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Abstract

Adaptive Bayesian quadrature (ABQ) is a powerful approach to numerical integra-
tion that empirically compares favorably with Monte Carlo integration on problems
of medium dimensionality (where non-adaptive quadrature is not competitive). Its
key ingredient is an acquisition function that changes as a function of previously
collected values of the integrand. While this adaptivity appears to be empirically
powerful, it complicates analysis. Consequently, there are no theoretical guarantees
so far for this class of methods. In this work, for a broad class of adaptive Bayesian
quadrature methods, we prove consistency, deriving non-tight but informative con-
vergence rates. To do so we introduce a new concept we call weak adaptivity. Our
results identify a large and flexible class of adaptive Bayesian quadrature rules as
consistent, within which practitioners can develop empirically efficient methods.

1 Introduction

Numerical integration, or quadrature/cubature, is a fundamental task in many areas of science and en-
gineering. This includes machine learning and statistics, where such problems arise when computing
marginals and conditionals in probabilistic inference problems. In particular in hierarchical Bayesian
inference, quadrature is generally required for the computation of the marginal likelihood, the key
quantity for model selection, and for prediction, for which latent variables are to be marginalized out.

To describe the problem, let Ω be a compact metric space, µ be a finite positive Borel measure on
Ω (such as the Lebesgue measure on compact Ω ⊂ Rd) that playes the role of reference measure,
π : Ω→ R be a known density function, and f : Ω→ R be an integrand, a known function such that
the function value f(x) ∈ R can be obtained for any given query x ∈ Ω. The task of quadrature is to
numerically compute the integral (assumed to be intractable analytically)∫

f(x)π(x)dµ(x).

This is done by evaluating the function values f(x1), . . . , f(xn) at design points x1, . . . , xn ∈ Ω
and using them to approximate f and the integral. The points x1, . . . , xn should be “good” in the
sense that f(x1), . . . , f(xn) provide useful information for computing the the integral.

Monte Carlo methods are the classic alternative, where x1, . . . , xn are randomly generated from
a proposal distribution and the integral is approximated as

∑n
i=1 wif(xi), with w1, . . . , wn being

importance weights. Such Monte Carlo estimators achieve the convergence rate of order n−1/2 for
n the number of design points, under a mild condition that f is a bounded function. This dimension-
independent rate, and the mild condition about f , would be one of the reasons for the wide popularity
and successes of Monte Carlo methods. However, as has been empirically known for practitioners
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and also theoretically investigated recently [3, 10], practical (i.e. Markov Chain) Monte Carlo can
struggle in high dimensional integration, requiring a huge number of sample points to give a reliable
estimate:2 the curse of dimensionality appears in the constant term in front of the rate n−1/2 [22,
Sec. 2.5] [10, Thm. 2.1 and Sec. 3.4]. Thus, there has been a number of attempts on developing
methods that work better than Monte Carlo for high dimensional integration, such as Quasi Monte
Carlo methods [14].

Adaptive Bayesian quadrature (ABQ) is a recent approach from machine learning that actively,
sequentially and deterministiclaly selects design points to adapt to the target integrand [29, 30, 16, 1,
9]. It is an extension of Bayesian quadrature (BQ) [28, 15, 8, 21], a probabilistic numerical method
for quadrature that makes use of prior knowledge about the integrand, such as smoothness and
structure, via a Gaussian process (GP) prior. Convergence rates of BQ methods take the form n−s/d

if the integrand f is s-times differentiable, or of the form exp(−Cn1/d) for some constant C > 0 if
f is infinitely smooth [8, 20]. While the rates can be faster than Monte Carlo, the dimension d of the
ambient space now appears in the rate, meaning that BQ also suffers from the curse of dimensionality.

ABQ has been developed to improve upon such vanilla BQ methods. One drawback of vanilla BQ is
that the Gaussian process model prevents the use of certain kinds of relevant knowledge about the
integrand, such as it being positive (or non-negative), because they cannot be encoded in a Gaussian
distribution. Positive integrands are ubiquitous in machine learning and statistics, where integration
tasks emerge in the marginalization and conditioning of probability density functions, which are
positive by definition. In ABQ such prior knowledge is modelled by describing the integrand as given
by a certain transformation (or warping) of a GP — for instance, an exponentiated GP [30, 29, 9] or a
squared GP [16]. ABQ methods with such transformations have empirically been shown to improve
upon both standard BQ and Monte Carlo, leading to state-of-the-art wall-clock time performance on
problems of medium dimensionality.

If the transformation is nonlinear, as in the examples above, the transformed GP no longer allows an
analytic expression for its posterior process, and thus approximations are used to obtain a tractable
acquisition function. In contrast to the posterior covariance of GPs, these acquisition functions then
become dependent on previous observations, making the algorithm adaptive. This twist seems to be
critical for ABQ methods’ superior empirical performance, but it complicates analysis. Thus, there
has been no theoretical guarantee for their convergence, rendering them heuristics in practice. This is
problematic since integration is usually an intermediate computational step in a larger system, and
thus must be reliable. This paper provides the first convergence analysis for ABQ methods.

In Sec. 2 we review ABQ methods, and formulate a generic class of acquisition functions that cover
those of [16, 1, 2, 9]. Our convergence analysis is done for this class. We also derive an upper-bound
on the quadrature error using a transformed integrand, which is applicable to any design points and
given in terms of the GP posterior variance (Prop. 2.1). In Sec. 3, we establish a connection between
ABQ and certain weak greedy algorithms (Thm. 3.3). This is based on a new result that the scaled
GP posterior variance can be interpreted in terms of a certain projection in a Hilbert space (Lemma
3.1). Using this connection, we derive convergence rates of ABQ methods in Sec. 4. For ease of the
reader, we present a high-level overview of the proof structure in Fig. 1.

The key to our analysis is a relatively general notion for active exploration that we term weak
adaptivity. An ABQ method that satisfies weak adaptivity (and a few additional technical constraints)
is consistent, and the conceptual space of weakly adaptive BQ methods is large and flexible. We hope
that our results spark a practical interest in the design of empirically efficient acquisition functions, to
extend the reach of quadrature to problems of higher and higher dimensionality.

Related Work. For standard BQ methods, and the corresponding kernel quadrature rules, conver-
gence properties have been studied extensively [e.g. 7, 19, 4, 40, 21, 11, 8, 27, 20]. Some of these
works theoretically analyze methods that deterministically generate design points [12, 5, 17, 7, 11].
These methods are, however, not adaptive, as design points are generated independently to the
function values of the target integrand.

Our analysis is technically related to the work by Santin and Haasdonk [34], which analyzed the
so-called P-greedy algorithm, an algorithm to sequentially obtain design points using the GP posterior

2For instance, Wenliang et al. [39, Fig. 3] used 1010 Monte Carlo samples to estimate the the normalizing
constant of their model, on problems with medium dimensionality (10 to 50 dims).
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Figure 1: Relationships between the various auxiliary results and how they yield the main results.

variance as an acquisition function. Our results can be regarded as a generalization of their result so
that the acquisition function can include i) a scaling and a transformation of the GP posterior variance
and ii) a data-dependent term that takes care of adaptation; see (4) for details.

Adaptive methods have also been theoretically studied in the information-based complexity literature
[23, 24, 25, 26]. The key result is that optimal points for quadrature can be obtained without observing
actual function values, if the hypothesis class of functions is symmetric and convex (e.g. the unit
ball in a Hilbert space): in this case adaptation does not help improve the performance. On the other
hand, it the hypothesis class is either asymmetric or nonconvex, then adaptation may be helpful. For
instance, a class of positive functions is assymetric because only one of f or −f can be positive.
These results thus support the choice of acquisition functions of existing ABQ methods, where the
adaptivity to function values is motivated by modeling the positivity of the integrand.

Notation. N denotes the set of positive integers, R the real line, and Rd the d-dimensional Euclidean
space for d ∈ N. Lp(Ω) for 1 ≤ p <∞ is the Banach space of p-integrable functions, and L∞(Ω) is
that of essentially bounded functions.

2 Adaptive Bayesian Quadrature (ABQ)

We describe here ABQ methods, and present a generic form of acquisition functions that we analyze.
We also derive an upper-bound on the quadrature error using a transformed integrand in terms of the
GP posterior variance, motivating our analysis in the later sections. Throughout the paper we assume
that the domain Ω is a compact metric space and µ is a finite positive Borel measure on Ω.

2.1 Bayesian Quadrature with Transformation

ABQ methods deal with an integrand f that is a priori known to satisfy a certain constraint, for
example f(x) > 0 ∀x ∈ Ω. Such a constraint is modeled by considering a certain transformation
T : R → R, and assuming that there exists a latent function g : Ω → R such that the integrand f
is given as the transformation of g, i.e., f(x) = T (g(x)), x ∈ Ω. Examples of T for modeling the
positivity include i) the square transformation T (y) = α+ 1

2y
2, where α > 0 is a small constant such

that 0 < α < infx∈Ω f(x), assuming that f is bounded away from 0 [16]; and ii) the exponential
transformation T (y) = exp(y) [30, 29, 9]. Note that the identity map T (y) = y recovers standard
Bayesian quadrature (BQ) methods [28, 15, 7, 21]. To model the latent function g, a Gaussian process
(GP) prior [32] is placed over g:

g ∼ GP(m, k) (1)
where m : Ω→ R is a mean function and k : Ω× Ω is a covariance kernel. Both m and k should be
chosen to capture as much prior knowledge or belief about g (or its transformation f ) as possible,
such as smoothness and correlation structure; see e.g. [32, Chap. 4].

Assume that a set of points Xn := {x1, . . . , xn} ⊂ Ω are given, such that the kernel matrix
Kn := (k(xi, xj))

n
i,j=1 ⊂ Rn×n is invertible. Given the function values f(x1), . . . , f(xn), define
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gi(x) := zi ∈ R such that T (zi) = f(xi) for i = 1, . . . , n. Treating g(x1), . . . , g(xn) as “observed
data without noise,” the posterior distribution of g under the GP prior (1) is again given as a GP

g|(xi, g(xi))
n
i=1 ∼ GP(mg,Xn

, kXn
),

where mg,Xn : Ω → R is the posterior mean function and kXn : Ω × Ω → R is the posterior
covariance kernel given by (see e.g. [32])

mg,Xn
(x) := m(x) + kn(x)>K−1

n (gn −mn), (2)

kXn
(x, x′) := k(x, x′)− kn(x)>K−1

n kn(x′), (3)

where kn(x) := (k(x, x1), . . . , k(x, xn))> ∈ Rn, gn := (g(x1), . . . , g(xn))> ∈ Rn and mn =
(m(x1), . . . ,m(xn))> ∈ Rn. Then a quadrature estimate3 for the integral

∫
f(x)π(x)dµ(x) is given

as the integral
∫
T (mg,Xn

(x))π(x)dµ(x) of the transformed posterior mean function T (mg,Xn
),

or as the integral of the posterior expectation of the transformation
∫
EǵT (ǵ(x))π(x)dµ(x), where

ǵ ∼ GP(mg,Xn
, kXn

) is the posterior GP. The posterior covariance for
∫
f(x)π(x) is given similarly;

see [9, 16] for details.

2.2 A Generic Form of Acquisition Functions

The key remaining question is how to select good design points x1, . . . , xn ∈ Ω. ABQ methods
sequentially and deterministically generate x1, . . . , xn using an acquisition function. Many of the
acquisition functions can be formulated in the following generic form:

x`+1 ∈ arg max
x∈Ω

a`(x), where a`(x) = F
(
q2(x)kX`

(x, x)
)
b`(x), (` = 0, 1, . . . , n−1) (4)

where kX0(x, x) := k(x, x), F : [0,∞) → [0,∞) is an increasing function such that F (0) = 0,
q : Ω → (0,∞) and b` : Ω → R is a function that may change at each iteration `. e.g., it may
depend on the function values f(x1), . . . , f(x`) of the target integrand f . Intuitively, b`(x) is a
data-dependent term that makes the point selection adaptive to the target integrand, q(x) may be seen
as a proposal density in importance sampling, and F determines the balance between the uncertainty
sampling part q2(x)kX`

(x, x) and the adaptation term b`(x). We analyse ABQ with this generic
form (4), aiming for results with wide applicability. Here are some representative choices.

Warped Sequential Active Bayesian Integration (WSABI) [16]: Gunter et al. [16] employ the
square transformation f(x) = T (g(x)) = α+ 1

2g
2(x) with two acquisition functions: i) WSABI-L

[16, Eq. 15], which is based on linearization of T and recovered with F (y) = y, q(x) = π(x) and
b`(x) = m2

g,X`
(x); and ii) WSABI-M [16, Eq. 14], the one based on moment matching given by

F (y) = y, q(x) = π(x) and b`(x) = 1
2kX`

(x, x) +m2
g,X`

(x).

Moment-Matched Log-Transformation (MMLT) [9]: Chai and Garnett [9, 3rd raw in Table 1]
use the exponential transformation f(x) = T (g(x)) = exp(g(x)) with the acquisition function given
by F (y) = exp(y)− 1 , q(x) = 1 and b`(x) = exp (kX`

(x, x) + 2mg,X`
(x)).

Variational Bayesian Monte Carlo (VBMC) [1, 2]: Acerbi [2, Eq. 2] uses the identity f(x) =
T (g(x)) = g(x) with the acquisition function given by F (y) = yδ1 , q(x) = 1 and b`(x) =

πδ2` (x) exp(δ3mg,X`
(x)), where π` is the variational posterior at the `-th iteration and δ1, δ2, δ3 ≥ 0

are constants: setting δ1 = δ2 = δ3 = 1 recovers the original acquisition function [1, Eq. 9]. Acerbi
[1, Sec. 2.1] considers an integrand f that is defined as the logarithm of a joint density, while π is an
intractable posterior that is gradually approximated by the variational posteriors π`.

For the WSABI and MMLT, the acquisition function (4) is obtained by a certain approximation
for the posterior variance of the integral

∫
f(x)π(x)dµ(x) =

∫
T (g(x))π(x)dµ(x); thus this is a

form of uncertainty sampling. Such an approximation is needed because the posterior variance of
the integral is not available in closed form, due to the nonlinear transformation T . The resulting
acquisition function includes the data-dependent term b`(x), which encourages exploration in regions
where the value of g(x) is expected to be large. This makes ABQ methods adaptive to the target
integrand. Alas, it also complicates analysis. Thus there has been no convergence guarantee for these
ABQ methods; which is what we aim to remedy in this paper.

3The point is that, in contrast to the integral over f , this estimate should be analytically tractable. This
depends on the choices for T , k and π. For instance, for T (y) = y or T (y) = α+ 1

2
y2 with k and π Gaussian,

the estimate can be obtained analytically [16], while for T (y) = exp(y) one needs approximations; [cf. 9].
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2.3 Bounding the Quadrature Error with Transformation

Our first result, which may be of independent interest, is an upper-bound on the error for the
quadrature estimate

∫
T (mg,Xn(x))π(x)dµ(x) based on a transformation described in Sec. 2.1. It

is applicable to any point set Xn = {x1, . . . , xn}, and the bound is given in terms of the posterior
variance kXn

(x, x). This gives us a motivation to study the behavior of this quantity for x1, . . . , xn
generated by ABQ (4) in the later sections. Note that the essentially same bound holds for the other
estimator

∫
EǵT (ǵ(x))π(x)dµ(x) with ǵ ∼ GP(mg,Xn

, kXn
), which we describe in Appendix A.2.

To state the result, we need to introduce the Reproducing Kernel Hilbert Space (RKHS) of the
covariance kernel k of the GP prior. See e.g. [35, 36] for details of RKHS’s, and [6, 18] for
discussions of their close but subtle relation to the GP notion. LetHk be the RKHS associated with
the covariance kernel k of the GP prior (1), with 〈·, ·〉Hk

and ‖ · ‖Hk
being its inner-product and

norm, respectively. Hk is a Hilbert space consisting of functions on Ω, such that i) k(·, x) ∈ Hk
for all x ∈ Ω, and ii) h(x) = 〈k(·, x), h〉Hk

for all h ∈ Hk and x ∈ Ω (the reproducing property),
where k(·, x) denotes the function of the first argument such that y → k(y, x), with x being fixed.
As a set of functions, Hk is given as the closure of the linear span of such functions k(·, x), i.e.,
Hk = span {k(·, x) | x ∈ Ω}, meaning that any h ∈ Hk can be written as h =

∑∞
i=1 αik(·, yi) for

some (αi)
∞
i=1 ⊂ R and (yi)

∞
i=1 ⊂ Ω such that ‖h‖2Hk

=
∑∞
i,j=1 αiαjk(yi, yj) < ∞. We are now

ready to state our assumption:
Assumption 1. T : R→ R is continuously differentiable. For f : Ω→ R, there exists g : Ω→ R
such that f(x) = T (g(x)), x ∈ Ω and that g̃ := g − m ∈ Hk. It holds that ‖k‖L∞(Ω) :=
supx∈Ω k(x, x) <∞ and ‖m‖L∞(Ω) := supx∈Ω |m(x)| <∞.

The assumption g̃ := g −m ∈ Hk is common in theoretical analysis of standard BQ methods, where
T (y) = y and m = 0 [see e.g. 7, 40, 8, and references therein]. This assumption may be weakened
by using proof techniques developed for standard BQ in the misspecifid setting [19, 20], but we leave
it for a future work. The other conditions on T , k and m are weak.
Proposition 2.1. (proof in Appendix A.1) Let Ω be a compact metric space, Xn = {x1, . . . , xn} ⊂
Ω be such that the kernel matrix Kn = (k(xi, xj))

n
i,j=1 ∈ Rn×n is invertible, and π : Ω→ [0,∞)

and q : Ω→ [0,∞) be continuous functions such that Cπ/q :=
∫

Ω
π(x)/q(x)dµ(x) <∞. Suppose

that Assumption 1 is satisfied. Then there exists a constant Cg̃,m,k,T depending only on g̃, m, k and
T such that∣∣∣∣∫ f(x)π(x)dµ(x)−

∫
T (mg,Xn

(x))π(x)dµ(x)

∣∣∣∣ ≤ Cg̃,m,k,TCπ/q‖g̃‖Hk
sup
x∈Ω

q(x)
√
kXn

(x, x).

Prop. 2.1 shows that to establish convergence guarantees for ABQ methods, it is sufficient to analyze
the convergence behavior of the quantity supx∈Ω q(x)

√
kXn

(x, x) for points Xn = {x1, . . . , xn}
generated from (4). This is what we focus on in the remainder.

3 Connections to Weak Greedy Algorithms in Hilbert Spaces

To analyze the quantity supx∈Ω q(x)
√
kXn(x, x) for points Xn = {x1, . . . , xn} generated from

ABQ (4), we show here that the ABQ can be interpreted as a certain weak greedy algorithm studied
by DeVore et al. [13]. To describe this, letH be a (generic) Hilbert space and C ⊂ H be a compact
subset. To define some notation, let h1, . . . , hn ∈ C be given. Denote by Sn := span(h1, . . . , hn) =
{
∑n
i=1 αihi | α1, . . . , αn ∈ R} ⊂ H the linear subspace spanned by h1, . . . , hn. For a given h ∈ C,

let dist(h, Sn) be the distance between h and Sn defined by

dist(h, Sn) := inf
g∈Sn

‖h− g‖H = inf
α1,...,αn∈R

‖h−
n∑
i=1

αihi‖H,

where ‖ · ‖H denotes the norm ofH. Geometrically, this is the distance between h and its orthogonal
projection onto the subspace Sn. The task considered in [13] is to select h1, . . . , hn ∈ C such that
the worst case error in C defined by

en(C) := sup
h∈C

dist(h, Sn) (5)
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becomes as small as possible: h1, . . . , hn ∈ C are to be chosen to approximate well the set C.

The following weak greedy algorithm is considered in DeVore et al. [13]. Let γ be a constant
such that 0 < γ ≤ 1, and let n ∈ N. First select h1 ∈ C such that ‖h1‖H ≥ γ suph∈C ‖h‖H. For
` = 1, . . . n−1, suppose that h1, . . . , h` have already been generated, and let S` = span(h1, . . . , h`).
Then select a next element h`+1 ∈ C such that

dist(h`+1, S`) ≥ γ sup
h∈C

dist(h, S`), (` = 1, . . . , n− 1). (6)

In this paper we refer to such h1, . . . , hn as a γ-weak greedy approximation of C inH because, γ = 1
recovers the standard greedy algorithm, while γ < 1 weakens the “greediness” of this rule. DeVore
et al. [13] derived convergence rates of the worst case error (5) as n→∞ for h1, . . . , hn generated
from this weak greedy algorithm.

Weak Greedy Algorithms in the RKHS. To establish a connection to ABQ, we formulate the
weak greedy algorithm in an RKHS. LetHk be the RKHS of the covariance kernel k as in Sec. 2.3,
and q(x) be the function in (4). We define a subset Ck,q ⊂ Hk by

Ck,q := {q(x)k(·, x) | x ∈ Ω} ⊂ Hk.

Note that Ck,q is the image of the mapping x → q(x)k(·, x) with Ω being the domain. Therefore
Ck,q is compact, if k and q are continuous and Ω is compact; this is because in this case the mapping
x → q(x)k(·, x) becomes continuous, and in general the image of a continuous mapping from a
compact domain is compact. Thus, we make the following assumption:
Assumption 2. Ω is a compact metric space, q : Ω→ R is continuous with q(x) > 0 for all x ∈ Ω,
and k : Ω× Ω→ R is continuous.

The following simple lemma establishes a key connection between weak greedy algorithms and
ABQ. (Note that the the result for the case q(x) = 1 is well known in the literature, and the novelty
lies in that we allow for q(x) to be non-constant.) For a geometric interpretation of (7) in terms of
projections, see Fig.2 in Appendix B.1.
Lemma 3.1. (proof in Appendix B.1) Let x1, . . . , xn ∈ Ω be such that the kernel matrix Kn =
(k(xi, xj))

n
i,j=1 ∈ Rn×n is invertible. Define hx := q(x)k(·, x) for any x ∈ X , and let Sn :=

span(hx1
, . . . , hxn

) ⊂ Hk. Assume that q(x) > 0 holds for all x ∈ Ω. Then for all x ∈ Ω we have

q2(x)kXn(x, x) = dist2(hx, Sn), (7)

where kXn
(x, x) is the GP posterior variance function given by (3). Moreover, we have

en(Ck,q) = sup
x∈Ω

q(x)
√
kXn

(x, x), (8)

where en(Ck,q) is the worst case error defined by (5) with C := Ck,q and Sn defined here.

Lemma 3.1 (8) suggests that we can analyze the convergence properties of supx∈Ω q(x)
√
kXn(x, x)

for Xn = {x1, . . . , xn} generated from the ABQ rule (4) by analyzing those of the worst case error
en(Ck,q) for the corresponding elements hx1 , . . . , hxn , where hxi := q(xi)k(·, xi).

Adaptive Bayesian Quadrature as a Weak Greedy Algorithm. We now show that the ABQ (4)
gives a weak greedy approximation of the compact set Ck,q in the RKHSHk in the sense of (6). We
summarize required conditions in Assumptions 3 and 4. As mentioned in Sec. 1, Assumption 3 is the
crucial one: its implications for certain specific ABQ methods will be discussed in Sec. 4.2.
Assumption 3 (Weak Adaptivity Condition). There are constants CL, CU > 0 such that CL <
b`(x) < CU holds for all x ∈ Ω and for all ` ∈ N ∪ {0}.

Intuitively, this condition enforces ABQ to not overly focus on a specific local region in Ω and to
explore the entire domain Ω. For instance, consider the following two situations where Assumption 3
does not hod.: (a) b`(x) → +0 as ` → ∞ for some local region x ∈ A ⊂ Ω, while b`(x) remains
bounded from blow for x ∈ Ω\A; (b) b`(x) → +∞ as ` → ∞ for some local region x ∈ B ⊂ Ω,
while b`(x) remains bounded from above for x ∈ Ω\B. In case (a), ABQ will not allocate any points
to this region A at all, after a finite number of iterations. Thus, the information about the integrand f
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on this region A will not be obtained after a finite number of evaluations, which makes it difficult to
guarantee the consistency of quadrature, unless f has a finite degree of freedom on A. Similarly, in
case (b), ABQ will generate points only in the region B and no point in the rest of the region Ω\B,
after a finite number of iterations. Assumption 3 prevents such problematic situations to occur.

Assumption 4. F : [0,∞) → [0,∞) is increasing and continuous, and F (0) = 0. For any
0 < c ≤ 1, there is a constant 0 < ψ(c) ≤ 1 such that F−1 (cy) ≥ ψ(c)F−1(y) holds for all y ≥ 0.

For instance, if F (y) = yδ for δ > 0 then F−1(y) = y1/δ and thus we have ψ(c) = c1/δ

for 0 < c ≤ 1; δ = 1 is the case for the WSABI [16], and δ > 0 for the VBMC [1, 2]. If
F (y) = exp(y) − 1 as in the MMLT [9], we have F−1(y) = log(y + 1) and it can be shown
that ψ(c) = c for 0 < c ≤ 1; see Appendix B.2. Note that in Assumption 4, the inverse F−1 is
well-defined since F is increasing and continuous.

In our analysis, we allow for the point selection procedure of ABQ itself “weak,” in the sense that the
optimization problem in (4) may be solved approximately.4 That is, for a constant 0 < γ̃ ≤ 1 we
assume that the points x1, . . . , xn satisfy

a`(x`+1) ≥ γ̃max
x∈Ω

a`(x), (` = 0, 1, . . . , n− 1), (9)

The case γ̃ = 1 amounts to exactly solving the global optimization problem of ABQ (4).

The following lemma guarantees we can assume without loss of generality that the kernel matrix
Kn for the points x1, . . . , xn generated from the ABQ (4) is invertible under the assumptions above,
since otherwise supx∈Ω kX`

(x, x) = 0 holds, implying that the quadrature error is 0 from Prop. 2.1.
This guarantees the applicability of Lemma 3.1 for points generated from the ABQ (4).

Lemma 3.2. (proof in Appendix B.3) Suppose that Assumptions 2, 3 and 4 are satisfied. For a
constant 0 < γ̃ ≤ 1, assume that x1, . . . , xn are generated by a γ̃-weak version of ABQ (4), i.e., (9) is
satisfied. Then either one of the following holds: i) the kernel matrixK` = (k(xi, xj))

`
i,j=1 ∈ R`×` is

invertible for all ` = 1, . . . , n; or ii) there exists some ` = 1, . . . , n such that supx∈Ω kX`
(x, x) = 0.

Lemma 3.1 leads to the following theorem, which establishes a connection between ABQ and weak
greedy algorithms.

Theorem 3.3. (proof in Appendix B.4) Suppose that Assumptions 2, 3 and 4 are satisfied. For a
constant 0 < γ̃ ≤ 1, assume that x1, . . . , xn are generated by a γ̃-weak version of ABQ (4), i.e.,
(9) is satisfied. Let hxi

= q(xi)k(·, xi) for i = 1, . . . , n. Then hx1
, . . . , hxn

are a γ-weak greedy
approximation of Ck,q inHk with γ =

√
ψ(γ̃CL/CU ).

4 Convergence Rates of Adaptive Bayesian Quadrature

We use the connection established in the previous section to derive convergence rates of ABQ. To
this end we introduce a quantity called Kolmogorov n-width, which is defined (for a Hilbert spaceH
and a compact subset C ⊂ H) by

dn(C) := inf
Un

sup
h∈C

dist(h, Un),

where the infimum is taken over all n-dimensional subspaces Un ofH. This is the worst case error
for the best possible solution using n elements inH; thus dn(C) ≤ en(C) holds for any choice of Sn
that defines the worst case error en(C) in (5). The following result by DeVore et al. [13, Corollary
3.3] relates the Kolmogorov n-width with the worst case error en(C) of a weak greedy algorithm.

Lemma 4.1. Let H be a Hilbert space and C ⊂ H be a compact subset. For 0 < γ ≤ 1, let
h1, . . . , hn ∈ C be a γ-weak greedy approximation of C inH for n ∈ N, and let en(C) be the worst
case error (5) for the subspace Sn := span(h1, . . . , hn). Then we have:

– Exponential decay: Assume that there exist constants α > 0, C0 > 0 and D0 > 0 such that
dn(C) ≤ C0 exp(−D0n

α) holds for all n ∈ N. Then en(C) ≤
√

2C0γ
−1 exp(−D1n

α)
holds for all n ∈ N with D1 := 2−1−2αD0.

4We thank George Wynne for pointing out that our analysis can be extended to this weak version of ABQ.
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– Polynomial decay: Assume that there exist constants α > 0 and C0 > 0 such that dn(C) ≤
C0n

−α holds for all n ∈ N. Then en(C) ≤ C1n
−α holds for all n ∈ N with C1 :=

25α+1γ−2C0.

– Generic case: We have en(C) ≤
√

2γ−1 min1≤`<n (d`(C))n−` for all n ∈ N. In particular,
e2n(C) ≤

√
2γ−1

√
dn(C) holds for all n ∈ N.

Thus, the key is how to upper-bound the Kolmogorov n-width dn(Ck,q) for the RKHSHk associated
with the covariance kernel k. Given such an upper bound, one can then derive convergence rates for
ABQ using Thm. 3.3.

Below we demonstrate such results in the setting where Ω ⊂ Rd is compact and µ is the Lebesgue
measure, focusing on kernels with infinite smoothness such as Gaussian and (inverse) multiquadric
kernels, using Lemma 4.1 for the case of exponential decay. In a similar way (using Lemma 4.1
for the polynomial decay case) one can also derive rates for kernels with finite smoothness, such as
Matérn and Wendland kernels. These additional results are presented in Appendix C.4. We emphasize
that one can also analyze other cases (e.g. kernels on a sphere) by deriving upper-bounds on the
Kolmogorov n-width and using Thm. 3.3.

4.1 Convergence Rates for Kernels with Infinite Smoothness

We consider kernels with infinite smoothness, such as square-exponential kernels k(x, x′) =
exp(−‖x − x′‖2/γ2) with γ > 0, multiquadric kernels k(x, x′) = (−1)dβe(c2 + ‖x − x′‖2)β

with β, c > 0 such that β 6∈ N, where dβe denotes the smallest integer greater than β, and inverse
multiquadric kernels k(x, x′) = (c2 + ‖x− x′‖2)−β with β > 0. We have the following bound on
the Kolmogorov n-width of the Ck,q for these kernels; the proof is in Appendix C.2.

Proposition 4.2. Let Ω ⊂ Rd be a cube, and suppose that Assumption 2 is satisfied. Let k be a
square-exponential kernel or an (inverse) multiquadric kernel. Then there exist constants C0, D0 > 0
such that dn(Ck,q) ≤ C0 exp(−D0n

1/d) holds for all n ∈ N.

The requirement for Ω to be a cube stems from the use of Wendland [38, Thm. 11.22] in our proof,
which requires this condition. In fact, this can be weakened to Ω being a compact set satisfying an
interior cone condition, but the resulting rate weakens to O(exp(−D1n

−1/2d)) (note that this is still
exponential); see [38, Sec. 11.4]. This also applies to the following results. Combining Prop. 4.2
with Lemma 3.1, Thm. 3.3 and Lemma 4.1, we now obtain a bound on supx∈Ω q(x)

√
kXn(x, x).

Theorem 4.3. (proof in Appendix C.3) Suppose that Assumptions 2, 3 and 4 are satisfied. Let
Ω ⊂ Rd be a cube, and k be a square-exponential kernel or an (inverse) multiquadric kernel. For
a constant 0 < γ̃ ≤ 1, assume that Xn = {x1, . . . , xn} ⊂ Ω are generated by a γ̃-weak version of
ABQ (4), i.e., (9) is satisfied. Then there exist constants C1, D1 > 0 such that

sup
x∈Ω

q(x)
√
kXn

(x, x) ≤ C1ψ(γ̃CL/CU )−1/2 exp(−D1n
1/d) (n ∈ N).

As a directly corollary of Prop. 2.1 and Thm. 4.3, we finally obtain a convergence rate of the ABQ
with an infinitely smooth kernel, which is exponentially fast.
Corollary 4.4. Suppose that Assumptions 1, 2, 3 and 4 are satisfied, and that Cπ/q :=∫

Ω
π(x)/q(x)dµ(x) < ∞. Let Ω ⊂ Rd be a cube, and k be a square-exponential kernel or a

(inverse) multiquadric kernel. For a constant 0 < γ̃ ≤ 1, assume that Xn = {x1, . . . , xn} ⊂ Ω are
generated by a γ̃-weak version of ABQ (4), i.e., (9) is satisfied. Then there exists a constant D1 > 0
independent of n ∈ N such that∣∣∣∣∫ f(x)π(x)dµ(x)−

∫
T (mg,Xn(x))π(x)dµ(x)

∣∣∣∣ = O(exp(−D1n
1/d)) (n→∞).

4.2 Discussions of the Weak Adaptivity Condition (Assumption 3)

We discuss consequences of our results to individual ABQ methods reviewed in Sec. 2.2. We do this
in particular by discussing the weak adaptivity condition (Assumption 3), which requires that the
data-dependent term bn(x) in (4) is uniformly bounded away from zero and infinity. (A discussion
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for VBMC by Acerbi [1, 2] is given in Appendix C.8. To summarize, Assumption 3 holds if the
densities of the variational distributions are bounded away uniformly from zero and infinity.)

We first consider the WSABI-L approach by Gunter et al. [16], for which bn(x) = (mg,Xn
(x))2;

a similar result is presented for the WSABI-M in Appendix C.7. The following bounds for bn(x)
follow from Lemma C.5 in Appendix C.5.

Lemma 4.5. Let bn(x) := (mg,Xn
(x))2. Suppose that Assumption 1 is satisfied,

and that infx∈Ω |m(x)| > 2‖g̃‖Hk
‖k‖1/2L∞(Ω). Then Assumption 3 holds for CL :=(

infx∈Ω |m(x)| − 2‖g̃‖Hk
‖k‖1/2L∞(Ω)

)2

> 0 and CU :=
(
‖m‖L∞(Ω) + 2‖g̃‖Hk

‖k‖1/2L∞(Ω)

)2

<∞.

Lemma 4.5 implies that WSABI-L may not be consistent when, e.g., one uses the zero prior mean
function m(x) = 0, since in this case the condition infx∈Ω |m(x)| > 2‖g̃‖Hk

‖k‖1/2L∞(Ω) is not
satisfied. Intuitively, the inconsistency may happen because the posterior mean mg,Xn

(x) for inputs
x in regions distant from the current design points x1, . . . , xn would become close to 0, since the
prior mean function is 0; and such regions will never be explored in the subsequent iterations,
because of the form bn(x) = (mg,Xn(x))2. One simple way to guarantee the consistency is to
make a modification like bn(x) := 1

2 (mg,Xn
(x))2 + α = T (mg,Xn

(x)); then we can guarantee
that CL ≥ α > 0, encouraging exploration in the whole region Ω. This then makes the algorithm
consistent.

We next consider the MMLT method by Chai and Garnett [9], for which bn(x) =
exp (kXn

(x, x) + 2mg,Xn
(x)). Lemma 4.6 below shows that the weak adaptivity condition holds

for the MMLT as long as Assumption 1 is satisfied. Therefore different from the WSABI, the MMLT
is consistent without requiring a further assumption.

Lemma 4.6. (proof in Appendix C.6) Let bn(x) := exp(kXn(x, x) + 2mg,Xn(x)). Suppose
that Assumption 1 is satisfied. Then Assumption 3 holds for CL := exp(−2‖m‖L∞(Ω) −
4‖g̃‖Hk

‖k‖1/2L∞(Ω)) > 0 and CU := exp(‖k‖L∞(Ω) + 2‖m‖L∞(Ω) + 4‖g̃‖Hk
‖k‖1/2L∞(Ω)) < 0.

5 Conclusion and Outlook

Extending efficient numerical integration beyond the low-dimensional domain remains both a
formidable challenge and a crucial desideratum for many areas. In machine learning, efficient
numerical integration in the high-dimensional domain would be a game-changer for Bayesian learn-
ing. Developed by, and used in, the NeurIPS community, adaptive Bayesian quadrature is a promising
new direction for progress in this fundamental problem class. So far, it has been hindered by the
absence of theoretical guarantees.

In this work, we have provided the first known convergence guarantees for ABQ methods, by
analyzing a generic form of their acquisition functions. Of central importance is the notion of weak
adaptivity which, speaking vaguely, ensures that the algorithm asymptotically does not “overly focus”
on some evaluations. It is conceptually related to ideas like detailed balance and ergodicity, which
play a similar role for Markov Chain Monte Carlo methods (where, speaking equally vaguely, they
guard against the same kind of locality) [cf. §6.5 & 6.6 in 33]. Like those of MCMC, our sufficient
conditions for consistency span a flexible class of design options, and can thus act as a guideline for
the design of novel acquisition functions for ABQ, guided by practical and intuitive considerations.
Based on the results presented herein, novel ABQ methods may be proposed for novel domains
other than only positive integrands, for example integrands with discontinuities [31] and those with
spatially inhomogeneous smoothness.

An important theoretical question, however, remains to be addressed: While our results provide
convergence guarantees for ABQ methods, they do not provide a theoretical explanation for why,
how and when ABQ methods should be fundamentally better than non-adaptive methods. In fact,
little is known about theoretical properties of adaptive quadrature methods in general. In applied
mathematics, they remain an open problem [23, 24, 25, 26]. While we have to leave this question of
ABQ’s potential advantages over standard BQ for future research, we consider this area to be highly
promising on account of the fundamental role of high-dimensional integrals of structured functions in
probabilistic machine learning.
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A Appendices for Section 2

A.1 Proof of Prop. 2.1

In the proof we use the following notation: ‖
√
k‖L∞ := supx∈Ω

√
k(x, x) and ‖

√
kXn
‖L∞ :=

supx∈Ω

√
kXn

(x, x).

Proof. It is known that (see e.g. [18, Prop. 3.10]) the GP posterior standard deviation can be written
as √

kXn(x, x) = sup
u∈Hk:‖u‖Hk

≤1

|u(x)− kn(x)>K−1
n un|, x ∈ Ω (10)

where u := (u(x1), . . . , u(xn))> ∈ Rn. Note that for any x ∈ Ω, we have mg,Xn(x) = m(x) +
k>n (x)K−1

n g̃n, since g̃n = (g̃(xi))
n
i=1 = (m(xi) − g(xi))

n
i=1 = mn − gn. Therefore by g(x) =

m(x) + g̃(x), g̃ ∈ Hk and (10) we have

|g(x)−mg,Xn
(x)| = |g̃(x)− k>n (x)K−1

n g̃| ≤ ‖g̃‖Hk

√
kXn

(x, x). (11)

On the other hand, by Taylor’s theorem, there exists αx,Xn
∈ [0, 1] such that for yx,Xn

:= g(x) +
αx,Xn

(mg,Xn
(x)− g(x)) ∈ R we have

T (mg,Xn
(x)) = T (g(x)) + T ′ (yx,Xn

) (mg,Xn
(x)− g(x)),

where T ′(y) denotes the derivative of T at y ∈ R. From this and (11) we have

|T (g(x))− T (mg,Xn
(x))| ≤ |T ′(yx,Xn

)| |mg,Xn
(x)− g(x)| ≤ |T ′(yx,Xn

)| ‖g̃‖Hk

√
kXn

(x, x)

Note that |T ′(yx,Xn)| is uniformly bounded over all x ∈ Ω and n ∈ N, since T ′ is continuous by
assumption and |yx,Xn

| is bound uniformly over all x ∈ Ω and n ∈ N; the latter can be shown as

|yx,Xn | ≤ |g(x)|+ |αx,Xn(mg,Xn(x)− g(x))| ≤ |m(x)|+ |g̃(x)|+ |mg,Xn(x)− g(x)|
≤ ‖m‖L∞(Ω) + ‖g̃‖Hk

√
k(x, x) + ‖g̃‖Hk

√
kXn(x, x) ≤ ‖m‖L∞(Ω) + 2‖g̃‖Hk

‖
√
k‖L∞ ,

where we used |g̃(x)| = | 〈g̃, k(·, x)〉Hk
| ≤ ‖g̃‖Hk

√
k(x, x) and kXn

(x, x) ≤ k(x, x). This implies
that

|T ′(yx,Xn
)| ≤ sup

y∈R:|y|≤‖m‖L∞(Ω)+2‖g̃‖Hk
‖
√
k‖L∞

|T ′(y)| =: Cg̃,m,k,T <∞.

Therefore,
|T (g(x))− T (mg,Xn(x))| ≤ Cg̃,m,k,T ‖g̃‖Hk

√
kXn(x, x),

which implies that ∣∣∣∣∫ T (g(x))π(x)dµ(x)−
∫
T (mg,Xn(x))π(x)dµ(x)

∣∣∣∣
≤

∫
|T (g(x))− T (mg,Xn(x))|π(x)dµ(x)

≤ Cg̃,m,k,T ‖g̃‖Hk

∫ √
kXn

(x, x)π(x)dµ(x)

≤ Cg̃,m,k,TCπ/q‖g̃‖Hk
sup
x∈Ω

q(x)
√
kXn

(x, x),

where the last inequality follows from Hölder’s inequality.

A.2 Bound on Quadrature Error for an Alternative Estimator

We show here that for the quadrature estimator
∫
EǵT (ǵ(x))π(x)dµ(x), where ǵ ∼ GP(mg,Xn

, kXn
)

is the posterior Gaussian process, the essentially same upper bound as Proposition 2.1 holds, under
an additional condition that

Eǵ
[
T ′ (|g(x)|+ |ǵ(x)|)2

]
< C, ∀x ∈ Ω, ∀n ∈ N, (12)

holds for some C > 0, where T ′ is the derivative of T . This condition can be shown to be satisfied
for transformations T considered in the paper.

13



Proposition A.1. Let Ω be a compact metric space, Xn = {x1, . . . , xn} ⊂ Ω be such that the kernel
matrix Kn = (k(xi, xj))

n
i,j=1 ∈ Rn×n is invertible, and π : Ω → [0,∞) and q : Ω → [0,∞) be

continuous functions such that Cπ/q :=
∫

Ω
π(x)/q(x)dµ(x) < ∞. Suppose that Assumption 1 is

satisfied. Let ǵ ∼ GP(mg,Xn
, kXn

) and assume (12) is satisfied for some C > 0. Then we have∣∣∣∣∫ f(x)π(x)dµ(x)−
∫

EǵT (ǵ(x))π(x)dµ(x)

∣∣∣∣ ≤√2C(1 + ‖g̃‖2Hk
)Cπ/q sup

x∈Ω
q(x)

√
kXn

(x, x).

Proof. First fix x ∈ Ω. By Taylor’s theorem, there exists αx,Xn,ǵ ∈ [0, 1] such that for yx,Xn,ǵ :=
g(x) + αx,Xn,ǵ(ǵ(x)− g(x)) we have

T (ǵ(x)) = T (g(x)) + T ′(yx,Xn,ǵ)(ǵ(x)− g(x)).

Therefore,

(Eǵ[T (ǵ(x))]− T (g(x)))
2

= (Eǵ [T ′(yx,Xn,ǵ)(ǵ(x)− g(x))])
2

≤ Eǵ[(T ′(yx,Xn,ǵ))
2]Eǵ[(ǵ(x)− g(x))2]

≤ CEǵ[(ǵ(x)− g(x))2],

where the last inequality follows from |yx,Xn,ǵ| ≤ |g(x)|+ |ǵ(x)| and the assumption (12). Moreover,

Eǵ[(ǵ(x)− g(x))2] ≤ 2Eǵ[(ǵ(x)−mg,Xn
(x))2] + 2(mg,Xn

(x)− g(x))2

≤ 2kXn
(x, x) + 2‖g̃‖2Hk

kXn
(x, x),

where the last inequality follows from (11). Thus,

|T (g(x))− Eǵ[T (ǵ(x))]| ≤
√

2C(1 + ‖g̃‖2Hk
)
√
kXn

(x, x)

and it follows that ∣∣∣∣∫ T (g(x))π(x)dµ(x)−
∫

Eǵ[T (ǵ(x))]π(x)dµ(x)

∣∣∣∣
≤

∫
|T (g(x))− Eǵ[T (ǵ(x))]|π(x)dµ(x)

≤
√

2C(1 + ‖g̃‖2Hk
)

∫ √
kXn(x, x)π(x)dµ(x)

≤
√

2C(1 + ‖g̃‖2Hk
)Cπ/q sup

x∈Ω
q(x)

√
kXn

(x, x),

where the last inequality follows from Hölder’s inequality.

B Appendices for Section 3

B.1 Proof of Lemma 3.1

Proof. It is easy to show by the reproducing property that the GP posterior variance kXn
(x, x) in

(3) can be written as the squared RKHS distance between k(·, x) and its orthogonal projection onto
span(k(·, x1), . . . , k(·, xn)) ⊂ Hk, provided that the kernel matrix Kn = (k(xi, xj))

n
i,j=1 ∈ Rn×n

is invertible:

kXn(x, x) = dist2(k(·, x), span(k(·, x1), . . . , k(·, xn))) = inf
α1,...,αn∈R

‖k(·, x)−
n∑
i=1

αik(·, xi)‖2Hk
.

Therefore,

q2(x)kXn
(x, x) = inf

α1,...,αn∈R
‖q(x)k(·, x)−

n∑
i=1

αiq(x)k(·, xi)‖2Hk

= inf
β1,...,βn∈R

‖q(x)k(·, x)−
n∑
i=1

βiq(xi)k(·, xi)‖2Hk
,

= inf
g∈Sn

‖hx − g‖2Hk
= dist2(hx, Sn),
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where the second equality follows from q(x) > 0 and q(xi) > 0 for all i = 1, . . . , n; this proves (7).
Using this, (5) and the definition of Ck,q , the identity (8) can be shown as

en(Ck,q) = sup
h∈Ck,q

dist(h, Sn) = sup
x∈Ω

dist(hx, Sn) = sup
x∈Ω

q(x)
√
kXn

(x, x).

Fig. 2 provides a geometric interpretation of (7) in Lemma 3.1 and its proof.

k( ⋅ , x1)
k( ⋅ , x2)

k( ⋅ , x)

q(x1)k( ⋅ , x1)

q(x2)k( ⋅ , x2)

q(x)k( ⋅ , x)

Projection

Projection

dist(q(x)k( ⋅ , x), S2) = q(x) kX2(x, x)
dist(k( ⋅ , x), S2) = kX2(x, x)

S2 = span(k( ⋅ , x1), k( ⋅ , x2))
= span(q(x1)k( ⋅ , x1), q(x2)k( ⋅ , x2))

Figure 2: A geometric interpretation of (7) in Lemma 3.1, for a simple case where n = 2. The yellow
plane represents the subspace S2 := span(k(·, x1), k(·, x2)) = span(q(x1)k(·, x1), q(x2)k(·, x2)),
where the identity follows from q(x1), q(x2) > 0.

B.2 An Example for Assumption 4

The following lemma gives the constant ψ(c) in Assumption 4 for the case F (y) = exp(y)− 1, and
thus F−1(y) = log(1 + y), of the MMLT [9]: ψ(c) = c. The proof is elementary, but we include it
for completeness.

Lemma B.1. For any 0 < c ≤ 1, we have log(1 + cy) ≥ c log(1 + y) for all y ≥ 0.

Proof. The assertion is equivalent to that 1 + cy ≥ (1 + y)c holds for all y ≥ 0, which we show
below. Let f(y) := 1 + cy and g(y) := (1 + y)c for y ≥ 0. Their derivatives are f ′(y) = c
and g′(y) = c(1 + y)c−1, for which we have f ′(y) ≥ g′(y) for all y ≥ 0, since c − 1 ≤ 0. We
also have f(0) = g(0) = 1. Therefore, by the fundamental theorem of calculus, we conclude that
f(y) = f(0) +

∫ y
0
f ′(ỹ)dỹ ≥ g(0) +

∫ y
0
g′(ỹ)dỹ = g(y) for all y ≥ 0.

B.3 Proof of Lemma 3.2

Proof. Let ` = 1, . . . , n − 1, and assume that x1, . . . , x` ∈ Ω are such that the kernel matrix
K` = (k(xi, xj))

`
i,j=1 ∈ R`×` is invertible; this is always true for ` = 1. For x`+1 ∈ Ω such that

a`(x`+1) ≥ γ̃maxx∈Ω a`(x) = γ̃maxx∈Ω F
(
q2(x)kX`

(x, x)
)
b`(x) with 0 < γ̃ ≤ 1, we show

that either of the following holds: i) k(·, x`+1) is linearly independent to k(·, x1), . . . , k(·, x`) and
thus K`+1 = (k(xi, xj))

`+1
i,j=1 ∈ R(`+1)×(`+1) is invertible, or ii) supx∈Ω kX`

(x, x) = 0.

Assume that ii) does not hold. Then there exists y ∈ Ω such that kX`
(y, y) > 0. For this y we have

a`(y) = F
(
q2(y)kX`

(x, x)
)
b`(x) > 0, since q(x), b`(x) > 0 for all x ∈ Ω, F (0) = 0 and F is

increasing. Therefore a`(x`+1) ≥ γ̃a`(y) > 0, and thus kX`
(x`+1, x`+1) > 0. Note that since the
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kernel matrix K` is invertible, we have

kX`
(x`+1, x`+1) = inf

α1,...,αn∈R
‖k(·, x`+1)−

∑̀
i=1

αik(·, xi)‖2Hk

This expression and kX`
(x`+1, x`+1) > 0 imply that k(·, x`+1) is linearly independent to

k(·, x1), . . . , k(·, x`), since otherwise k(·, x`+1) can be written as a linear combination of
k(·, x1), . . . , k(·, x`), and thus kX`

(x`+1, x`+1) becomes 0 from the above expression. Thus i)
has been shown.

B.4 Proof of Theorem 3.3

Proof. For ` = 0, . . . , n− 1, by a`(x`+1) ≥ γ̃ supx∈Ω a`(x) and Assumption 3, we have

a`(x`+1) ≥ γ̃ sup
x∈Ω

F
(
q2(x)kX`

(x, x)
)
b`(x)

≥ γ̃CL sup
x∈Ω

F
(
q2(x)kX`

(x, x)
)

= γ̃CLF

(
sup
x∈Ω

q2(x)kX`
(x, x)

)
,

where the last equality follows from F being an increasing function. This implies by Assumption 3
that

F
(
q2(x`+1)kX`

(x`+1, x`+1)
)
≥ (γ̃CL/CU )F

(
sup
x∈Ω

q2(x)kX`
(x, x)

)
and therefore, again by F being increasing and also by Assumption 4,

q2(x`+1)kX`
(x`+1, x`+1) ≥ F−1

(
(γ̃CL/CU )F

(
sup
x∈Ω

q2(x)kX`
(x, x)

))
≥ ψ(γ̃CL/CU ) sup

x∈Ω
q2(x)kX`

(x, x).

Note that ‖hx‖2Hk
= ‖q(x)k(·, x)‖2Hk

= q2(x)k(x, x) for all x ∈ Ω. Therefore for ` = 0,
in which case kX0(x, x) = k(x, x), we have ‖hx1‖Hk

≥
√
ψ(γ̃CL/CU ) supx∈Ω ‖hx‖Hk

=√
ψ(γ̃CL/CU ) suph∈Ck,q

‖h‖Hk
. For ` = 1, . . . , n− 1 we have by Lemma 3.1 (which is applicable

from Assumption 2),

dist2(hx`+1
, S`) = q2(x`+1)kX`

(x`+1, x`+1)

≥ ψ(γ̃CL/CU ) sup
x∈Ω

dist2(hx, S`) = ψ(γ̃CL/CU ) sup
h∈Ck,q

dist2(h, S`).

Thus (6) holds for γ =
√
ψ(γ̃CL/CU ), which completes the proof.

C Appendices for Section 4

C.1 A Bound on the Kolmogorov n-width

Lemma C.1. Let x1, . . . , xn ∈ Ω be such that the kernel matrix Kn = (k(xi, xj))
n
i,j=1 ∈

Rn×n is invertible. Assume that q(x) > 0 for all x ∈ Ω. Then we have dn(Ck,q) ≤
infx1,...,xn∈Ω supx∈Ω q(x)

√
kXn

(x, x).

Proof. Using Lemma 3.1, the Kolmogorov n-width can be upper-bounded as

dn(Ck,q) = inf
Un

sup
h∈Ck,q

dist(h, Un) = inf
Un

sup
x∈Ω

dist(hx, Un)

≤ inf
x1,...,xn∈Ω

sup
x∈Ω

dist(hx, Sn) = inf
x1,...,xn∈Ω

sup
x∈Ω

q(x)
√
kXn

(x, x),

where the infimum in the first line is taken over all n-dimensional subspaces Un of Hk, and Sn =
span(hx1

, . . . , hxn
) with hx = q(x)k(·, x).
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Lemma C.1 can be used for deriving upper-bounds on the Kolmogorov n-width dn(Ck,q) for concrete
examples of the kernel k on Ω ⊂ Rd. To this end, the key quantity is the fill distance defined by

hXn,Ω := sup
x∈Ω

min
i=1,...,n

‖x− xi‖,

where Xn := {x1, . . . , xn} ⊂ Ω. This measures how densely the points x1, . . . , xn fill the region Ω.

C.2 Proof of Prop. 4.2 (Kolmogorov n-width for kernels with infinite smoothness)

Proof. By [38, Theorem 11.22], where kXn(x, x) is called the power function, there is a constant
c > 0 such that kXn

(x, x) ≤ exp(−c1/hXn,Ω) holds for any set of design pointsXn = {x1, . . . , xn}
with sufficiently small hXn,Ω. If we define x1, . . . , xn as equally-spaced grid points in Ω, then we
have hXn,Ω = c2n

−1/d for some c2 > 0 independent of n. Therefore for large enough n, we
have kXn(x, x) ≤ exp(−c1c−1

2 n1/d). In other words, there exists n0 ∈ N such that kXn(x, x) ≤
exp(−(c1/c2)n1/d) holds for all n ≥ n0. Note that there exists a constant c3 > 0 such that
kXn(x, x′) ≤ c3 holds for all x ∈ Ω and for all n, since Ω is compact and kXn(x, x) is continuous
w.r.t. x for any fixed n and non-increasing w.r.t. n for any fixed x ∈ Ω.

Now, define c4 > 0 as a constant such that c4 exp(−(c1/c2)n
1/d
0 ) = c3, and let c5 := max(c4, 1).

Then, for n < n0 we have c5 exp(−(c1/c2)n1/d) ≥ c4 exp(−(c1/c2)n1/d) ≥ c3 ≥ kXn
(x, x).

For n ≥ n0, we have c5 exp(−(c1/c2)n1/d) ≥ exp(−(c1/c2)n1/d) ≥ kXn
(x, x). Therefore we

conclude that kXn(x, x) ≤ c5 exp(−(c1/c2)n1/d) holds for all n ∈ N and x ∈ Ω.

Note that infx1,...,xn∈Ω supx∈Ω q(x)
√
kXn

(x, x) ≤ supx∈Ω q(x)
√
kXn

(x, x) holds for any
fixed choice of x1, . . . , xn defining kXn

(x, x) in the upper-bound. If we chose
x1, . . . , xn as equally-spaced grid points in the upper-bound, we have that dn(Ck,q) ≤
infx1,...,xn∈Ω supx∈Ω q(x)

√
kXn

(x, x) ≤ supx∈Ω q(x)
√
c5 exp(− 1

2c1c
−1
2 n1/d) by Lemma C.1 and

the above argument. Setting C0 := supx∈Ω q(x)
√
c5 and D0 := 1

2c1c
−1
2 concludes the proof.

C.3 Proof of Theorem 4.3

Proof. By Thm. 3.3, hx1
, . . . , hxn

are a γ-weak approximation of Ck,q in Hk with γ =√
ψ(γ̃CL/CU ). From this, and by Lemma 4.1 (exponential) and Prop. 4.2, there exist

C0, D0 > 0 such that for C1 :=
√

2C0 and D1 := 2−1−2/dD0, we have en(Ck,q) ≤
C1ψ(γ̃CL/CU )−1/2 exp(−D1n

−1/d) for all n ∈ N. Combining this and (8) in Lemma 3.1 con-
cludes the proof.

C.4 Convergence Rates for ABQ using Kernels with Finite Smoothness

We deal with here kernels with finite smoothness. In particular, we consider shift-invariant kernels of
the form k(x, x′) = Φ(x− x′) with Φ ∈ L1(Rd) satisfying

c1(1 + ‖ω‖2)−r ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2)−r, ω ∈ Rd (13)

for some c1, c2 > 0 and r > d/2, where Φ̂ denotes the Fourier transform of Φ. The RKHS of such
a kernel is norm-equivalent to a Sobolev space of order r, which consists of functions whose weak
derivative up to order r exist and are square-integrable [38, Corollary 10.48]; thus r represents the
smoothness of functions in the RKHS.

For instance, Matérn kernels [32, p. 84] of the form

k(x, x′) =
21−ν

Γ(ν)

(√
2ν‖x− x′‖

`

)ν
Kν

(√
2ν‖x− x′‖

`

)
, (ν, ` > 0)

where Γ is the Gamma function and Kν is the modified Bessel function of second kind, satisfy
(13) with r = ν + d/2. Another example is Wendland kernels [38, Theorem 10.35], which have
compact supports and thus have computational advantages; see [37] and [38, Chapter 9] for details.
In the following result, we use the notion of a Lipschitz boundary and an interior cone condition, the
definitions of which can be found in, e.g., [20, Section 3] and references therein.
Assumption 5. Ω ⊂ Rn is a compact set having a Lipshitz boundary and satisfying an interior cone
condition.
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C.4.1 Kolmogorov n-width for kernels with finite smoothness

Proposition C.2. Suppose that Assumptions 2 and 5 are satisfied. Let k(x, x′) = Φ(x − x′) be a
kernel satisfying (13) for r > d/2. Then there exists a constant C0 > 0 such that

dn(Ck,q) ≤ C0n
−r/d+1/2, n ∈ N.

Proof. By [38, Corollary 11.33] (where we set m = 0 and q =∞), there exists a constant c1 > 0
such that for all g ∈ Hk we have

‖g −mg,Xn‖L∞(Ω) ≤ c1h
r−d/2
Xn,Ω

‖g‖Hk
,

for Xn = {x1, . . . , xn} ⊂ Ω with sufficiently small hXn,Ω. By setting x1, . . . , xn as equally-spaced
grid points in Ω, there exists a constant c2 > 0 such that hXn,Ω ≤ c2n−1/d. Therefore we have for
some c3 > 0

sup
g∈Hk:‖g‖Hk

≤1

‖g −mg,Xn
‖L∞(Ω) ≤ c3n−r/d+1/2

for sufficiently large n. Note that the GP posterior variance can be written as (see e.g. [18, Prop. 3.10])√
kXn(x, x) = sup

g∈Hk:‖g‖Hk
≤1

|g(x)−mg,Xn(x)|, x ∈ Ω.

This implies that
√
kXn(x, x) ≤ sup‖g‖Hk

≤1 ‖g − mg,Xn‖L∞(Ω) for all x ∈ Ω, which further

implies that supx∈Ω

√
kXn(x, x) ≤ sup‖g‖Hk

≤1 ‖g−mg,Xn‖L∞(Ω). Therefore, for large enough n

we have supx∈Ω

√
kXn

(x, x) ≤ c3n−r/d+1/2 if x1, . . . , xn are equally-spaced grid points in Ω. In
other words, there exists n0 ∈ N such that

sup
x∈Ω

√
kXn

(x, x) ≤ c3n−r/d+1/2, ∀n ≥ n0.

Note that there exists a constant c4 > 0 such that
√
kXn(x, x) ≤ c4 holds for all x ∈ Ω and for

all n ∈ N, since Ω is compact, kXn(x, x) is continuous w.r.t. x for any fixed n and kXn(x, x) is
non-increasing w.r.t. n for any fixed x ∈ Ω. Therefore supx∈Ω

√
kXn(x, x) ≤ c4 for all n ∈ N.

Now, define c5 > 0 as a constant such that c5n
−r/d+1/2
0 = c4, and let c6 := max(c5, c3). Then, for

n < n0 we have c6n−r/d+1/2 ≥ c5n
−r/d+1/2 ≥ c4 ≥ supx∈Ω

√
kXn

(x, x). For n ≥ n0, we have
c6n
−r/d+1/2 ≥ c3n

−r/d+1/2 ≥ supx∈Ω

√
kXn

(x, x). Therefore we conclude that, if x1, . . . , xn
are equally-spaced grid points in Ω, we have

sup
x∈Ω

√
kXn

(x, x) ≤ c6n−r/d+1/2, ∀n ∈ N,

Finally, by Lemma C.1 we have

dn(Ck,q) ≤ sup
x∈Ω

q(x)c6n
−r/d+1/2

and thus the assertion holds with C0 := supx∈Ω q(x)c6 <∞, which is bounded since q is continuous
and Ω is compact.

C.4.2 Convergence Rates

Combining Prop. C.2 and Thm. 3.3, we have the following bound on supx∈Ω q(x)
√
kXn

(x, x), for
x1, . . . , xn are generated by a γ̃-weak version of ABQ (9) with a constant 0 < γ̃ ≤ 1.
Theorem C.3. Suppose that Assumptions 2, 3, 4 and 5 are satisfied. Let k(x, x′) = Φ(x− x′) be a
kernel satisfying (13) for r > d/2. For a constant 0 < γ̃ ≤ 1, assume that Xn = {x1, . . . , xn} ⊂ Ω
are generated by a γ̃-weak version of ABQ (4), i.e., (9) is satisfied. Then there exists a constant
C1 > 0 such that

sup
x∈Ω

q(x)
√
kXn

(x, x) ≤ C1ψ(γ̃CL/CU )−1 n−r/d+1/2, n ∈ N.
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Proof. Let hx := q(x)k(·, x) for any x ∈ Ω. Then by Thm. 3.3, hx1 , . . . , hxn are a γ-weak greedy
approximation of Ck,q inHk with γ =

√
ψ(γ̃CL/CU ). From this, and by Lemma 4.1 (polynomial

decay) and Prop. C.2, there exists a constant C0 > 0 such that en(Ck,q) ≤ 25α+2γ−2C0n
−α holds

for all n ∈ N, where α := r/d − 1/2. Combining this inequality and (8) yields assertion with
C1 = 25α+2C0.

As a corollary of Prop. 2.1 and Thm. C.3, we have the following result.
Corollary C.4. Suppose that Assumptions 1, 2, 3, 4 and 5 are satisfied, and that Cπ/q :=∫
|π(x)/q(x)|dµ(x) < ∞. Assume k(x, x′) = Φ(x − x′) satisfies (13) with r > d/2. For a

constant 0 < γ̃ ≤ 1, assume that Xn = {x1, . . . , xn} ⊂ Ω are generated by a γ̃-weak version of
ABQ (4), i.e., (9) is satisfied. Then we have∣∣∣∣∫ f(x)π(x)dµ(x)−

∫
T (mg,Xn

(x))π(x)dµ(x)

∣∣∣∣ = O(n−r/d+1/2) (n→∞).

C.5 Bounds for GP Posterior Mean Functions

The following lemma is used for deriving the constants CL and CU in Assumption 3 for individual
ABQ methods.
Lemma C.5. Assume that g̃ := g −m ∈ Hk. Then for all x ∈ Ω and n ∈ N, we have

|m(x)| − 2‖g̃‖Hk

√
k(x, x) ≤ |mg,Xn

(x)| ≤ |m(x)|+ 2‖g̃‖Hk

√
k(x, x)

Proof. We show the lower-bound; the upper-bound can be shown similarly. Since g̃ ∈ Hk, we have
|mg̃,Xn

(x)| ≤ |g̃(x)|+ |g̃(x)−mg̃,Xn
(x)|

≤ ‖g̃‖Hk

√
k(x, x) + ‖g̃‖Hk

√
kXn

(x, x) ≤ 2‖g̃‖Hk

√
k(x, x). (14)

Note that mg,Xn
(x) = m(x) +mg̃,Xn

(x) since g̃ = g −m. Therefore,

|mg,Xn
(x)| ≥ |m(x)| − |mg̃,Xn

(x)| ≥ |m(x)| − 2‖g̃‖Hk

√
k(x, x).

C.6 Proof of Lemma 4.6

Proof. First note that 0 ≤ kXn(x, x) ≤ k(x, x) for all x ∈ Ω and n ∈ N. Using Lemma C.5, we
have

exp(kXn
(x, x) + 2mg,Xn

(x)) ≤ exp(kXn
(x, x) + 2|mg,Xn

(x)|)
≤ exp(k(x, x) + 2|m(x)|+ 4‖g̃‖Hk

√
k(x, x))

≤ exp(‖k‖L∞(Ω) + 2‖m‖L∞(Ω) + 4‖g̃‖Hk
‖k‖1/2L∞(Ω))

Similarly, we have
exp(kXn

(x, x) + 2mg,Xn
(x)) ≥ exp(2mg,Xn

(x))

≥ exp(−2|mg,Xn
(x)|)

≥ exp(−2|m(x)| − 4‖g̃‖Hk

√
k(x, x))

≥ exp(−2‖m‖L∞(Ω) − 4‖g̃‖Hk
‖k‖1/2L∞(Ω))

C.7 Bounds for WSABI-M

The following bounds for bXn(x) = 1
2kXn(x, x) + (mg,X(x))2 of the WSABI-M [16] can be easily

obtained using Lemma C.5 and 0 ≤ 1
2kXn

(x, x) ≤ 1
2‖k‖L∞(Ω).

Lemma C.6. Let bXn
(x) = 1

2kXn
(x, x) + (mg,X(x))2. Suppose that Assumption 1 is satisfied,

and that infx∈Ω |m(x)| > 2‖g̃‖Hk
‖k‖1/2L∞(Ω). Then CL < bn(x) < CU for all x ∈ Ω and n ∈ N,

where CL := (infx∈Ω |m(x)| − 2‖g̃‖Hk
‖k‖1/2L∞(Ω))

2 > 0 and CU := 1
2‖k‖L∞(Ω) + (‖m‖L∞(Ω) +

‖k‖1/2L∞(Ω))
2 <∞.
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C.8 Discussion for Variational Bayesian Monte Carlo (VBMC)

The VBMC by Acerbi [1, 2] uses F (y) = yδ1 , q(x) = 1 and bn(x) = πδ2n (x) exp(δ3mg,Xn(x)),
where πn is the variational posterior at the n-th iteration and δ1, δ2, δ3 ≥ 0 are constants. Recall that
in this method the transformation is identity: T (y) = y for y ∈ R; thus g = f . The following result
can be easily obtained from Lemma C.5.
Lemma C.7. Let bn(x) = πδ2n (x) exp(δ3mg,Xn

(x)) with δ2, δ3 ≥ 0. Suppose that Assumption 1
is satisfied, and that there exist constants DL, DU such that 0 < DL < πn(x) < DU < ∞ holds
for all x ∈ Ω and n ∈ N. Then we have CL < bn(x) < CU <∞ for all x ∈ Ω and n ∈ N, where
CL := Dδ2

L exp(−δ3(‖m‖L∞(Ω) + 2‖g̃‖Hk
‖k‖1/2L∞(Ω))) > 0 and CU := Dδ2

U exp(δ3(‖m‖L∞(Ω) +

2‖g̃‖Hk
‖k‖1/2L∞(Ω))) <∞.

The condition 0 < DL < πn(x) < DU <∞ for all x ∈ Ω and n ∈ N requires that 1) the supports
of the variational distributions should cover the whole domain Ω; and that ii) the density values
of the variational distributions should be uniformly bounded from above. This implies that, if the
variational family is a set of Gaussian mixtures (as proposed by Acerbi [1, 2]), then the variance of
each mixture component should be uniformly lower- and upper-bounded; otherwise the condition
0 < DL < πn(x) < DU <∞ may not be satisifed.

We note that in the setting of the VBMC, the density π in the target integral
∫
f(x)π(x)dµ(x) is

an intractable posterior density, and it is to be approximated as
∫
mf,Xn

(x)πn(x)dµ(x) using the
variational posterior πn; therefore there is also an error due to the approximation of π by πn. Thus, a
complete theoretical analysis requires analyzing the convergence behavior of the variational posterior
πn; this is out of scope of this paper and we leave it for future research.
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