenna MISO BC setting,
where both user types are equipped with caches of hetero-
geneous sizes γ1, γ2 ∈ (0, γ1). In the context of the single
antenna heterogeneous setting, it has been an elusive goal to
achieve the performance of the corresponding homogeneous
system with γav = K1γ1+K2γ2

K (i.e., of the homogeneous
system with the same cumulative cache size constraint). What
we will show here is that, for a wide range of parameters, the
corresponding performance of the multi-antenna homogeneous
setting can indeed be achieved in the multi-antenna heteroge-
neous setting.

1) Algorithm overview: First, we will focus on proving the
result of Eq. (13), where we can see that each transmission
serves exactly L+K1γ1 +K2γ2 users.

The main idea is to use the extra spatial degrees of freedom
as a way to separate some users that belong to one group from
some users that belong to the other group.

As before, we will create an L×1 information vector, which
will be multiplied by an L × L precoder matrix to form the
transmitting vector. The elements of the created vector belong
to one of 4 types. One element corresponds to a XOR of
1 + K1γ1 subfiles intended for some users of set K1, while
another element corresponds to a XOR of 1 + K2γ2 subfiles
which is intended for some users of set K2. The remaining
L − 2 elements will carry L1 − 1, L1 ∈ [1, L − 1] uncoded
messages for users of set K1 and L2 − 1, L2 ∈ [1, L − 1]
uncoded messages for users of set K2, where L1+L2 = L, and
where the exact values of variables L1 and L2 are calculated
by solving the equality

K1(1− γ1)

L1 +K1γ1
=
K2(1− γ2)

L2 +K2γ2
(34)

under the constraint that L1 ≥ 1.
In other words, the above solution allocates L1 streams

to the cache-aided users and L2 streams to the others. This
observation will allow us to view the problem at hand as a
concatenation of two multi-antenna problems. In what follows,
we will make use of a new multi-antenna Coded Caching al-
gorithm corresponding to the homogeneous setting and which
we present in detail in Appendix D. Further, we will assume
that variables L1, L2 are integers, while we relegate the non-
integer case to Appendix E.

2) Algorithm Details:
a) Placement: We split each file Wn, n ∈ [N ] into

Sc = (K1γ1 + L1)

(
K1

K1γ1

)
(K2γ2 + L2)

(
K2

K2γ2

)
(35)

subfiles, where each subfile Wn,φ1,φ2
τ1,τ2 is characterized by 4

indices, φ1 ∈ [K1γ1 + L1], τ1 ⊂ K1, |τ1| = K1γ1 and
φ2 ∈ [K2γ2 + L2], τ2 ⊂ K2, |τ2| = K2γ2, where indices
τ1 and τ2 reveal which users have cached this subfile from
sets K1 and K2, respectively, while indices φ1, φ2 will help,
as previously in the cache-less case, with the combinatorial
problem of matching subfile indices with XORs.

The caches of the users are filled as follows

Zk1∈K1
= {Wn,φ1,φ2

τ1,τ2 : k1 ∈ τ1,∀τ2, φ1, φ2} (36)

Zk2∈K2 = {Wn,φ1,φ2
τ1,τ2 : k2 ∈ τ2,∀τ1, φ1, φ2} (37)

where it is easy to see that the above placement respects the
cache-size constraint of each user.

b) Delivery Phase: Algorithm 2 describes the delivery
phase in the form of a pseudo-code. We begin by noting that
symbol β(i)

τ,s ⊆ [Ki] \ τ denotes a set of Li − 1 elements,
which are selected to be the elements following s ∈ [Ki] \ τ .
For example, assuming that Li = 2 and [Ki]\τ = {1, 2, 3, 4},
then β(i)

τ,1 = {2, 3} and β(i)
τ,3 = {1, 4}. In what follows we will

refrain from using the upper index i when describing set β,
for the sake of simplicity.

As mentioned before, the algorithm works as a concatena-
tion of two multi-antenna Coded Caching schemes. Specifi-
cally, it begins (Step 1) by picking a set of K1γ1 + 1 users
(χ1 ⊂ K1) and then (Step 2) by selecting one of those users
(s1 ∈ χ1) to be the precoding-assisted user. The following two
steps (Step 3 and Step 4) are responsible for picking a set of
K2γ2 + 1 users (χ2 ⊂ K2) and user s2 ∈ χ2, respectively.

Once these K1γ1 +K2γ2 + 2 users have been selected, the
algorithm proceeds with the calculation of sets τ1 ⊂ K1, τ2 ⊂
K2 which correspond to the set of users that will not be
assisted by precoding, as well as proceeds to define the set
λ that contains the precoding-assisted users from both sets K1

and K2.
In the last step, the algorithm creates the transmitting vector.

First, it calculates the normalized inverse of the channel
between the L-antenna transmitter and the users of set λ.
Then, it forms the information vector which is comprised
of L elements. Two of these elements are XORs, Xχ1,τ2

and Xχ2,τ1 , while the remaining are L1 − 1 and L2 − 1



Algorithm 2: Transmission Process for Multi-Antenna
Heterogeneous Coded Caching

1 for all χ1 ⊆ [K1], |χ1| = K1γ1 + 1 do
2 for all s1 ∈ χ1 do
3 for all χ2 ⊆ [K2], |χ2| = K2γ2 + 1 do
4 for all s2 ∈ χ2 do
5 Set: τ1 = χ1 \ {s1}
6 τ2 = χ2 \ {s2}
7 λ = {s1} ∪ {s2} ∪ βτ1,s1 ∪ βτ2,s2 .
8 Transmit:

xs1,τ1s2,τ2 = H−1
λ ·



Xχ1,τ2

W
dβτ1,s1 (1)

τ1,τ2

...

W
dβτ1,s1 (L1−1)

τ1,τ2

Xχ2,τ1

W
dβτ2,s2 (1)

τ1,τ2

...

W
dβτ2,s2 (L2−1)

τ1,τ2



uncoded messages are respectively intended for some users
from set K1 and set K2. The transmitting vector is formed
as a multiplication of the precoding matrix H−1

λ with the
information vector.

We can see that having selected the XOR for users in
K1, along with the precoded user (Steps 1 and 2), then the
algorithm goes over all possible combinations of XORs and
their respective users corresponding to set K2. In the case
of users of set K1, this allows to deliver all the index pairs
(φ2, τ2) that correspond to the other set of users.

c) Decoding Process: The decoding process is similar
to that of Alg. 3. For the users in set λ i.e., the precoding-
assisted users, we can see that they receive only one of the L
messages, thus they either decode using a ZF precoder (users
in λ \ {s1} \ {s2}) or they use a ZF decoder and continue to
decode their respective XOR by use of their cached content
(users s1 and s2).

The remaining users (χ1 ∪ χ2 \ {s1} \ {s2}) will receive a
linear combination of all L information messages, which they
can decode using the acquired CSI and their stored content.
For example, any user k ∈ τ1 will receive

yk =hHk h⊥λ\{s1}Xχ1,τ2 + hHk

L−1∑
i=1

h⊥λ\βτ1,s1(i)
W

dβτ1,s1(i)
τ1,τ2

+hHk h⊥λ\{s2}Xχ2,τ1 + hHk

L−1∑
i=1

h⊥λ\βτ2,s2(i)
W

dβτ2,s2(i)
τ1,τ2

(38)

where, excluding the first summand, all the other terms above
are completely known to any receiver of set τ1, and thus can
be removed. The remaining XOR Xχ1,τ2 is decodable by any
user in set τ1.

C. Extension to the remaining cases

In this section we will prove the result of Eq. (14), which
corresponds to the case where the number of streams that
should be allocated to the group with the higher cache size
is less than one. In this case, we simply treat the users of set
K1 using one stream, and allocate the remaining L2 = L− 1
streams for the second set of users, K2.

At some point in the transmission, all the files requested by
set K1 have been successfully communicated, while users of
set K2 require more transmissions to completely receive their
files. This is because we transmit at a rate of K1γ1 + 1 to
users of set K1 and with rate of L− 1 +K2γ2 to users of set
K2, where K1(1−γ1)

1+K1γ1
< K2(1−γ2)

L−1+K2γ2
.

To complete the transmission of files to the second set of
users, we employ any of the multi-antenna cache-aided algo-
rithms serving L+K2γ2 users at a time. Thus, the completion
time corresponding to the two sets of transmissions, takes the
form

TL(K1,γ1,K2, γ2) =
K1(1− γ1)

K1γ1 + 1
+

+
K2(1− γ2)− T (1)

1 (L− 1 +K2γ2)

min{K2, L+K2γ2}
. (39)

IV. EXAMPLES

In this section we will display two examples, one for the
cache-less users case, and one for the other case. Both of
the examples will present the cases where the full DoF of
DL(K1, γ1,K2, γ2) = L+K1γ1 +K2γ2 is achievable.

We will use the standard notation for user demands, where
A , W d1 , B , W d2 , and so on. We will also omit the
symbol ⊕ in the description of the XORs, so for example, we
will write Aτ1,τ2Bτ ′1,τ ′2 instead of Aτ1,τ2 ⊕Bτ ′1,τ ′2 , etc.

A. Cache-less users example (γ2 = 0)

In this example, we will consider the L = 2-antenna MISO
BC, where K1 = 5 users have caches of normalized size γ1 =
1
5 , while K2 = 2 users have no caches.

First, each file Wn, n ∈ [N ] is subpacketized into

Wn → {Wn,φ
τ , τ ⊂ K1, |τ | = K1γ1, φ ∈ K1 \ τ}. (40)

The caches of the users in set K1 are filled according to
Eq. (28) thus, for example, the cache of the first user contains

Z1 =
{
Wn,2

1 ,Wn,3
1 ,Wn,4

1 ,Wn,5
1 , ∀n ∈ [N ]

}
.

Before we describe the entire sequence of transmitted
vectors, we focus briefly on a single vector and its decoding
at each user.



a) Transmission and decoding for a specific set of users:
The goal is to treat K1γ1 + L = 3 users in each time-slot.
Let us look in detail at one transmitted vector, where we treat
cache-aided users 1 and 2 together with cache-less user 6. In
this case, we transmit

x1
1,2 = H−1

26

[
A1

2B
2
1

F 2
1

]
. (41)

Let us examine the decoding process at the users. First, we
can see that User 2 will receive — due to ZF precoding and
the design of the precoding matrix H−1

26 — only the XORed
message A1

2B
2
1 , and can thus proceed to cache-out A1

2 and
decode the desired subfile B2

1 . User 6 will receive, again due
to precoding, only its respective desired message F 2

1 . Finally,
User 1 will receive a linear combination of A1

2B
2
1 and F 2

1 , as
follows

y1 = hH1 h⊥6 A
1
2B

2
1 + hH1 h⊥2 F

2
1 + w1. (42)

First, by caching out F 2
1 , User 1 can decode the XOR, and

then again by accessing its cache, User 1 can remove B2
1 to

decode its desired message A1
2.

b) Sequence of transmissions: We now proceed with the
entire sequence of the 40 transmissions. Given that each file
is subpacketized into K1(1− γ1)

(
K1

K1γ1

)
= 5(1− 1

5 )
(

5
1

)
= 20

subpackets, the 40 transmissions will correspond to the desired
delay of

T2

(
5,

1

5
, 2, 0

)
=
K2 +K1(1− γ1)

L+K1γ1
= 2. (43)

The transmissions are:

x1
1,2 = H−1

26

[
A1

2B
2
1

F 2
1

]
, x2

1,2 = H−1
27

[
A3

2B
3
1

G2
1

]
x1

1,3 = H−1
36

[
A1

3C
3
1

F 3
1

]
, x2

1,3 = H−1
37

[
A2

3C
2
1

G3
1

]
x1

1,4 = H−1
46

[
A1

4D
4
1

F 4
1

]
, x2

1,4 = H−1
47

[
A2

4D
2
1

G4
1

]
x1

1,5 = H−1
56

[
A1

5E
5
1

F 5
1

]
, x2

1,5 = H−1
57

[
A2

5E
2
1

G5
1

]
x1

2,1 = H−1
16

[
A4

2B
4
1

F 1
2

]
, x2

2,1 = H−1
17

[
A5

2B
5
1

G1
2

]
x1

2,3 = H−1
36

[
B2

3C
3
2

F 3
2

]
, x2

2,3 = H−1
37

[
B1

3C
1
2

G3
2

]
x1

2,4 = H−1
46

[
B2

4D
4
2

F 4
2

]
, x2

2,4 = H−1
47

[
B1

4D
1
2

G4
2

]
x1

2,5 = H−1
56

[
B2

5E
5
2

F 5
2

]
, x2

2,5 = H−1
57

[
B1

5E
1
2

G5
2

]
x1

3,1 = H−1
16

[
A4

3C
4
1

F 1
3

]
, x2

3,1 = H−1
17

[
A5

3C
5
1

G1
3

]
x1

3,2 = H−1
26

[
B4

3C
4
2

F 2
3

]
, x2

3,2 = H−1
27

[
B5

3C
5
2

G2
3

]
x1

3,4 = H−1
46

[
C3

4D
4
3

F 4
3

]
, x2

3,4 = H−1
47

[
C1

4D
1
3

G4
3

]
x1

3,5 = H−1
56

[
C3

5E
5
3

F 5
3

]
, x2

3,5 = H−1
57

[
C1

5E
1
3

G5
3

]

x1
4,1 = H−1

16

[
A3

4D
3
1

F 1
4

]
, x2

4,1 = H−1
17

[
A5

4D
5
1

G1
4

]
x1

4,2 = H−1
26

[
B3

4D
3
2

F 2
4

]
, x2

4,2 = H−1
27

[
B5

4D
5
2

G2
4

]
x1

4,3 = H−1
36

[
C2

4D
2
3

F 3
4

]
, x2

4,3 = H−1
37

[
C5

4D
5
3

G3
4

]
x1

4,5 = H−1
56

[
D4

5E
5
4

F 5
4

]
, x2

4,5 = H−1
57

[
D1

5E
1
4

G5
4

]
x1

5,1 = H−1
16

[
A3

5E
3
1

F 1
5

]
, x2

5,1 = H−1
17

[
A4

5E
4
1

G1
5

]
x1

5,2 = H−1
26

[
B3

5E
3
2

F 2
5

]
, x2

5,2 = H−1
27

[
B4

5E
4
2

G2
5

]
x1

5,3 = H−1
36

[
C2

5E
2
3

F 3
5

]
, x2

5,3 = H−1
37

[
C4

5E
4
3

G3
5

]
x1

5,4 = H−1
46

[
D2

5E
2
4

F 4
5

]
, x2

5,4 = H−1
47

[
D3

5E
3
4

G4
5

]
.

The 40 slots, each of normalized duration

ts =

[
(K1(1− γ1)

(
K1

K1γ1

)]−1

=
1

20

imply a delay T2

(
5, 1

5 , 2, 0
)

= 2, which matches the delay

T2

(
7,

1

7

)
=

7− 1

2 + 1
=
K(1− γav)
2 +Kγav

= 2

that would be needed in the homogeneous case where the K =
7 users would have an identical γav = 1

7 (same cumulative
cache Kγav = 1).

B. Two Type Cache-aided Example

In this section we present an example that illustrates the
mechanics of the two user case. Specifically, we will focus
on the L = 3-antenna MISO BC, where K1 = 5 users of
set K1 are equipped with caches of normalized size γ1 =
2
5 , while K2 = 4 users of set K2 are equipped with caches
of normalized size γ2 = 1

4 . For this setting, the number of
streams (cf. Eq. (34)) should be divided as L1 = 1 and L2 = 2.

We begin by splitting each file into

S = (K1γ1 + L1)(K1γ2 + L2)

(
K1

K1γ1

)(
K2

K2γ2

)
= 360

subfiles, where subfile Wn,φ1,φ2
τ1,τ2 has indices τ1 ⊂ [5], |τ1| =

2, φ1 ∈ [3], τ2 ⊂ [4], |τ2| = 1, φ2 ∈ [3].
1) Placement Phase: This phase is carried out according to

Eq. (36)-(37) where, for example, the caches of users 1 ∈ K1

and 6 ∈ K2 are filled as

Z1 = {Wn,φ1,φ2

12,τ2
,Wn,φ1,φ2

13,τ2
,Wn,φ1,φ2

14,τ2
,Wn,φ1,φ2

15,τ2
,∀τ2, φ1, φ2}

Z6 = {Wn,φ1,φ2

τ1,6
,∀τ1, φ1, φ2}.

2) Delivery Phase: For notational simplicity, we abstain
from using indices φ1, φ2. Further, we will only present one
iteration of the algorithmic steps 1-2, that delivers the first



XOR (A23B13C12 intended for users 1, 2, 3) of the user set
K1, while it goes through all other steps (Steps 3-8).

x6,7
1,23 = H−1

168

A23,7B13,7C12,7

F23,7G23,6

H23,7


x7,6

1,23 = H−1
178

A23,6B13,6C12,6

F23,7G23,6

H23,6


x6,8

1,23 = H−1
167

A23,8B13,8C12,8

F23,8H23,6

G23,8


x8,6

1,23 = H−1
187

A23,6B13,6C12,6

F23,8H23,6

G23,6


x6,9

1,23 = H−1
167

A23,9B13,9C12,9

F23,9I23,6

G23,9


x9,6

1,23 = H−1
197

A23,6B13,6C12,6

F23,9I23,6

G23,6


x7,8

1,23 = H−1
179

A23,8B13,8C12,8

G23,8H23,7

I23,8


x8,7

1,23 = H−1
189

A23,7B13,7C12,7

G23,8H23,7

I23,7


x7,9

1,23 = H−1
178

A23,9B13,9C12,9

G23,9I23,7

H23,9


x9,7

1,23 = H−1
196

A23,7B13,7C12,7

G23,9I23,7

F23,7


x8,9

1,23 = H−1
186

A23,9B13,9C12,9

H23,9I23,8

F23,9


x9,8

1,23 = H−1
196

A23,8B13,8C12,8

H23,9I23,8

F23,8

 .
C. Decoding Process

The decoding process follows the decoding steps of Alg. 3.
First, the members of set λ, i.e. the precoding-assisted users,
will receive one of the L messages, which can decode using
their cached content.

Further, the users of set τ1 ∪ τ2 will receive a linear
combination of all L messages, which can decode using the
acquired CSIT and their cached content.

As an example, we will look at the decoding of transmitted
message x6,7

1,23 at any intended user. First, we can see that the

precoded users are 1, 6, 8 and these users will receive

yk∈{1,6,8} = hHk h⊥{1,6,8}\{k}


A23,7B13,7C12,7, k = 1

F23,7G23,6, k = 6

H23,7, k = 8

where naturally any of these users can decode its intended
subfile.

Then, for the remaining users (users 2, 3, 7) the received
signal takes the form

yk∈{2,3,7} =hHk h⊥{6,8}A23,7B13,7C12,7 + hHk h⊥{1,8}F23,7G23,6

+hHk h⊥{1,6}H23,7 + wk. (44)

We can easily see that each of these users can decode its
desired subfile by caching-out any other interfering message.

V. CONCLUSION AND FINAL REMARKS

An interesting outcome (Theorem 3) is the fact that despite
having abundant side information at a sizable number K1

of receivers, going from 1 to L antennas gives an L-fold
DoF boost. This comes in obvious contrast to the cache-
aided multiple antenna setting with only cache-aided users
[3]–[6], where adding antennas increases additively and not
multiplicatively the DoF.

Furthermore, we showed that adding antennas can amelio-
rate and even remove the effects of cache-size asymmetries.
This can be important in practical scenarios where γ1 is
expected to be small, which would then allow cache-aided
users to boost the DoF performance of a large number
(≈ (L − 1)/γ1) of cache-less users. Finally we have seen
in Theorem 4 the powerful (multiplicative) DoF effect that
modest amounts of caching can have in uneven cache-size
scenarios.

Remark 2. The delay of the single-antenna system (K1, γ1)
BC is the same as the L-antenna MISO BC with extra added
K2 = (L− 1)TK1

≈ L−1
γ1

users.

The above remark says that for every new antenna we add
to the system, we can also treat an additional, fixed number
of approximately 1

γ1
cache-less users without increasing the

overall delay.

Intuition on the Cache-less user Design

The algorithm, which is either optimal or near optimal, man-
ages to achieve full coding gains by eliminating the previously
encountered penalties of cache-size unevenness. Key to this,
was the careful use of antenna-aided user separation.

In the case where cache-aided and cache-less users coexist,
the scheme employs this separation in two ways. First, the
scheme protects the cache-less users from the XOR and from
each other. Secondly, and most importantly, separation allowed
K1γ1 cache-aided users to be able to have one subfile per
file in common. Even though the employed cache-aided users
can cache-out interfering subfiles, nevertheless any collection
of K1γ1 + 1 of such users do not have any common subfile
index cached, since a subfile is cached at exactly K1γ1 users.



This obstacle was surmounted by Zero-Forcing the messages
intended for the cache-less users away from one cache-aided
user. This allowed for the aforementioned ability for the cache-
aided users (that are not protected by precoding) to share a
common subfile index, and thus, by design, to cache out all
the subfiles intended for the cache-less users.

APPENDIX A
PROOF OF THEOREM 1

Toward proving Theorem 1, we adapt the approach of [31],
to lower bound the delay for the case where, out of the K
users, only K1 users have a cache. The bound will then also
prove tight for all

L ≥ K2

TK1

− 1 =
K2(1 +K1γ)

K1(1− γ)
− 1 (45)

as we will see in Appendix C.
The proof (for L = 1) tracks closely steps4 from [31]

which — for the case of K1 = K (where all users have
caches) — employed index coding to bound the performance
of coded caching. Some of these steps are sketched here for
the sake of completeness. Particular care is taken here to
properly construct the bound’s counting arguments in a way
that accounts for the fact that specific symmetries that are
essential to the approach in [31], do not directly hold here,
simply because the set K1 = [K1] of users that enjoy side
information is only a subset of the users that request files.

We will begin with lower bounding, first for the case of
L = 1, the delay T (d, χ) for any generic caching-delivery
strategy χ and any demand vector d ∈ Dwc , {d : di 6=
dj , i, j ∈ [K], i 6= j} whose K entries are all different. In
the following, we use Zi to denote the cache of each user i,
where naturally Zi = ∅ for i ∈ K2 , [K] \ K1.

Distinct caching problems and their corresponding index
coding equivalents : We first follow closely the approach in
[31] to describe the association between index coding and
our specific caching scenario here. As in [31], each caching
problem (defined by a demand vector d ∈ Dwc) is converted
into an index coding problem, by having each requested file
W di split into 2K1 disjoint subfiles W di

T , T ∈ 2[K1], where
T ⊂ [K1] indicates the set of users that have W di

T cached.
Since no subfile of the form W di

T , T 3 i is requested, the
index coding problem here is defined by

K12K1−1 +K22K1

requested subfiles, which form the nodes of the side-
information graph G = (VG , EG), where VG is the set of
vertices (each vertex/node representing a different demanded
subfile W di

T , T 63 i) and EG is the set of direct edges of the

4We note in advance that a naive adaptation of the approach in [31],
where we would simply account for a reduced sum-cache constraint K1M
corresponding to a redundancy t = K1M

N
, would yield a loose bound; for

example when L = 1, this naive bound would be T ≥ K−t
t+1

which would

then translate to T ≥ K1(1−γ)
1+K1γ

+ K2
1+K1γ

which is loose as the optimal

delay will turn out to be T =
K1(1−γ)
1+K1γ

+K2.

graph. We recall that an edge from node W di
T to W di′

T ′ exists
if and only if i′ ∈ T .

As in [31], this allows us to lower bound T (d, χ) by using
the index-coding converse from [36] which says that for a
given d, χ — with corresponding side information graph Gd =
(VG , EG) with VG vertices/nodes and EG edges — the delay is
bounded as

T ≥
∑
V∈VJ

|V| (46)

for every acyclic induced subgraph J of Gd, where VJ
denotes the set of nodes of the subgraph J , and where |V|
is the size of the message/subfile/node V.

The following describes the acyclic graphs, and also directly
shows that these remain acyclic after they are enlarged to
account for the content requested by the cache-less users. In
the following we will consider permutations σ ∈ SK1 from
the symmetric group SK1 , and, for a given demand vector d,
we will use Ad , ∪i∈[K]\[K1]W

di to denote the union of all
content in d that is requested by the users in [K] \ [K1].

Lemma 1. For any d and any σ ∈ SK1 , and for an acyclic
subgraph Jd,σ of Gd, is designed here to consist of all subfiles
{W dσ(i)
T , ∀i ∈ [K1],∀T ⊆ [K1] \ {σ(1), σ(2), . . . , σ(i)}},

then the enlarged graph Jd,σ ∪ Ad is also acyclic.

Proof. The proof that the subgraph Jd,σ is acyclic is direct
from [31, Lemma 1]. The proof that Jd,σ ∪ Ad is also an
acyclic graph, i.e., that the addition (on the original Jd,σ) of
all the nodes corresponding to Ad does not induce any cycles,
follows by first recalling that a directed edge from node W di

T
to W di′

T ′ exists if and only if i′ ∈ T , which thus tells us that
an edge cannot be drawn from any node representing content
from Ad, because any cache-less user i ∈ K \ [K1] cannot
belong to any such T simply because T ⊂ [K1].

Given the acyclic subgraph Jd,σ ∪ Ad, we combine
Lemma 1 with (46) to get

T (d, χ) ≥ TLB(σ,d, χ) (47)

where

TLB(σ,d, χ) ,
∑

V∈VJd,σ∪Ad

|V|

=
∑

T ⊆[K1]\{σ(1)}

|Wdσ(1)

T |+
∑

T ⊆[K1]\{σ(1),σ(2)}

|Wdσ(2)

T |+ . . .

+
∑

T ⊆[K1]\{σ(1),...,σ(K1)}

|Wdσ(K1)

T |+ |Ad|. (48)

Then, as in [31], we average over worst-case demands to
get

T ∗ , min
χ

max
d∈DWc

T (d, χ)

≥ min
χ

max
d∈DWc

max
σ∈SK1

TLB(σ,d, χ)

≥ min
χ

1

|DWc
|

1

|SK1
|
∑

σ∈SK1

∑
d∈DWc

TLB(σ,d, χ)



≥ min
χ

1

P (N,K)K1!

∑
σ∈SK1

∑
d∈DWc

TLB(σ,d, χ) (49)

where in the above we use P (N,K) , N !
(N−K)! .

Rewriting the summation in (49), we get∑
σ∈SK1

∑
d∈DWc

TLB(σ,d, χ) = (50)

K1∑
i=0

∑
n∈[N ]

∑
T ⊆[K1]:|T |=i

|Wn
T | ·
∑

σ∈SK1

∑
d∈DWc

1VJd,σ (Wn
T )

︸ ︷︷ ︸
,Qi(Wn

T )

+|Ad|

where VJd,σ is the set of vertices in the acyclic component
subgraph Jd,σ for a given d, σ pair, and where 1VJd,σ (Wn

T )
denotes the indicator function which takes the value of 1 only
if Wn

T ⊂ VJd,σ , else it is set to zero.
Counting arguments accounting for cache-less users :

Our aim is to count the number of times, Qi(Wn
T ), that any

specific subfile Wn
T appears in the summation in (50). To do

this, we draw from the counting arguments in [37, Section
VII-C] which derives Qi(Wn

T ) for the case where K users
share Λ ≤ K caches, where each cache r ⊂ [Λ] serves Λr
users. Adapting these steps5 in [37, Section VII-C] gives that

Qi = Qi(W
n
T )
4
=

∑
σ∈SK1

∑
d∈DWc

1VJd,σ (Wn
T )

=

(
N − 1

K − 1

) K1∑
r=1

P (K1 − i− 1, r − 1)(K1 − r)!

· (K − 1)!(K1 − 1)!(K1 − i). (51)

Setting xi
4
=
∑
n∈[N ]

∑
T ⊆[K1]:|T |=i |Wn

T | and recalling
that

N =

K1∑
i=0

xi =

K1∑
i=0

∑
n∈[N ]

∑
T ⊆[K1]:|T |=i

|Wn
T | (52)

we combine (49), (50) and (51), to get

T ≥
K1∑
i=0

Qi
P (N,K)K1!

xi. (53)

We now resume counting to calculate Qi
Λ!P (N,K) for each

i = 0, 1, . . . ,K1. Applying (51), we see that

Qi
K1!P (N,K)

=
(N − 1)!(N −K)!

(K − 1)!(N −K)!K1!N !

·
K1∑
r=1

(K − 1)!(K1 − i)P (K1 − i− 1, r − 1)(K1 − r)!

=
1

K1!N

K1∑
r=1

(K1 − i)P (K1 − i− 1, r − 1)(K1 − r)!

5The following expression could not have been derived, had we simply
substituted K for K1, in the corresponding Qi expression in [31]. Such a
naive approach would have essentially corresponded to treating the cache-
less and cache-aided cases separately, and would not have allowed us to
guarantee, among other things, that both cache-less and cache-aided users
request different files.

=
1

K1!N

K1∑
r=1

(K1 − i)(K1 − i− 1)!(K1 − r)!
(K1 − i− r)!

=
1

K1!N

K1∑
r=1

(K1 − i)!(K1 − r)!
(K1 − i− r)!

=
1

N

K1∑
r=1

(K1 − i)!(K1 − r)!i!
K1!(K1 − i− r)!i!

=
1

N

K1∑
r=1

(
K1−r
i

)(
K1

i

) =

(
K1

i+1

)(
K1

i

)
N

=
K1 − i

(i+ 1)N
. (54)

Now substituting (54) into (53), we get that

T (χ) ≥
K1∑
i=0

K1 − i
(i+ 1)N

xi +
K1!P (N,K)

K1!P (N,K)
|Ad|︸︷︷︸
K2

(55)

where the use of the fraction K1!P (N,K)
K1!P (N,K) = 1 is meant to

remind us the number of times acyclic graphs corresponding
to Ad were invoked in the summation in (50), and where we
also note that the expression above follows from the fact that
all d ∈ Dwc force |Ad| = K2.

Optimization: At this point we observe that the crucial
constant K1−i

(i+1)N derived for the part of the subgraph corre-
sponding to cache-aided users, matches exactly the number
K1−i

(i+1)N derived in [31] for the K = K1 case where all
users can have a cache. Consequently, under the same file-
size constraint given in (52), and given the current cache-size
constraint

∑K1

i=0 i · xi ≤ K1M , the expression in (55) serves
as a lower bound on the delay of scheme χ whose cache
placement implies the set {xi}.

Then, following the exact minimization steps in [32, Proof
of Lemma 2], we get

T (χ) ≥ K1(1− γ)

1 +K1γ
+K2 (56)

for integer K1γ, whereas for all other values of K1γ, this is
extended to its convex lower envelop.

This concludes lower bounding maxd ∈ DwcT (d, χ), and
thus — given that the right hand side of (56) is independent of
χ — lower bounds the performance for any scheme χ, hence
concluding the proof of the converse for Theorem 1 for the
case of L = 1.

APPENDIX B
CONVERSE AND GAP TO OPTIMAL FOR THEOREM 2

Let us first consider the gap to optimal for the case of K2 ≥
(L− 1)TK1

.
We have seen that when K2 = α(L − 1)TK1 , α ≥ 1, the

achievable delay in (7) takes the form

TL(K1, γ1,K2, γ2) = TK1
+
K2 − (L− 1)TK1

L
(57)

= TK1
+ (α− 1)

L− 1

L
TK1

(58)

=
TK1

L
(αL− α+ 1). (59)



For a lower bound on the minimum possible delay, we use

T ? =
min{K2, L}

L
= min

{
1,
α(L− 1)TK1

L

}
(60)

corresponding to the optimal delay required to satisfy only the
cache-less users. A quick calculation of the ratio between (57)
and (60), bounds the gap as

G =
αL−α+ 1

αL− α
= 1 +

1

α(L− 1)
≤ 2. (61)

When K2 < L, then α(L− 1)TK1
< L, which again gives

G =
TK1

L
(αL− α+ 1) <

TK1
(αL− α− 1)

α(L− 1)TK1

≤ 2. (62)

For the case of K2 = α(L − 1)TK1 , α ≤ 1, the lower
bound takes the form

TL(K1, γ1,K2, γ2) ≥ max

{
min{L,K2}

L
,

1

2

K1(1− γ1)

K1γ1 + L

}
(63)

where the first term corresponds to the optimal performance
of an ‘easier’ system where all the cache-aided users are
removed, and where the second term corresponds to an easier
system where all cache-less users are removed, and where
— for this latter type of system — we know from [4] that
treating K1γ1 + L users at a time is at most a factor of 2
from optimal, under the assumptions of linear and one-shot
schemes. Combining (63) with the achievable

TL(K1, γ1,K2, γ2) =
K1 +K1(1− γ1)

K1γ1 + L
(64)

from (8), yields a gap of

G =

K2+K1(1−γ1)
K1γ1+L

max
{
K2

L ,
1
2
K1(1−γ1)
K1γ1+L

} .
To bound this gap, note that if K2

L > 1
2
K1(1−γ1)
K1γ1+L then we know

from before that

G =

K2+K1(1−γ1)
K1γ1+L

K2

L

=
L

K1γ1
+

K1(1−γ1)
K1γ1+L

K2

L

≤ 1 + 2.

Similarly when K2

L < 1
2
K1(1−γ1)
K1γ1+L , the gap is bounded as

G =

K2+K1(1−γ1)
K1γ1+L

1
2
K1(1−γ1)
K1γ1+L

=

K2

K1γ1+L

1
2
K1(1−γ1)
K1γ1+L

+ 2 ≤ 3

where the last step considers that K2

L < 1
2
K1(1−γ1)
K1γ1+L .

This concludes the proof of Theorem 2. �

APPENDIX C
PROOF OF THEOREM 3

In the considered MISO BC6 setting, where d1, d2 corre-
spond to the maximum number of cache-aided and cache-less

6As mentioned above, this system shares the same fundamental properties
with the Interference Channel with cache-aided transmitters and, also, with
the wired multi-server setting, thus the following proof is applicable to those
settings as well.

users that we can treat, respectively, we have the following
trivial bounds, under the assumption of uncoded placement

DL(K1, γ1,K2, γ2) ≤ l1 · (K1γ1 + 1) + l2 = L+ l1K1γ1

(65)

where l1, l2 ∈ {0, 1, ..., L} correspond to the number of
streams dedicated to each group of users.

In other words, each stream can provide either one DoF to a
cache-less user or sum-DoF of K1γ1 + 1 to some cache-aided
users. Thus, the minimum transmission time, for a specific set
of parameters can be calculated by optimizing variable l1 as
follows

T ? ≥ min
l1∈(0,L)

max

{
K1(1− γ1)

l1(1 +K1γ1)
,
K2

L− l1
.

}
(66)

It is obvious that Eq. (66) is minimized when the two
quantities are equal, since both are continuous and one is
increasing and the other is decreasing. Thus the point that
achieves T ? is for l1 = L

L̃
, resulting in the optimal delivery

time of

T ? = TK1

L̃

L
(67)

which is the delivery time in Eq. (7).

APPENDIX D
A NEW CACHE-AIDED MULTI-ANTENNA DELIVERY

ALGORITHM

In this section we present a new multi-antenna coded
caching algorithm. The presentation is done for the general L-
antenna MISO BC channel with K cache-aided users, where
each is equipped with a cache of normalized size γ ∈ (0, 1).

The main idea behind the algorithm is to transmit, in each
slot, Kγ + L subfiles, again in an information vector with
L messages. We achieve this by creating an L-length vector
which is further multiplied by a ZF precoding matrix. The
entries of the vector consist of one XOR, comprized of Kγ+1
subfiles (created exactly as in the algorithm of [1]), and L−1
uncoded subfiles. We continue with the placement and delivery
phases.

A. Cache Placement
Initially, each file is subpacketized into S =

(
K
Kγ

)
sub-

packets, which are further split into Kγ + L smaller packets.
We will assume that T1(K, γ) = K(1−γ)

1+Kγ is an integer, while
extending the scheme to non-integer values requires a slightly
increased subpacketization. Users’ caches are filled according
to

Zk∈[K] =
{
Wn,φ
τ :τ ⊂ [K], |τ | = Kγ, k ∈ τ, (68)

∀φ ∈ [Kγ + L],∀n ∈ [N ]
}
.

The purpose of index φ is to guarantee the delivery of
“fresh” information, a total of Kγ + L subfiles for each
associated index τ . We will refrain from using this index in
the following algorithm, in order to keep the notation clearer,
but we will show that data from each subfile is transmitted
Kγ + L times, thus showing that each individual φ, τ pair
will indeed be transmitted.



B. Delivery Phase

In each delivery slot, as discussed above, we will create
a vector of size L × 1, where one of its entries will be a
XOR comprized of Kγ+ 1 subfiles, while the remaining L−
1 entries will be uncoded subfiles. Then, the vector will be
multiplied by an L×L precoder matrix, which is calculated as
the normalized inverse of the channel between the L-antenna
transmitter and a subset of the Kγ + L users, namely one of
the users of the XOR and the L − 1 users that will be the
recipients of the uncoded messages. The process is written
in the form of a pseudo-code in Alg. 3 and will be further
described in the following paragraph. We remind that H−1

λ

denotes the normalized inverse of the channel matrix formed
between the L antenna transmitter and the users in set λ, while
βτ,k ⊆ [K] \ τ is a set of L− 1 elements, which are selected
to be the elements following the element k ∈ [K] \ τ .

Algorithm 3: Delivery Phase

1 for all χ ⊆ [K], |χ| = Kγ + 1 (pick XOR) do
2 for all s ∈ χ (pick precoded user) do
3 Set: τ = χ \ {s}
4 Set: λ = {s} ∪ βτ,s.
5 Transmit:

xs,τ = H−1
λ ·



⊕
k∈χW

dk
χ\{k}

W
dβτ,s(1)
τ

...

W
dβτ,s(L−1)

τ


(69)

Details of Algorithm 3: The algorithm begins by selecting
a subset χ of the users of size Kγ + 1. For these users, the
algorithm will form a XOR in the same way as does the
algorithm of [1]. Then, the algorithm selects one user, s, from
the users of set χ, where this user will be helped by precoding.
It is easy to see that the subfile index that this user will receive
is χ \ {s} = τ .

Further, the remaining L − 1 users that are scheduled to
receive from the transmitted vector, need to be selected. These
users are described by set βτ,s, which is calculated by finding
the L− 1 consecutive elements of set [K] \ τ after element s.
For example, if χ = {1, 2, 3}, K = 5, L = 2 and s = 1, then
[K] \ τ = {1, 4, 5} thus, βτ,s = {4}, as 4 comes right after
element s = 1. The users of set τ ∪{s}∪βτ,s are the L+Kγ
users that will receive a subfile in this slot.

For the above selected users, the algorithm creates an L×1
vector, where one of the elements is a XOR designed for the
users in set χ, while the remaining elements correspond to
subfiles indexed with τ and intended for the users in set βτ,s.

Further, the algorithm forms the precoder matrix H−1
λ such

that it is the normalized inverse of the channel matrix between
the L-antenna transmitter and the users in λ = {s} ∪ βτ,s.

Finally, the transmitted vector is created by multiplying the
precoder matrix with the vector containing the messages.

a) Decoding Process: We begin with the users of set λ
i.e, the “precoding-assisted” users. Due to the design of the
precoder, we can see that these users will receive either the
XORed message (user s) or each of the uncoded messages to
the respective user i.e.,

yk∈λ = hHk xs,τ =

{
⊕k∈χW dk

χ\{k}, k = s

W dk
τ , else

(70)

where for simplicity we have removed the noise. It is easy to
see that users in set βτ,s will be assisted by precoding, thus
will only “see” the uncoded subfile that they want. Further,
user s will receive XOR Xχ which can proceed to decode
using its cached content.

On the other hand, users in set τ will be receiving a linear
combination of all L messages, which will proceed to decode
using both CSIT knowledge and their cached subfiles. The
received message at some user k ∈ τ takes the form

yk∈τ = hHk xs,τ (71)

= hHk h⊥λ\{s}Xχ + hHk

L−1∑
i=1

h⊥λ\βχ,s(i)W
dβχ,s(i)
τ . (72)

We can see that in Eq. (72), the subfiles that are included
in the summation term have all been cached by all receivers
of set τ , and as such they can be removed from the equation.
What remains is XOR Xχ which, by design, is decodable by
all users in τ .

Corollary 5. In Algorithm 3, each requested subfile W dk
τ , k ∈

[K] is transmitted exactly Kγ + L times.

Proof. Since each subfile (Wn
τ ) is divided into a total of Kγ+

L smaller subfiles (cf. index φ), in this section we aim to show
that each of these subfiles will be transmitted exactly once i.e.,
that each W dk

τ , k ∈ [K] appears in Kγ + L transmissions.
We split the proof in two steps, where in the first we prove

that any requested subfile will be transmitted Kγ + 1 times
while combined with other subfiles to form the XOR message,
while in the second we prove that any requested subfile is
transmitted L − 1 times while being a part of the uncoded
messages.

First, we can see that each XOR is transmitted a total of
Kγ + 1 times, i.e. for each different s ∈ χ (Step 2), which
implies that requested subfile W dk

τ will be transmitted Kγ+1
times as part of a XOR.

Further, we can see that this subfile can be potentially
transmitted, as part of the uncoded elements of the message,
when χ is of the form χ = τ ∪ {s}, while variable s (Step 2)
takes values s ∈ [K] \ τ \ {k}, thus s can take K −Kγ − 1
different values.

We can discern two cases, namely K(1−γ) = L and K(1−
γ) > L. In the first case where K −Kγ = L, it is clear that
for every s ∈ [K] \ τ \ {k} then βs,τ = [K] \ τ \ {s}, thus k
will be included in each transmission, which amounts to L−1
different subfiles.



In the second case, where the size of set [K]\τ is bigger than
L, only a subset of the users will be selected every time to form
sets βs,τ ,∀s ∈ [K] \ τ \ {k}. Using pk ∈ {1, 2, ...,K −Kγ},
k ∈ [K] \ τ to denote the position of element k in set [K] \ τ ,
we can see that k ∈ βs,τ if and only if for some l ∈ {2, ..., L},
the following equality holds

pk = (ps + l) mod (K −Kγ)− 1. (73)

The condition of Eq. (73) can be satisfied for exactly L − 1
different values of s. Further, for any given s it can only be
satisfied by a single l, thus k appears in exactly L − 1 sets
βs,τ , which completes the proof.

APPENDIX E
EXTENSION OF THE TWO TYPE CACHE-AIDED SCHEME

In this section we present an extension of Alg. 2 to accom-
modate any values L1, L2 ∈ [1, L−1], such that L1 +L2 = L.
The main premise is to increase the per-type subpacketization
by some factor d ∈ N, such that d ·L1 ∈ N, d ·L2 ∈ N. Hence
the total subpacketization becomes

S = d2(L1 +K1γ1)

(
K1

K1γ1

)
(L2 +K2γ2)

(
K2

K2γ2

)
. (74)

The new scheme works by repeating d2 times Alg. 2,
with the difference that some transmissions will allocate dL1e
streams to users of set K1 and at the same time will allocate
bL2c streams to set K2 and in some transmissions will allocate
bL1c streams to users of set K1 and at the same time will
allocate dL2e streams to set K2.

This way, it allows the average allocation of L1 and
L2 streams to each user type, which leads to the DoF
DL(K1, γ1,K2, γ2) = L+K1γ1 +K2γ2.
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