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Abstract
Representing information about music is a complex activity that involves different sub-tasks.

This thesis mostly focuses on classical music, researching how to represent and exploit rich

metadata. Our main goal is to investigate knowledge representation and discovery strategies

applied to classical music, including research topics such as Knowledge-Base population,

metadata prediction and recommender systems. We first propose a complete workflow for the

management of music metadata using Semantic Web technologies. We introduce a specialised

ontology and a set of controlled vocabularies for the different concepts specific to music.

Then, we present an approach for converting data, in order to go beyond the librarian practice

currently in use, relying on mapping rules and interlinking with controlled vocabularies.

Finally, we show how these data can be exploited. In particular, we study approaches based

on embeddings computed on structured metadata, titles, and symbolic music for ranking and

recommending music. Several demo applications have been realized for testing the previous

approaches and resources.
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Abrégé
Représenter l’information décrivant la musique est une activité complexe, qui implique dif-

férentes sous-tâches. Cette thèse porte principalement sur la musique classique et étudie

comment représenter et exploiter ces informations. L’objectif principal est l’étude de stratégies

de représentation et de découverte de connaissances appliquées à la musique classique, dans

des domaines tels que la production de bases de connaissances, la prédiction de métadon-

nées et les systèmes de recommandation. Nous proposons tout d’abord une architecture

pour la gestion des métadonnées de musique à l’aide des technologies du Web Sémantique.

Nous introduisons une ontologie spécialisée et un ensemble de vocabulaires contrôlés pour

les différents concepts spécifiques à la musique. Ensuite, nous présentons une approche de

conversion des données, afin d’aller au-delà de la pratique bibliothécaire actuellement utilisée,

en s’appuyant sur des règles d’appariement et sur l’interconnexion avec des vocabulaires

contrôlés. Enfin, nous montrons comment ces données peuvent être exploitées. En particulier,

nous étudions des approches basées sur des plongements calculés sur des métadonnées struc-

turées, des titres et de la musique symbolique pour classer et recommander de la musique.

Plusieurs applications de démonstration ont été réalisées pour tester les approches et les

ressources produites.
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Chapter 1

Introduction

Music is everywhere. Our era opens for us the possibility to access and play music anytime,

anywhere, from a multitude of network connected devices. The recent technological progress

has deeply changed the music listening experience: in last decade, we moved from local music

archives – saved on physical media such as optical discs and MP3 players, which were defining

the limits in terms of storage – to potentially endless catalogues belonging to streaming music

services, free from the constraints of the supports and dematerialised in computer clouds.

In this context, the role of recommender systems in item discovering may be decisive. And

consequently, the importance of the data on which those systems are based grows.

Classical music is a niche in the world of streaming music services. This niche actually consti-

tutes a super-genre that groups together a multiplicity of different genres – from Gregorian

chant to symphony, from ballet to chamber music – and involves artists who play a greater

variety of functions than their colleagues in modern music: composers, conductors, instru-

mentalists, voices, soloists, members of orchestras, etc.

This thesis manuscript mostly focuses on classical music, researching how to represent and

exploit its information. The main goal is the investigation of strategies of knowledge represen-

tation and discovery applied to classical music, involving subjects such as Knowledge-Base

population, metadata prediction, recommendation systems.

1.1 Motivation

In an interview of 2011 [102], Nolan Gasser from Pandora Radio stated that the challenges of

classical music deeply differs from the ones of the popular music1. Table 1.1 summarises those

differences. First, classical music embraces a huge material of centuries, which spans from

1With popular music, we refers here to all those genres that do not falls under the definitions of classical music,
jazz or world music, e.g. pop, rock, hip-hop, funk, rap, electronica, dance.
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Chapter 1. Introduction

the Gregorian chant to works written last Tuesday. A first consequence consists of a higher

number of musical works among which a recommender system can select relevant items,

when compared with the roughly 70 years of popular music history. The physical support

(before) and the radio schedule (today) contributed to define the form of the music we listen

daily, mostly consisting in songs lasting in average 2 or 3 minutes, in contrast with the long

duration of some classic forms, often articulated in parts (movements, acts, scenes). Even the

harmonic construction shows differences, with much more complexity and heterogeneity in

classical compositions.

Popular Music Classical Music
Main element Track (recording) Work (composition)
Main artist Performer Composer
Involved period 70 years Thousand years
Music forms Single songs Multi-movement works
Duration Few minutes Up to hours
Modes and keys Major, minor Polyphonic, homophonic, monophonic

Table 1.1 – Summary of the differences between popular and classical music

Other studies have as subject the data which represent the music content, which can be

expressed with an audio signal (recording) or with any symbolic representation of music, in

format of notation (music score) or digital encoding format like Musical Instrument Digital

Interface (MIDI) or Music Encoding Initiative (MEI). In this thesis, the focus is put on the data

about the music, which follow in the denomination of metadata. This group includes both

factual information – such as title, composer, composition date – and cultural definitions –

genre, emotion, style. Metadata are the driver of Music Information Retrieval (MIR) [30], being

often among the inputs or the output of MIR systems. In the same time, metadata are the

most used way humans have to access the information, for example searching for a specific

artist or song.

The music information can be very complex. Taking as example a well-known masterpiece

such as Beethoven’s Moonlight Sonata, it is possible to describe the music work as composed

by the German composer, its score in the handmade original version, in a later transcription,

or in the different printed editions, the multiple interpretations by pianists and – in case of

arrangement – by other instruments and orchestras. Related to these interpretations, the

performances, concerts, recordings, music albums edited on CDs and other media can also

be described. A substantial divergence between the world of classical music and the one of

popular music consists in the element (composition or recording) that people identify as

representative for a specific piece.

The experience of popular music is commonly driven by the recording. Our idea Bohemian

Rhapsody overlaps perfectly the recording of 1975 which brought the song to success. Like-
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1.1. Motivation

wise, the Queen are addressed as the artist of the song, assigning to the performer a bigger

importance than the composer Freddy Mercury. On classical side, the centre of the experience

is the composition, while none of the performances can be considered representative. In

facts, for classical music the word interpretation is widely used, in order to emphasise the

performer’s artistic choices, which make each performance unique and distinct from the

others. Nevertheless, the paternity of the music is always assigned to the composer, and

no one would ever claim that Moonlight Sonata’s authorship belongs to no one else except

Beethoven.

1.1.1 Track-based vs work-based approach

These differences are reflected in the way the music information is managed by stakeholders.

On one side, music steaming services follow a track-based approach. This approach see the

track as atomic unit, the artist as unique carrier of the authorship, and the presence in the

same album as unique possible relationship between tracks. In Spotify2 or Deezer3, Beethoven

is often not even specified as the “artist” of Moonlight Sonata, while sometimes his name may

be displayed near the performer’s one, without any distinction between their roles (Figure 1.1).

Similarly, the title string contains frequently other kind of information – like opus statement,

catalogue number, order number, key or instrument – without following any regularity. In

facts, classical pieces do not always have a proper title; the difficulty in naming classical music

works is a well-known problem, and often it produces a variety of different titles for the same

composition. This leads to a difficulty in searching for precise musical works and identifying

tracks which refers to the same composition. In addition, for a classical music lover is generally

difficult, if not impossible, searching for works of a given composer, or specific performances

of a defined conductor [156].

Music archives and libraries are used, in contrast, to have much more structured information

(Figure 1.2). We can talk about a work-based approach, which put the work as aggregation

unit and entry point, not only for those metadata defined at the composition-level (genre,

composition date, key), but also for related publications, performances, recordings, books, etc.

Libraries are indeed considered among the most complex and advanced forms of information

systems [113].

While the simplified version of the metadata of the track-based approach is sometimes enough

for commercial purpose, expressing the whole complexity of the music information opens up

new possibilities for advanced search, visualisation of music influences, and for developing

new recommendation strategies for musical applications.

2https://open.spotify.com/search/songs/moonlight+sonata
3https://www.deezer.com/search/moonlight+sonata
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Chapter 1. Introduction

Figure 1.1 – Beethoven’s Moonlight Sonata in a screenshot from Spotify

1.1.2 Status of Classical music metadata online

Fans of classical music are underrepresented on social media and music streaming plat-

forms [176]. On Spotify, Justin Bieber’s monthly listeners outnumber Mozart’s ones more

than 10 to one4. Therefore, those platforms hardly have classical music among their priorities

and this produces several consequences, one of the most evident being the correctness and

completeness of data.

At the beginning of my PhD, in 2016, we collected few screenshot of Google’s Search Engine

Result Page (SERP) (Figure 1.3). In that period, the Mountain View company was spreading the

presence of informative cards – today called Knowledge Panels5 – which covered also music.

We searched for two totally different music compositions. Contemporary music like Queen’s

Bohemian Rhapsody (a) was enriched with different metadata (artist, album, awards) and with

other version of the same song realised by different artists. Instead, a classic masterpieces

such as Beethoven’s Moonlight Sonata (b) displays much poorer information. Moreover, no

Knowledge Panel at all was displayed when searching with the original title “Sonata Quasi una

Fantasia” (c).

4Justin Bieber’s monthly listeners: 40 023 282 (https://open.spotify.com/artist/1uNFoZAHBGtllmzznpCI3s).
Mozart’s monthly listeners: 3 873 058 (https://open.spotify.com/artist/4NJhFmfw43RLBLjQvxDuRS).
Data updated on 27/05/2019.

5source: Google Website https://support.google.com/business/answer/6331288
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Figure 1.2 – Beethoven’s Moonlight Sonata in a screenshot from data.bnf.fr

While this specific example has been fixed in the years, incorrect or poor metadata about

classical music are still generally present on search engines. Thus, it can happen to google

for the music genre of classic composers and discover that Mozart is a Folk and Pop star

(Figure 1.4), Chopin a author of New Age pieces, and Haydn a virtuoso of Dance and Electronic

music6. Even services like Spotify may present some oddness and assign the genre “german

jazz" to Johann Sebastian Bach (Figure 1.5).

Underrepresentation means also less data for the algorithms. The related artists to Johann

Sebastian Bach in Spotify7 and Deezer may be highly influenced by popularity bias, given

the presence of some of the most known composer like Beethoven, Mozart, Chopin and

Vivaldi. This results do not bode well for any possibility of reaching the composers in the "long

tail" [32].

Speaking about research, classical music is popular for topic like automatic music genera-

tion [73, 76, 115] and optical music recognition [45, 145]. Instead, research in recommender

6 Those results are reproducible by searching “beethoven genre" and navigating to the artists “people also
search for". https://tinyurl.com/yyrtxo7h

7Recently renamed "Fans Also Like".
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Figure 1.3 – Google Knowledge Panels comparison: (a) result for “Queen Bohemian Rhapsody”,
(b) result for “Beethoven Moonlight Sonata”, (c) result for “Beethoven Sonata Quasi una
Fantasia”. Screenshots captured in mid-2016.

systems (RS) for classical music is currently at an early stage, paying the lack of dedicated

datasets and the incompleteness of metadata in generalist ones. In 15% of tracks involving

Bach’s compositions contained in the Million Playlist Dataset (MPD) [33], Bach does not figure

as an artist. In Million Song Dataset (MSD), the percentage arise up to 98%. Undoubtedly,

Knowledge-based RS would take benefit of "large amounts" of precise ("unambiguous and

non-noisy") data [93].

1.1.3 Why recommend classical music

The consumption of music overcome the one of any other media, including TV, books and

media [165]. It is a consequence that research on music RS can have a direct impact on people’s

everyday life.

The goal of RS is the improvement of users’ listening experience. A good RS help the user in

selecting relevant music following his/her taste, balancing previously listened tracks and new
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Figure 1.4 – Google Knowledge Panel about music composers and genres. Screenshot captured
in May 2019.

proposals to discover [183]. This is also valid for classical music.

Collaborating with different kind of music institutions, we identified at least other three use

cases which could take benefit of RS, and in particular applied to classical music: concert

programming, radio broadcasting services, editorial playlist producing. The ones currently in

charge of producing lists of music for those targets can be helped by automatic selection of

tracks made by RS. This human-machine collaboration may ease the task and improve results,

for example inducing the inclusion of unknown compositions.

1.2 Research context: the DOREMUS project

This research work has been carried in the motivating and inspiring context of the DOREMUS

project [2]. DOREMUS is a French research project with three main declared purposes8:

• improve music description to foster music exchange and reuse;

• travel to the heart of the musical archives in France’s greatest institutions;

• connect sources, multiply usage, enrich user experience.

8source: http://www.doremus.org/
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Figure 1.5 – The Spotify Developer tool page about Johann Sebastian Bach. Among genres,
a “german jazz" value stands out. Screenshot captured in January 2019. The data have been
corrected in the meanwhile.

The projects involved three main French cultural institution, the Bibliothèque nationale de

France (BnF)9, the concert hall Philharmonie de Paris (PP), and the public broadcaster Radio

France (RF). These institution provided access to their music archives – with the aim of pub-

lishing them in the Web of Data – and made their expertise available for the project goals. The

consortium was that completed by two industrial members – Ourouk and Meaning Engines –

and three academic members, namely the laboratory GERiiCO of the Université de Lille – in

charge of social research about music data usage –, the laboratory LIRMM of the Université de

Montpellier – in charge of data interlinking –, and EURECOM, which contribution in the fields

of data generation, data access and artificial intelligence is described in this thesis.

The project started in late 2014. When my research work started in April 2016, the research

directions of the projects were settled and some work was already started. In particular, the

foundation of the DOREMUS ontology was already defined, so that it could be published

in [37, 38, 39, 51]. Some investigation in the social usages of music had been conducted [50]. A

germinal version of a data converter allowed us to have a preliminary version of the data and

to start immediately the work on data visualisation, allowing us to present a demo few month

later [104]. The project officially ended in September 2018.

9fr: French national library.
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The perfect overlap between the project goals and my thesis ones, the friendly environment,

the challenges and ambitious goals that were assigned to EURECOM and me in particular,

the opportunities of exchange with people with different background and professionalism,

all those elements turned out to be a fruitful context for the development of my doctoral

formation and the development of this thesis.

1.3 Research Questions

As seen before, libraries contain detailed information about artists, works, performances,

scores and recordings. Representing the relations between those elements may result in a quite

complex structure. This information is normally encoded in several different formats, often

relying on different cataloguing practices and making use of different naming conventions.

This forbids interoperability, accessibility, knowledge extraction.

• Which model can be successfully applied for better representing those data?

• To which questions should this model be able to give an answer, in order to give benefit to

final users and music scholars?

• Which strategies should be applied for leveraging them in a Knowledge Base (KB) using

this model?

• How to make those data more accessible to researchers and developers?

The answers to those questions can enable further research, which can exploit this classical

music metadata.

• How graph-based algorithms can support recommender systems, involving knowledge

representation in the process?

• Which information is possible to extract from editorial playlists?

• How is final-user consumption impacted by music specialised KB?

• Apart from metadata, is graph representation suitable for representing also the music

content?

1.4 Summary of contributions

This work contributed to the research with the following outcomes:

• a model and a set of controlled vocabularies – realised thanks to the expertise of the

cultural institutions – for describing music in detail;

• a Knowledge Graph (KG) focusing on classical music and containing data about artists,

works, performances, scores and recordings. The graph, realised through Semantic

Web technologies and published in the Web of Data, gives access to the fine-grained

9
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metadata coming from the most important French cultural institution;

• a set of tools for converting data, creating an Application Programming Interface (API)

on top of the SPARQL endpoint, visualising and exploring the data;

• approaches based on embeddings computed on structured metadata, titles, and sym-

bolic music for ranking and recommending music;

• some demo applications which exploit the previous approaches and resources.

1.5 Thesis outline

The remainder of this thesis is organised in two main parts.

Part I is dedicated on the realisation of the DOREMUS graph, including the applied extract,

transform, load (ETL) strategies. After having described some related work in Chapter 2,

Chapter 3 and Chapter 4 introduces respectively the DOREMUS model and the controlled

vocabularies. The data conversion and the output KG are detailed in Chapter 5. Chapter 6

focus on the access to the data, presenting SPARQL Transformer.

In Part II are detailed methods and applications for exploiting the music graph. In Chapter 7 is

presented the state of the art, including some algorithms that are applied in following chapters.

A strategy for computing music embeddings on the music graph is described in Chapter 8,

while the use of the embeddings for playlist completion is discussed in Chapter 9. Three

applications developed for let the final user to explore the DOREMUS data are introduced in

Chapter 10. Chapter 11 reports a first experiment for generate graph embeddings on MIDI

files, successfully applied to metadata prediction.

Finally, some conclusions and perspectives are outlined in Chapter 12. At the end of the

manuscript, the reader will be able to find the list of papers published in the context of this

thesis.
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Building a Music Graph
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A research work can hardly be carried on without data. An important part of this thesis

has been dedicated on the realisation of the DOREMUS Knowledge Graph (KG), the biggest

available dataset specialised in classical music metadata. Even if the KG has been realised by

a team composed by different professionalism, I had the chance to be strongly involved in

most of the steps of its realisation, being responsible of the conversion pipeline and of the

management of the triplestore.

In this part, we discuss all the steps that brought from source data to their consumption. This

work is also at the base of the research described in the second part of this manuscript.
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Chapter 2

Related Work

This chapter introduces some related work about music knowledge representation and access

in the Web of Data. Section 2.1 consists in a short introduction to Semantic Web. Then, we

will focus on how Semantic Web technologies can be applied for representing knowledge, for

example the information about music (Section 2.2) and librarian data in general (Section 2.3).

Finally, some solutions for an easy access to this knowledge is reported in Section 2.4.

2.1 Knowledge Representation in the Semantic Web

Semantic Web technologies emerged in the field of data management with the ambitious

promise to realise the Web of Data [19], which nowadays consists of a growing set of intercon-

nected datasets representing different parts of human knowledge. Some of these datasets are

specialised in a well defined kind of objects – e.g. GeoNames contains geographical places [200]

– or field – e.g. 3cixty collects data about what to do in a city [191] – while some others have a

more generalist and encyclopedic aim like DBpedia [11].

The building blocks of these dataset are triples of the form “subject-predicate-object”, follow-

ing the Resource Description Framework (RDF) data model [149] proposed by the World Wide

Web Consortium (W3C). Each term in the triplet is identified by a Uniform Resource Identifier

(URI), so that it automatically receives also an address in the Web which can be accessed by

both machines and humans with a Web browser for retrieving information about the term

itself in a suitable format. Apart from the HyperText Markup Language (HTML) format which

targets human consumers, standard formats includes eXtensible Markup Language (XML),

JavaScript Object Notation (JSON), Comma-separated values (CSV), next to more specialised

format like RDF-XML, Terse RDF Triple Language (Turtle) or Notation3 (N3). Finally, a for-

mat called JSON for Linking Data (JSON-LD) extend the JSON syntax in order to enable the

semantic representation of entities1.

1A quite complete overview on the different format is available at https://medium.com/wallscope/
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For defining how concepts in a specific domain interact each other, the Semantic Web relies

on the definition of ontologies. An ontology is a data model that aims to represent the

knowledge in a given domain (i.e. geography, literature, music), explicitly defining how

entities are in relation each others. In Semantic Web, ontologies are normally intended to

be adopted, re-used, and eventually extended by other people in the community, thus they

may include human-readable labels, descriptions, and notes. Languages such as the Web

Ontology Language (OWL) [117] allows to define classes and properties, specify domains,

ranges and constraints, enabling automated reasoning on the data. W3C’s Simple Knowledge

Organization System (SKOS) [129] is widely used instead for representing vocabularies and

taxonomies. SKOS allows to specify preferred and alternate labels, definitions, conceptual

hierarchies and relationships.

RDF gives to the data the shape of a graph: the subjects and the objects (resources) are the

nodes, while the edges are the predicates which link the resources. In recent years, the term

KB has become popular in reference to dataset following semantic web paradigms, in order

to remark their suitability to feed automatic learning algorithm that exploit the contained

information, while the term KG has been used in reference to the graph shape2.

2.2 Music Ontologies in the literature

Different models and ontologies have been so far proposed for representing the music infor-

mation with Semantic Web Technologies.

An important role as conceptual foundation for many music and – in general – cultural ontolo-

gies is hold by the Functional Requirements for Bibliographic Records (FRBR). Published

by the International Federation of Library Associations and Institutions (IFLA) for the first time

in 1998, this schema defines four distinct states in which a generic cultural object can exists:

the Work – intended as the artistic or intellectual idea and aim – is realised through a specific

set of choices in the content to which we refers as Expression; this one comes in the reality

in a physical shape, the Manifestation, which can be produced in one or more single Items

(Figure 2.1). For example, Victor Hugo’s story of an hunchback bell-ringer of Notre-Dame

Cathedral (Work) is formalised in a specific choice in the words which compose Notre-Dame

de Paris book (Expression), which has been published in different editions (Manifestation)

with a certain number of copies (Items).

Among the music models relying on FRBR, the Music Ontology (MO) [161] is the most known

one in the community. This ontology extends the Timeline Ontology [160] and the Event

understanding-linked-data-formats-rdf-xml-vs-turtle-vs-n-triples-eb931dbe9827
2A nice definition of Knowledge Graph is contained in this blog post by Jo Stichbury: https://hackernoon.com/

wtf-is-a-knowledge-graph-a16603a1a25f
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2.2. Music Ontologies in the literature

WORK

EXPRESSION
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ITEM

is realised
through

is embodied in

is exemplified by

Figure 2.1 – FRBR diagram

Ontology [159], providing a set of music-specific classes and properties for describing musical

works, performances and tracks, together with fragments of them. The authors foresee the

use of taxonomies and vocabularies for populating the values of certain properties, like keys,

instruments and genres. The ontology have been in the years extended with other modules,

like the Audio Effects Ontology (AUFX-O) [201] and the Audio Features Ontology [9]. Several

examples of interconnecting MO to other datasets, whether they describe music or other kind

of data (i.e. DBpedia) are shown in [162]. Even with some attention to classical music – visible

in classes and properties like composition, catalogue number, arrangement– MO reveal a

strong connection with the track-based vision of the music. Some relevant absences which

can confirm this statement are alternative roles in composition rather than the composer,

alternative titles with specific properties (original title, given title, translation), details in the

number of foreseen instruments, connections between performers and instruments in a

performance. Beside the simplicity of adopting the model, MO is quite far from being able to

represent the information coming from specialised classical music archives.

The Performed Music Ontology (PMO)3, a specialised ontology for metadata related to music

performances, has been developed in the context of the Linked Data for Production (LD4P)

project [179]. The ontology extends the BIBFRAME librarian model and includes few spe-

cialised vocabularies. The Context-based Music Recommendation Ontology (COMUS) [182]

is a specialised ontology for representing music preferences of persons in different situations,

in order to define a dataset for music recommendation. The COMUS Ontology includes classes

and properties for representing both the user preferences and the music metadata, even not

reaching the expressiveness level of MO.

Other works focus instead on the music content itself, rather than on the music metadata. An

attempt to represent the whole music theory fundamentals lead to the development of the Mu-

sic Theory Ontology [163], with the final goal of computing analysis and inference by relying

on the music rules. The information contained in a music score is instead represented in the

MusicNote Ontology [36], enabling the detection of four kind of dissonance in Renaissance

3http://performedmusicontology.org/
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pieces.

2.2.1 Schema.org

By the initiative of some of the most popular search engines in the world, a vocabulary for

structured data for web pages has been created with the name of Schema.org4 [71]. The aim

of this community project is to enable search engines to have a semantic understanding of

the content in the web page, in the context of Search Engine Optimisation (SEO). In order to

get this, web pages should refer to the vocabulary through specific formats like Microdata,

Resource Description Framework in Attributes (RDFa) or JSON-LD. The SERP take benefit

of the presence of this metadata in the web pages, being able to provide better results and

display informative snippets. Schema.org can nowadays be considered de facto standard in

Structured Data for the Web.

Schema.org provides classes for describing persons, organisations, places, products, etc. It also

includes classes like CreativeWork, Event, and their subclasses; among them, there are some

music-specific classes: MusicComposition, MusicRecording, MusicEvent, MusicGroup,

etc.

In the past, the community group took under consideration the possibility of modelling

the structure of the CreativeWork class on the basis of FRBR, until their final resolution of

avoiding it. The reason of this decision can be found in the difference of purpose of the two

ontologies: FRBR is specific for describing cultural works and expressions, while Schema.org

provides a way to markup a web page so that search engine can understand and use their

content. According to Richard Wallis, Chair of the W3C Schema Bib Extend working group,

replicating the FRBR rules within the [generic] Schema.org vocabulary was much

discussed in the Schema Bib Extend Community Group [...] It was concluded that

reproducing those rules would be too complex.

— Richard Wallis, 20165

Nogales et al. [135] explored a mapping between Schema.org terms and the vocabularies

collected by the Linked Open Vocabularies (LOV) project [195]. This mapping has been

realized in two steps: firstly matching classes which have exactly the same name; then, taking

in account the mapped classes, matching their properties in the same way. The mapping has

been developed in [136] through the use of dictionaries: a mapping exists if names of the

classes involved are exactly the same or have a synonym in common. An additional manual

check confirm the goodness of the match.

4http://schema.org/
5Source: https://lists.w3.org/Archives/Public/public-schemaorg/2016Feb/0024.html
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In [67] a solution is introduced for expressing FRBR entities using concepts that belongs

to Schema.org. This work proposes to map each level of the chain <Work - Expression -

Manifestation - Item> into a entity of the CreativeWork class, keeping the information

distributed among different objects. If the goal is improving the SEO, we consider this solution

inadequate: when one searches for Beethoven’s Moonlight Sonata, the target is the piece in its

completeness, without accounting any distinction between work and expression.

2.3 Digital Libraries in the Semantic Web

Semantic Web technologies have a strong predisposition for representing the human knowl-

edge, making it open and accessible for public consumption, and enabling connections

between datasets. This predisposition has fed in last decade a new attitude for sharing the

knowledge beyond the institutional and national borders, embodied by international consortia

like the International Association of Musical Libraries (IAML) or in projects like Europeana [78],

OpenGlam [59], and datos.bne.es [198]. The benefits that Semantic Web can offer to Digital

Libraries (DL) have been reported by several works [100, 198], among which the most influ-

ential is the study made by W3C Library Linked Data Incubator Group in [189], and can be

summarised as follows:

• it provides methods and standards for integrating different metadata sources, like biblio-

graphic, controlled vocabulary, annotations and non-library sources such as Wikipedia,

GeoNames, MusicBrainz, and others;

• it offers solution for interoperability among cultural institutions, promoting the re-use

of resources through shared identifiers (URIs) and fostering interdisciplinary research;

• it triggers the passage from specific data structures to models whose durability and

robustness is ensured by the semantic description of classes and relations;

• it increases the visibility of cultural data on the Web;

• it encourages a discovery approach of cultural information based on navigation on links

("following one’s nose");

• going beyond library-specific formats, it opens the librarian knowledge to developers,

researches and other communities;

• it enables advanced use of librarian knowledge, including smart search, reasoning and

artificial intelligence (AI) applications.

Accordingly, Semantic Web technologies have gained a central role also on the music domain,

that has reached the Linked Open Data (LOD) world. In [12], a traditional music DL environ-

ment is developed through the conversion of metadata in RDF and its enrichment through

linking to external Linked Data (LD) resources, although the elements in the resulting graph

continue to be conceived as separate records instead of interconnected nodes.
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Different experiences about converting data from the librarian format MARC to RDF have

been explored6. The datos.bne.es project has developed MARiMbA [198], a software for the

conversion of MARC data from the Spanish National Library in RDF, using the FRBR model.

Moreover, it manages also the following steps: interlink data, load data in a triple store and

provide a simple visualisation of the data.

The need for harmonisation of musical metadata coming from different sources and formats

led to different technical solutions, often making use of Semantic Web technologies. Among

them, the Distributed Metadata Service (DMS) is a service that stands between the data

and the consumers and that performs real-time conversion of each query to source-specific

queries, the consequent conversion of each result in a common format and their combination,

without needs for pre-processing [101]. In some cases, this approach can be impossible to

realise because the structure of certain documents is not suitable for different kinds of queries.

Another strategy relies on converter tools based on static mapping. This strategy often foresees

an alignment to be performed after the conversion, for discovering co-references between

sources, like in the musicSpace project [26].

The Transforming Musicology project created InConcert [140], a RDF dataset of performance

metadata collected from concert ephemera, such as programmes, reviews, adverts, etc. The

dataset has been created by converting and connecting data sources in other formats, using

generic tools like Karma7 [94] and D2RQ8 [20], which perform the alignment to the chosen

ontology (MO). A similar workflow made possible the creation of the JazzCats dataset9, spe-

cialised in jazz performances [137, 139]. The full workflow – common to the two projects – is

described in [138].

Other semantic music libraries that is worth to mention are the MIDI Linked Data Cloud [121,

123], a big archive of MIDI information represented in RDF, and the Listening Experience

Database (LED) [6], a KB of annotations about music listening. A more complete list about

music datasets on the web has been collected in Musical Data on the Web (musoW)10 [49].

2.4 Data access

The access to RDF data by data consumer is a central discussion topic in the community.

Among the most popular solutions, the Linked Data Fragment Server [197] offers a trade-

off between the costs of servers for live querying the SPARQL endpoints and the costs of

6https://github.com/search?q=marc2rdf
7http://usc-isi-i2.github.io/karma/
8http://d2rq.org/
9http://jazzcats.cdhr.anu.edu.au/

10Also the DOREMUS dataset appears in the survey under the misspelled name DoReMus.
http://data.open.ac.uk/page/musow/e896e4ddd22820fd73cfa7b3c3535ec9

20

https://github.com/search?q=marc2rdf
http://usc-isi-i2.github.io/karma/
http://d2rq.org/
http://jazzcats.cdhr.anu.edu.au/
http://data.open.ac.uk/page/musow/e896e4ddd22820fd73cfa7b3c3535ec9


2.4. Data access

clients for downloading entire data dumps. A LD Fragment Server is able to return fragments,

the collection of all the triples that match a certain triple pattern ?subject ?predicate
?object. The LD Fragment Client is then in charge of solving more complex queries by

merging and filtering the different fragments.

A large amount of Semantic Web literature [62,151] tries to give general responses to ad hoc API

services, developed for individual applications or projects as a bridge between the endpoints

and the developers. Works like [184] and the smartAPI [206] provides approaches for using

LD on top of Representational State Transfer (REST) APIs, describing the Web services with

the RDF. In this context we are instead interested in the opposite case: the manipulation of

the RDF via Web services. “The use of HTTP for accessing, updating, creating and deleting

resources from servers that expose their resources as Linked Data”11 is regulated by the LD

API specification12 and the W3C Linked Data Platform 1.0 specification. The OpenPHACTS

Discovery Platform for pharmacological data [69], LDtogo [141] and the BASIL server [47] use

SPARQL as an underlying mechanism to implement APIs and provide LD query results.

Influenced by these works, grlc [122] decouples query storage from API implementations

by leveraging queries uniquely and globally identified by stable and de-referenceable URIs,

automating the query construction process. The software generates automatically Web APIs

from SPARQL queries contained in GitHub repositories. Moreover, it includes Swagger13 for

generating a user interface (UI) which document the API and enable to easily test it.

The W3C RDFJS Community Group14 is heavily contributing to the effort of offering a tool to

JavaScript developers for using RDF data. The major outcome of the initiative is a low-level

interface specification for the interoperability of RDF data in JavaScript environments [16].

RDFJS brings the graph-oriented model of RDF into the browser, allowing developers to

directly manipulate triples.

Recent works realised an interoperability between the GraphQL language15 and RDF, perform-

ing in this way a conversion in JSON of the data in an endpoint [187]. The same syntax of

GraphQL allows to produce a JSON object with different levels of nested nodes. Some of these

solutions rely on automatic mappings of variables to property names (Stardog16), while others

rely on a schema (HyperGraphQL17) or a context (GraphQL-LD [186]) which the developer is

in charge to provide. None of those approaches implements any strategy for detecting and

merging bindings referring to the same entity.

11https://www.w3.org/TR/2015/REC-ldp-20150226/
12https://github.com/UKGovLD/linked-data-api
13https://swagger.io/
14https://www.w3.org/community/rdfjs/
15https://graphql.github.io/
16https://www.stardog.com/
17https://www.hypergraphql.org
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2.5 Conclusion

After introducing briefly the fundamentals of Semantic Web technologies and ontology design

for the layperson in the subject, this chapter has summarised some of the literature related to

three different research areas, that next chapters will further study and apply to the classical

music domain.

Several ontologies are available for describing music, among which it is possible to find models

that specialise in music content representation, or in a particular state of the music piece (i.e.

the performance), or in fulfilling a given goal (i.e. recommendation). The Music Ontology is

the state-of-art for representing the metadata related to popular music; nevertheless its design

hinders more complex structures, like the ones of classical music as described in librarian

archives.

Different studies and experiences have revealed the benefits of realising Digital Libraries using

Semantic Web technologies. Multiple datasets have been released during the years for sharing

the information about music, realised with different processes and strategies according to the

occurring challenges.

The attention of the Semantic Web community to the re-use of data by data consumers is

gaining strength. Different techniques and tools have been proposed so far for solving some

of the issues about the access to Semantic Web data, still leaving some open problems.

The work reported in the following of this part is giving a contribution to these research fields,

investigating the best solutions for our goals.
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Chapter 3

A Music Model

As discussed in Section 2.2, the models and ontologies currently available are not capable of

fully representing the music information contained in big music archives. The project context

requires an expressive ontology capable of richly describing the music information coming

from different stakeholders – conservatories, concert halls, musicologists, libraries, musical

museums, radios – and reflecting the vision of each of them on the music object. For this

reason, we collected a set of questions in human language (French and English), requiring

that the model was able to answer them.

This chapter introduce the DOREMUS ontology, a model for the description of music cata-

logues, result of the joint efforts of the members of the DOREMUS project, including the author

of this manuscript. In addition, I contributed to the model creation as technical reference

point, making the modelling group aware of logical and coding constraints and taking care

that the model was compatible with the following information extraction goals of the project.

The DOREMUS model is detailed in Section 3.1, while Section 3.2 presents an approach for

mapping it to the Schema.org vocabulary. The evaluation of the model through question

answering is contained in Section 3.3. Finally in Section 3.4 there are some conclusive state-

ments and future work intentions.

3.1 The DOREMUS ontology

The DOREMUS model is built upon FRBR-object oriented (FRBRoo) [55], an ontology for rep-

resenting cultural objects which has in turn been born as a dialog of the librarian FRBR model

(mentioned in Section 2.2) and the CIDOC Conceptual Reference Model (CIDOC-CRM) [54].

We already discussed about the former in Section 2.2. CIDOC-CRM is an ontology developed

for the museum domain. One of its main characteristics is the importance given to events: no

objects can exists without a specific creation event, and events are required for specifying the
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object location in a museum or describing its appearance through observation. CIDOC-CRM

popularity is proved also by an important number of extension of its core ontology [132]. The

harmonisation of FRBR and CIDOC-CRM gives birth to the Work-Expression-Event triplet1

pattern of FRBRoo (Figure 3.1): the abstract intention of the author (Work) exists only through

an Event (i.e. the composition) that realises it in a distinct series of choices called Expres-

sion(s). Thinking as example to the book Moby Dick, the artistic object takes birth when the

idea (Work) of the author Melville are written (Event) in the succession of words (Expression).

The relations between these classes and the relative subclasses represent one of the strength of

the model thanks to the wide expressiveness gained from this. In FRBRoo, one can link a work

with another one (a specific critic edition or the French translation), add more details about

the creation event (where and when it took place), add derivatives works (the 1956’s movie

Moby Dick) or works that are components of a complex one (the critics essays contained in a

particular edition).

F14
Work

F22
Expression

F28
Expression
Creation

R3 is realized in

R17 created

R19 created a 
realization of

Figure 3.1 – The triplet pattern in FRBRoo

The choice of extending FRBRoo relies on different motivations.

• It is a librarian model. Being popular in librarian archives, FRBRoo appears familiar to

cataloguers and fits well with other kind of contents.

• It is a bridge to other cultural objects. The model is ready to be used for describing the

interconnection of different arts. FRBRoo provides properties for linking a work such

as a musical piece with the poetry that has been adapted in the lyrics or with the film

having it in its soundtrack.

• All triplets are optional. The Work-Expression-Event pattern ensures that each step of

the life of a musical work can be modelled separately, following the same triplet structure.

Thinking about a classic work, we will have a triplet for the composition, one for any

performance event, one for every manifestation (e.g., the score), all connected in the

graph. Each triplet contains information that at the same time can live autonomously

1Not to be confused with an RDF triple.
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and be linked to the other entities. This provides the freedom of representing, for

example, a jazz improvisation as extemporaneous performance not connected to a

particular pre-existing work, or to collect all the recordings of a piece of world music.

• The event expressivity. In FRBRoo, the creation of a work (physical or performative)

can be modelled as a unique event, which in turn is composed of a series of different

activities, each one carried by a specific person. In our case , this way of representing

the creative process matches perfectly music performances – in which every musician

give a distinct contribution to the sound – or music composition – in which for example

we can separate the work of the composer and the lyricist.

On top of the FRBRoo original classes and properties, the DOREMUS Ontology provides

specific ones in order to describe aspects of a work that are related to music, such as the

musical key, the genre, the tempo, the Medium of Performance (MoP)2, etc. [37, 38, 39]. Each

part of the music production process is considered as an Event that gives birth to a new

Work and a new Expression: this leads to the creation of classes like Performance Work or

Recording Expression. For the description of music-specific concepts like the key, the genre or

the MoP, we publish controlled vocabularies, realised and enriched by an editorial process

that involved also librarians, in order to overcome multilingualism and alternative names

issues. The vocabularies would be further described in Chapter 4.

The graph depicted in Figure 3.2 shows a real example from our data: Beethoven’s Sonata for

piano and cello n.1. 3 The FRBRoo triplet contains all the information about the work and

its composition. Then, the information about the performance and publication are linked

to the triplet through specific properties. The nodes represented as circles normally take

the form of URIs taken from controlled vocabularies (the function “composer” or the genre

“sonata”) or are entities that may be matched to external datasets (the person of Beethoven or

the places Berlin and Vienna), that can have alternative labels (i.e. in different languages) and

additional information. Each one of these nodes represents a link between different works,

performances, etc., making everything connected in a large graph. Following the naming

convention coming from the extended ontologies, DOREMUS classes and properties are

introduced by a uppercase M (for classes) or U (for properties), together with a incremental

number and a human-readable label, like in M2 Opus Statement and U12 has genre, in the

same way classes and properties are introduced by E and P in CIDOC-CRM, and by F and R in

FRBRoo.

We point out the modelling of the casting as a positive example of the expressiveness of the

model that allows to declare all the MoPs required for a particular work and, for each of them,

2For MoP we intend any source that can produce a sounds, targeting both instruments and voices. More details
can be found in Chapter 4.

3http://data.doremus.org/expression/614925f2-1da7-39c1-8fb7-4866b1d39fc7
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Figure 3.2 – The DOREMUS model: full schema representing the information related to
Beethoven’s Sonata for cello and piano n.1. The music work and expression (in blue) are linked
to the entities representing the composition event (in green) the first performance (in red) and
the first publication (in purple).

declare the foreseen quantity, the eventual responsibility of soloist for some of them, the

interpreted role (for operas), etc. Figure 3.3 contains another example schema representing a

performance.

The OWL implementation of the DOREMUS ontology and the documentation are available at

http://data.doremus.org/ontology.

3.2 Mapping to Schema.org

The expressiveness of the DOREMUS ontology is counterbalanced by a certain complexity,

which can make the model hard to consume by external applications. The need to have a

simpler version of the DOREMUS data motivates the research of mapping of the ontology into

simpler models. The choice falls on Schema.org because of its popularity in the community,

its contribution in SERP optimisation and the presence of some classes for representing music.
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Figure 3.3 – The DOREMUS model: a performance

Starting from the example of Beethoven’s Sonata "Quasi una Fantasia" expressed with the

DOREMUS model (Figure 3.4), we aim to represent the same information using Schema.org.

We expect to map the nodes marked in gray with a literal values, while yellow and green nodes

with classes.

The mapping approaches mentioned in Section 2.2.1 were not suiting the case of DOREMUS

or FRBRoo. With few exceptions4, the involved ontology and Schema.org have no classes

with exactly the same name. Also, matching similar names could be wrong: the DOREMUS

F1 Work and CreativeWork (in its subclass MusicComposition) match if we consider the

names, but some properties that belong to the latter (like title/name, [musical]Key and genre)

are not attached to F1 Work, but to F2 Expression.

For this reason, we developed a novel method for passing from a complex ontology (DORE-

MUS) to a simpler one (Schema.org). This method has been presented for the first time

in [108] and is based on the observation of the graph. The main idea is to identify a suitable

starting node and progress following the links until the graph borders. This method assumes a

sufficient knowledge of the models that are going to be mapped, and is structured as a series

of recipes to follow. Even is explicitly developed for this purpose, the method is general and

can be easily applied to other models. For the sake of simplicity, we refer to DOREMUS or

FRBRoo classes and properties using the prefix mus (e.g. mus:F1 Work) and to Schema.org

ones with sdo (e.g. sdo:CreativeWork).

4e.g. Event, PublicationEvent
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Figure 3.4 – The DOREMUS model: Beethoven’s Sonata “Quasi una Fantasia".

3.2.1 Choose the starting node

The most suitable starting point should coincide with the most significant class or group of

classes in the starting ontology, DOREMUS. There are different way for evaluate it. As an

example, it could be the class with the highest number of occurrences, as this can be evaluated

by tools like Loupe [126], or by aggregating different metrics like in [150]. Another strategy

could rely on the recognition of a frequent pattern in the ontology, like the Work-Expression-

Event triangle in FRBRoo.

As a consequence, the choice will consider what we expect that people are going to search,

reasonably textual queries like “Sonata Quasi una Fantasia” or “Beethoven Sonata Quasi

una Fantasia”. According to this, information about title and author gains a key role. We

choose as starting node mus:F2 Expression that has the properties mus:P102 has title,

and mus:F28 Expression Creation because of its link with the information about the

composer.

3.2.2 Identify similar classes

We start to match the classes, starting form the ones we identified in the previous step. For

each class in the source model (DOREMUS), we search the best class that can represent it in

the target model (Schema.org), trying to respect one or more of these criteria:
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1. They should have similar name.

e.g. mus:F28 Expression Creation → sdo:CreateAction.

2. They should have similar description

3. They should have similar properties

e.g. mus:F2 Expression U11 has key → sdo:MusicComposition.musicalKey

4. They should have similar properties value expected

e.g. mus:F2 Expression U12 has genre and sdo:MusicComposition.musicCompositionForm

have both “sonata” as possible value

The matches that better satisfy the criteria are: mus:F28 Expression Creation→ sdo:CreateAction

and mus:F2 Expression → sdo:MusicComposition.

3.2.3 Identify similar properties

For each class mapped, a mapping between properties should be performed. The criteria are

similar to the previous ones:

1. They should have similar name.

e.g. mus:U11 has key → sdo:musicalKey

2. They should have similar description

3. They should have similar value expected

e.g. mus:U12 has genre and sdo:musicCompositionForm have both “sonata” as possible

value

Each mapped property could have as value a literal (e.g. key, genre and all the “gray” nodes

in Figure 3.4) or another class (e.g. the composer is a Person). In the latter case, if we have

not previously mapped this class, we consider it as a new input for steps 3.2.2 and 3.2.3, until

every node in the graph has been reached.

The result of a complete iteration of 3.2.2 and 3.2.3 is a set of classes and properties mapped,

so that a new graph could be drawn (Figure 3.5). It shows that sdo:MusicComposition is

repeated multiple times, each one with different linked information, depending on the fact

that it maps a Work or an Expression.

3.2.4 Simplify the graph

Merging these nodes can produce the advantage of a simpler model, in which the information

is distributed in as less nodes as possible. Such an achievement is positive for the consumption
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by search engines, that can display more information in a single search result. In order to do

this, we identified some criteria for discerning good candidates for the merging. These criteria

should not be considered as strict rules, but as common behaviours of the redundant classes.

Two nodes are redundant when:

1. They represents the same class or have a super-class in common in the target model

(this criterion is required).

2. If they are both connected to a class, the connections are both realised with the same

properties.

e.g. mus:F1 Work and mus:F2 Expression are both mapped with sdo:Music-Composition
and both are connected to sdo:CreateAction with the property sdo:result.

3. They are connected between them.

4. They have not properties in conflict (this criterion is required).

e.g. They could not have different names or keys.

5. The effect of merging does not produce any upset of the graph except a simplification.

The mus:F1 Work and mus:F2 Expression, both mapped with sdo:Music-Composition, sat-

isfy all these criteria. Moreover, we consider also that the difference of these two classes is

slight since from the source ontology. As a consequence, the distinction between Work and

Expression is simply not relevant to the Schema.org view: users simple search for a book, a

movie, a music composition, without taking in consideration the separation between the idea

and the realisation [67].

Redundant nodes are substituted with a new node with: 1. The same class of the original ones

(or the most specific among the two) 2. The sum of their properties.

The result of this phase is a new graph as it is show in Figure 3.6. It is evident that the new

graph has a simpler structure, because of the merging, the omission of some details (i.e.

the part is no more marked with type “movement"), and the replacing of some nodes with

primitive types. mus:E52 Time Span has been replaced with two properties, for start and for

end. Instead, we mark in red some properties that in the FRBRoo model are linked to the Event

and in Schema.org can be explicit also directly on the sdo:MusicComposition class; these

properties could not be discovered through our method, but they could be added a posteriori.

Table in Appendix reports the complete mapping for the properties involved in the graphs.

3.2.5 Limits of the mapping

As we stated before, a complete mapping can not be gained in the context of this work. How-

ever, we point out a set of DOREMUS concepts that have not correspondence in Schema.org
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ontology. Among that, we miss information about the librarian cataloguing, the desired cast-

ing for the composition (is it supposed to be an orchestra or it is for piano solo?), the tempo (is

it “Allegro" or “Andante"). With our strategy we simply do not consider these concept in the

mapping.

Schema.org gives the possibilities to add new properties and types through its extension

mechanism. Future works will investigate on understanding how identify suitable properties

and classes to extend Schema.org.

3.3 Evaluation

Before the beginning of the project, a list of questions have been collected from experts of

the partner institutions5. These questions reflect real needs of the institutions and reveal

problems that they face daily in the task of selecting information from the database (e.g.

concert organisation or broadcast programming) or for supporting librarian and musicologist

studies. They can be related to practical use cases (the search of all the scores that suit a

particular formation), to musicologist topics (the music of a certain region in a particular

historical period), to interesting stats (the works usually performed or published together),

or to curious connections between works, performances or artists. Most of the questions are

very specific and complex, so that it is very hard to find their answer by simply querying the

search engines currently available on the web. We have grouped these questions in categories,

according to the DOREMUS classes involved in the question. Some examples of those queries

are:

• Give me the list of works composed by Mozart in the last 5 years of his life;

• Give me the works of chamber music that involves at most violin, clarinet and piano,

except from the sonatas for violin and piano and clarinet and piano;

• Give me all the works interpreted on at least one MoP different from the casting of the

work;

• Give me all the performances in which a composer interprets his or her works;

• Give me the name of the vocal soloist most recorded by Radio France in 2014.

Among them, we can find questions that overflow the model, because they contain aspects

that go beyond the music information and involve other kind of knowledge. An example

is Retrieve a list of works of chamber music composed in the 19th century by Scandinavian

composers: it requires knowledge of the birth place of the composer, and if this place is located

in one of the Scandinavian countries. We can state that these are very interesting questions,

5The full list is available at https://github.com/DOREMUS-ANR/knowledge-base/tree/master/query-examples
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Figure 3.7 – Retrieve a list of works of chamber music composed in the 19th century by Scandi-
navian composers would require 3 different KB in order to be answered.

Category Questions Supported by model Results in the data
A. Works 31 31 23
B. Artists 3 2 1
C. Performances 9 8 6
D. Recordings 11 9 7
E. Publications 5 5 3

Table 3.1 – For each category of questions, we provide the ratio of the number of human-
readable queries, how many of them have been successfully converted in a DOREMUS query
and how many of them produces at least a result when the query is submitted against the
DOREMUS endpoint.

because they are the ones that can fully exploit the advantages of linked data technologies.

In fact, this kind of queries are quite far from having an answer in a traditional data storing

system (e.g. database). The Web of Data gives the possibility of performing federated queries

involving the LOD cloud, in particular datasets such as GeoNames [200] or DBpedia [11]

(Figure 3.7). For this reasons, the interconnection of the data is crucial.

Table 3.1 provides an overview of how many queries we can currently write for each category.

Few of them find no results in the data. Other are hard to be written in SPARQL format because

they involve specific details which are out of scope of the model (i.e. Retrieve the works by

artists that have been mutually lovers). The conversion rate is anyway more than positive.

3.4 Conclusion

This chapter presented the DOREMUS ontology, an extension of FRBRoo for music.
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The model has a very detailed expressiveness that allows, for instance, to describe different

kinds of contributors (not only authors or performers), to detail the casting of a composition

(with number, roles, notes for each instrument/voice), to specify performers at level of single

performance inside a whole concert. This statement is supported by a series of specific

questions which get an answer by querying the model.

On the other hand, the DOREMUS model is quite complex and hard to adopt if we look at the

levels of distribution of information: from an Expression, one has to pass through Event and

Activity to reach a composer, or through Casting and Casting Detail to get the MoP.

This complexity is indeed the heritage of both FRBRoo and FRBR. The DOREMUS classes de-

fines 83 classes and 165 properties, which should be added to the 48 classes and 74 properties

introduced by FRBRoo on top of the 84 classes and 161 properties of CIDOC-CRM6, for a total

number much higher than the one of MO (54 classes and 153 properties). The dualism Work -

Expression increases the number of required entities and triples for describing each part of

the music information, often not really carrying significant information 7. It is interesting to

note that other FRBR-inspired models – like MO – prefer to skip this difference and propose a

unique entity MusicalWork which puts together the two elements.

Another negative heritage of the extended models is the name convention for classes and

properties, which foresees a succession of an uppercase letter, a number and the name of the

class or the property, the latter always expressed as a verb. For this reason, DOREMUS requires

names like U54 is performed expression of in place of the shorter performance of of

MO, leading to query readability and speed issues. Some properties like R17 created, R18
created, R21 created, P94 has created consist in duplicates of the same action applied

to different domains or ranges, making the model more error prone. Finally, the absence of a

specific Music Work class8 it turned out to be a impacting problem, making hard to distinguish

music pieces from other kind of works like text used in the lyrics, artistic objects used in scenes,

etc.

A set of elements that are strictly connected to a librarian and cataloguer vision of the music

object are included both in FRBRoo (e.g. F40 Identifier Assignment) and DOREMUS

(e.g. U172 has statement of responsibility relating to title), introduced by the

need for tracking the original source of specific statements. The results is mixture of metadata –

the ones describing the music and the ones describing the metadata of the music – and in gen-

eral could make the model be considered too librarian-specific. Further work could overcome

this mixture by experimenting new Semantic Web approaches like RDF* and SPARQL* [77].

6These numbers do not include inverse properties
7A common example is for entities of type F14 Individual Work, which quite often are just linked to the

Expression, the Expression Creation and the provenance information, like in http://data.doremus.org/work/
7259a748-6dd2-3e3d-b9de-7617d0a2b794.

8In the dataset, music work are F14 Individual Work with a type ‘musical work’.
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3.4. Conclusion

These approaches enable the annotation of a RDF triple, using it in turn as subject or object

of an RDF predicate; in this way, an additional layer of information is created which keeps

separated the two levels of information.

All these reasons may potentially hamper the adoption of the DOREMUS model by a large

public. The simplification of the ontology – for which a first attempt has been performed using

the Schema.org vocabulary – is therefore crucial and requires further work.
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Chapter 4

Controlled Vocabularies for Music

Metadata

Describing music is an activity that involves an important number of terms coming from

domain-specific glossaries. In addition to the cross-domain concept of genre, we can mention

musical keys, instruments or catalogues of compositions. Libraries and musical institutions

have different practices for describing this kind of information. In the best case, they make use

of thesauri that are often available in different incompatible formats, and that can be either

internally defined or standardised by larger communities such as the IAML. In other cases,

this information is codified in free text fields, delegating to the editors the responsibility of

following the living practice about syntax and lexical form.

The use of vocabularies opens up different possibilities, like the definition of labels in different

languages or of alternate lemmata in the same language (i.e. the French terms “ut majeur" and

“do majeur" which both refer to the key of C major). Different kinds of relationships between

terms can be defined and it is possible to define a hierarchy between them (for example,

“violin” is a narrower concept with respect to “string”) which can produce, as benefit, a more

powerful advanced search for the final user. Previous research demonstrated how an RDF

structure helps reasoning engines to discover links between different levels in the hierarchy of

instruments [96].

Publishing Semantic Web vocabularies is not new in the field of music. The Musical Instru-

ments Museum Online (MIMO)1 published the biggest taxonomy of musical instrument in

RDF, as result of the contribution of institutions and universities all over the world. The

librarian practice draws on the UNIMARC2 thesauri of musical forms (genres) and medium

of performance standardised by IAML. Historically adopted by librarians worldwide, these

thesauri have recently been published in the Web of Data, marking the growing interest in

this technological environment. The BnF relies on an authority vocabulary in RDF for sub-

ject headings called Répertoire d’autorité-matière encyclopédique et alphabétique unifié

1http://www.mimo-db.eu/
2They are commonly named after the UNIMARC standard for librarian records, in which they are widely used.
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(RAMEAU),3 containing a list of labels for entities of encyclopedic interest which includes also

music genres and instruments. A musical key vocabulary is published as side resource of the

Music Ontology [161], consisting in a list of English labelled concepts, with some additional

information—like the mode (major/minor), the tonic, etc.—, without any links describing

semantic connections between them.

On the one hand, a large number of thesauri cover few well-defined categories (genres and

MoPs), making the reconciliation of data coming from different sources difficult, also because

of the different formats of these thesauri. A reconciliation that would add a broader and deeper

nomenclature has a benefit, increasing both the number of elements and alternate labels.

On the other hand, a large set of concepts – handled so far through error-prone free-text – is

asking for standardisation in specialised vocabularies.

This chapter presents a set of controlled vocabularies for the description of the music infor-

mation as LOD, with the primary goal of the interconnection of music information datasets.

These vocabulary carry a relevant amount of structured information which, in the following of

the thesis, have a core contribution in empowering recommendation engines.

The complete set of vocabularies, which have been introduced for the first time in [107], will

be presented in Section 4.1, giving detailed information about their content. The process

of realisation, collection and interlinking is described in Section 4.2, while we present an

approach for literal dereferencing in Section 4.3, before the conclusion in Section 4.4.

4.1 Music Vocabularies

A controlled vocabulary is a thematic thesaurus of entities. SKOS [129] have been chosen as

format because of its capability of defining preferred and alternate labels in each language,

relationships between terms, comments and notes for describing the entity and help the

annotation activity. In the case of the vocabulary of Catalogues of works, the used ontology is

the RDF version of Metadata Object Description Schema (MODS) [199], that suits the need of

defining identifiers, publication date, subject, etc.

Each vocabulary fulfils a set of requirements, including multilingualism, open and public

access, presence of definitions. It must also be suitable for different contexts of use and

conceptual models of musical information, which is guaranteed by the presence in the editorial

team of experts from different types of cultural institutions (libraries, radio broadcasting

networks, concert halls).

The vocabularies are all available in the DOREMUS triplestore, which enables the HTTP

dereferencing of URIs. Alternatively, the vocabularies can be explored by a web browser

3http://rameau.bnf.fr/
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starting from http://data.doremus.org/vocabularies/ or accessed in Turtle format4. Each

vocabulary is licensed for free distribution, following a Creative Commons Attribution 4.0

license,5 and it is open to the community for any kind of contribution.

We collected, implemented and published 23 controlled vocabularies belonging to 18 different

families, containing more than 11000 distinct concepts, involving 26 different languages or

dialects, defining 610 links between terms. In the following paragraphs, we describe the

content of those vocabularies, subdivided in two groups.

4.1.1 Collection of interlinked vocabularies

This group includes vocabularies that were already available in the Web of Data, in the com-

munity or internally to a specific institution. When two or more vocabularies share the same

high-level topic – e.g. the musical genre – we call that group family. In order to interconnect

the different knowledge sources, an alignment process is needed for discovering when terms

coming from vocabularies belonging to the same family refers to the same concept. This

process will be detailed in Section 4.2.1.

Musical genres. This family includes vocabularies about the genre of a musical work. By

genre, we mean the main categories by which we describe the works, like rock, funk, opera,

gospel, polka, jazz, including genres of world music. The term genre is very broad and also

includes musical “forms" that gained in the centuries their own genre definition like symphony,

concerto, sonata.

We collected, republished as SKOS and interlinked the following vocabularies:

• IAML, 607 concepts, multilingual. This list, largely adopted in librarian environments,

was available as a set of labels and codes, in some cases with definitions or editorial

notes. We converted this big vocabulary to SKOS from different sources (librarian tabular

data, online HTML version). After our publication process started, a SKOS version6

has been published by IFLA, which is however less rich than ours in terms of alternate

labels7. We provide owl:sameAs links from our vocabulary to the IFLA version.

• RAMEAU, 654 concepts, French, hierarchised. It is published as Linked Data by the BnF.

We extracted from this large nomenclature the part related to musical genres.

• Diabolo, 629 concepts, French, hierarchised. It is the set of labels used in the disc

4 https://github.com/DOREMUS-ANR/knowledge-base/tree/master/vocabularies
5https://creativecommons.org/licenses/by/4.0/
6http://iflastandards.info/ns/unimarc/terms/fom/
7DOREMUS version count 2990 distinct terms between skos:prefLabel and skos:altLabel, while IFLA one

just 1482.
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catalogue of RF. It also includes some skos:related links, e.g. between spiritual and

gospel.

• Itema3, 40 concepts, French. It is used in the technical documentation of the concert

archive of RF.

• Itema3-MusDoc, 172 concepts, French. It is used in the musical documentation of the

concert archive of RF.

• Redomi, 297 concepts, French, hierarchised. It is used in the musical work documenta-

tion of RF.

Medium of performance. Any instrument able to produce sounds can be considered as a

medium of performance or MoP. In this family of vocabularies, we can find musical instru-

ments coming from different cultures (western, oriental, African, Indian, etc.), the voices in

different ranges (soprano, alto, etc.), aside from group of instruments (orchestras, ensembles)

and voices (choirs).

We collected, republished as SKOS and interlinked the following vocabularies:

• MIMO, 2480 concepts, multilingual, hierarchised. The Musical Instrument Museum

Online comes from the joint international effort of different music institutions and

museum. Despite being the most complete vocabulary of instruments, it does not

include voices. MIMO is publicly available as Linked Data.8

• IAML, 419 concepts, multilingual, hierarchised. Despite its smaller granularity, this

vocabulary has a good coverage for voices and groups. Like for the homonym genre

vocabulary, also in this case an official version from IFLA is online,9 less rich both with

respect to the languages covered10 and to the number of concepts (392).

• RAMEAU, 876 concepts, French, hierarchised. As in the genre case, we selected the part

related to MoPs.

• Diabolo, 2117 concepts, French, hierarchised. It is the set of labels used in the disc

catalogue of RF. For ethnic or traditional instrument, it includes also the reference to

the relative geographic area, possibly referenced to Geonames.

• Itema3, 314 concepts, French. It is used in the documentation of the concert archive of

RF.

8http://www.mimo-international.com/
9http://iflastandards.info/ns/unimarc/terms/mop/

104249 labels for the DOREMUS version, 2591 for IFLA
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• Redomi, 179 concepts, French, hierarchised. It is used in the musical work documenta-

tion of RF.

4.1.2 New vocabularies

This section presents vocabularies for which we did not rely on any previous material, because

it was not existing or not suitable for our goals. We designed these vocabularies on the basis

of real data coming from institutions, enriched by an editorial process that involved also

librarians. Since the work has been conducted in French, the definitions of the terms are so far

available only in this language. However, every label has been translated at least in English

and Italian in order to facilitate their reuse.

Musical keys. 30 concepts, English, French, Spanish, Italian. This vocabulary contains the

set of keys used in western music, labelled with the tone followed from the type of scale (e.g.

C major). The concept are linked among them by specific properties for keys relationships,

like relative, parallel and closely related keys11. It contains also owl:sameAs links with the key

vocabulary of Music Ontology.

Musical modes. 22 concepts, English, French, Italian, Latin, hierarchised. The word mode

generally refers to a type of scale, coupled with a set of characteristic melodic behaviours.

They are mostly used for describing ancient or medieval music.

Catalogues of works. 152 MODS resources. A thematic catalogue or catalogue of works is a

recognised editorial list of all known works of a composer. In practice, a classical composition

can be univocally identified by the catalogue code and number. For example, Eine kleine

Nachtmusik is identified with K 525, where K is the Köchel catalogue of Mozart’s work. Each

resource contains the information about the catalogue editor and publisher, the language

of drafting, the date of publication. The subject artist of each catalogue is disambiguated

through the DOREMUS dataset [5, 112].

Types of derivations. 16 concepts, English, French, Italian, Spanish, German, hierarchised.

A work can be derived from another by transforming its material into another through orches-

tration, harmonisation, etc. All these types (with definitions) are collected in this vocabulary.

11The definitions are available in the ontology documentation, see mus:U83_has_relative_key,
mus:U84_has_parallel_key and mus:U85_has_closely_related_key
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Functions. 106 concepts, English, French and Italian, hierarchised. A music event—a perfor-

mance, a composition, a recording, etc.—involves a number of different roles or functions like

author, performer, conductor, sound engineer, etc. Additional details can also be provided to

account for the different kinds of author, like composer, lyricist or arranger. These functions

are identified in this vocabulary, together with their definitions.

Responsibility. 8 concepts, English, French and Italian, hierarchised. It allows to specify

the type of responsibility exercised by a musician through its medium of performance – e.g.

soloist, choir singer, etc.

Hierarchical Level for Work. 9 concepts, English, French and Italian, hierarchised. It allows

to specify the level of granularity of a musical piece respect to the main composition – e.g.

part, single work, set of works, movement, overture, scene, etc.

Vocal and instrumental techniques. 19 concepts, English, French and Italian. This vocabu-

lary contains different instrument playing or voice production techniques which can modify

the output sound and produce specific effects, like whistling, scat or yodel.

Other vocabularies – less related to the music information but used in the DOREMUS graph

for describing different kind of material – are Carrier Type (e.g. magnetic wire, DVD), Color

Content (monochrome, polichrome), Types of identifier (inventory number, ISBN), Noise

Reduction Techniques, Conditions of Performance (indoor performance, studio performance),

Performer Status (guest artist, headliner), Playing Speed, Types of recording equipment (digital,

acoustic), Sound Spatialization Techniques (mono, stereo), Work types (music, choreography).

4.2 Modelling process

The modelling process, which is based on an interaction between music metadata experts and

automatic data conversion and fusion tools.

An editorial committee grouping 7 members coming from different backgrounds (library,

radio, concert hall) played an important role in the vocabulary modelling. First, existing

vocabularies have been inventoried and assessed as candidates for being interlinked on the

basis of their completeness and adoption. Next, the committee made choices about which

new vocabularies to create and what should be their scope. These choices reflect the aim of

producing powerful tools to describe recordings, publications and their contexts of creation,

instead of producing exhaustive vocabularies about every aspects of the music. The committee

relies on the members experience in music data management practices. The experts had
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to confront their point of views – necessarily different because depending on the missions

of their institutions – until the list of terms, their contexts of use and their definitions were

coherent.

For generating the structured version of the vocabularies, we performed a preliminary conver-

sion from spreadsheets or XML files to RDF, using the OpenRefine tool [74] or with specific

scripts. The collections of concepts already in the Web of Data (like RAMEAU) have been

instead extracted through specific SPARQL queries on their original endpoints.

In a second step, additional vocabulary-specific actions are performed. In some cases, hierar-

chy is inferred on the basis of specific properties and rules (e.g. in the IAML MoP vocabulary,

the hierarchy is taken from the letters included in the last part of the URI). All the language

tags are normalised in order to follow the ISO 639 standard12. Moreover, the indication of

the use of Latin script is made explicit for transliterated labels in languages that use different

alphabets. In this phase, some interlinking to external datasets is performed, using SPARQL

queries (DOREMUS dataset, Music Ontology keys vocabulary) or APIs like GeoNames [200].

4.2.1 Vocabulary Alignments

The sets of vocabularies of musical genres and those of medium of performance, described in

Section 4.1.1, group together a number of well-established or internally used within a given

institution reference lists. There is an important overlap between the sets of entities (genres or

musical instruments) described across these vocabularies in each of the two categories. For

example, the music genre “folk song" is described both in the IAML vocabulary (labelled by

the French “chanson populaire" and the English “folk song") and in the Radio France-hosted

Diabolo vocabulary (labelled by “folksong").

A vocabulary alignment has been realised by the LIRMM Laboratory in Montpellier for auto-

matically establishing links of identity between the elements of two vocabularies from the

same category. Since our vocabularies are described in SKOS, the procedure comes down to

discovering and declaring skos:exactMatch relations across the terms of two given vocabu-

laries, e.g http://data.doremus.org/vocabulary/iaml/genre/fso and http://data.doremus.org/

vocabulary/diabolo/genre/folksong.

The result is a set of pairwise alignments between the concepts of the vocabularies in each of

these two categories (genres and MoP) to a chosen target vocabulary, being IAML for the genres

and MIMO for the MoP. Automatic alignments have been performed through a string-based

approach, looking both at preferred and alternative labels, returning in output a confidence

score. These alignments have then been validated by the librarian experts through YAM++

12http://www.iso.org/iso/home/standards/language_codes.htm
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online [15] – a multi-task web platform for ontology and thesaurus matching and validation,13.

4.3 String2Vocabulary

A common task in what is called knowledge graph population – which is the generation of

semantic triples starting from differently structured data sources – is the passage from plain

text nodes or literals to a more representative object node or entity. Often, the target of this

task consists of a set of vocabularies.

A string2uri algorithm – developed in the context of the Datalift platform [175] – performs an

automatic mapping of string literals to URIs coming from controlled vocabularies in SKOS.

The software reads a RDF graph and searches for exact matches between literal nodes and

vocabulary terms.

Some experiences in knowledge base population of classical music data, have shown up some

critical points. Often the title of a classical work includes or, even more, consists in the name

of an instrument or a key or a genre (e.g. Ravel’s Bolero), that should be excluded from the

replacement process and be kept as textual literals. Moreover, the complexity itself of this data

– involving an important number of properties – in addition to the commonly used file formats

(i.e. MAchine-Readable Cataloging (MARC)), has led in the years to a cataloguing practise

particularly prone to editorial mistakes. This is the case of musical keys declared as genre, or

fields for the opus number that contain actually a catalogue number and vice-versa [112].

For these reasons, we adapted the Datalift strategy in a new String2Vocabulary open-source

library.14 The software uses the file name of vocabularies for grouping them in families: mop-

mimo.ttl and mop-iaml.ttl are part of the family mop, while key.ttl is the sole member of the

family key. This library accepts a configuration file that assigns a family to a RDF property.

For each input graph, it searches for the properties one after the other, retrieving their values.

Each value is then compared to all the terms of the vocabulary, until it finds one equal to the

value. All variants for a concept label – namely skos:prefLabel and skos:altLabel – are

considered in order to deal with potential differences in naming terms, and both graph values

and terms receive a normalisation that has the effect of removing the punctuation, lower-

casing the text and decoding it into the American Standard Code for Information Interchange

(ASCII) format. Then, a substitution of that node with the found concept URI is performed.

String2Vocabulary works both with literal values and with entities labelled through rdfs:label.

In the latter case, the label to be matched against the vocabulary and the whole node – with all

its properties – is replaced. For maximising the possibilities of selecting, if it exists, the right

concept, two searches are performed in sequence. The first requires that both the given text

13http://yamplusplus.lirmm.fr
14https://github.com/DOREMUS-ANR/string2vocabulary
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and language match with the concept ones. If this search fails, a second one requires a match

excluding the language information.

As additional feature, the configuration file allows to request the lemmatisation for certain

vocabularies. Taking the MoP vocabulary as representative example, three sequential matches

are tried:

1. singularising the first word of the label, for matching cases such as “cornets à pistons"@fr;

2. singularising the whole label, like in “sassofoni contralti"@it;

3. leaving the label as is for matching instruments that are always plural, like “cymbals"@en.

4.4 Conclusion

We have presented a set of multilingual vocabularies for the description of music-specific

concepts using the Semantic Web framework. Two main contributions are the interconnection

of already in-use vocabularies of genres and medium of performance and the realisation of

previously-unreleased ones. We described our working strategies as an interaction between

editors and an automatic system. A dereferencing library String2Vocabulary is presented as

side works.

We have the intention of proposing to IFLA some modification to IAML vocabularies, based on

the DOREMUS ones. However, we face the absence of any evident possibility of contribution

coming from external subjects.

Those vocabularies are intended to become references in the field, with the goal of being

reused even outside the context of the DOREMUS project. They are open for contribution and

extension through the GitHub repository. Other projects, as the already mentioned Performed

Music Ontology (PMO), have already recognised the value of this work, encouraging the

adoption of the vocabularies15.

15https://github.com/LD4P/PerformedMusicOntology
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Chapter 5

Data Conversion

After having introduced the DOREMUS model and vocabularies, this information structure

must be populated by data. The knowledge from the archives of the three partner institutions

in the DOREMUS project – BnF, PP and RF – covers different part of the music information,

from the works to the recordings, including scores, discs and concert programmes. Table 5.1

details the data sources for each institution, revealing an interesting number of records.

However, the data comes in different heterogeneous formats.

The BnF and partially the PP uses a standard format called MARC, which will be detailed in

Section 5.1. We developed a generic converter for MARC files in the DOREMUS format in

Section 5.2. Other data sources are in the XML format, which can sometimes be an export

of relational databases. All these XML follows different conventions about structure and tag

names, for which we had to develop ad hoc converters.

This chapter reports the full process leading from the source files from partner institution to

the RDF graph. It results in the construction of several knowledge graphs about music works

and events, which are than interlinked, going to compose the DOREMUS graph (Section 5.3).

The conversion strategy have been published in [104] in the first preliminary version, and

in [110] in the definitive version. The DOREMUS graph and the full conversion pipeline has

been presented for the first time in [5].

Person Works Recordings Scores Discs Programmes
BnF INTERMARC INTERMARC INTERMARC INTERMARC

47 852 160 368 86 140 164 753
PP UNIMARC UNIMARC XML

5 762 96 914 3 837
RF XML XML XML

62 550 2 296 9 343

Table 5.1 – Data sources: numbers and formats
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Figure 5.1 – An handwritten record in Radio France archives.

Figure 5.2 – An excerpt of a UNIMARC record.

5.1 MARC and the librarian practice

The archives of cultural institutions like national libraries are the result of a cataloguing process

which lasted centuries, started much before the advent of computers and electronic database.

Less than one century ago, libraries were used to index their contents by using printed or

handwritten cards, each one representing one or few records, stored in alphabetic order. Those

cards, apart from the position of an item in the library, were containing also some metadata

about the work itself, like the author, the number of parts, the editor. An example is shown in

Figure 5.1. Those cards contained an important and crucial amount of the human knowledge.

In 1960s, the technological progress allowed the information to be recorded on electronic sup-

ports and be processed by machines. In this context, the Library of Congress of United States

developed the MARC format, which became soon an international standard for representing

the metadata in libraries.

MARC records are organised as a succession of lines (fields) introduced by a specific numeric

code with 3 digits. Each field contains a specific information about the item described in the

record and can host one or more subfields, which are concatenated in the field, introduced by

a single alphanumeric character which defines which information the value represents and

separated by a marker (the dollar sign $). An example of MARC record is in Figure 5.2.
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The such defined syntax is embodied in different variant of the MARC format, which differs in

the semantic of the fields. The MARC variant involved in our work are:

• Universal MARC (UNIMARC), standard developed by IFLA for harmonising a set of

different variants adopted at national level. Its adoption is particularly successful in

Europe. The records involved in the DOREMUS dataset coming from PP follow the

UNIMARC format;

• InterMARC, initially developed for being the French standard format for libraries. It is

today used internally in French institutions like the BnF, which provides data for the

DOREMUS project in this format.

MARC reflects perfectly the context of its birth, around 60 years ago. Its structure made of a

succession of fields is the exact conversion of printed or handwritten records in a machine-

readable form [113]. The alphanumeric tags for fields and subfields are a consequence of

the state of the technology at the time, for which the storing space was expensive and the

computational power low.

The format appears far from the current best practices for structured data. We identified some

issues of MARC, some of them strongly interconnected:

• Hard readability. MARC fields are also not labelled explicitly, but encoded with num-

bers, with the consequence of having to receive a training or study a manual for deci-

phering the content. The semantics of these fields and subfields is not trivial: a subfield

can change its meaning depending on the field under which it is found, and on the

particular variant of the format.

• Lack of interoperability. The format does not foresee any possibility of sharing data

between different institution. The presence of different variants aggravates the problem,

requiring the conversion between formats.

• Technical marginalisation. Outside the librarian world, the MARC format is totally

unknown. As a consequence, the software capable of read and manipulate MARC

records is restricted to the librarian cataloguing tools. Any further exploitation of the

data requires a parsing of the records and a serialisation to other formats. In addition,

this parsing and conversion are challenging task for developers, given the cryptic syntax

and semantic.

• Unstructured information. As explained before, MARC replace and replicates in the

behaviours the old textual records, which were realised on paper cards. It is therefore

not surprising that large part of the information continues to be expressed as free-text.

The same field or subfield can contain information about different entities, like the first
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performance and the first publication combined in the same field of the notes, without

a clear separation. Moreover, depending on the editor that filled the record, different

practices can be in place for describing the same information – we can for example find

either “Op. 27 n. 2" or “Op. 27 no 2". Structured information have to be extracted from

those text fields.

• Mistakes in editorial work. In years of librarian practice, an huge number of records

have been realised. The creation of new records – for new element or copying old

printed records – was largely charged on human editors. This unavoidably lead to

some mistakes in the records. In the majority of cases, we speak about little typos

or incongruous punctuation, in particular in free-text fields. In others, we can find

misplacement of values, so that the genre may appear in the subfield dedicated to the

opus number or vice versa.

About the limits of MARC and about going beyond this old format, some discussion comes also

internally to the librarian world. In 2002, Roy Tennant – at the time working at the California

Digital Library – wrote a highly referenced article [188] which directly and mercilessly stated

that:

MARC must die.

— Roy Tennant, 2002

Even if MARC is still widely used, a slow transition to other formats is occurring, the most

popular solution being the use of Linked Data, also thanks to the BIBFRAME Framework

Initiative [99]. The benefits of moving from MARC to an RDF-based solution consist of the

interoperability and the integration among libraries and with third party actors, with the

possibility of realising smart federated search [8, 27]. The development of ontologies and

vocabularies enables the exploiting of the knowledge contained in librarian archives, with

the possibility of performing reasoning, machine learning, automatic classification, graph

embeddings, etc.

The efforts of this research try to put a step further in the overcoming of MARC for music

metadata. In order to achieve this goal, two tasks are necessary: data conversion and data

linking.

5.2 From MARC to RDF

We developed marc2rdf, an open source prototype1 for the automatic conversion of MARC

bibliographic records to RDF using the DOREMUS ontology. The conversion process relies on

1https://github.com/DOREMUS-ANR/marc2rdf
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Figure 5.3 – Example of mapping rules describing the opus number and sub-number of a work

explicit expert-defined transfer rules (or mappings) that indicate where in the MARC file to

look for what kind of information, providing the corresponding property path in the model

as well as useful examples that illustrate each transfer rule, as shown in Figure 5.3. The role

of these rules goes beyond being a simple documentation for the MARC records, embedding

also information on some librarian practices in the formalisation of the content – e.g. format

of dates, agreements on the syntax of textual fields, default values if the information is absent.

The converter is composed of different modules, that works in succession, as shown in

Figure 5.4. First, a file parser reads the MARC file and makes the content accessible by field

and subfield number. We implemented a converting module for both the InterMARC and UNI-

MARC variants. Then, it builds the RDF graph reading the fields and assigning their content to

the DOREMUS property suggested in the transfer rules. Each entity is identified by an univo-

cal persistent URI, which follows the pattern http://data.doremus.org/<group>/<uuid>,

where the group is determined by the class of the entity (e.g. expression) and the universally

Unique Identifier (UUID) is generated at conversion time in a deterministic way using the

dataset name, the class and the identifier of the source record as seed.2. This strategy ensures

that successive conversions of the same source files produce identical outputs. For managing

the triples, we relied on Apache Jena3.

A preliminary interlinking for places and artists is performed. For places, we relied on

GeoNames [200], a which exposes with an API its large community-driven database about

not only cities, regions, countries, but also relevant point of interests like theatres, churches,

auditoriums, concert halls. When there is no suitable match in GeoNames, a E53 Place entity

is created, possibly linked to the belonging city or country. We rely on a unique key composed

by name, surname and birth date for interlinking the artists between the different data sources

and with International Standard Name Identifier (ISNI)4, the larger index for writers, artists,

2https://github.com/DOREMUS-ANR/marc2rdf/blob/master/URI.patterns.md
3https://jena.apache.org/
4http://www.isni.org/
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MARC filesmapping rules

MARC
PARSER

PRELIMINARY
INTERLINKING

FREE TEXT
INTERPRETER

STRING 2
VOCABULARY

ISNI API

GeoNames API

DOREMUS artists

vocabularies

RDF graph

Figure 5.4 – marc2rdf application schema

performers, publishers, etc. The interlinking is performed following these steps:

1. The artist is searched among the ones already in DOREMUS dataset, using name, sur-

name and birth date.

2. If the ISNI identifier is unknown, the ISNI API is queried. The eventually found identifier

can be used to query the DOREMUS dataset again, in case the previous point failed.

3. In in previous points the artist was found in the DOREMUS dataset, the URI is re-used.

Otherwise, a new entity is created. The information about the ISNI identifier is inserted

in the dataset.

ISNI database enable the access to other services, providing the possibility of further enriching

data about artist with text description, alternate names and pictures. Among those services, we

mention Virtual International Authority File (VIAF)5 (specialised on authors and works), the

encyclopedic datasets Wikipedia, Wikidata, DBpedia, and MusicBrainz6 [185], one of the most

popular knowledge bases about music metadata, which started a few years ago its process of

exposing its data as semantic triples through the platform LinkedBrainz [84].

Then the free-text interpreter extracts further information from the plain text fields, that

includes editorial notes. This amounts to do a knowledge-aware parsing, since we search in

the string exactly the information we want to instantiate from the model (i.e. the MoP from

the casting notes, or the date and the publisher from the first publication note). The parsing is

realised through empirically defined regular expression, validated and corrected by the use of

5https://viaf.org/
6https://musicbrainz.org/
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vocabularies and of GeoNames for ensure the correctness of the identified types.

Finally, the string2vocabulary component – described in details in Section 4.3 – performs

an automatic mapping of string literals to URIs coming from controlled vocabularies. As

additional feature, this component is able to recognise and correct some noise that is present

in the source MARC file: this is the case of musical keys declared as genre, or fields for the opus

number that contain actually a catalogue number and vice-versa. These cases and other typos

and mistakes have been identified thanks to the conversion process and the visualisation of

the converted data, supporting the source institution in they work of updating and correcting

constantly their data.

5.3 A set of interlinked graph

INTERMARC

marc2rdf

UNIMARC EUTERPE 
XML

ITEMA3 
XML

euterpe
converter

itema3
converter

GRAPH 
BNF

GRAPH 
PHILHARMONIE GRAPH EUTERPE GRAPH ITEMA3

diabolo 
converter

DIABOLO 
XML

GRAPH DIABOLO

STRING 2 VOCABULARY

Figure 5.5 – The converters produce a distinct graph for each data source

Apart from MARC, we are converting other source bases (in XML), that are too specific to be

handled by a single converter. Therefore, we developed a set of software that, even if they

specifically target a specific dataset and cannot be considered general, they re-use some of

the modules of marc2rdf. The converters have a generic work-flow: parse the input file and

collect the required information, create the graph structure in RDF, run the string2vocabulary

module, integrating during the conversion the interlinking to Geonames and ISNI.

This procedure creates different graphs, one for each source:

• BnF, including converted records about artists, works, discs and scores;

• PP, including converted records about works and recordings;
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• Euterpe, including converted records about the foreseen concerts at the Philharmonie

de Paris;

• Itema3, including converted records about recordings occurred at Radio France;

• Diabolo, including converted records about works archived at Radio France.

Those source databases are complementary but also contain overlaps – e.g. two databases

that describe the same work or the same performance with complementary metadata. There

is so a need for the automatically interlinking of the datasets, so that the resulting knowledge

graph provides a richer description of each work. The interlinking between works has been

performed by the LIRMM Laboratory, while the links have been validated by experts in BnF,

PP and RF [3, 4, 5].

Class BnF Philharmonie Euterpe Itema3 Diabolo Total

Person 69,948 8,419 9,269 9,040 1,503 89,872
Corporate Body 15,429 1,603 1,001 39 0 18,075
Expression 365,563 14,875 10,587 15,016 12,344 420,733
- with at least 1 performance 258,304 12,725 10,578 12,602 2,294 296,503
Performance 179,696 7,107 3,833 2,296 2,294 193,065
- with >1 performed works 24,974 2,615 13,520 1,922 0 43,455
Recording 165,223 3,406 0 2,296 0 170,925
Track 415,252 40,991 0 27,018 0 483,261
Publication (scores) 31,296 0 0 0 0 31,296

Table 5.2 – DOREMUS Knowledge Graph: overview of the content

Currently, the DOREMUS KG includes more than 90 million triples, which describe over 18

million distinct entities. The classes and properties used come mostly from the DOREMUS

ontology, FRBRoo and CIDOC-CRM, counting in total 67 distinct classes and 178 distinct

properties. Table 5.2 summarises the number of entities for the most representative classes

and reports details about the presence of specific information. The Persons and Corporate

Bodies includes respectively single individuals or groups which can play the role of composers,

performer, publishers, etc. Being a dataset about concert programmes, the data about Euterpe

are referred to Foreseen Performances. The total can be less than the sum of the single columns

because of the interlinking previously described.

5.4 Conclusion

This chapter presented some of the core contributions of this research and of the DOREMUS

project, including the DOREMUS graph and a pipeline for converting librarian metadata.

The DOREMUS graph is a big collection of music metadata published in the Web of Data,
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making an important amount of human knowledge available for everyone. The uniqueness

of this resource is remarkable when compared to other music-related datasets: we outline

that the BBC open datasets have tracks only, the Dutch Library (part of Europeana) has

only publications, Choral Public Domain Library (CDPL)7 is specialised for chorus (with

scores and MIDI). The more heterogeneous content of the DOREMUS dataset can become

a bridge between these datasets and ease their interconnection. Another big music dataset

like MusicBrainz follows a more commercial practice giving a central role to tracks, albums

and artists (un-distinguishing the composer from the performer), at the expense of all the

information connected to the work concept (genre, casting, key, etc), in contrast to the librarian

structure which characterises DOREMUS.

The pipeline we used for building it can be generalised and applied to other projects, in

particular in the field of Digital Humanities and libraries. Some of the tool we presented are

already general and ready for new applications.

As repeated several times, the extraction of structural data from librarian archives is now a

crucial goal for the libraries themselves. The conversion of the data, the inclusion of controlled

vocabularies in the process, and the possibility of querying the data provides access to parts of

information previously not accessible – like for example the questions collected in Section 3.3.

On the other side, editorial mistakes and typos in the source files have been detected both at

the conversion time – exceptions in parsing of fields or missed matching against the vocabu-

laries – and in the visualisation of the final results, giving to partner institutions the possibility

of correcting their datasets.

These results can be improved together with the conversion process in some future work:

• More robust Natural Language Processing (NLP) techniques should be used for parsing

the free-text fields. The research can involve both the possibility of using a state-of-the-

art algorithm – better if trained on a subset of those fields – and the implementation of

specific ones for classical music.

• The detection of possible mistakes in the source files can be automatised, producing

a list of probable candidates for the correction. The correction prediction can be an

interesting research topic.

• Alignments of our data to established datasets – in particular MusicBrainz – are currently

being generated.

• The dataset may take benefit of some human contribution. A collaborative UI may let

end users to edit the information, enrich it, discover links between entities, improving

the completeness and correctness of the information.

7https://www.cpdl.org/
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Chapter 6

Developing smart Web APIs

The DOREMUS KG can be considered a 5-star dataset, exposing RDF data, providing URI

dereferencing, and including links to external datasets [17]. In addition, DOREMUS data are

accessible through a public SPARQL endpoint1 realised with Openlink Virtuoso2. A set of

RDF files in Turtle format are available to public download3. All datasets are licensed for free

distribution, following a Creative Commons Attribution 4.0 license4 and have a Data Catalog

Vocabulary (DCAT) description in the triplestore itself.

In Section 2.4, we discussed about some solution for building web services on top of Linked

Data. In the context of the DOREMUS dataset, the complexity of the ontology structure needs

a mapping of the data into simpler structure (Section 3.2). The result is a generic solution

for transforming the SPARQL output in a format that is more suitable for its consumption

in web applications and not only, which has been published under the name of SPARQL

Transformer [106, 111]. This chapter is detailing the motivation and the main results of this

approach.

This chapter is structured as follow. Section 6.1 contains some motivation and requirements

which lead to the design of SPARQL Transformer. Those requirements were not completely

satisfied in other works which aim to ease the consumption of RDF data, briefly reviewed

in Section 6.2. We introduce the new JSON format for queries in Section 6.3, which feeds

the SPARQL Transformer library detailed in Section 6.4. The work is finally evaluated in

Section 6.5, while some conclusions and future work are presented in Section 6.6.

1http://data.doremus.org/sparql
2https://virtuoso.openlinksw.com/
3https://github.com/DOREMUS-ANR/knowledge-base
4https://creativecommons.org/licenses/by/4.0/
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6.1 Motivation

RDF can potentially represent any kind of knowledge, enabling reasoning, interlinking be-

tween datasets, and graph-based artificial intelligence. Nevertheless, a structural gap exists

that is limiting a broader consumption of RDF data by the community of Web developers.

Recent initiatives such as EasierRDF5 are strongly pushing the proposal of new solutions for

making Semantic data on the Web developer friendly [23, 65].

We focus here on the output format of SPARQL endpoints, and in particular, query results

in the JSON format [180]. This standard is part of the SPARQL W3C recommendation [75],

introduced with the purpose of easing the consumption of the data by Web (and non-Web)

applications. The format consists of a set of all possible bindings (of the form <variable,
value>) that satisfies the query. This is not handy for efficient processing by clients, which

would prefer nested objects (document-based data structures) rather than this representation

of triples (graph-oriented data structures). An example of this is shown in Figure 6.1.

Given this situation, we identify four tasks that developers have to fulfil:

1. Skip irrelevant metadata. A typical SPARQL output contains a lot of metadata that are

often not useful for Web developers. This is the case of the head field, which contains

the list of variables that one might find in the results. In practice, developers may ignore

completely this part and check for the availability of a certain property directly in the

JSON tree.

2. Reducing and parsing. The value of a property is always wrapped in an object with

at least the attributes type (URI or literal) and value, containing the information. As a

consequence, this information is bounded at a deeper level in the JSON structure than

the one the developer expects. In addition, each literal is expressed as a string value

with a datatype, so that numbers and booleans need to be casted.

3. Merging. As the query results represent all the valid solutions of the query, it is possible

that two bindings differ only by a single field.

When the number of properties that have multiple values grows – i.e. multilingual

names, multilingual descriptions, a set of images –, the endpoint returns even more

results, one for each combination of values. The consumption of such data requires

often to identify all the bindings which represent a given entity, merging the objects on

the URI. The presence of more variables on which the merging can be performed can

further complicate the merging process.

5https://github.com/w3c/EasierRDF
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{	
		"head":	{	
				"link":	[],	
				"vars":	[	"id",	"label",	"image",	"region",	"region_name"	]	
		},	
		"results":	{	
				"distinct":	false,	
				"ordered":	true,	
				"bindings":	[{	
								"id":	{	
										"type":	"uri",	
										"value":	"http://dbpedia.org/resource/Siena"	
								},	
								"label":	{	
										"type":	"literal",	
										"xml:lang":	"it",	
										"value":	"Siena"	
								},	
								"image":	{	
										"type":	"uri",	
										"value":	"./PiazzadelCampoSiena.jpg"	
								},	
								"region":	{	...	},	
								"region_name":	{	...	}	
						},	
						{	
								"id":	{	
										"type":	"uri",	
										"value":	"http://dbpedia.org/resource/Siena"	
								},	
								"label":	{	
										"type":	"literal",	
										"xml:lang":	"fr",	
										"value":	"Sienne"	
								},	
								"image":	{	
										"type":	"uri",	
										"value":	"./PiazzadelCampoSiena.jpg"	
								},	
								"region":	{	...	},	
								"region_name":	{	...	}	
						},	
						{	
								"id":	{	
										"type":	"uri",	
										"value":	"http://dbpedia.org/resource/Milan"	
								},	
								"label":	{	
										"type":	"literal",	
										"xml:lang":	"en",	
										"value":	"Milan"	
								},	
								"image":	{	
										"type":	"uri",	
										"value":	"./Flag_of_Milan.svg"	
								},	
								"region":	{	...	},	
								"region_name":	{	...	}	
						}]	
		}	
}

A

B

C

SELECT	DISTINCT	*	
WHERE	{	
				?id	a	dbo:City	;	
										dbo:country	dbr:Italy	;	
										rdfs:label	?label	.	

				OPTIONAL	{	?id	foaf:depiction	?image	}.	
					
				?id	dbo:region	?region	.	
				?region	rdfs:label	?region_name	.					
				FILTER(lang(?region_name)	=	'it')	

}	LIMIT	100

[{	
				"id":	"http://dbpedia.org/resource/Siena",	
				"name":	[{	
								"language":	"fr",	
								"value":	"Sienne"	
						},	
						{	
								"language":	"it",	
								"value":	"Siena"	
						},	
				],	
				"image":	"./PiazzadelCampoSiena.jpg",	
				"region":	{	
						"id":	"http://dbpedia.org/resource/Tuscany",	
						"name":	{	
								"language":	"it",	
								"value":	"Toscana"	
						}	
				}	
		},	
		{	
				"id":	"http://dbpedia.org/resource/Milan",	
				"name":	{	
						"language":	"en",	
						"value":	"Milan"	
				},	
				"image":	"./Flag_of_Milan.svg",	
				"region":	{	
						"id":	"http://dbpedia.org/resource/Lombardy",	
						"name":	{	
								"language":	"it",	
								"value":	"Lombardia"	
						}	
				}	
		}]	

(a)

(b) (c)

Figure 6.1 – A SPARQL query (a) extracting a list of Italian cities with picture, label and belong-
ing region, of which the URI and the Italian name are also requested. In the standard output of
the endpoint (c), the city of Siena is represented by both object A and B, while the transformed
output (b) offers a more compact structure.

4. Mapping. The Web developer may want to map the results to another structure – i.e. for

using them as input to a library – or vocabulary such as schema.org.
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6.2 Related Work

The need for overcoming the issues about the usage of SPARQL output in real-life applications

has inspired different works. One of the first proposed solutions consists in a strategy for

representing the SPARQL output in a tabular structure, to address the creation of HTML

reports [1].

Wikidata SDK [103] takes care of the reduction and parsing tasks through a precise func-

tion6 that transforms the JSON output to a simplified version by reading the variable names.

However this implementation does not address the problem of merging.

The conversion of RDF data can rely on the SPARQL Template Transformation Language

(STTL) [42]. Those transformation templates (as strings) are exploited for shaping the results

of the SPARQL query. Moreover, STTL exposes a significant number of functions, especially

when combined with LDScript [43]. Among the limits of this approach is the absence of any

support for converting the results to JSON-LD. No merging strategy is also studied in this

approach.

The CONSTRUCT query format – included in the W3C SPARQL Specification [75] – can be

seen as a way for mapping the SPARQL results into a chosen structure, following one of the

standard SPARQL output formats, including JSON-LD. An attempt has been realised by the

command-line library sparql-to-jsonld7. The need for three different inputs – a SELECT
query, a CONSTRUCT or DESCRIBE query, and a JSON-LD frame – indirectly proves that a sole

CONSTRUCT for shaping JSON with non predefined structure is not sufficient. Indeed, the

CONSTRUCT keyword cannot generate trees, but only triplesets, which leads to the problem of

how to change the structure of the query result. Frames overcome this problem, but, in our

opinion, the combination is not easier for developers who would have to write and keep in

sync the two parts (query and result shape). The complexity of writing a CONSTRUCT query –

i.e. with respect to a SELECT one – can be an additional deterrent for its usage. Furthermore,

literals are not parsed and they are always represented as objects, and aggregate functions are

not supported.

JSON Schema is a format for defining the structure of a JSON object. Although it is a powerful

tool for validation – for example – of forms and APIs, there are no evident benefits for JSON

reshaping purposes [202].

The development of SOLID framework for decentralised LD applications [114, 196] gives

popularity to its module LDflex8 for retrieving and manipulating Linked Data. LDflex allows

the user to browse nodes in the graph by accessing to JS properties. Thus, the paradigm of this

6https://github.com/maxlath/wikidata-sdk/blob/master/docs/simplify_sparql_results.md
7https://github.com/jindrichmynarz/sparql-to-jsonld
8https://github.com/RubenVerborgh/LDflex
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module is different, consisting in navigating the graph following the links, rather than finding

solutions to structured queries.

There is abundant work in SPARQL query repositories, which are typically used to study the

efficiency and reusability of querying. For example, in [167] authors use SPARQL query logs to

study differences between human and machine executed queries; in [83], these logs are used

to understand the semantic relations between queried entities. Saleem et al. [174] propose

to “create a Linked Dataset describing the SPARQL queries issued to various public SPARQL

endpoints”.

6.3 The JSON query syntax

As seen in the experiences reported in Section 6.2, the natural choice of format for defining

and developing a transformation template involves JSON or its JSON-LD serialisation, which

is usually added to the SPARQL query. The names of the variables used should match between

the template and the query, making the developing process error-prone.

Our proposal is to use a single JSON object, called JSON query, with the double role of declaring

how to find the information (query) and which structure is expected in its output (template).

These properties put the JSON query at a certain distance also from SPARQL CONSTRUCT, in

which the query and the final structure are two distinct parts of the query.

The syntax of JSON queries consists of two main parts (Listing 6.1):

• the prototype definition, which describes the output structure, expressed as an object

and introduced by the proto property;

• a set of rules to be included in the SPARQL query, defined through a set of properties

starting with the $ sign, e.g. $where and $limit.

JSON queries can be expressed in two different formats, producing coherently the output:

plain JSON and JSON-LD. The latter foresees a slightly different syntax (see Listing 6.2) in

order to return an output compliant with the JSON-LD specification. This version of the query

allows to specify a JSON-LD context, and can be used for mapping the results into a chosen

vocabulary. We refer to the documentation9 for more details.

An interactive Web application called SPARQL Transformer playground10 has been devel-

oped in order to quickly test JSON queries. The application is live converting the JSON into a

corresponding SPARQL query, so that the user can appreciate every single change. In addition,

9https://github.com/D2KLab/sparql-transformer
10https://d2klab.github.io/sparql-transformer/
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1 {
2 "proto": {
3 "id" : "?id",
4 "name": "$rdfs:label$ required ",
5 "image": "$foaf: depiction ",
6 " region ": {
7 "id" : "$dbo: region $ required ",
8 "name": "$rdfs:label$lang:it"
9 }

10 },
11 "$where": [
12 "?id a dbo:City",
13 "?id dbo: country dbr:Italy"
14 ],
15 "$limit": 100
16 }

Listing 6.1 – The JSON version of the SPARQL query in Figure 6.1

1 {
2 " @context ": "http:// schema .org /",
3 " @graph ": [{
4 "@type": "City",
5 "@id": "?id",
6 "name": "$rdfs:label$ required $ bestlang ",
7 "image": "$foaf: depiction $ required ",
8 " containedInPlace ": {
9 "id" : "$dbo: region $ required ",

10 "name": "$rdfs:label$lang:it"
11 }
12 }],
13 "$where": [
14 "?id a dbo:City",
15 "?id dbo: country dbr:Italy"
16 ],
17 "$lang": "en;q=1, it;q=0.7 *;q=0.1",
18 "$limit": 10
19 }

Listing 6.2 – The JSON-LD version of the SPARQL query in Figure 6.1
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Figure 6.2 – User interface of SPARQL Transformer playground

it is possible to execute the query against a given endpoint, and the user interface offers the

possibility of comparing the transformed output with the original one (Figure 6.2).

6.3.1 The prototype definition

By prototype, we mean the common structure that each object in output should respect. It is

designed as an ordinary JSON object, in which the leaf nodes will be replaced by incoming

data according to specific rules. In particular:

1. variable nodes, which start with a question mark "?" (like ?id or ?city), are replaced

by the value of the homonym SPARQL variable;

2. predicate nodes, which starts with a "$" sign, are replaced by the object of a specific

RDF triple;

3. literal nodes, which cover all the other contents, are not replaced and will be present as
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is in the output, regardless of the query results.

In the transforming process, SPARQL triples will be automatically generated from the proto-

type. Referring to case 2, the following syntax is used:

$<SPARQL PREDICATE>[$modifier[:option]...]

The first parameter is the SPARQL predicate, which can be a property or a property path, e.g.

rdfs:label, foaf:depiction, etc. This kind of node will be replaced by the object of an

RDF triple having as predicate the one given inline. As subject, the variable of the sibling

merging anchor is selected if it exists; otherwise, the closer merging anchor among the parent

nodes. The merging anchors are all the fields in the JSON introduced with the id property. If

this variable does not exist, it is set to ?id by default. In other words, each level in the JSON

tree may declare a specific subject through the merging anchor, which will be the subject of

all the predicates in the scope. Listing 6.1 includes two merging anchors at line 3 and 7: the

former acts as subject of the name, image, and region; while the region name refers to the

latter.

The role of the merging anchor is crucial for the following steps. In fact, two result objects

having the same id will be considered as the same item and their properties will be merged.

This will happen at each level of the JSON tree. This controlled way of aggregating SPARQL

results ensures a more compact while not less informative output, ready to be used by Web

developers.

Both variable and predicate nodes can accept some modifiers appended at the end of the

string, separated by the $ sign. These elements are taken in account when writing the SPARQL

query. For example, $required avoids the predicate to be considered optional (the default

behaviour), while $var assigns a specific SPARQL variable as object (e.g. $var:?myVar), so

that it can be addressed in other modifiers. Other possibilities include filtering by language

($lang:it or $bestlang:en;q=1, it;q=0.7 *;q=0.1) or sample those values ($sample).

6.3.2 The root $-properties

A set of $-properties give access to the SPARQL features indicated by their name ($limit,

$groupby, etc). These properties are directly assigned to the root of the JSON query object,

and will not appear in the final output. Among them, some additional WHERE clauses – in the

triple format – can be declared in the $where field. The $lang modifiers set the language

chosen for all the $bestlang in the prototype. An exhaustive list of implemented $-properties

is reported in Table 6.1.
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Table 6.1 – Supported root $-properties

PROPERTY INPUT DESCRIPTION
$where string, array Add where clause in the triple format.
$values object Set VALUES for specified variables as a map.
$limit number LIMIT the SPARQL results
$distinct boolean Set the DISTINCT in the select (default true)
$offset number OFFSET applied to the SPARQL results
$orderby string, array Build an ORDER BY on the variables in the input.
$groupby string, array Build an ORDER BY on the variables in the input.
$having string, array Allows to declare the content of HAVING.
$filter string, array Add the content as a FILTER.
$prefixes object Set the prefixes in the format "prefix": "uri".
$lang string Default language in the Accept-Language standard. [61]

6.4 Implementation

The implementation of SPARQL Transformer relies on three main blocks, each one having a

specific function (Figure 6.3).

The Parser reads the input JSON query and parses its content. The prototype is extracted and

a SPARQL variable – which here acts as a placeholder – is assigned to all the predicate nodes.

Contextually, the SPARQL SELECT query is generated: the predicate nodes are translated into

WHERE clauses according to the rules defined in Section 6.3.1 and taking into account the mod-

ifiers. The root $-properties are parsed and inserted in the query, which is then passed to the

Query Performer. This module is in charge of performing the request to the SPARQL endpoint

and returning the results in the SPARQL JSON output format. The Query Performer can be

replaced by the user with a custom one, for fulfilling different requirements for accessing the

endpoint (e.g. authentication) or for integration into more complex environments (as done

during the integration with grlc).

Finally, the Shaper accesses the results, discarding the side information included in the head
field and directly accessing the bindings. The latter ones are applied to the prototype in

sequence, matching the SPARQL variables to the placeholders separately for each binding. In

this phase, the data-type of the binding is checked, eventually parsing the value to Boolean,

integer or float. When a result binding does not contain a certain value – which happens when

the variable is OPTIONAL –, the property is removed from the instance. Then, the instances

which have a common value for the merging anchor are identified and their properties are

compared, in order to keep all the distinct values without repetition. Recursively, the same

merging strategy is applied to the nested objects. Finally, they are serialised in JSON and

returned as output.
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JSON Query

PARSER

QUERY
PERFORMER

SHAPER

JSON output

PROTOTYPE
SPARQL

endpoint

SPARQL query

SPARQL results
(JSON)

Figure 6.3 – The application schema of SPARQL Transformer

SPARQL Transformer is available in two different implementations in JavaScript11 and Python12,

published respectively on the NPM Package Manager (NPM)13 and the Python Package Index

(PyPI)14. The JavaScript version has been recently converted in an ECMAScript Module [57]

and it is designed to both work in Node.js and in the browser. The Python version return a

dict object, which can be directly manipulated by a script or serialised in JSON.

6.4.1 Integration in grlc and Tapas

Thanks the collaboration with the Vrije Universiteit of Amsterdam (VU University), the library

is now included in two other software which have been published in the Semantic Web

community.

Since version 1.3, SPARQL Transformer is included in the grlc15 framework, which is now

able to generate Web APIs from the JSON queries contained in a given GitHub repository. The

integration involved the Parser and the Shaper: the former is executed before each access to

the SPARQL query, keeping in memory the prototype for being shaped once SPARQL results

are back. The JSON query file can include the configuration options for grlc in an homonym

field. For maximising the compatibility, the options can be specified as a string – following

the YAML Ain’t a Markup Language (YAML) format – or in JSON. The support to JSON queries

11https://github.com/D2KLab/sparql-transformer
12https://github.com/D2KLab/py-sparql-transformer
13https://www.npmjs.com/package/sparql-transformer
14https://pypi.org/project/SPARQLTransformer/
15http://grlc.io/
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Figure 6.4 – Screenshot of the Tapas interface

includes all the features of grlc, such as the pagination and the selection of query parameters.

In addition, a lang query parameter can change the value of the $lang property of the query,

allowing the development of multi-language APIs. Further development involved the upgrade

of grlc to the latest Python version.

Moreover, SPARQL Transformer queries are now also supported by Tapas16. Tapas is a small

interface module implemented in HTML and JavaScript that reads the specification of an

instance of a grlc API and turns it into a nice and simple HTML interface. The elements of

the API specification are in a straightforward manner transformed into HTML form elements,

which the user can fill in to access the service by pressing the submit button. Tapas asyn-

chronously calls the API via grlc and shows the results at the bottom part of the same page

using the YASR component of the YASGUI interface [168] to display the SPARQL query results

in a user-friendly manner. We extended Tapas to also support SPARQL Transformer queries

and display the results in an equally user-friendly manner. Unlike the flat tables produced

by YASR for the common kind of SPARQL results, the nested results of a SPARQL Transformer

query are shown as nested tables in Tapas. An example of this can be seen in Figure 6.4, show-

ing a screenshot of the query interface and its results for an exemplary SPARQL Transformer

query about music bands, with the nested tables derived from the nested structure of the

SPARQL Transformer results. Tapas together with grlc thereby allow us to automatically

generate an intuitive interface for technically-minded end users just from the query file in a

completely general and generic manner.

16https://github.com/peta-pico/tapas
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6.5 Evaluation

Two kinds of evaluations have been conducted for proving the benefit of this work:

• an experiment for measuring the compactness of the results and the execution time of

SPARQL Transformer;

• a survey which measure the preference of users on a system that presents Linked Data

query results through SPARQL Transformer, versus another that does so through tradi-

tional SPARQL results rendering. This evaluation has been carried by VU University.

6.5.1 Quantitative evaluation

We test the Python implementation of SPARQL Transformer on a set of five queries detailed in

the DBpedia wiki17 in order to ensure a certain generality. The set involves different SPARQL

features (filters, ORDER BY, language filtering, optional triples). Those SELECT queries have

been manually converted into JSON queries — with 1 or 2 levels of objects in the JSON tree —,

making sure that the transformed query was equal to the original one (variable names apart).

Each query has been resolved against a local instance of the English DBpedia18, with a tra-

ditional SPARQL client for the SPARQL queries and with SPARQL Transformer for the JSON

queries. Each execution has been repeated 100 times, with a waiting time of 5 seconds between

consecutive executions, in order to obtain an average result as much as possible not correlated

to any workload of the machine.

The results in Table 6.2 shows that the average execution time of SPARQL Transformer is

slightly higher with respect to normal SPARQL queries, never surpassing 0.1 seconds (limit

of the instantaneous feeling according to [134]). The difference in percentage, computed as

100∗ (tspar ql − t j son)/av g (tspar ql , t j son), do not reveal any regularity in the time increment,

even if some patterns suggest that it depends on the number of results and variables for each

result. The same dimensions seem to impact also the gap in number of results, smaller in

the JSON query responses because of the merging strategy. It is interesting to point out that

such difference exists between all valid combinations of values for requested variables and the

number of real-world object described. This is evident in the first query, about people born in

Berlin, in which the combinations of names in different languages and birth or death date in

different formats almost double the number of results. As a consequence, the Prince Adalbert

of Prussia19 appears in 8 distinct – and even non-consecutive – bindings because of its four

names and two versions of its death date, correctly merged in the more compact transformed

17https://wiki.dbpedia.org/onlineaccess, Section 1.5
18The setup of the endpoint on a local machine relied on Dockerized-DBpedia, available at https://github.com/

dbpedia/Dockerized-DBpedia
19http://dbpedia.org/resource/Prince_Adalbert_of_Prussia_(1811-1873)
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version. The experiment is further detailed in the GitHub repository20.

Table 6.2 – Differences in number of results and execution time between SPARQL and JSON
queries. For each query, is also reported the number of requested variables.

N. N. RESULTS TIME (ms)
QUERY NAME VAR json sparql diff % json sparql diff diff %
1. Born in Berlin 4 573 1132 49% 168 101 67 50%
2. German musicians 4 257 290 11% 61 49 12 22%
3. Musicians born in Berlin 4 109 172 37% 59 51 8 14%
4. Soccer players 5 70 78 10% 210 203 7 3.7%
5. Games 2 981 1020 4% 121 70 51 54%

6.5.2 User Survey

In order to evaluate the usefulness of the query results as presented by SPARQL Transformer

to potential (technically-minded) end-users and developers and to compare them to a more

traditional, table-centric provision of SPARQL query results, we conducted a user survey. We

hypothesised that the level of nesting would play an important role, as classical SPARQL results

are flat tables whereas the JSON structure of SPARQL Transformer allows for nesting.

We therefore constructed a pair of queries in SPARQL Transformer syntax and its corresponding

plain SPARQL version for each of three levels of nesting: no nesting (Level 0), one nested

structure (Level 1), and two nested structures (Level 2). These queries are all about bands and

their albums and members, and they can be run through the DBpedia SPARQL endpoint. An

example of two nested structures as found in Level 2 can be seen in Figure 6.4 (the two nested

structures being album and member). We then ran each of these six queries and stored the

resulting JSON files (i.e. the files generated by SPARQL Transformer and the standard JSON

files with the original SPARQL results, respectively). Moreover, we also ran these on Tapas to

compare the user interface aspects that come with the different representations and nesting

styles, and we made screenshots of the result tables. All these files, including queries, their

results, and the Tapas screenshots, can be found online21.

Based on these query results and screenshots, we then created a questionnaire, where we

asked the participants for each of the six cases (JSON files and screenshots for each of the

three nesting levels) whether they preferred SPARQL Transformer (referred to as “System A”) or

the classical SPARQL output (referred to as “System B”). The possible answers consisted of the

five options Strongly prefer B (value -2), Slightly prefer B (-1), Indifferent (0), Slightly prefer A

(1), and Strongly prefer A (2). We also asked the participants whether they consider themselves

20A notebook is available online at https://github.com/D2KLab/py-sparql-transformer/blob/master/evaluation/
test.ipynb

21https://github.com/tkuhn/stgt/
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rating
Type Level −2 −1 0 1 2 avg. p-value
JSON results 0 (no nesting) 6 6 4 13 26 0.85 0.0001980 *

1 (one nesting) 5 5 3 21 21 0.87 0.000009063 *
2 (two nestings) 3 9 5 17 21 0.80 0.0003059 *

Tapas interface 0 (no nesting) 4 8 3 19 21 0.82 0.0001275 *
1 (one nesting) 3 10 2 20 20 0.80 0.0002685 *
2 (two nestings) 4 7 3 16 25 0.93 0.00003589 *

Table 6.3 – The results of the user survey. The rating describe the preference for our system.

primarily researchers, developers, or none of these two categories, and we asked about their

level of expertise with SPARQL and JSON. The questionnaire is fully anonymous and can be

found online22.

We then asked people to participate in this user survey via Linked Data related mailing lists

(W3C SemWeb list), and internal group lists of Semantic Web groups at VU Amsterdam and

EURECOM, in addition to the SIKS list which groups universities in The Netherlands. The form

was accessible for 5 days. In this way, we got responses from 55 participants (40 researchers, 9

developers, 6 others). Their level of expertise on SPARQL and JSON was mixed, with average

values of 2.44 and 2.87, respectively, on a scale from 0 to 4. Eight participants had no knowledge

of SPARQL at all, while only one participant had no knowledge of JSON.

Table 6.3 shows the results of the survey (the full table can also be found online23). We see

that we got the full range of replies for all questions, but also that a clear majority prefers our

system slightly (1) or even strongly (2). The average values for both types (JSON and Tapas)

and all three nesting levels are between 0.80 and 0.93, i.e. close to the value that stands for a

slight preference of our system (1) and clearly above the value that stands for an indifference

between the two (0).

To test whether the preference towards our system is statistically significant, we used a sign

test in the form of a binomial test on the answers that were positive (preference of our system)

or negative (preference of the existing system), excluding the zero cases (indifference). This

test, therefore, does not take the distinction between slight and strong preference into account,

but only which system was preferred. The final column of Table 6.3 lists the p-values of this

test, showing that the effect is highly significant for all six cases.

The results, however, do not support our hypothesis that the level of nesting has an effect

on the preference for our system. Throughout all nesting levels, the users expressed clear

and significant preference for our system, but this preference did not increase with increased

22https://github.com/tkuhn/stgt/blob/master/eval/questionnaire-form.md
23https://github.com/tkuhn/stgt/raw/master/eval-results/questionnaire-results.ods
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nesting levels.

6.6 Conclusion and Future Work

SPARQL Transformer offers to Web developers a different way of approaching RDF datasets.

The adoption of a novel JSON format for defining both the query and the template makes

it possible to realise self-contained files. When collected in a GitHub repository, these files

can be easily transformed into Web APIs with grlc, completing the decoupling between

query, post-processing and consumption in the application, and query results can moreover

be presented in a simple and user-friendly manner via Tapas. The evaluation reveals that

the restructuring and merging pipeline of SPARQL Transformer has an important impact in

making the SPARQL results more usable and understandable by humans.

Differently from other works, SPARQL Transformer allows developers to use one single file for

querying and mapping, and even with some limits – i.e. not being as expressive as SPARQL –

can be of benefit for fast prototyping of web application.

Further development can improve SPARQL Transformer in order to fulfil a wider range of

needs. The query support can be extended to other SPARQL operations, like ASK, INSERT

and DELETE, going towards the realisation of full REST APIs on top of SPARQL endpoints.

Aggregate functions (e.g. COUNT, SUM) should join the set of available features in the near

future.

Future work will further investigate the use of JSON frames, in order to extract the Shaper

component from the library and make it available for standalone use.

Currently, the JSON syntax does not foresee any standard way for representing dates, which are

therefore represented as plain strings. Alternative representations for dates should be found

taking into account developer requirements, even listening and involving them in the final

decision. Possibly, the solution should also involve other related data-types, like xsd:gYear
or xsd:duration.

We plan to run another evaluation of this work, this time focused on the creation scenario,

consisting in an interview on query writing with SPARQL Transformer and on API management

with grlc.

Finally, we are currently planning to offer more customisation possibilities to users. Some

examples include the choice of a different merging anchor (currently forced to id or @id); the

possibility of ignoring language tags in the results (avoiding the presence of a language-value

object); and the chance of distinguishing between Internationalized Resource Identifier (IRI)s

(as resource references) and IRIs in lexical forms.
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Exploit the Music Knowledge
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The main inheritance of Part I consists in a big Knowledge Graph specialised in classical

music, which relies on a FRBRoo-like ontology and on a set of controlled vocabularies for

representing music-specific terms, like genres, keys, instruments, etc. In Part II, the reader

will find some studies, algorithms and applications that rely on the DOREMUS graph, with

the goal of exploiting classical music knowledge in fields like visualisation, AI and music

recommendation.

Data about user preferences are not involved in this research. In this context, our study on

recommendation does not include one of the core part of RS: personalisation. The reasons

about this choice are: 1. the difficulty in finding user-related data in the context of classical

music, and 2. different motivations pushing towards algorithms supporting recommender

systems, providing related items according to a similarity ranking.

If a RS has no specific knowledge about the active user, then it can only provide him with the

same recommendations that would be delivered to an “average" user. Sometimes, the current

track is used as seed item for triggering the recommendation, similarly for what happens in

Spotify’s Radios. Such kind of recommendation are not only important for facing the cold-start

problem24, but also for developing systems that address a wide public rather than individual

listeners, like for concert programming, radio broadcasting or editorial playlists realisation.

For the scope of this dissertation, we will abandon the FRBRoo distinction between the terms

work and expression, always using the word work for referring to a musical piece.

24In the cold-start problem, recommendations are required for items that no one has yet rated or for users that
did not have enough previous preferences set.
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Related Work

In this chapter we will outline some related work to the main topic covered in this Part

of the manuscript, namely knowledge graph embeddings and recommender systems. In

particular, some research about music recommendation exploiting metadata is introduced in

Section 7.1. An overview of knowledge-based recommender systems based on Linked Data

(LD) is present in Section 7.2, extended in Section 7.3 with approaches based on embeddings.

Section 7.4 includes some solutions for context-based recommendation involving music

and/or knowledge bases. Finally, in Section 7.5 we report a summary of Music Information

Retrieval (MIR) research that rely on symbolic music (in particular MIDI).

7.1 Music recommendation and metadata

In the introduction of Recommender Systems Handbook [166], the authors identify six different

kinds of recommender systems (RS), among which the most popular are undoubtedly Col-

laborative Filtering (CF) and Content-base. The former recommends items which have been

liked by similar users – i.e. users that share with each other a certain number of liked items.

The latter recommends items that are similar to – i.e. have similar features with – the ones the

user already interacted with. Both classes of RS suffer the so-called cold-start problem: when

new users join the system, the algorithm has no data for computing the recommendation. For

this reason, this systems are often used in combination with other kind of RS, for example

Knowledge-Based ones, which rely on some domain-specific Knowledge Base (KB) [24].

In music RS research, the knowledge available in the web is considered a valuable source of

information [93], as in the whole field of MIR [204]. Even if less used than acoustic features,

editorial metadata (EM) – intended as the set of expert-defined information (composer, genre,

etc.) – are commonly considered as crucial resources for recommender systems [178, 183].

An experiment of content-based recommendation based uniquely on EM is reported in [21].
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In this work a tag cloud – including information as genres, record labels, years of release

activity – is produced for each artist and vectorised through latent semantic analysis, so that

distance-based rankings can be applied for recommendation. Some researches suggest that

music specific features – even not expected ones like the musical key – can have an interesting

impact in computing the similarity between artists [79].

7.2 Recommender Systems and Knowledge Graphs

In late 2000s, the first meeting between LD and RS gave to the latter two crucial benefits, which

have been exploited in the following years. On one hand, the Web of Data provided the access

to a big amount of structured knowledge, together with practices and tools for representing

and interlinking different existing sources. On the other hand, the graph structure itself of LD

were found to be apt for computing the recommendation, feeding the emerging research in

graph-based RS [63].

LD-based RS implement different strategies and approaches. In [205], association rules are

used for recommending relevant properties when editing an item in Wikidata, based on the

class of the item and on co-occurrent properties on inserted ones. LD are represented as

3-dimensional tensors in [52], where adjacency matrices for each property are combined for

computing their similarity. The approach is extended by including a CF component in [90].

Oramas et al. [142] exploit semantic technologies for realising a graph containing information

about user interactions – of type <userX, downloaded,itemY> – and enriching it with informa-

tion coming from external sources, such as WordNet1 and DBpedia. On this extended graph,

features are computed by a neighbourhood mappings, taking in account distances in number

of hops, number of connections and shared structures between items. Recommendation are

computed by ranking items on the base of Euclidean distance of their feature vectors from the

user one.

The distance between nodes in the KG has been used also in [10]. The involved graph is the re-

sult of the interlinking of different knowledge sources, such as DBpedia, Last.fm2, MusicBrainz

and AcousticBrainz. Than, similarity between artists are computed according to the Maximum

Degree Weighted (MDW), which allow to reduce the impact of links to very large categories

(i.e. Living People) with respect to more significant ones. The outcome is a web application

which shows for each seed artist a graph of the more strongly connected ones.

1https://wordnet.princeton.edu/
2https://www.last.fm/
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7.3 Recommending with Embeddings

Graph embeddings are the result of the transposition of word embedding techniques – notably

word2vec [127] and GloVe [152] – to networks. Graph embedding algorithms produce a

mathematical representation of the content of the graph, which are much more compact than

other kinds of representation (e.g. adjacency matrix) and consequently easier and faster to

process with Machine Learning (ML). The effectiveness of these techniques makes them very

popular in different applications, from classification to recommendation, with an interesting

number of algorithms developed for their computation [68].

In 2012, Perozzi et al. published Deep Walk [154]. The core idea of this work consists in the use

of random walks in the graph in order to generate sequences of nodes. The number and the

length of link paths between two nodes, impacts on the probability of those two nodes to be

selected together in the random walk. In other words, the more two nodes share connections

and the less edges compose those connections, the more those nodes will appear together in

several walks. According to the intuition of the authors, we can deal with nodes in sequences

as they are words in sentences, so it is possible to apply word embedding models to those

sequences. The result is a vector space in which distances in the graph are kept.

DeepWalk has been extended by node2vec [70] with the inclusion of two parameters P and

Q, which rule on the generation of random walks. In particular, the parameter P impacts on

the probability that the random walk immediately revisit the previous node. The parameter Q

controls the probability that the random walk moves towards increasingly further away nodes,

enabling to discover peripheral parts of the graph. In other words, higher values of P promote

random walks that explore a local neighbourhood around the starting node, while high values

of Q encourage walks that cover wider areas of the graph. Node2vec can be applied also to

weighted graphs, in which the weight of an edge affects the probability that it participates to

the walk.

Different embedding strategies have been implemented in rdf2vec [169], entity2rec [147],

graph2vec [133], and many others3.

Embeddings are widely applied to recommender systems research [147, 148, 171], including

music recommendations [58,116,131,143]. Sometimes, the embeddings are computed on lists

of textual properties or tags, which commonly includes indistinctly genres, moods, contextual

information [116, 131], proving their effectiveness for coldstarting new songs.

Apart from graph embeddings, other kinds of embeddings have been studied in MIR in

fulfilment of different tasks, such as genre classification [97].

3Regularly updated lists are available at https://github.com/MaxwellRebo/awesome-2vec and https://git.io/
fjwx6
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7.4 Context-based recommendation

In order to generate more relevant recommendations for a particular moment or situation,

context-aware recommender systems (CARS) try to exploit the information related to the

user context [7, 88]. This information can include time, location, purpose of the user, current

mood, people around him, weather condition. Often, context-based components are used in

combination with other kinds of RS in a Hybrid System. Taking in account the user context is

among the challenges for next generation of music RS [177].

In [144] spatial and temporal context supports a knowledge-based RS of films, by pre-filtering

the target on current shows in the area and re-ranking recommendation taking in account the

proximity and characteristics of the cinema. In [46], contextual, collaborative, and content

information are combined with deep learning for recommending next step during a trip. In

VenueMusic [35], the acoustic features of songs commonly played in a given venue type – gym,

restaurant, shop, office – are used to train a CARS recommending songs that match the venue

atmosphere.

The strategy of a CARS may rely on intermediate features, which act as bridge between the

domain of items (music tracks) and the domain of context (time, place, situation). The

choice falls on the emotion in MusicSense [28] – which recommends relevant music according

to the Web page the user is reading, matching them both to a common emotion – and in

COMUS [182], in which the desired emotion is directly asked to the user.

In order to recommend relevant songs according to touristic venues, Recommendation based

on Points of Interest (PoIs) are often realised using mappings between PoIs and songs. These

mappings can be performed by automatically discovering links on expert-defined sub-graphs

of DBpedia [87] or with a manual annotation made by volunteers [25]. Suitable recommenda-

tion when driving a car are studied in [13, 81].

7.5 Symbolic Music for MIR

Apart from being codified in audio tracks, the music content can also be represented as

symbolic music [56], whose definition includes all notation-based formats, from scores to

digital encoding formats, including MIDI. Instead of directly describing the sound, those

formats contains the information that is required for producing it, in other words the set of

“instructions" for playing the music work.

An extensive survey about genre classification based on symbolic music [44] report an interest-

ing number of works which may rely on different sets of classes, on monophonic MIDI rather

than polyphonic ones, or on genre-specific datasets (e.g. folk music). However, some inter-

esting methods based on machine learning have been carried out. In [119], a unsupervised
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k-nearest neighbours (kNN) algorithm is applied for genre prediction from MIDI. This work is

extended in [31] using linear discriminant classifiers (LDN) and combining MIDI and audio

features. In [118], four different data sources – audio, symbolic music, lyrics – are studied both

separately and in combination.

Nowadays the computing power of modern machines made it easier respect to the past to run

algorithms on directly on audio signal. However, symbolic notations is still largely used in

those field which imply that machines learn to understand the “instructions", as for example

automated music generation [41, 82, 170, 203].

7.6 Conclusion

A wide literature studies the application of Recommender Systems to music, to KG and to both

music and KG. As stated in Chapter 1, the application of RS research to Classical Music is still

at an early stage, and indeed none of the mentioned works is focusing it.

Symbolic music has been exploited in different works and for different tasks, but it has never

found a common point with graph-based technologies.

For this reasons, we are discussing in the following of this Part some embedding strategies,

which will be applied to Classical Music recommendation and to symbolic music representa-

tion.
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Embeddings and Similarity

Which artist is the most similar one to Vivaldi?

An artist, and in particular a musician, can be described using different features: as a person,

one can use the date and place of birth and death; as a composer, once can consider the

musical genre, the foreseen MoP, the key, etc. of the compositions; as a performer, one can

think of the function and role of the artist, or the actual MoP played during the performance.

This information is representative of the career of an artist.

We hypothesis that this kind of metadata plays an important role when one has to compute

similarity between artists. For example, two musicians considered related by musicologist

community, like Antonio Vivaldi and Tomaso Albinoni, share in fact many of those features:

they lived in the same period, mostly in Venice, they are both violin performers and composers

of an interesting number of concerts and sonata for string instruments. The impact of those

metadata is partially revealed by previous works [116, 131], in which the involved feature

sets are nevertheless flat collections of textual tags, rather than structured taxonomies as the

DOREMUS vocabularies (Chapter 4). The vocabularies and the well structured information in

the DOREMUS dataset can foster new directions of research and new questions. Which features

are more important for comparing two artists? Which ones for comparing two works? How can

we mathematically represent those features, so that the mathematical similarity mimics human-

perceived similarity? Not all musicians are the same: some of them are instrumentalists and

can be compared by played instruments, while others are just known as composers and this

kind of comparison cannot be performed. How can we measure the similarity of two elements

when the overlap between their feature sets is not perfect? In this chapter we start to investigate

these topics, which will be further developed in the next ones.

Graph structures are particularly suitable for discovering connections between nodes. This is

valid also for the DOREMUS KG, in which entities are linked through lower-level nodes. Two

artists can share the same played instrument, two composers the same genre, two composi-
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tions the same key. In turn, instruments, genres, keys are connected each other by hierarchical

(e.g. skos:broader) or horizontal links (e.g. skos:related).

Our strategy relies on the combination of partial embeddings. We realise two levels of vectors:

• the feature embeddings are computed at the level of the single features (i.e. genre,

instruments, etc.) directly on the knowledge graph;

• the entity embeddings represent the main entities (artists, works) and are the result of

the combination of other embeddings of 1st and/or 2nd level.

This approach has several advantages. The individual contribution of each property in the

feature vector is maintained, easy to identify among the embeddings dimensions, making it

easy for a human to analyse the results. Having feature-specific vectors give the possibility of

reusing them in different contexts – i.e. similarity of composer, performers, works, etc. As a

consequence, recomputing the whole embedding for new artists and works is not required,

skipping in this case the most computationally expensive task.

The contributions presented in this chapter involves approaches for computing embeddings at

feature level (Section 8.1), combining them at entity level (Section 8.2), and computing the sim-

ilarity between those embeddings (Section 8.3). Some conclusion is outlined in Section 8.4.

This research has been published for the first time in [107, 109].

In order to avoid any ambiguity in the nomenclature, we will make distinction between the

terms:

• feature, a defined “human-understandable" property, with a name (i.e. genre, composi-

tion date, etc.) and a value (string, id, number, date);

• dimension, a single numerical element of a vector; several dimension can contribute in

representing a single feature.

8.1 Feature Embeddings

The DOREMUS dataset contains information about MoPs, genres, keys and functions, de-

fined through the controlled vocabularies, which include also hierarchies and relationships

between items – e.g. violin is in the family of strings, gospel is related to spiritual, etc. The

dataset has a good coverage also for dates (birth dates, concert schedules) and places (i.e.

theatres, concert halls, birth places), the latter ones being linked to GeoNames [200]. In this

section, we describe the strategies applied for the generation of their embeddings.
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8.1.1 Music Embeddings

What are the closest keys to C major? Is it possible to decide which instrument between the

cello and the oboe is more similar to the clarinet? The answer to those questions would provide

application in different fields, from musicology studies to the development of specialised

recommendation systems. Graph embeddings are a way to achieve those results.

For each of the music feature involved (MoP, genre, key, function), we can access to two kind

of information, contained in as many distinct sub-graphs of the DOREMUS KG:

• the graph of vocabularies, which defines structural and semantic connections between

entities, such as hierarchies, owl:sameAs links, properties in common, specific music

properties – i.e. relationships between keys. Given that this information has been

redacted by human experts according to logic or historical reasons, it represents the

involved concepts for what they are;

• the graph of usage, which includes all the usages of the vocabularies in the DOREMUS

dataset. We considered musical works for the genre and the key, castings and perfor-

mances for MoPs, composition and performance events for functions. This information

represents the involved concept for how they occurs in the reality of compositions and

performances.

We computed the embeddings using node2vec [70], giving the 2 sub-graphs as input. We arbi-

trarily set to the graph of vocabularies a weight 6 times bigger than the graph of usage, in order

to counterbalance the richly larger number of triples1 and avoid to nullify the contribution

of each one. After a post-processing step that removes all the literals and the extra nodes

involved, a L2 normalisation is then applied in order to have values in {-1;+1}2. The process is

represented graphically in Figure 8.1. The dimensionality of all embeddings is 100.

In order to appreciate the effectiveness of this strategy, we used t-SNE [194] for visualising

the embeddings on a 2D image. As an example, Figure 8.23 shows the vector space of MoP

and genre. By observing the groups of closer entities, we can clearly identifies clusters in both

plots, which was manually annotated in the figure. About the MoP, it is interesting to observe

that even if the hierarchy of the instrument families is preserved, the usage graph strongly

influenced the result, by reflecting the differences of instruments in genres and periods. This

is the case of the orchestra instruments group, which puts the violin closer to his orchestra

colleague clarinet than to its 15th-century relative tromba d’amore. The clusters in the genre

vector spaces reveals similar behaviours, with a natural commingling given by the absence of

1More than 16 millions triples against around 100.000 ones for the vocabulary graph.
2The normalised vector is y = x/z, where z = ||x||s =

√∑n
i−1 x2

i .
3Higher-resolution images are available at https://github.com/DOREMUS-ANR/music-embeddings/tree/

master/img
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Figure 8.1 – Feature embeddings generation schema

clear genre categories, having elements like Gregorian music as junction between medieval

and religious genres.

Considering the relevance outside the scope of this research, we published the embeddings

for further usage at https://github.com/DOREMUS-ANR/music-embeddings.

8.1.2 Years and Places embeddings

Artistic and cultural movements have always seen some kind of aggregation, in time and space.

In music for example, the Classicism is commonly ascribed to a group of musician (Mozart,

Haydn, Beethoven an others) which were all active in Vienna between 1730 and 1820. We

considered appropriate to study the impact of those features from a quantitative point of view.

For dates, one solution is to map the full range of time involved in the dataset – from the I

century B.C. to nowadays – into (−1;+1). However, this strategy has two main drawbacks. First,

it produces a mono-dimensional result, hard to compare together with multidimensional

embeddings. Then, it represent the time linearly, while we know that changes – i.e. in politics,

lifestyle, society, culture – are as bigger and faster as history reaches modern days. In [18],

an embedding approach for time is proposed, which relies on word embeddings computed

on event descriptions. Years are matched with their proper Wikipedia page, which contains

textual descriptions of the events occurred in that year. This text is automatically annotated

using DBpedia Spotlight [48] and embeddings are computed using the skip-gram algorithm.

This strategy has been applied for collecting year embeddings.

In the DOREMUS dataset, GeoNames has been chosen for defining places, in order to include

a interest set of links which connect every place to a city, region, country, continent. We

used the embeddings for GeoNames entities published in [89]. These embeddings involve

all the entities at the level of populated place (city) or upper (country, region, etc). The
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(a) MoP

(b) Genre

Figure 8.2 – 2D representation of the vector space of medium of performance (a) and genre (b),
with some recognisable clusters.
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authors computed random walks on a weighted graph of places, in which all the nodes are

connected with their neighbours in space (calculated on latitude and longitude) and the

weights represents the distance between two nodes. In other words, the transition probability

between two nodes is inversely proportional to the spatial distance, thus places closer in space

are more probable to appear together in the same walk. The Glove algorithm [152] is then

applied on these walks for generating the embeddings.

All embeddings have dimensionality 100 and a range of values that falls in (−1;+1).

8.2 Embeddings Combination

More complex entities such as artists and works can be represented as combination of their

corresponding feature embedding. For each entity type, a set of interesting features is chosen:

• for the artists: birth and death date, birth and death place, played instruments or voice

range (MoP), embodied functions, and genre, casting and key of its compositions;

• for the works: composition date, genre, casting, soloist instrument, key, composer.

In order to create the embeddings of a specific entity, all the different values of each involved

feature are retrieved from the knowledge base. Each work or artist can have zero, one or more

values for each feature. Multiple occurrences of the same value are counted separately, so that

the genres, keys, casting for which a composer is specialised are more represented also in the

vector. Feature by feature, the embeddings are merged by averaging element-wise the feature

embeddings: for example, the average vector of the genre of Giuseppe Verdi is the average

vector of genre vectors representing lots of operas, some overtures, few requiem mass, etc.,

having the same dimensionality of the source embeddings.

The artist vector is realised through the concatenation of each average feature vector. The

artist vector will then be concatenated again to other feature vectors, to realise the work vector.

The same approach of cascade concatenation can potentially be extended to other cases, like

single performances, concerts or playlists.

In some cases, there are no results for a certain feature: this can happen for unknown values –

i.e. the birth date of a medieval artist – or not applicable properties to a particular entity – i.e.

normally operas have not a specified key, some artists are just performers and not composer

or vice versa. As a consequence, an array of null values of the same dimensionality of the

expected vector takes the place of these missing results.

In order to speed up the computation and stemming the curse of dimensionality, a Principal

Component Analysis (PCA) reduction from 100 to 5 dimension is realised at feature embedding

level before the combination process. Thus, entity embeddings result as the concatenation of
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Figure 8.3 – Partial embeddings combination schema

5-dimensions feature embeddings – with a final total dimensionality of few decades – , rather

than 100-dimensions ones, which would have much increased the final dimensionality.

Figure 8.3 sums up the key steps of the method. The Figure remarks that the different contri-

butions of each feature are kept distinct in the output vector.

8.3 Euclidean Similarity with Penalty

We want to compute a similarity score between a seed entity s and a target one t , in order to

rank the entity more similar to s. As seen in several related works [58, 116, 131, 143, 183], we

opted for the Euclidean distance, which provide a way of assigning weights to the different

dimensions.

As seen before, their vectors can contain some null dimensions, which we do not want to

consider. Therefore, we remove from both vectors all the dimensions that are null for any of

them. On this shorter version of the vectors, we compute the Euclidean distance d :

d(s, t ) =
√

(s − t )2 =
√

1

N

∑
x

(sx − tx )2 (8.1)

with x being a specific one among the N dimension, considering only the valorised ones. sx

and tx are value of x respectively for the seed and the target vector.

Defining dmax as the distance between an all-ones vector and its additive inverse one, we
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compute the score according to the following formula:

si mi l ar i t y(s, t ) = dmax −d(s, t )

| dmax | ∗ (1−penal t y(s, t )) (8.2)

The penalty is the ratio between the number of dimensions missing in t but present in s and

the number of all the dimensions in s. Following the Iverson bracket notation4 [95]:

penal t y(s, t ) =
∑

d [sd 6= null ][td = null ]∑
d [sd 6= null ]

(8.3)

The presence of the penalty gives to the similarity measure a direction, potentially producing

different similarity scores when s and t are inverted. Given that the data is not exhaustive, the

decision has been to not penalise the dimensions that are missing in the seed, because no

value would be fair for performing the comparison. On the other side, the penalty is necessary

for avoiding that the similarity score gets higher values when comparing less features, making

the absence of some dimension an advantage.

After some empirical experiments, this similarity measure return encouraging results, sum-

marised in Table 8.1. The table contains the most similar artists or works to the given one,

computed on the whole DOREMUS KG. For the artists, to Vivaldi corresponds other baroque

artist, while opera composer are the most similar to Verdi. Around Schubert there are very

popular pianists, among which his idol Beethoven. The work similarity works well by matching

similar genres, while it seems to biased by the key dimension for Für Elise, proposing only

works in A minor.

We eventually need to increase the influence of some dimensions over others according to

the requested impact of each of them in the recommendation, prioritising one or another

feature.In order to do this, it is possible to include a weight vector w in the (8.1), introducing

the weighted Euclidean distance:

d(s, t , w) =
√

w(s − t )2 =
√

1

N

∑
x

wx (sx − tx )2 (8.4)

In this new scenario, (8.1) can be seen as a sub-case of (8.4), in which w is a vector of ones

w f l at .

4The logical proposition inside square brackets is converted into a number that is 1 if the proposition is satisfied,
and 0 otherwise.
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seed (artists) top 3 scores seed (works) top 3 scores
A. Vivaldi T. Albinoni 0.996 Für Elise Bartholdy’s Songs without words 0.996

F. Geminiani 0.995 Rondo for Guitar 0.990
A. Scarlatti 0.994 Schumann’s Toccata Op. 7 0.987

G. Verdi G. Bizet 0.991 La Walkyrie Das Rheingold 0.999
R. Leoncavallo 0.991 Les Troyens 0.998
B. Godard 0.990 Lohengrin 0.998

F. Schubert W. A. Mozart 0.987 The 4 seasons Vivaldi’s 12 concertos 0.999
F. Chopin 0.987 Bach’s Concerto BWV 1057 0.998
L. van Beethoven 0.987 Leclair’s 6 concertos 0.997

Table 8.1 – More similar artists and works according to the similarity measure (8.2), among a
pool of 1396 artists and 2563 works

8.4 Conclusion

We have presented a content similarity approach for classical music, which relies on an

embeddings combination strategy made by 2 steps:

• a computation at level of single feature, extracted from a semantic knowledge base and

based both on structural relationship and usage in the data;

• subsequent combination of the single feature embeddings into the vectors of more

complex entities.

Then we defined a similarity measure that apply the Euclidean distance with a penalty correc-

tion in order to deal with missing information in the vector. An empirical experiment shows at

the same time some promising results and the limit of the approach, which needs to be tuned.

The embeddings about time and places may be more representative if computed directly

on the work dataset, following the experiences of the other features. Moreover, some im-

provement may be obtained by including new features in the embedding vector, like textual

information (title, description).

This measure allows to define weights to the different dimension of the embeddings, in order

to promote some specific features in the similarity measure. A deeper study about how to find

the best weights is included in Chapter 9.
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Chapter 9

Playlists and Weights

Human experts have always played a central role in drawing up lists of musical works which

can serve different purposes. Exemplary cases are the artistic directors that write the program

of a concert on the base of the available casting and the allocated time; the editorial board

of a radio that choose the track to play in their archive; or finally the editors of mainstream

playlists in streaming services. Rather than individual listeners, these three activities target

a broad public, that shares a single space and time for the concert, multiple spaces but a

single time for the radio, multiple spaces and times for the playlists. In addition, the public of

streaming playlists has the power of skipping tracks and changing or randomising their order.

As a consequence, experts will produce those lists differently according to the goal.

Our intuition is that there are some hidden rules which are followed in playlist creation and

decide which artist or which work should follow another. These rules are directly derived

by the knowledge of experts themselves, which may apply them consciously or not, and

which may not be able to even describe them. We believe that these rules can be extracted by

studying the content of the playlists.

In this chapter, we propose a first contribution for the understanding of the editorial playlists

realisation, with the long-term goal of producing recommendations for a wide audience along-

side the ones based on user preferences. Our approach relies on a vector representation of

music-related concepts (artists and works), in a format which allows to value the contribution

of single lower-level features (genres, instruments, keys, etc.). We aim to address the following

research questions: Which features are involved in the process of a playlist creation? Are they

the same for different targets (playlists generation, radio broadcasting, concert programming)?

Can they have an impact on item ranking in automatically generated playlists?

The homogeneity of the music signal, sometimes in combination with some tags, has been

used as similarity measure in playlist generation [22]. We will similarly try to study homo-

geneity of metadata in playlists, in order to distinguish between important and less important
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Chapter 9. Playlists and Weights

features.

In Section 9.1 we introduce classical music datasets made of playlists and concerts, and we

study them in terms of homogeneity of single vector dimensions. The results of the study are

used for producing weights for tuning a ranker based on Euclidean distance, as described in

Section 9.2. A user evaluation is reported in Section 9.3. Finally, we conclude and outline some

future work in Section 9.4. Two side works are presented afterwards, respectively focusing on

playlist titles (Section 9.5) and playlist emotions (Section 9.6.)

9.1 Real world data: concerts and playlists

As already mentioned in Section 1.1.2, specialised datasets in classical music do not exists for

tasks like recommendation and playlist compilation. In order to make possible any evaluation

of our research, we decided to rely on real word data, which have been collected and interlinked

to the DOREMUS KG.

9.1.1 Dataset description

Our strategies are tested on four different collections, which cover the goals specified in the

introduction of this chapter (concert programming, radio broadcasting, playlists generation).

Philharmonie concerts. A set of 186 classical concerts held at the Philharmonie de Paris

between 1995 and 2017, chosen among the ones with at least 6 different works played. This

dataset is extracted directly from the DOREMUS KG.

Itema3 concerts. A set of 414 classical concerts recorded by Radio France between 2011

and 2015, chosen among the ones with at least 6 different works played. This dataset is also

extracted directly from the DOREMUS KG and does not require interlinking.

Radio France web-radio. 105 slots of 3 hours that are broadcast in the web-radio channels

of Radio France.1 The slots belong to 5 different channels (Classique Easy, Classique Plus,

Concerts, Contemporaine, Jazz) and have been realised by 3 experts of the radio network.

An interlinking process with the DOREMUS dataset is performed on the base of the composer

name and the title, the latter often containing other kind of information (key, casting, opus

number, etc.), like in Sonate n.3 en La Maj op 69 pour violoncelle et piano. The interlinking

follows two steps: 1. the composer are identified through exact match on the label,2 in order to

limit the number of candidates to his compositions; 2. the title of the work is tokenised through

empirical methods based on regular expressions and the use of the controlled vocabularies, in

1https://www.francemusique.fr/webradios
2Note that the DOREMUS dataset contains multiple alternate forms for each artist name.
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order to separate the different parts of the string. These tokens have a type which reflect its

content – opus, catalogue, key, etc. – and corresponds to properties obtainable by querying

the DOREMUS KG.

The tokens are used as input to a variant of the Extended Jaccard Measure [190], designed

in order to manage typed tokens and assign them different weights. This allows to prioritise

matches on very discriminant token (i.e. the catalogue number) and being more relaxed

on those that may differ (i.e. equivalent casting statements). Using again Iverson bracket

notation as in (8.3), we define this measure between two records a (from web-radio) and b

(from DOREMUS):

f (a,b) = wt i t l e si m(at i t l e ,bt i t l e )+∑
t wt [at = bt ]

wt i t l e +
∑

t wt
(9.1)

In the equation, t are the types of token which can be found in both records3, at and bt the

value of the token of type t in the two records, wt are weights empirically defined in order

to have the best results4. The similarity between two titles is the best value among different

string similarities, all computed through Levenshtein distance, which involves:

• on the web-radio side, the record title

– as it originally is;

– after token extraction, so without opus number, order number, etc.;

– alternatively cropped at the first occurrence of a special character (:, -, ,), which

normally introduces subtitles or movement names;

• on the DOREMUS side, all the alternate titles available.

In a nutshell, matched values and string similarity – in the numerator of (9.1) – are normalised

by the maximum obtainable result, in order to have a score f ∈ [0,1]. The match is considered

reliable if the score is higher or equal to 0.7 ( f >= 0.7).

Finally, only the lists with a number of elements equal or greater than 5 are taken into account.

Spotify editorial playlists. 65 playlists realised by the editorial team of Spotify, which con-

tains in average around 50 tracks each. The playlists have manually been selected from the

Classical section of the Genre and Mood page5 and the metadata (artist, title) have been col-

lected through the Spotify Developer API. The title and the composer name (extracted from

the artists field that groups indistinctly authors and performers) have been used for the

interlinking, apply the same strategies of the web-radio dataset with a 45% of coverage.

3Types presents only in a or in b are not taken in account because considered unknown.
4opus number = 90, order number = 70, catalogue statement = 15, key = 18, title = 10.
5https://open.spotify.com/view/classical-page
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Table 9.1 summarises some statistics about those datasets. From now on, we will refer to any

list of works coming from the dataset as a playlist, while the differences between concerts,

radio programmes and playlists will be remarked when required.

works n. of extracted
n. of playlists per playlist total distinct sub-groups

pp concerts 186 9.5 1773 1246 805
itema3 concerts 624 11.5 7166 7166 4046
web-radio 50 22.6 1128 893 878
spotify playlists 65 28.9 1880 1432 1555

Table 9.1 – Statistics about the datasets.

9.1.2 Dimensions homogeneity inside playlists

The embedding representation of musical works open possibilities about studying the internal

configuration of the playlists from a quantitative point of view. In particular, it is possible

to compute the mean and the standard deviation of each playlist referred to each single

dimension. This would give a numeric information about how a playlist is homogeneous in

terms of composers, period, genre, etc.

Because of the different size of each playlist, and in order to reduce eventual gradual transitions

that can occur in the whole playlist duration, we split the lists in smaller groups of music

works. This set of sub-groups G are selected through a window of size T = 5, sliding over

all the possible centres between [ T
2 ; l − T

2 ], where l is the playlist length. In this way, we are

performing a data augmentation, which provide more samples for the analysis.

For each dimension, we compute the variance within (σ2
W ) and between (σ2

B ) the groups in G ,

following the definition from the ANalysis Of VAriance (ANOVA)6:

σ2
W =

G∑
g=1

σ2
g

ng −1

n −1
σ2

B =
G∑

g=1
(mg −m)2 ng

n −1
(9.2)

where ng is the population (number of works) for the group g , n the total population of the

dataset, mg the mean in the group g , m the mean among all groups in G . The comparison

between the two variances allows to have a neutral index, not prone to discrepancies in

absolute values which can be introduced by the different embeddings generation contexts

(explicitly declared in Section 8.1).

A σ2
W smaller then σ2

B means that the groups maximise the internal variance on the overall

one or, in other words, the groups have particular homogeneity over specific dimensions

6https://people.richland.edu/james/lecture/m170/ch13-1wy.html
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respect to the overall dataset values. Figure 9.1 and 9.2 plot on the same axis the two variances,

respectively computed on artist and work embeddings, showing some important gaps specific

dimensions, such as the ones belonging to genre and casting. A quantitative measure of the

maximisation of how much the variance within outclasses the one between, is given by the

variance ratio:

σ2
r ati o = σ2

B

σ2
W

(9.3)

When σ2
r ati o < 1, the studied dimension includes values that variate more inside groups

that over all the dataset. We can reasonably exclude or limit in weight those features in our

similarity function. Instead, σ2
r ati o > 1 reveals a strong homogeneity along that dimension,

which make the groups very distinct from each other and can play an important role in the

playlist generation.

Table 9.3 shows interesting differences between the datasets. Concerts are generally more

homogeneous in all the dimensions. This is particularly evident and predictable for the

dimensions about casting and solo, whose low variance within can be explained by the fact

that they are normally works played by the same group of performers. In general, higher values

belongs to dimensions of composer and genre, to which we can also add the solo instrument –

which has to be taken with a grain of salt because this is an element not always present in a

composition. The values of key are mostly < 1 and do not encourage the assignment of strong

weights. Surprisingly, the composition date is not always discriminant: while it plays a strong

role in concerts – probably due to the aim of give a theme to the event – and a relevant one in

Spotify playlists, the data reveal a low interest in web-radio programming for this metadata.

Apart from this latter point, playlists and web-radio have very similar results, which peak

variance ratio in few dimension of casting, solo and genre.

A similar experiment applied on artist embeddings (Table 9.2) reveals the historical period

and the genre are the most distinctive traits, followed by the places of birth and death of the

artist.
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9.2 Weights for playlist ranking

The Euclidean similarity described in Section 8.3 can be applied to rank the items in a simple

content-based playlist generation system in which, given a seed work s, the more similar

elements have higher chances to appear in the top of the list. Candidates are chosen among a

pool of target works T , by ranking them with the similarity function (8.2) and selecting the top

k results. The similarity is computed on the weighted version of the distance function (8.4).

The weight vector w is derived from the variant ratio values. A cutting threshold θ is chosen,

so that values lower than θ are assigned to a fallback value β. The weight vector is then equal

to:

w(θ,β) =
σ2

r ati o , if σ2
r ati o ≥ θ

β, otherwise
(9.4)

Moreover, σ2
r ati o can be computed on single datasets or combining the results of different

ones.

In order to find the best values for θ andβ, we performed a simple experiment. For each dataset

D with P playlists, we set as pool T the list of distinct works in all the playlists of the dataset.

For each playlist p ∈ D , we select sequentially each item x ∈ p and we run the recommender

system on T with x as seed. Among the first n predictions yn – with n in (100,200,500) –,

we consider positive prediction y+
n the ones that appears also in p (y+

n = yn ∩p). A score is

computed by averaging the number of positive prediction, normalised with respect to the

playlist population:

scor en(D) = 1

P

∑
p∈D

∑
x∈p

#y+
n

#p
(9.5)

As the concerts sets have particular and specific characteristics, we preferred to not take them

into account. We repeated the experiment with different parameters – with θ ∈ [1.0,1.1, ...2.0]

and β ∈ [0.1,0.2, ...1.0] – and empirically found θ = 1.4 and β= 0.7 as the values that maximised

the co-occurrences predicted-expected. The same approach has been applied for finding

weights for the artists similarity measure.

9.3 Evaluation

The recommender system has been evaluated by two groups, composed by experts coming

respectively from the world of radio broadcasting (Radio France (RF), 4 members) and concert
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halls (Philharmonie de Paris (PP), 3 members). We prepared a wizard interface7 composed of

10 steps. Each step shows a seed item (artist or work) and the first 10 target items, ordered by

similarity score. Some steps used the unweighted similarity measure, in order to compare with

the weighted version. In some cases, the ranking is explained declaring the features which

maximise the similarity, e.g. “similar genre and composer".

The evaluators are asked 1. to remove the wrong items by dragging and dropping them into

a trash area (with no predefined dimension) and 2. to sort the remaining good items by

relevance in the order they preferred. We collected, for each step, the dimension of the trash

bin and the Spearman correlation applied between the original and the edited rankings [14],

taking into account uniquely the good items, defined as:

ρ = 1− 6
∑n−1

i d 2
i

n(n2 −1)
(9.6)

where di is the difference in ranking of the i -th element and n the number of involved element.

The results are reported in Table 9.4, keeping separated the contribution of the two groups.

SEED RF PP
artist work explain weights corr trash corr trash

1 A. Vivaldi – X 0.81 1.25 0.81 1.57
2 A. Vivaldi – 0.49 1.75 0.64 2.43
3 I. Schubert – X X 0.85 4.50 0.51 5.14
4 I. Stravinsky – X X 0.50 4.50 0.29 5.14
5 L. van Beethoven Moonlight Sonata X 0.17 3.50 0.14 3.29
6 L. van Beethoven Moonlight Sonata 0.08 5.50 0.34 5.57
7 R. Wagner Der Ring des Nibelungen X X 0.57 4.00 0.41 4.29
8 M. Davis Spanish Keys X X 0.71 5.75 0.48 6.67
9 A. Reicha Concert for clarinet in Gm X X 0.72 2.25 0.64 3.86
10 J. S. Bach Sonata for viol and hapsicord X -0.02 2.5 0.17 3.17

Table 9.4 – Evaluation scores for the ranking. The seed work is absent when evaluating the
artist ranking. For each step, we marked the use of explanation and weights, the average
Spearman correlation and the average dimension of the trash bin, separately for each group.

The results show an overall preference for the weighted version of the rankings, while revealing

some differences between the two groups. The effect of the training – computed on radio data

and reducing the importance of some crucial features for the concert programming – is visible

in the better scores given by the RF group. PP evaluations put more items in the trash and

have a shorter gap between weighted and unweighted ranking. A jazz piece (Spanish Keys) has

been included as outsider in order to reveal the limit of the approach: the weights privilege

the composition date and appear to not suit the high range of genres of 20th century, given the

7http://overture.doremus.org/evaluation
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number of wrong prediction. Regarding the Moonlight Sonata work, the low correlation scores

suggest important changes in the list order made by experts, which have definitely different

opinions about this known masterpiece. No obvious benefit can be observed regarding the

presence or absence of the explanation in the user interface but this may also be due to the fact

that information was not made sufficiently visible to get attention. An experiment involving

the same evaluation board but with weights computed on the concert dataset is foreseen as

future work.

9.4 Conclusions and Future Work

We have presented a study on editorial classical music playlists in order to understand the

features that rule the playlist realisation. This study enable us to gave then weights to the

different dimension of the embeddings, in order to promote some specific features in the

similarity measure. The weight vector is the result of a study of the homogeneity of each

dimension in different collections of works (concerts, radio programming, playlists), and

appears to have a positive impact on the ranking of predicted playlists.

Among the possible improvements for the approach, we believe that a preliminary filtering of

the candidate pool based on a single feature (composer, period or genre) could benefit both

the results and the speed of the system, having to work on a relevant subset of items. Having

realised that differences in features variations may change in the time, new strategies can

focus on producing specific weights for each historical period, that dynamically applies in

reference to the given seed. Further experiments can be conducted for studying the impact of

this approach in conjunction with common recommendation techniques, i.e. for tuning the

computed results or for cold-starting a collaborative recommender system.

Finally, as future research, we plan to study how to include the concept of novelty [86] applying

constraints on the minimal distance or relying more on the not homogeneous features. Further

experiment will be conducted for judging if these methods are extensible to other kind of

music or other domains.

9.5 The role of playlist title: Title2Rec

This and next section, located as appendices to Chapter 9, include two other works which

have been carried during my PhD work. Even if not directly related to classical music, they are

interesting for completing our understanding of playlist creation with two crucial elements:

titles and emotions.

The title of a playlist can potentially contain interesting information about the intention and

the purpose of its creator. The title can suggest that the tracks in certain playlist are intended to
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suit a certain goal (e.g. party, workout), a mood (sad songs, relaxing), a genre (country, reggae),

or a topic (90’s, Christmas). Our intuition is that playlists with similar titles may contain similar

tracks.

I have been part of the D2KLab submission for the RecSys Challenge 20188 [33], organised by

Spotify and focusing on playlist completion. Following the challenge rules, the target dataset

is the Million Playlist Dataset (MPD), which contains metadata for 1 million playlists gathering

more than 2.2 million distinct tracks, mostly belonging to popular music. The outcome is an

ensemble strategy which involves different types of features, including sequential embeddings,

title embeddings and lyrics features. Our work globally ranked 37/112 for the main track and

13/31 for the creative track, and was invited to be published in the proceedings and presented

to the conference thanks to its original approach [130]. My contribution stands mainly in the

realisation of Title2Rec, which allowed to predict tracks of a new playlist of which we know the

title but not any element.

9.5.1 Algorithm

The title similarity could rely on pre-trained models and thesauri. However, we opted for

computing a model that is specific for the playlist continuation task, using the sole data of the

MPD.

We use word2vec9 [128] for generating the embeddings representing tracks, giving in input to

the algorithm the sequences of tracks as they appear in the playlists. The generated embed-

dings, which in other words encode the presence of the same track in the different playlists, are

used for realising the playlist embedding pw2v , computed as the mean of the embeddings of

the tracks composing the playlist. The playlist embeddings are grouped in n clusters, applying

the K-means algorithm. We empirically observed that, apart from very general clusters, we

also created clusters containing specialised playlists, obtaining as a consequence groups of

titles that belong to the same semantic area. For example, we may have a cluster containing

playlists with Christmas feels, December or the emoji of Santa Claus ( ), while another group

encompasses playlists like country and Alabama.

Each cluster c expresses a composed label, which is the concatenation of the titles of all the

playlist p ∈ c separated by a blank space. These labels can be seen as a corpus of n documents

(one for each cluster) that is used as input for the fastText algorithm [85]. Figure 9.3 illustrates

the process of the Title2Rec model generation.

The model is exploited for recommending tracks starting from the title of a new created playlist,

8https://recsys-challenge.spotify.com/
9Genism implementation [164], embedding dimension 100, learning rate 0.025 linearly decaying up to 0.0001,

window size 5, number of epochs 5
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Figure 9.3 – Pipeline for generating the title embedding model used in Title2Rec.

which acts as seed for the recommendation, as illustrated in Figure 9.4. Because fasText is

able to represent textual information at the level of n-grams from 3 to 6 character, the model

can compute the embeddings pt2r of any title, being this already seen in the dataset or totally

unknown. The embedding of the seed playlist is compared using the cosine similarity with

all the known playlist title embeddings. The subset P of the top-300 most similar playlists is

extracted. Finally, the required number of tracks are selected among the ones available in P .

The tracks have been ordered to ensure that:

• the most popular ones in P are placed at the top of the list;

• the impact of each playlist is proportional to the similarity score of the title embeddings

comparison

In other words, a track has a higher chance to be recommended if it is included in a large

number of playlists in P and if most of them are among the top ones more similar to the seed.

9.5.2 Optimisation

In order to improve the performances of Title2Rec, we worked on different parts of the pipeline.

Each optimisation has been tested by running the algorithm on a validation set of 1000 playlists.

Then, only the edits that improved the scores with respect to the non-optimised version have

been kept in the final version.

On each single title, we applied a pre-processing phase that foresees a series of tasks:

• lowercasing;

• detecting and separating emojis from words;

• transforming space-separated single letters into words (e.g. “w o r k o u t” becomes

“workout”);

• detecting and separating emoticons10 from words;

10An emoticon is an image made up of symbols such as punctuation marks, e.g. :-). An emoji is a small
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Figure 9.4 – Title2Rec: Recommendation algorithm.

• separating the skin code from the emoji;

• remove ‘#’ from hashtags.

Other tasks that have been tested with no improvements are:

• detecting and separating punctuation from words;

• removing stop words;

• removing all spaces.

The latter point has been partially exploited because we noticed an improvement in the results

by including in the corpus both versions of the title – keeping spaces (as in “green day”) and

removing them (“greenday”).

Another optimisation step included the usage of different parameters for executing the

pipeline. The clustering phase has been tested with different values of k (the number of

clusters in output for the K-means algorithm). The value of 500 gives better results than

smaller and bigger ones, which produce clusters that are respectively less specialised and

less populated. The fastText training has been run with 5 epochs, a learning rate of 0.1 and

different loss functions (ns, hs, softmax), window sizes (3, 5, 10). The values in bold represent

the best results.

Finally, some improvements come from the inclusion of the playlist descriptions in the training.

On the whole set of descriptions in the MPD, we compute a Term frequency-inverse document

pictograph, commonly encoded as special character and visualised as image, e.g. .
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Approach R-Precision NDCG Click

Most Popular 0.0373 0.0959 18.529
Title2Rec 0.0837 0.1260 12.007
Ensemble (main track) 0.1611 0.1710 3.6349
Ensemble (creative track) 0.1634 0.1717 3.5964

Table 9.5 – Results of Title2Rec compared with a baseline and with the full ensemble.

frequency (TF-IDF) model. Thanks to this, we are able to extract a set of keywords for each

description by selecting the 3 words with the highest score. These keywords are added to the

documents used to build the clusters. The contribution of the description is null when the

playlist does not include any.

9.5.3 Results and Future Work

Title2Rec has been used in combination with 3 different Recurrent Neural Networks (RNN) in

an ensemble algorithm. The strategy rely on the selection of the most represented recommen-

dations among the results of the 3 RNNs, which receive in input sequential embeddings (for

tracks, albums, and artists), Title2Rec embeddings, and a vector of features extracted from

lyrics11. In case of title-only seed, the results are computed with Title2Rec.

Table 9.5 shows the results obtained by Title2Rec and the ensemble, also compared with a

baseline realised by selecting the most popular 500 tracks. The playlist title has been revealed

to be highly informative, being capable to reach on its own half of the score of the full ensemble.

Further experiments may improve the performance of the algorithm. The scores of order-

dependent metrics can benefit of different sorting strategies, like the Borda count12. The use

of pre-trained fastText model – alone or in combination to the ones computed on playlists’

clusters – should be tested. Finally, we foresee a more systematic evaluation of the contribution

of the single pre-processing tasks, in order to select the best ones.

9.6 The role of playlist emotions

A party, a Sunday afternoon at home, the commuting time before an exam. At different

moments of their day, users search different music, which would arise in them a specific

emotion [124]. This search impacts even in playlist realisation.

Following the intuition that emotions are mostly homogeneous inside playlists and state-of-

11Used uniquely in the creative track, in order to respect the Challenge rules.
12https://en.wikipedia.org/wiki/Borda_count
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the-art techniques [91] for emotion detection can be applied to song lyrics, we studied an

approach for classifying the main emotion of a given playlist within four different classes:

relaxed, happy, sad and angry. The prediction relies on aggregating the emotion prediction

computed at the song level through the analysis of their associated lyrics (we consider English

lyrics). The experiment has been carried by two students of EURECOM under my supervision

and has been published in [66].

9.6.1 Emotion Recognition in Song Lyrics

Previous studies identified some features, which are interesting for performing different kind

of classification of songs [60]. Among those features, we selected a smaller subset, containing

the features that maximise the performance of the later-described approach:

• %Past_tense_verbs: percentage of past-tense verbs over the total number of verbs;

• %Present_tense_verbs: percentage of present-tense verbs over the total number of

verbs;

• %Future_tense_verbs: percentage of future-tense verbs (“will” or “’ll” + base form) over

the total number of verbs;

• %ADJ: percentage of adjectives over the total of words;

• %PUNCT: percentage of punctuation over the total number of words;

• %Echoism: percentage of echoism over the total number of words, where an echoism is

either a sequence of two subsequent repeated words or the repetition of a vowel in a

word;

• %Duplicate_lines: number of duplicated lines of the total number of lines in the lyrics;

• isTitleInLyrics: true if the lyrics contain the title string;

• Sentiment_polarity: sentiment polarity, between -1 (negative) and 1 (positive);

• Subjectivity_degree: degree of subjectivity of the text between 0 and 1.

All the features have been normalised by subtracting the mean and scaling to unit variance.

Each song is represented by a feature vector, obtained by the concatenation of a 300-dimension

Glove word embedding of the lyrics13 [152] and the 10 features described above.

The ground truth for the experiment is the perfectly-balanced MoodyLyrics4Q dataset [29],

which contains 2000 manually annotated songs with the four different emotion labels – re-

laxed, happy, sad and angry –, which we interlinked with LyricsWikia14 in order to obtain

the lyrics. The feature vector is given in input to four different classifiers, listed in Table 9.6

together with their accuracy computed with a 10-fold cross validation. Having obtained the

13A single word embedding representing a song is realised by averaging the word embeddings of all tokens in the
song

14http://lyrics.wikia.com/
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best performances, the Neural Network15 is chosen to be employed in the following of the

experiment.

A confusion between the “sad” and “relaxed” classes is a common pattern in all classifiers

(see Figure 9.5). To investigate the reasons, we downloaded and read the lyrics of some songs

and we discovered that discriminating between “sad” and “relaxed” emotions is hard, also for

humans.

Classifier Accuracy
Neural Network 58.45%
Logistic Regression 57.87%
Support Vector Machine 58.04%
Xgboost [34] 56.89%

Table 9.6 – Accuracy results on MoodyLyrics4Q

Figure 9.5 – Neural network confusion matrix

9.6.2 Playlist Classification

The network output consists in a probabilistic distribution of the emotion of the input song, in

the form of vector [sad%, angry%, happy%, relaxed%], where the sum of the percentages

is equal to 100. The dominant emotion within a playlist is the one with the highest probability.

The score sx
i for the emotion i in the playlist x is equal to the sum of all the individual song

probabilities normalised by the number of songs l , according to the formula:

sx
i = ∑

song∈x

ssong
i

l
(9.7)

15Feed-forward network with 2 hidden layer with sigmoid activation, and an output layer with softmax activation.
Other parameters are batch size = 256, epochs = 100, optimizer = Adam, loss = categorical cross-entropy.
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In order to face the absence of a dataset of annotated playlists, a perfectly balanced dataset

has been generated by manually picking 40 playlists from Spotify, chosen among the ones

representing an emotion in the playlist title, e.g. "Sad songs" or "angry music". Within this

environment, our algorithm reaches 80% of accuracy. For better appreciating the predictor,

we developed a web app available at http://data.doremus.org/emotion. The app requires the

use of Spotify account in order to get a token for the Spotify Developer API. The application

receives in input from the user the Spotify URI of a playlist. The lyrics are downloaded and

classified, and then, the results are aggregated for predicting the dominant emotion.

Looking at scores, we discovered that normally playlists result quite homogeneous in repre-

senting a single emotion. Future work would investigate how the dominant emotion can be

used in improving recommender system performances.
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Chapter 10

Explore

In addition to the research implications described so far in Part II, the adoption of a KG can

benefit directly the final user, providing him/her a more complete information and easier

ways to access it. User access to information is nowadays declined in several different media,

including the web, mobile apps and vocal assistant.

This Chapter presents three ways to access the DOREMUS KG. In Section 10.1 we describe an

exploratory search engine for DOREMUS data, built using web technologies and SPARQL Trans-

former. An experiment of location-aware recommender system is presented in Section 10.2,

while the DOREMUS Chatbot is introduced in Section 10.3. Finally, Section 10.4 contains

some conclusions.

10.1 Explore the Music Graph with OVERTURE

Knowledge discovery is often entrusted to exploratory search engines. Instead of obtaining a

precise results, the goal of exploratory search is learning something about a more or less vague

topic, with a serendipitous attitude that push into continuing the search [146].

We developed a prototype of an exploratory search engine for DOREMUS data, under the name

of OVERTURE (Ontology-driVen Exploration and Recommendation of mUsical REcords). The

application relies on a Node.JS server sitting in front of a Virtuoso triple store (Figure 10.1). The

queries are performed through SPARQL Transformer (see Chapter 6) which maps the results

into a Schema.org format (following what described in Section 3.2). In this way, a simplified

API for DOREMUS data is exposed and interpreted by the client part of OVERTURE, realised

with the Angular framework1. The application is available at http://overture.doremus.org.

The UI has been designed with the goal of allowing the user to navigate the DOREMUS graph

1https://angular.io/
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Figure 10.1 – Application schema of OVERTURE

according to its own structures. At the top, the menu bar presents the main concepts of

the DOREMUS model: works (including expressions), performances (including recordings),

scores, artist. In each of this sections, it is possible to perform a detailed advanced search

(Figure 10.2). Works are searchable by facets, that include the title and the composer, but also

keys, genres, detailed castings, making it possible to select very precise subsets of data, like all

sonatas (genre) that involve a clarinet and a piano (MoP). Under the hood, the selection of

facets modifies the SPARQL Transformer query by including some VALUES constraints. The

hierarchical properties in controlled vocabularies (Chapter 4) allow the smart retrieval not

only of the entity that match exactly the chosen value (i.e. strings), but also any of its narrower

concepts (i.e. violin, cello, etc.), taking in account also the interlinks between vocabularies.

OVERTURE is available in English and French, exploiting the language selection feature of

SPARQL Transformer. In this way, label selection follows a priority order, which depends on

the chosen application language, with English and any other language as foreseen fallback.

Figure 10.3 shows Beethoven’s Sonata for piano and cello n.1 as seen in OVERTURE, as example

of detail page. Aside from the different versions of the title, the composer and a textual

description, the page provides details on the information we have about the work, like the

musical key, the genre, the intended MoPs, the opus number. When these values come from a

controlled vocabulary, a link is present in order to search for expressions that share the same

value, for example, the same genre or the same musical key, providing the user with a graph

browsing experience. A timeline shows the most important events in the story of the work –

i.e. the composition, the premiere, the first publication. Other performances and publications

can be represented below and it is possible to click on them for accessing to their detail page.

On the right side, similar items computed according to the strategies defined in Chapter 9 are
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Figure 10.2 – OVERTURE: advanced search

shown.

OVERTURE has largely been used for manual testing the content of DOREMUS graph and the

result of data conversion since its first development. This has been largely helped by the URI

policy, which perfectly map the one of entities, so that http://overture.doremus.org/
expression/xxxx is the OVERTURE page about http://data.doremus.org/expression/
xxxx, making easy to jump from the application to the data.

10.2 Discover music in the city: CityMUS

The trending consumption of music content on the move fosters the attention of context-based

recommender systems. The main challenge of those systems relies in finding strategies for a

successful connection between distinct domains, such as the context and the music.

With the aim of combining the experience of exploring a city with the one of music, we carried

out an experiment of a location-aware recommendation of music using the DOREMUS KG.

Our strategy consists in exploiting arbitrary semantic connection or graph paths between PoIs

and musicians using DBpedia as intermediary knowledge base. Even if inspired by previous

experiences [25,87,153], our approach does not rely on domain experts’ – who are in charge to

select the best subset of classes and connection to be used – but is a completely unsupervised

approach. The experiment has been realised in collaboration with two master students of

EURECOM and published in [105]. We chose the city of Nice as an example for performing
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Figure 10.3 – OVERTURE: work detail

our experiment.

We rely on two specialised datasets: the DOREMUS KG – used for the data about artists, already

interlinked with DBpedia – and the 3cixty knowledge base [192]. The latter contains data

about events and places from a touristic point of view for a defined list of city, among which

Nice, which has been chosen for our demo. The PoIs in Nice have been retrieved through

the 3cixty API2 and matched to a DBpedia, taking in account only resources geographically

located in Nice or that have dbr:Nice as dc:subject. The match relies on the aggregation of

text similarity measures3 applied on labels. The interlinking is validated using Google Maps

API, taking as valid the links between places in 250 meters distance (70% of the total).

10.2.1 Path Finding and Scoring

Retrieving paths between two entities has already been solved by tools such as Relfinder [80]

that searches the graph for possible paths with a given depth. However, increasing the depth

generates both many more possible paths and increases the computation time. In our case,

the required depth d is quite high: we need in average 5-6 edges to connect a PoI to an artist,

covering the whole DBpedia depth and dimension (8.8 billion triples).

For this reason, a simplified version of Relfinder has been developed, with the implementation

2http://aplicaciones.localidata.com/apidocs/
3Partial Ratio, Token Set Ratio, Token Sort Ratio, Partial Token Sort Ratio, and the weighted combination of

those (WRatio), all coming from https://pypi.python.org/pypi/fuzzywuzzy
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of a bidirectional Breath First Search (BFS) [173]. We search for all the paths with depth d/2

of 3 from both the source (PoI) and the destination (artist) entities. Then, the two sets have

been intersected in order to find the common nodes. Some joins recreate the full paths. This

technique reduces the complexity from O(bd ) to O(b
d
2 ), with an exponential reduction of

computation times. Moreover, we decided to take in account only properties that are directed

from the entities to be connected to the common node and ignoring eventual others. Finally,

a pruning is performed in order to remove cycles4 and preserve only the shortest path for each

couple of entities.

Among all possible paths between each PoI and artist, we are interested in the shortest and

discriminant ones: the experiment is not interesting if all the entities are connected with very

common resources, such as classes or dbr:Nice. We define the generality formula:

g en = 1

| N |
N∑
i

occ(ri )

where ri is the ith resource of a path of length N and occ(ri ) is the number of its occurrences

in all retrieved paths. Given the biggest path depth deepmax (in our case, 7) and path length

len(ar ti st , poi ), we define the similarity between a PoI and an artist:

si m(ar ti st , poi ) = 1−k(
log(l en(ar ti st , poi )−1)

log(2∗ (deepmax −1))
)− (1−k)g en

k is a variable set to 0.3. For each PoI, the artist are sorted by similarity score and the top 5 are

selected.

10.2.2 CityMUS Application

CityMUS is a mobile web application available at https://citymus.doremus.org. The app uses

the geo-location API for getting the user position. The server generates then a playlist of tracks

from the artists connected to the closest 3 PoIs, with a different weights according to their

distance. The Spotify APIs are used in order to display and play the tracks (Figure 10.4.a). The

user can see the path of the song that is currently played (Figure 10.4.c) and navigate the map

for discovering the songs related to other PoIs (Figure 10.4.b).

The results include some unexpected and in a way odd connections: the singer Yannick Noah

was a tennis coach and is connected with the tennis lawn, while churches in Nice are often

linked with some catholic musicians. This kind of connections are not necessarily bad, but

for sure they raises some questions. Some explanation can be found in the structure itself of

4Repetitions of the same entity in the path.
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Figure 10.4 – The CityMUS app with its 3 views: a. Playlist, b. Map and c. Path Visualisation.

DBpedia, which connect Nice Cathedral and the Baroque composer John Dowland at distance

6 when including Baroque5 and at distance 4 when including Catholicism6. Improving the

results and at the same time keeping unsupervised the method would be hard, while further

experiment may be performed by prioritising paths involving specify entity types.

10.3 A Music Chatbot

The year 2018 revealed a rising of voice-based AI, which massively reached our homes and

brought the knowledge available on Internet within voice call. One the challenges related

to this trending technology involves the design and development of smart conversational

agents or chatbots [92], able to mimic the human conversation flow. Following the trend, we

exposed part of the DOREMUS knowledge trough a chatbot application. The chatbot has been

developed by two master students in EURECOM7 under my supervision and it is available at

https://chatbot.doremus.org.

The DOREMUS Chatbot is built on top of BotKit8, a toolkit for easy development of chatbots

(Figure 10.5). In particular, it is in charge of:

• providing the user with an access to the chatbot, thanks to its integration with Slack,

Facebook Messenger, Google Assistant or web-based custom solution;

56-edges path: dbr:John_Dowland, dbc:Baroque_composers, dbc:Baroque_music, dbc:Baroque_art,
dbc:Baroque_architecture (category), dbr:Baroque_architecture (resource), dbr:Nice_Cathedral

64-edges path: dbr:John_Dowland, dbc:17th-century_Roman_Catholics, dbc:17th-century_
Roman_Catholicism, dbc:17th-century_Roman_Catholic_church_buildings, dbr:Nice_Cathedral

7Claudio Scalzo and Luca Lombardo.
8https://botkit.ai/
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BotKitSPARQL 
Endpoint Dialogflow

End User Interface

4. Query
2. Process 
with NLP

1. Ask a question

3. Return the 
NLP response5. Get data

6. Present results to 
the user

Figure 10.5 – DOREMUS Chatbot: application schema

• coordinating with a chosen NLP engine – in our case Dialogflow9 – for interpreting the

text messages;

• retrieving the interesting information from the SPARQL endpoint, in order to properly

present it back to the final user.

The bot is able to successfully recognise and answer 4 categories of questions (intents) are

grouped in a simple and clear way, according to what the user wants to retrieve from the

DOREMUS KG:

• works-by. It retrieves a set of works according to different filter, such as artists who

composed the works, instruments used, music genre and/or year of composition.

• find-artist. Finds a set of artists according to some filters, such as number of com-

posed works, number of works of a given genre, etc.

• find-performance. It proposes to the user a future performance – filtered by city

and/or date period – or shows him/her details about a past performance.

• discover-artist. It shows a card with a summary of an artist, with its birth/death

place and date, a picture and a little bio. After the card visualisation, the application

allows to obtain a set of works of the artist, sharing the dialog memory with the works-by
intent.

Beyond being a way to publicly expose the DOREMUS data, the development of the chatbot

allowed us to further validate the relevance of DOREMUS controlled vocabularies. The appli-

cation makes strongly use of multi-language dictionaries of genre, MoP, and musicians, which

are directly extracted from the DOREMUS endpoint. Their presence allowed to expose the

chatbot in English and French10 and take in account all the different synonyms. In addition, a

spell-checking module has been developed for detecting and correcting misspelled elements,

acting in the context of each dictionary.

9https://dialogflow.com/
10The bottleneck for including further languages stand in the absence of pre-trained NLP model.
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10.4 Conclusion

Exploratory search, geo-location, conversational agent. The three applications here presented

are three public online demonstrations of the data in the DOREMUS KG and of what it is

possible to obtain exploiting the knowledge contained in the data. Moreover, most if the

main results of this research are included in these applications, including the controlled

vocabularies, the combined embedding similarity approach, and SPARQL Transformer.

Being initially developed for different purposes – demo of the data, student education –,

they did not receive a proper evaluation session. However we believe that the developed

approaches and ideas may be generalised and applied to different use cases and domains.

Some learned lessons found already application in other work. The development of OVERTURE

– which began before the realisation of SPARQL Transformer – pushed for a more general

solution for some recurrent problems during the implementation, finally embodied into the

SPARQL Transformer module. Among the takeaways, it is appropriate to mention the use of

domain-specific vocabularies for spelling correction, link discovery, multilingual access to the

data.
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Learning MIDI Embeddings

Music metadata discussed so far are the product of a human cataloguing practice which lasted

decades or centuries, which ensured high-quality data. Notwithstanding, human annotation is

costly and not always affordable. This stimulated research in automatic extraction of metadata

from the music content, being it an audio signal or a symbolic representation. In this chapter,

we focus on symbolic music in Musical Instrument Digital Interface (MIDI) format [125], due

to its high availability on the Web and its popularity in tasks like music generation [170] and

music knowledge graphs [123].

So far, research for extracting genres [31, 119], emotions, and composers [64] with machine

learning, relied on a preliminary feature selection, extracted with traditional MIR techniques.

In this context, feature selection plays an crucial role, introducing the risk of over-fitting the

model [72]. In a more related work towards an embedding-based symbolic music metadata

classification, MIDI-glove1 produces embeddings of notes from monophonic MIDI, but its

consideration of MIDI note values leaves out e.g. timing and rhythm information, therefore

producing representations of a single feature (pitch) instead of the whole MIDI content.

In this Chapter, we propose MIDI2vec, a new approach based on the embedding representa-

tion of MIDI content, in order to overcome the traditional feature selection problem. More

specifically, our contributions are:

• conceptualizing relevant symbolic features (pitch, timbre, tempo, time signature) of

MIDI space into a graph space;

• a systematically application of a well-known graph embedding generation method [70]

to generate MIDI embeddings;

• the use of learned embeddings to predict metadata for two datasets, demonstrating that

our method achieves a higher accuracy than symbolic feature-based approaches.

1https://github.com/brangerbriz/midi-glove
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Traditionally, applications of machine learning to this problem have encountered limitations in

feature selection, and more recent embedding-based techniques have been only used for other

tasks (e.g. music generation [82, 170]) or on different data (e.g. music metadata [107, 109]).

To the best of our knowledge, this is the first time that embedding approaches are used for

representing a whole symbolic music track.

The rest of the chapter is organised as follows. In Section 11.1, we describe our strategy to

extract relevant symbolic data from MIDI files and to use it to build MIDI embeddings. In

Section 11.2, we conduct an experiment to predict genre, subgenre, composer, instrument,

and movement label on two different datasets using the MIDI embeddings. Finally, we con-

clude and outline some future work in Section 11.3.

This work has been realised in collaboration with VU University in Amsterdam.

11.1 Learning the embeddings

The MIDI format does not present a graph structure, but it consists in a time-based linear

succession of events, called MIDI messages. Some examples are Note On and Note Off for

representing played notes, Program Change for setting the instrument, or MTC Quarter Frame

Message for specifying the playing speed according to the MIDI Time Code (MTC) protocol.

Some of these messages are referred to a specific channel – which represents a single device

emitting music – while others can apply to the whole MIDI [125].

In order to compute graph embeddings on MIDI data, we have to map them into a graph

structure which preserves the informative content.

11.1.1 MIDI to graph

Figure 11.1 – Schema of the graph generated from MIDI. The double lines represent links of
type many-to-many.

We propose a preliminary conversion of a MIDI file to a graph. As shown in Figure 11.1, a
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MIDI node (the circle) will represent the MIDI file and will be connected to nodes representing

different parts of the MIDI content – i.e. tempo, programs, time signature, notes. A MIDI node

can be linked to one or more nodes for each type.

In the context of graph embeddings computation, literal values (text, numbers, etc.) are

normally ignored [169] or some shrewdness is applied such as the use of contiguity win-

dows [89]. In fact, literals can increase uncontrollably the number of nodes and make the

graph very sparse2, causing an exponential increase of the computation time and poor perfor-

mances [157]. In our case, the crucial information represented as continuous data (e.g. the

tempo) can not be excluded from the embeddings. We opted for partitioning the continuous

values in ranges, in order to insert their information in the graph, while limiting at the same

time the number of nodes.

In the following, some details about each type are given.

Tempo, computed in Beats per Minute (BPM). This value is computed from the MIDI tempo

field (in Microseconds per Beat), according to the formula:

Tempobpm = 60000000/Tempomi di (11.1)

The continuous values are then discretised in partitions, each one representing a range of 10

BPM.

Programs, representing the timbre of the channels, among the 128 different standard pro-

grams3.

Time signature, represented as the concatenation of numerator and denominator. For exam-

ple, is represented as “44".

Notes, representing the pitches in the MIDI. The information about duration and co-occurrence

of notes (e.g. in a chord) are not directly represented in the MIDI file. The duration is extracted

by comparing successive NoteOn and NoteOff events in the same channel. Co-occurrent notes

can be detected by comparing the same category of events among all channels, selecting the

ones with overlapping Song Position Pointers (SPP). To include this information in the graph

while limiting the number of nodes and edges, we extract all groups of notes starting (i.e. with

a NoteOn message) at the same SPP. Each group is connected to its duration (the maximum

duration of the notes in the group), velocity (their average velocity) and to all the pitches,

represented with an identifier. Each group has an identifier deterministically computed from

its content and it is linked to the MIDI node. In this way, two MIDI tracks sharing multiple

2A graph is considered dense or sparse if its number of edges is close or far to the number of all potential edges
connecting each pair of vertices [53].

3The full list is available at https://jazz-soft.net/demo/GeneralMidi.html
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chords will have more probability to appear in the same random walk, while other connections

will be on single notes, duration, etc. This representation aims to track in the same time the

presence of specific chords and of quick and long notes, which can respectively characterise a

more virtuous or lyrical composition.

11.1.2 Graph to vectors

The output graph of the previous process is represented as an edgelist, which includes all

couples of connected nodes, each one represented by an identifier. This edgelist feeds the

node2vec algorithm, which simulates random walks on the graph and computes the transition

probabilities between nodes, which would be mapped into the vector space. The parameters

used in the configuration are: walk length = 10, number of walks = 40, window size = 5 and

number of iterations = 5. The algorithm computes embeddings with 100 dimensions.

The whole library for producing MIDI embeddings is available at https://github.com/midi-ld/

midi2vec.

11.2 Evaluation

We evaluate this strategy through two different experiments, involving two different MIDI

datasets. In the first experiment, we use MIDI embeddings for predicting the music genre,

while in the second, we predict a wider set of metadata.

In both cases, we rely on a Feed-Forward Neural Network made of 3 dense layers. The network

receives in input the MIDI embeddings (100 dimensions) in batches of size 32. The label

set used for training and testing changes according to the experiment. However, it is worth

reminding the reader that those labels have not been used in the embedding task, and conse-

quently are not directly included in the embedding information. The hidden layers count 100

neurons each and use rectified linear unit (ReLu) as activation function. The output layer uses

a sigmoid as activation function and has a number of neurons equals to the dimension of the

vocabulary of labels, which is represented with a one-hot encoding. These experiments are

available as notebooks at https://github.com/pasqLisena/midi-embs.

11.2.1 Genre Prediction

In [118], the authors perform a genre classification task on a contextually published Symbolic

Lyrical Audio Cultural (SLAC) Dataset, which contains 250 MIDI files classified according

to a two levels taxonomy. The first level includes 5 genre labels (Blues, Classical, Jazz, Rap,

Rock), while the second one further specialises each genre by 2 sub-genres, for a total of 10

sub-genre labels. The dataset is perfectly balanced among classes. We perform a 5-class genre
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classification experiment as well as 10-class experiments on the same dataset.

Because different inputs are used for predicting the genre in [118], we select as baseline the

results that rely on the sole MIDI content, even if our method outperforms also some other

multi-modal results described in the paper. In particular, the method of the baseline relies

on features extracted with classic MIR techniques, including spectral flux, chord frequencies

and rhythmic density, using a software called jSymbolic [120]. For this reason, we use 10-fold

cross-validation and provide a final score which is the average of the accuracy computed on

every fold. The results are reported in Table 11.1, while Figure 11.2 shows the confusion matrix

between the real and the predicted values. Even if there are not strong patterns, we can state

that Blues is the hardest genre to identify. Figure 11.2b confirms that sub-genres belonging to

the same parent genre are predictably easier to be confused.

In comparison with the baseline, our approach performs better, with an accuracy score greater

than 91%. Moreover, it is worth to notice that the gap between the 5-classes prediction score

and the 10-classes one is less strong, proving the effectiveness of the embeddings strategy in

representing the features characterising the musical genre.

Approach 5 classes 10 classes
Baseline [118] 85% 66%
midi2vec+NN 91.99% 91.39%

Table 11.1 – Accuracy of the genre classification.

(a) Genre prediction (b) Sub-genre prediction

Figure 11.2 – Confusion matrices for the SLAC dataset.
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(a) Composer prediction (b) Genre prediction

(c) Instrument prediction (d) Movement label prediction

Figure 11.3 – Confusion matrices for the Muse dataset.

11.2.2 Metadata Prediction

This task consists in predicting a set of metadata from the MIDI, namely the composer, the

genre, the instrument, and the movement.

We started by downloading a corpus of 438 MIDI files from MuseData4. Those files refers

to 139 classical music compositions, of which each file can represent a specific movement.

MuseData provides also some metadata, like the composer name, the scholarly catalogue

number, a label for the movement. Each composition is interlinked against the DOREMUS

knowledge base.

The interlinking process consists of 3 successive steps:

4http://www.musedata.org
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• interlinking of the composer through the exact match on the full name. This limits the

candidate for the composition interlinking to the sole compositions of the interlinked

composer;

• interlinking of the composition through the exact match on the catalogue number;

• if no catalogue number match is found, the titles are involved in the process. Titles

can often contain other kinds of information, such as key, instruments, opus number,

etc. For this reason, titles are tokenised with the method described in Section 9.1.1 and

ranked according to (9.1).

Every composition can be linked to more than one MIDI file, in the case of works made of

multiple movements. The movement labels have been cleaned by removing the order number,

the key, the instruments and eventual comments in parentheses. For example, “1. Allegro in E

Major" becomes simply “Allegro".

The interlinking gives access to precise metadata – mostly coming from DOREMUS controlled

vocabularies [107] – in particular composers (4 classes, i.e. Bach, Beethoven, Haydn, and

Mozart), genres (10 classes), and instruments. For this latter dimension, given the big number

of possibilities, we decided to reduce the number of classes to 6, including piano P, instrument

(other than piano, including also small instrument ensembles) I, voice V, orchestra O, orchestra

with voice O+V, and orchestra with instrumental soloist O+S. For instrument prediction, we

excluded from the input 21 MIDI with unknown instrumentation and 3 others which did not

fall into any of the previous classes, having a final source dataset of 414 items.

In addition, we consider also the movement label as feature to predict, considering only those

ones which where occurring more than 10 times. Those labels include tempos (Allegro) and

musical forms (Prelude), for a total of 9 distinct classes on 335 MIDI files. The dataset is not

balanced among classes and has a strong presence of Bach works (76% of the total).

feature n. items n. classes score
composer 438 4 93.23%

genre 438 10 93.24%
instrument 414 6 88.27%
movement 335 9 89.96%

Table 11.2 – Accuracy of the metadata classification.

Our evaluation is also based on a 10-fold cross-validation. The final accuracy (average of

all the fold scores) is reported in Table 11.2. The best results belong to composer and genre

prediction, even if good results can be seen for all the features. Looking at the confusion

matrices:

• For the composers, the best results belong to Bach (the most present in the dataset). The

two Austrian composers Mozart and Haydn are not surprisingly the two most confused
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with one another, belonging both to the Classicism, differently from Beethoven (Classic-

Romantic) and Bach (Baroque) [172] (Figure 11.3a);

• The genres are much more specific respect to the ones investigated in Section 11.2.1. As

a consequence, the greatest confusion occurs between couples of very similar genres,

such as [concerto, symphony] and [prelude, prelude and fugue] (Figure 11.3b);

• While the instrument prediction has great results in identifying works for orchestra,

piano solo or small ensemble of instruments, it reveals some unreliable classification for

voice-only pieces, probably due to the under-representation of the class in the dataset.

In the same way, the approach is not able to distinguish compositions for orchestra

only, orchestra and voice, and orchestra and soloist, all classified under the class O
(Figure 11.3c);

• Even if the movement labels include heterogeneous meaning, the network correctly

predicts 9 over 10 items. Some confusion patterns can be spotted. The Fugue tag is often

predicted as Prelude (proving on the other hand a correct genre prediction) while the

Recitativo falls under Fugue or Aria. The classes representing tempos (e.g. Adagio or

Tempo di Minuetto) are often confused with the most represented class among them

(Allegro). Some confusion is visible also between the two tags related to singing, Aria

and Choral (Figure 11.3d).

Obviously, all those results should be analysed with a grain of salt, given the absence of balance

between classes in the dataset. Nevertheless, they reveal the capability of the approach in

dealing with specialised classification.

11.3 Conclusion and Future Work

Symbolic music content in MIDI files, and its embedding representation in vector space, are

a powerful tool for automated metadata classification tasks. MIDI2vec can represent MIDI

content in graph space and, subsequently, in vector space through learning graph embeddings.

These embedding can successfully be used for metadata classification, outperforming previous

methods using symbolic music.

We plan on extending this work in various ways. The prediction approach can be upscaled to

larger, more challenging datasets, like the Lakh MIDI Dataset5, which can additionally provide

an interesting set of metadata thanks to the included matches to the MSD [158].

A MIDI ontology and a corpus of over 300 thousand MIDI in RDF format has been presented

in [121]. Despite of being an interesting target for MIDI2vec, the extraction of crucial informa-

tion – like the duration of a note – from the dataset is hard. In the current version, the ontology

faithfully reproduces the event structure of the MIDI files, while significant edges – e.g. among

5https://colinraffel.com/projects/lmd/
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simultaneous notes or consecutive events – are missing. We plan to extend or map the MIDI

ontology in order to solve this issues and enable MIDI2vec for working on such corpus.

According to some intuition from other works in genre classification field [31], the computation

should not necessarily involve the full length of the track. Experiments with different time

spans or sample sizes among the graph edges can help in detecting a trade-off between the

performances and the embedding computation time. Recent approaches for including literal

values in graph embeddings [40, 98] could be included in MIDI2vec, in order to avoid any

arbitrary choice that partitioning values implies. Finally, we will use MIDI2vec in more applied

contexts, such as the task of knowledge graph completion in knowledge bases with incomplete

metadata entries [123].
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Conclusions

Music knowledge is a valuable source for performing different tasks, from recommendation

to genre prediction, among others. In this sense, the availability of high-quality structured

data is a crucial factor for the success of automatic systems. This kind of data is hard to find

in the context of classical music, which instead would benefit from dedicated approaches

for representing and exploiting the complexity of its metadata, going beyond the track-based

approach.

In this thesis we provide a first contribution to classical music research. This dissertation

covers very diverse topics, which have as common focus music information and knowledge

graphs. We rely on Semantic Web technologies, which gave us suitable methods to structure

and publish music data, and exposing them to different state-of-the-art approaches. Some of

them have been directly applied in our studies, while new ones can be investigated as future

research.

In the following we summarise the content of this thesis, reporting some first implications

of the obtained results. We will conclude by recapitulating the limitation of this work and

suggesting some perspective for further research on this topics.

12.1 Summary of the Research

This thesis contributed in research application to the specific domain of classical music,

broaching knowledge representation, data access and recommendation systems. The gener-

ation and exploitation of embeddings has been an important focus of this research, experi-

mented on different kinds of music-related information, from metadata to symbolic music,

including textual information like titles and lyrics.

The main outcomes of the thesis are:
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• The DOREMUS ontology, a model for the description of music in detail, realised by a

joint effort of librarian and technical members. The ontology is built on top of the librar-

ian model FRBRoo, inheriting the Work-Expression-Event pattern and extending it with

the addition of music-specific properties, which allow to fully describe compositions,

performances, recordings, publications. The model is capable of answering complex

questions, collected before the beginning of the project.

• A set of controlled vocabularies for music metadata in SKOS, which cover different

fields like genres, MoPs, thematic catalogues, musical keys and others. The vocabularies

ensures the multilingual disambiguation of music entities, thanks to a string2vocabulary
library. Hierarchies and relations between concepts in the vocabularies enable a smarter

advanced search and the possibility of generating graph embeddings, which give a

mathematical representation to these concepts.

• The DOREMUS KG, a huge resource on classical music, published according to the LOD

standards. The graph exposes fine-grained metadata, coming from the most important

French cultural institution and describing artists, works, performances, scores and

recordings. The realisation of this KG made use of a set of tools for converting data,

among which a generic solution for parsing and transforming the librarian standard

MARC, called marc2rdf.

• SPARQL Transformer, a solution for simplifying LD access by web developers. The

library relies on a query object in JSON, which defines at the same time the desired

structure in output and how to retrieve the values. An automatic reshaping of the

SPARQL standard output is performed, together with a type parsing for number and

booleans. A merging strategy is applied to entities described on multiple bindings,

so that each graph node is represented by a unique object in the output JSON. The

library has been developed both in JavaScript and Python, and has been included in the

automatic API generation framework grlc.

• An approach for realising entity embeddings through the generation and recombina-

tion of partial embeddings of metadata features such as the genre, the casting and

the musical key. These feature embeddings are computed using graph embedding

techniques on two graphs: the graph of vocabularies – containing the semantic de-

scription of the entities (hierarchies and relationships), and the graph of usage in works

and performances. Feature embeddings are averaged and combined for representing

more complex entities like artists and works. A weighted Euclidean similarity metrics is

proposed, including a penalty for comparing vectors with missing dimensions.

• A study of editorial playlists, which exploit the embeddings for estimating how much

variation in genres, composers, keys, instruments, etc. is present within playlists, in

relation to the variation between playlists. These variations are used for weighting a
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ranking algorithm developed for recommending similar works to a given seed. The

intuition is that the more a dimension is homogeneous within playlists, the more that

dimension is important for producing relevant recommendation. The system has been

evaluated by a pool of experts.

• Other works about playlists. Title2rec is an algorithm for the generation of new playlists

of which is given only the title. The strategy rely on word embeddings computed on

titles and descriptions of of playlists, which have been clustered based on shared tracks.

In another work, we demonstrated how is possible to predict the emotion of a playlist

by analysing the lyrics of its tracks.

• Demo applications for accessing the DOREMUS dataset:

– OVERTURE, a web application for exploratory search, which have been used for

visualising DOREMUS data and hosting the recommender system;

– CityMUS, a context-based recommender system for accessing to relevant music

in a city, relying on graph paths between artists and PoIs;

– the DOREMUS chatbot able to give you information about artists, works and next

concerts.

• MIDI2vec, an approach for producing graph embeddings from MIDI files. The strategy

foresees 1. the transformation of the time-continuous MIDI information in a graph and

2. the use of graph embedding techniques for producing the vectors. The embeddings

proved to be effective in genre and metadata prediction, revealing that symbolic music

can play a role in a field nowadays dominated by audio analysis techniques.

As further summary for reader convenience, the links to all resources and tools realised in the

context of this research have been collected in Table 12.1.

12.2 First implications

At the time of writing, several of the results reported in this manuscript started to find adoption

by the community and application in other works.

The DOREMUS ontology and the controlled vocabularies are being endorsed by IFLA, as a

de-facto standard for this community. We already mentioned the interest of LD4P for the

DOREMUS vocabularies in the context of their Performed Music Ontology (PMO), while first

attempts of including them in the MIDI Linked Data Cloud [123] have been carried out.

The DOREMUS KG is currently used by librarians internally within each partner institution

and across the three institutions, allowing for the fast retrieval of results for complex queries.

The detailed information about classical music – a unique resource among music datasets
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Resource or Tool URL
DATA

BnF: Works, Artists, Manifestations http://data.doremus.org/bnf
Philharmonie: Works and Concerts http://data.doremus.org/philharmonie
Euterpe: Foreseen Concerts (PP) http://data.doremus.org/euterpe
Itema3: Concerts and recordings (RF) http://data.doremus.org/itema3
Diabolo: Works (RF) http://data.doremus.org/diabolo
DOREMUS SPARQL endpoint http://data.doremus.org/sparql
Example queries http://data.doremus.org/queries.html
Evaluation queries https://git.io/fjoOz
DOREMUS ontology http://data.doremus.org/ontology
DOREMUS vocabularies http://data.doremus.org/vocabularies
Data dumps https://github.com/DOREMUS-ANR/knowledge-base

TOOLS
marc2rdf converter https://github.com/DOREMUS-ANR/marc2rdf
itema3 converter https://github.com/DOREMUS-ANR/itema3converter
euterpe converter https://github.com/DOREMUS-ANR/euterpe-converter
diabolo converter https://github.com/DOREMUS-ANR/diabolo-converter
SPARQL Transformer https://github.com/D2KLab/sparql-transformer
String2vocabulary https://github.com/DOREMUS-ANR/string2vocabulary
OVERTURE search engine http://overture.doremus.org
DOREMUS chatbot http://chatbot.doremus.org
Emotion predictor http://data.doremus.org/emotion

Table 12.1 – Links to resources and tools

captured the attention of other projects (e.g. RondoDB1 and MusicBrainz) and companies

(Deezer), interested in interlinking their dataset with DOREMUS.

Thanks to the exploratory search engine, the DOREMUS data is open for access to a wide

community of musicians, music theorists, connoisseurs and amateurs, who do not need to

have any technical expertise in order to query the RDF graphs.

SPARQL Transformer is already deployed in two communities driven by H2020 projects which

have adopted both SPARQL Transformer and glrc. MeMAD2 uses it to generate automatically

an API on top of a knowledge graph describing TV and radio programs which are also auto-

matically annotated. The resulting semantic metadata is hence integrated in the professional

Media Asset Management system Flow developed by Limecraft3. SILKNOW4 [155] uses it to

generate an API on top of a knowledge graph describing silk-related objects from 10 museums.

The generated API is used to empower an exploratory search engine and a virtual assistant. In

addition, SPARQL Transformer is progressively being adopted by small simple projects, which

1https://www.rondodb.com/
2https://memad.eu/
3https://www.limecraft.com/
4http://silknow.eu/
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12.2. First implications

are clearly the main target of this work5.

Figure 12.1 – Recommendation in Philharmonie Live

This ranking system is currently being considered for integration in Philharmonie Live6, the

multimedia portal of PP, for accessing audio and video recordings of events that took place

in the concert hall. The system gives recommendation for relevant recordings to listen after

the current one, on the base of each single feature (composer, period, casting, etc.) and of

the combination of all of them (Figure 12.1). The different recommendations are realised by

5An up-to-date list is available at https://github.com/D2KLab/sparql-transformer/network/dependents
6https://live.philharmoniedeparis.fr/
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weighting differently the similarity metric.

12.3 Limitations and Further Perspectives

The work presented in this manuscript could be extended or improved in many ways. In

previous chapters, we reported limits and suggested future work relatively to the single contri-

butions. Here, we give an overall look to the whole thesis, sum up the limitations and try to

point out some research challenges for next future.

The DOREMUS model is capable of representing fine-grained information about music, with

more detail in relation with ontologies designed for similar purposes. However, details bring

complexity, and this can be a crucial threat to the adoption of the model and of the whole

graph. We believe that an improved version of the DOREMUS may take benefit of the following

ideas and strategies:

• When designing the ontology, domain experts tend to defend their point of view on the

data, focusing their effort in the attempt of reproducing the source data structure (the

same which they want to overcome), rather than reshaping the information in a way

that can better suit the target format and a more general use. Although diluted by the

presence of three different points of view which required harmonisation – the ones of

libraries, concert halls and public radios –, this problem is present in DOREMUS, for

example in the choice of FRBRoo as base. On our opinion, knowledge engineers should

play a more determinant role in producing dataset beyond the simple transposition of

structures from a format to another.

• A different solution – compatible with the previous one – is the adoption of a query-

driven approach. Similarly to the Test-Driven Development, in which the software

engineer defines interfaces and behaviours before the actual code content of methods

and functions, the realisation of queries represents the first task, according to which the

model and the mapping are derived [181].

• In Digital Humanities (DH) applications, where the importance of sources and attribu-

tions is equal to the one of the information itself, strategies for separately representing

these two layers should be investigated, in order to obtain a trade-off between keeping

queries simple and making the full information available where required. In this context,

we consider interesting the recent development of RDF* and SPARQL* [77].

Differences between simple and complex data models – e.g. in relation to performances of

systems based on these models – are an interesting research topic which has not been handled

in this thesis. In this respect, our preliminary study about ontology mapping to schema.org

should be continued, putting particular attention into making the strategy automated.
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Some additional evaluation on the DOREMUS model may involve a comparison with its main

competitors, in the first place the Music Ontology (MO). Although we know the differences in

expressiveness of the two models, including MO as baseline would give more strength to the

the model evaluation (Section 3.3).

The realisation of interconnected vocabularies about music genres and MoPs allowed the

interoperability of dataset relying on different thesauri. However, the inclusion of these

families of vocabularies in a KB results in the presence of identifiers belonging to different

concept schemas and name-spaces. For example, you may find http://www.mimo-db.eu/

InstrumentsKeywords/3582 (cello, from MIMO) and http://data.doremus.org/vocabulary/

iaml/mop/vso (soprano, from IAML) for describing a single casting. This is not necessarily a

bad thing, but may introduce confusion when looking at hierarchies, which may be incom-

patible and conflicting each other. We do not see any clear solution to this problem, while

strategies for declaring multi-dimensional hierarchies may be investigated in a future research.

The data conversion lacks an extensive extraction of information from free-text fields, relying

so far uniquely on empirical rules implemented with regular expressions. In source data,

the kind information that is possible to find is mostly known – i.e. a given field contains the

description of a performance with place, date, performer, roles. In this context, which is

common in DH domains, the application of classical NLP techniques, enriched with the use

of controlled vocabularies, may bring to interesting results.

Mistakes in source data (typos, unexpected field content) can be automatically detected thanks

to missing matches with controlled vocabularies. We largely exploited this possibility, but

without integrating an automatic error reporting mechanism, for extracting this cases and

proposing corrections.

In classical music, titles are often including other kinds of metadata. For example, from the

title of "Sonata in C minor for piano" we can know key, genre, and casting of the piece. We

implemented and used a domain-specific strategy for extracting these metadata from work

titles, we miss a proper evaluation of the approach, including a study about the possibility of

extending it to other domains.

Speaking about limitations regarding SPARQL Transformer, some of them can be overcome in

next developments, in particular the missing of some common SPARQL features (i.e. UNION).

About the evaluation, we suffered the absence of a suitable benchmark for testing the library.

We are aware about QALD Dataset [193]; however, this collection includes only queries se-

lecting a single variable, not really exemplary for discussing the benefit of our approach. In

addition, we are planning a user evaluation about the query writing, in order to improve

the usability of the library. Indeed, we are aware that the learning curve for people with low

confidence with Semantic Web structures may be steep, consequently we are planning to
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produce more complete learning material. In addition, the feedback of community led us to

think about decomposing SPARQL Transformer in two autonomous modules, the Parser and

the Shaper, in order to exploit their features in different contexts, including Object-relational

mapping (ORM) frameworks.

A crucial limitation to this research has been the absence of a proper dataset on which testing

recommendation algorithms. We received and collected four datasets of playlists, coming

from partner institutions or extracted from external services. The small dimension of the

datasets and the almost irrelevant overlapping between them7 forbid us to apply classical

techniques and rely on popular metrics for evaluating our work. Any further research in this

field can not avoid the collection of a ground truth dataset for classical music. This can be

obtained in at least two ways: 1. extracting from existing dataset a relevant subset (which is

not trivial given the lack metadata reported in Section 1.1.2) and 2. collaborating with music

streaming services for the extraction of a new dataset from their databases.

More relevant experiments can be planned as future work. We would like to compare our

ranking system with one in which are domain experts to assign the weights. In our work, we

considered classical music as a unique block made of centuries of history, while experiments

about changing the weights depending on the composition period of the seed may reveal more

accurate performances. The integration of our embedding similarity strategy with Title2rec

can produce an application in support to music experts, for producing playlists on the base of

a title or few keywords. Finally, it would be interesting to apply the playlist emotion extraction

strategy described in Section 9.6 also to lyrics-free music, for example relying on the music

content represented in MIDI.

Even if it got started only towards the end of this PhD period, we believe that our work about

MIDI embeddings is a promising challenge for introducing graph embeddings solution in MIR.

In Chapter 11 we used an arbitrary mapping which aims to include all relevant information.

However, we believe that a suitable graph representation of MIDI content with can benefit

both the approach and its adoption. We identified in the MIDI ontology [121] the best candi-

date, which we intend to extend in collaboration with the authors. In addition, the interlinking

between DOREMUS and the MIDI Data Cloud would enable new research about music recom-

mendation relying on symbolic music and metadata. Further work involves the application of

similar strategies to other symbolic music representation formats, like MusicXML.

7With overlapping, we mean the presence of the same track in multiple playlists.
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12.1 Introduction

La musique est partout. Notre époque nous donne la possibilité d’accéder à la musique et de

la reproduire à tout moment, n’importe où, à partir d’une multitude d’appareils connectés au

réseau. Les récents progrès technologiques ont profondément modifié l’expérience d’écoute

de la musique: au cours de la dernière décennie, nous sommes passés d’archives de musique

locales (sauvegardées sur des supports physiques tels que des disques optiques et des lecteurs

MP3, qui définissaient les limites en termes de stockage) à des catalogues potentiellement sans

fin, appartenant à des services de musique en streaming, libres des contraintes des supports

et dématérialisés dans des clouds informatiques. Dans ce contexte, le rôle des systèmes

de recommandation dans la découverte de titres peut être déterminant. Par conséquent,

augmente l’importance des données sur lesquelles reposent ces systèmes.

La musique classique est une niche dans le monde des services de musique en streaming. Ce

créneau constitue en fait un super-genre qui regroupe une multitude de genres différents,

du chant grégorien à la symphonie, du ballet à la musique de chambre, et implique des

artistes avec un plus grand nombre de fonctions que leurs collègues de la musique moderne:

compositeurs, chefs d’orchestre, instrumentistes, voix, solistes, membres d’orchestre, etc.

Les fans de musique classique sont sous-représentés sur les réseaux sociaux et les plateformes

de diffusion de musique [176]. Les systèmes de recommandation nécessitent des stratégies

spéciales pour traiter cette catégorie de musique, en tenant compte également de l’énorme

matériel des siècles parmi lesquels la sélection des éléments pertinents [102]. La recherche

sur le système de recommandation et la Music Information Retrieval (MIR) dans le cadre de la

musique classique en est encore à son début, alors qu’elle attire de plus en plus l’attention.

Ce manuscrit de thèse porte principalement sur la musique classique et étudie comment

représenter et exploiter ses informations. L’objectif principal est d’étudier les stratégies de

représentation et de découverte de la connaissance, appliquées à la musique classique, dans

des domaines tels que la population de base de connaissance, la prédiction de métadonnées

et les systèmes de recommandation. Ce travail a contribué à la recherche avec les résultats
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suivants:

• un modèle et un ensemble de vocabulaires contrôlés (réalisés grâce à l’expertise des

institutions culturelles) pour décrire la musique en détail, qui utilisant les technologies

du Web sémantique;

• un Knowledge Graph orienté á la musique classique et contenant des données sur les

artistes, les œuvres, les performances, les partitions et les enregistrements. Le graphe,

publié dans le Web des données, donne accès aux métadonnées détaillées provenant

des plus importantes institutions culturelles françaises;

• un ensemble d’outils pour la conversion de données, la création d’une API sur le SPARQL

endpoint, la visualisation et l’exploration des données;

• approches basées sur des plongement d’entités calculées sur des métadonnées struc-

turées, pour classer et recommander de la musique;

• des applications de démonstration qui exploitent les approches et les ressources précé-

dentes.

Cette recherche a été développée dans le cadre du projet DOREMUS8 [2], au sein de laquelle

trois grands instituts culturels en France, la BnF (Bibliothèques nationales de France), la

Philharmonie de Paris (PP) et Radio France (RF), s’associent avec des entreprises et des

institutions académiques afin de rendre disponible et réutilisable les connaissances musicales

de leurs catalogues sur le web des données.

Ce document présente un résumé de mon travail de thèse. Dans Section 12.2, on présente

le modèle DOREMUS pour décrire la musique, ainsi que des vocabulaires contrôlés spé-

cifiques à la musique. Dans Section 12.3, on présente des outils de conversion de jeux de

données de musique, en prenant comme exemple ceux provenant des riches archives mu-

sicales de l’institution partenaire de DOREMUS. On démontre l’expressivité du modèle en

montrant comment il est possible de répondre à des requêtes complexes spécifiques à la

musique. Enfin, nous décrivons les stratégies de visualisation et de recommandation de

données dans Section 12.4. Des conclusions sont contenues dans Section 12.6.

12.2 Un modèle pour représenter les données musicales

Parmi les modèles RDF sur la musique, l’exemple le plus connu est la Music Ontology [161],

qui fournit un ensemble de classes et de propriétés spécifiques à la musique pour décrire des

œuvres musicales, des performances et des pistes, ainsi que des fragments de celles-ci. La

nécessité d’exploiter davantage les connaissances musicales provenant des bibliothèques a

conduit à la définition d’une nouvelle ontologie.

8http://www.doremus.org
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12.2.1 The DOREMUS Ontology

Le modèle DOREMUS 9 est une extension de FRBRoo, permettant de décrire des objets cul-

turels [55], appliquée au domaine spécifique de la musique. Il s’agit d’un modèle dynamique

dans lequel l’intention abstraite de l’auteur (appelée œuvre) n’existe que par le presence d’un

événement (c’est-à-dire la composition) qui le réalise dans une série distincte de choix appelée

expression. Ce triplet œuvre-expression-événement peut également décrire différentes parties

de la vie d’une œuvre, telles que la performance, la publication ou la création d’une œuvre

dérivée, chacune d’elles incorporant l’expression dont elle provient.

En plus de les classes et propriétés originales de FRBRoo, des classes spécifiques ont été

ajoutées afin de décrire les aspects spécifiquement liés à la musique, tels que la tonalité, le

genre, le tempo, le moyen d’exécution (MoP, c’est a dire l’instrument), etc. [39].

Chaque triplet contient une information qui, dans le même temps, peut vivre de manière

autonome et être liée aux autres entités. En pensant à une œuvre classique, nous aurons

un triplet pour la composition, un pour tout événement de performance, un pour chaque

manifestation (c’est-à-dire la partition), etc., tous reliés dans le graphe. Une improvisation

jazz consistant en la création improvisée d’une nouvelle œuvre n’aura que le triplet liée à la

performance, en l’absence du moment de la composition et de l’écriture de la partition qui est

presque obligatoire pour la musique classique sans avoir besoin d’être rattaché à une autre

entité. Il est considéré comme un travail en soi. Toutes les entités de travail de chaque triplet

sont ensuite connectées à un travail complexe, une classe ayant pour objectif de rassembler

toutes les représentations, conceptuelles et sensorielles (manifestations), de la même idée

créative.

Le résultat est un modèle qui, si d’un côté est assez complexe et difficile à adopter, a d’autre

part une expressivité très détaillée. Le graphe représenté dans Figure 12.2 montre un exemple

réel provenant de nos données: la Sonate pour piano et violoncelle n.1 de Beethoven10.

12.2.2 Vocabulaires contrôlés pour les métadonnées musicales

Un grand nombre de propriétés impliquées dans la description de musique sont supposées

contenir des valeurs partagées par différentes entités: différentes compositions peuvent avoir

le genre “sonata", différents interprètes peuvent jouer un “basson", différents auteurs peuvent

ont pour fonction “compositeur" ou “lyriciste". Ces étiquettes peuvent être exprimées dans

plusieurs langues ou sous d’autres formes (par exemple, “sax" et“saxophone", ou les clés

françaises “Do majeur" et “Ut majeur"), rendant la réconciliation difficile. Notre choix est

d’utiliser des vocabulaires contrôlés pour ces concepts communs. Un vocabulaire contrôlé est

9http://data.doremus.org/ontology/
10http://data.doremus.org/expression/614925f2-1da7-39c1-8fb7-4866b1d39fc7
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Figure 12.2 – Beethoven’s Sonata for piano and cello n.1 represented as a graph using the
DOREMUS ontology

un thésaurus thématique d’entités, chacune étant à nouveau identifiée à un URI. On utilise

SKOS [129] comme modèle de représentation, ce qui permet de spécifier pour chaque concept

les libellés préférés et alternatifs dans plusieurs langues, et de définir une hiérarchie entre

les concepts (de sorte que le “violon" est un concept appartenant à la notion plus large de

“instrument à cordes"), et d’ajouter des commentaires et des notes pour décrire l’entité et aider

l’activité d’annotation. Chaque concept devient un nœud commun dans le graphe musical

qui peut connecter une œuvre musicale à une autre, un auteur à un interprète, etc.

Différents types de vocabulaires sont nécessaires pour décrire la musique. Certains d’entre

eux sont déjà disponibles sur le Web: c’est le cas de MIMO11 pour décrire les instruments de

musique ou RAMEAU12 pour les genres musicaux, les groupes ethniques, etc. Certains autres

ne sont pas publiés dans un format adapté au Web of Data, ou la version publiée n’est pas aussi

complète que d’autres formats disponibles dans les bibliothèques ou en ligne: cela se produit

avec les vocabulaires publiés par l’Association internationale des bibliothèques musicales

11http://www.mimo-db.eu/
12 urlhttp://rameau.bnf.fr/

144

http://www.mimo-db.eu/


12.3. Conversion de données

(IAML)13, publiés après le début du projet et pour lesquels nous fournissons parfois plus de

détails (libellés, langues, etc.). Enfin, il y a aussi le cas de vocabulaires qui n’existent pas du

tout et que nous générons à partir de données réelles provenant des partenaires, enrichies

par un processus éditorial impliquant également les bibliothécaires. En conséquence, nous

avons collecté, mis en œuvre et publié 23 vocabulaires contrôlés appartenant à 18 catégories

différentes [107].

12.3 Conversion de données

La BnF et la Philharmonie de Paris utilisent le format MARC pour représenter les métadonnées

de la musique. La structure plate de MARC, qui est une succession de champs et de sous-

champs, reflète l’objectif de la conversion des enregistrements imprimés ou manuscrits en un

formulaire informatique. Bien que ce soit un standard, son adoption est restreinte au monde

entier, rendant sa sérialisation à d’autres formats (généralement XML) nécessaire pour une

utilisation réelle. Les champs MARC ne sont pas étiquetés explicitement, mais codés avec des

nombres, avec pour conséquence l’utilisation d’un manuel pour déchiffrer le contenu. La

sémantique de ces champs et sous-champs n’est pas triviale: un sous-champ peut changer

de signification sur le champ sous lequel il se trouve et sur la variante particulière de MARC

(UNIMARC et INTERMARC). Un champ ou un sous-champ peut contenir des informations sur

différentes entités, telles que la première performance et la première publication combinée

dans le champ des notes, sans séparation claire. Souvent, les informations sont représentées

sous la forme de texte libre [188].

Les avantages de passer de MARC à une solution basée sur RDF consistent en l’intero- pérabil-

ité et l’intégration entre bibliothèques et avec des acteurs tiers, avec la possibilité de réaliser

une recherche fédérée intelligente [8, 27]. Pour atteindre ces objectifs, deux tâches sont

nécessaires: la conversion des données et la liaison des données.

12.3.1 De MARC à RDF

Pour la tâche de conversion, on utilise marc2rdf14, un prototype open source que nous avons

développé pour la conversion automatique des notices bibliographiques MARC en RDF util-

isant l’ontologie DOREMUS [104, 112]. Le processus de conversion repose sur des règles de

transfert explicites définies par des experts (ou mappings) qui indiquent où dans le fichier

MARC rechercher quel type d’informations, en fournissant le chemin de propriété correspon-

dant dans le modèle, ainsi que des exemples utiles illustrant chaque règle de transfert. Le

rôle de ces règles va au-delà d’une simple documentation pour les notices MARC, intégrant

13http://iflastandards.info/ns/unimarc/
14https://github.com/DOREMUS-ANR/marc2rdf
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également des informations sur certaines pratiques des bibliothécaires dans la formalisation

du contenu: format des dates, accords sur la syntaxe des champs textuels, valeurs par défaut

en cas d’absence d’informations.

Le convertisseur est composé de différents modules, qui fonctionnent successivement. Tout

d’abord, un file parser lit le fichier MARC et rend le contenu accessible par champ et numéro

de sous-champ. On a implémenté un module de conversion pour les variantes INTERMARC

et UNIMARC. Ensuite, il construit le graphe RDF en lisant les champs et en affectant leur

contenu à la propriété DOREMUS suggérée dans les règles de transfert.

Ensuite, le free-text interpreter extrait des informations supplémentaires des champs de texte, y

compris des notes éditoriales. Cela revient à effectuer une analyse basée sur les connaissances,

car nous recherchons exactement les informations que nous voulons instancier dans chaque

chaîne (par example le MoP dans la note du casting, ou la date et l’éditeur dans la note de la

première publication). L’analyse est réalisée avec d’expressions régulières définies de manière

empirique. Enfin, le module string2vocabulary effectue un mappage automatique des littéraux

de chaîne sur les URI provenant de vocabulaires contrôlés. Toutes les variantes d’une libelle

de concept sont considérées afin de traiter les différences potentielles dans les termes de

dénomination. En tant que fonctionnalité supplémentaire, ce composant est capable de

reconnaître et de corriger le bruit présent dans le fichier MARC source: c’est le cas de certains

tonalité déclarées comme genre, ou des champs pour le numéro d’opus qui contiennent en

réalité un numéro de catalogue et vice-versa. Ces cas ainsi que d’autres fautes de frappe et

erreurs ont été identifiés grâce au processus de conversion et à la visualisation des données

converties, aidant ainsi l’institution source à mettre à jour et à corriger en permanence ses

données.

12.3.2 Traiter les formats hétérogènes

En dehors de MARC, nous convertissons d’autres bases sources (en XML), trop spécifiques

pour être gérées par un seul convertisseur. Par conséquent, nous avons développé des logi-

ciels ad hoc doté d’un workflow générique: analyser le fichier et collecter les informations

requises, créer la structure du graphe dans RDF, exécuter le module string2vocabulary décrit

précédemment. Cette procédure crée différents graphes, un pour chaque source. Ces bases

de données sources sont complémentaires mais comportent également des chevauchements

(par exemple, deux bases de données décrivant le même travail ou les mêmes performances

avec des métadonnées complémentaires) et ont été interconnecté automatiquement afin

que le graphe de connaissances résultant fournisse une description plus détaillée de chaque

travail.
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Catégorie Questions Supporté par le modèle Résultats dans les données
A. Works 31 31 23
B. Artists 3 2 1
C. Performances 9 8 6
D. Recordings 11 9 7
E. Publications 5 5 3

Table 12.2 – Pour chaque catégorie de questions, nous fournissons le rapport entre le nombre
de requêtes en langage humain intelligible, le nombre de requêtes ayant été converties avec
succès dans une requête DOREMUS et le nombre de celles-ci produisant au moins un résultat
lorsque la requête est soumise au DOREMUS endpoint.

12.3.3 Répondre à des requêtes complexes

Avant le début du projet, une liste de questions avait été collectée auprès des experts des

institutions partenaires 15. Ces questions reflètent les besoins réels des institutions et révèlent

les problèmes auxquels elles sont confrontées chaque jour pour sélectionner des informations

dans la base de données (organisation de concerts ou programmation radiodiffusée, par

exemple) ou pour soutenir des études de bibliothécaire et de musicologue. Ils peuvent être

liés à des cas d’utilisation pratiques (la recherche de toutes les partitions correspondant

à une formation particulière), à des thèmes liés au musicologue (la musique d’une région

donnée dans une période historique donnée), à des statistiques intéressantes (les œuvres

généralement interprétées ou publiées ensemble), ou à de curieuses connexions entre œuvres,

performances ou artistes. La plupart des questions étant très spécifiques et complexes, il est

très difficile de trouver une réponse à ces questions en interrogeant simplement les moteurs

de recherche actuellement disponibles sur le Web. Nous avons regroupé ces questions en

catégories, en fonction des classes DOREMUS concernées.

Table 12.2 fournit une vue d’ensemble du nombre de requêtes que nous pouvons actuellement

écrire pour chaque catégorie. Peu d’entre eux ne trouvent aucun résultat dans les données.

D’autres sont difficiles à écrire au format SPARQL car ils impliquent des détails spécifiques

qui sont hors de la portée du modèle (par example Récupérez les œuvres d’artistes qui se sont

mutuellement amoureux). Le taux de conversion est de toute façon plus que positif.

12.4 Exploration et Recommendation

On considére l’exploration et la recommandation comme les deux faces d’une même médaille.

Dans le premier cas, on permette à l’utilisateur de parcourir les jeux de données, de découvrir

lui-même les connexions, de comprendre comment nous construisons les connaissances. Par

15https://github.com/DOREMUS-ANR/knowledge-base/tree/master/query-examples
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recommandation, on retire cette responsabilité à l’utilisateur, dans le but de présenter ce dont

il a besoin à un moment donné.

12.4.1 Visualiser la complexité

Nous avons développé OVERTURE16 [104], un prototype Web de moteur de recherche ex-

ploratoire pour les données DOREMUS. L’application envoie des demandes directement à le

SPARQL endpoint et fournit les resultat dans une interface utilisateur agreable.

En haut de l’interface utilisateur, la barre de navigation permet à l’utilisateur de naviguer

entre les principaux concepts du modèle DOREMUS: expression, performance, partition,

enregistrement, artiste. Le défi consiste à donner à l’utilisateur final une vision complète

des données de chaque classe et à lui faire comprendre comment elles sont connectées les

unes aux autres. On garde comme exemple Sonata pour piano et violoncelle n.117. Outre

les différentes versions du titre, le compositeur et une description textuelle, la page fournit

des détails sur les informations dont nous disposons sur le travail, telles que la tonalité, les

genres, le MoP prévu, le numéro d’opus. Lorsque ces valeurs proviennent d’un vocabulaire

contrôlé, un lien est présenté afin de rechercher des expressions partageant la même valeur

(par exemple, le même genre ou la même tonalité). Une chronologie montre les événements les

plus importants liés au travail (la composition, la creation, la première publication). D’autres

performances et publications peuvent être représentées ci-dessous. L’arrière-plan est un

portrait du compositeur qui vient de DBpedia. Il est récupéré grâce à la présence dans la base

de données DOREMUS de liens owl: sameAs. Ces liens proviennent en partie du service

ISNI (International Standard Name Identifier) 18, et en partie depuis l’interconnexion réalisée

en faisant correspondre le nom de l’artiste, la date de naissance et la date de décès dans

l’année. les différents jeux de données.

12.4.2 Plongements de graphe pour le calcul de similarité

Que devrions-nous suggérer à un utilisateur écoutant Beethoven? Des musiciens similaires

devraient partager certaines caractéristiques avec le compositeur allemand: la période, des

propriétés similaires sur les compositions (genre, tonalité, casting) ou un instrument similaire

joué (le piano lui-même ou le clavecin de la même famille). Mais comment définir une mesure

de similarité prenant en compte ces concepts? On propose une solution [107, 109] basée sur

des plongements de graphes générés à différents niveaux:

16http://overture.doremus.org
17http://overture.doremus.org/expression/614925f2-1da7-39c1-8fb7-4866b1d39fc7
18La base de données ISNI contient des informations sur les personnes impliquées dans les processus de création

(artistes, par exemple). Il est géré par l’équipe qualité ISNI, dont la BnF est membre, et les artistes enregistrés dans
la base de données BnF contiennent généralement une référence ISNI.
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12.5. Analyser les playlists de musique classique

1. Pour des caractéristiques simples (genre, tonalité, instrument, par exemple), on calcule

pour chaque terme une imbrication intégrant node2vec [70] sur deux sous-graphes:

celui des vocabulaires contrôlés et celui correspondant à l’utilisation de leurs valeurs

dans le jeu de données DOREMUS;

2. Pour les caractéristiques complexes (par exemple, l’artiste), on génére les incorporations

en combinant les entités correspondantes. Dans le cas des artistes, on génére un vecteur

composé de la date de naissance et de décès, du lieu de naissance et du lieu de la mort,

du genre, de la tonalité et du casting (MoP) de sa composition, ainsi que de l’instrument

joué;

3. Enfin, pour les œuvres, on combine encore une fois des fonctionnalités simples et com-

plexes, en suivant les mêmes règles. Nous prenons en compte la date de composition, le

genre, le casting, l’instrument soliste, la tonalité, le compositeur.

L’utilisation des plongements de graphe réduit le problème de similarité à l’inverse d’une

distance euclidienne. Si certaines propriétés manquent, on applique une pénalisation calculée

en pourcentage de le caractéristiques manquante dans le vecteur cible par rapport à le seed.

Le principal avantage de cette méthode est que le calcul des plongements n’est requis que

pour les caractéristiques simples: chaque plongements peut être réutilisée dans des combi-

naisons différente. En utilisant la distance euclidienne pondérée, différents poids peuvent

être attribués à chaque propriété afin d’ajuster la recommandation:

d(s, t , w) =
√

w(s − t )2 =
√

1

N

∑
x

wx (sx − tx )2 (12.1)

produisant la fonction de similarité suivante:

si mi l ar i t y(s, t ) = dmax −d(s, t , w)

| dmax | ∗ (1−penal t y(s, t )) (12.2)

12.5 Analyser les playlists de musique classique

Les experts humains ont toujours joué un rôle central dans l’établissement de listes d’œuvres

musicales pouvant servir à différentes fins, telles que la programmation de concerts, la ra-

diodiffusion ou la production de playlists éditoriales. Notre intuition est qu’il existe certaines

règles cachées qui sont suivies lors de la création d’une playlist et qui déterminent quel artiste
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ou quelle œuvre doit en suivre un autre. Ces règles découlent directement des connaissances

des experts eux-mêmes, qui peuvent les appliquer consciemment ou non, et qui peuvent

ne pas être en mesure de les décrire. Nous pensons que ces règles peuvent être extraites en

étudiant le contenu des playlists.

Nous avons collecté quatre jeux de données contenant une liste d’œuvres: 2 jeux de données

de concerts de PP et RF, un programme de radio Web (de RF) et une de playlists éditorials

(de Spotify). On analyse la différence de variance within (dans) σ2
W et between (entre) σ2

B les

playlists, conformément à la définition de ANalysis Of VAriance (ANOVA)19. On définit les

poids de Equation (12.1) proportionnellement au rapport de variance:

σ2
r ati o = σ2

B

σ2
W

(12.3)

La similarité euclidienne est utilisée pour classer les éléments dans un système de génération

de listes de lecture basé sur le contenu simple dans lequel, dans le cas d’un œuvre seed s, les

éléments les plus similaires ont plus de chances de figurer en haut de la liste. Les candidats

sont choisis parmi un groupe d’œuvres cibles T , en les classant avec la fonction de similarité

et en sélectionnant les premiers résultats.

Le système de classement a été évalué par deux groupes, composés d’experts provenant

respectivement du monde de la radiodiffusion (Radio France, 4 membres) et des salles de

concert (Philharmonie de Paris, 3 membres). Nous avons préparé une interface d’evaluation20

composée de 10 étapes. Chaque étape montre un élément de départ (artiste ou œuvre) et les 10

premiers éléments cibles, classés par score de similarité. Certaines étapes ont utilisé la mesure

de similarité non pondérée, afin de comparer avec la version pondérée. Les évaluateurs sont

invités 1. à supprimer les éléments erronés en les faisant glisser dans une corbeille et 2. à trier

les éléments restants par ordre de pertinence. Les résultats montrent une préférence générale

pour la version pondérée du classement.

12.6 Conclusion

Représenter l’information sur la musique classique est une activité complexe, impliquant

différentes sous-tâches. Nous avons proposé un flux de travail complet pour la gestion des mé-

tadonnées de musique utilisant les technologies du Web sémantique. Nous avons développé

une ontologie spécialisée et un ensemble de vocabulaires contrôlés pour les différents con-

cepts spécifiques à la musique. Ensuite, nous avons proposé une approche de conversion

des données, afin d’aller au-delà de la pratique bibliothécaire actuellement utilisée. Enfin,

19https://people.richland.edu/james/lecture/m170/ch13-1wy.html
20http://overture.doremus.org/evaluation
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12.6. Conclusion

nous montrons comment ces données peuvent être exploitées, permettant à l’utilisateur final

d’explorer les données et d’obtenir une recommandation musicale.

La voie pour faire de la musique classique un citoyen de première classe dans MIR ne fait

que commencer. Nous sommes convaincus que les études contenues dans ce manuscrit

inspireront des recherches plus poussées.
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