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ABSTRACT
Fact checking is the task of determining if a given claim holds. Sev-
eral algorithms have been developed to check claims with reference
information in the form of facts in a knowledge base. While indi-
vidual algorithms have been experimentally evaluated in the past,
we provide the first comprehensive and publicly available bench-
mark infrastructure for evaluating methods across a wide range of
assumptions about the claims and the reference information. We
show how, by changing the popularity, transparency, homogeneity,
and functionality properties of the facts in an experiment, it is pos-
sible to influence significantly the performance of the fact checking
algorithms. We introduce a benchmark framework to systemati-
cally enforce such properties in training and testing datasets with
fine tune control over their properties. We then use our benchmark
to compare fact checking algorithms with one another, as well as
with methods that can solve the link prediction task in knowledge
bases. Our evaluation shows the impact of the four data properties
on the qualitative performance of the fact checking solutions and
reveals a number of new insights concerning their applicability and
performance.
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1 INTRODUCTION
Fact checking is the task of verification of textual content. While
fact checking has historically been an activity for journalists, the
increase of incorrect claims over the Web has motivated the study
of computational methods to identify misleading claims. In fact,
manual assessment of such claims (as done in websites such as
politifact.com, factcheck.org, and snopes.com) cannot scale with the
proliferation of sources spreading false information [29]. Different
efforts tackle different types of claims and domains. We focus on
algorithms that test textual claims, such as “Leo Tolstoy won the
Nobel Prize", against trustful Knowledge Bases (KBs). KBs store
information as triples, where a predicate expresses a binary relation
between a subject and an object. KB triples, or facts, encode real-
world entities and their relationships. Examples of KBs come from
the academia [2, 24, 27] as well as the industry [6, 8, 9].

We assume that entities and predicates involved in “worth check-
ing” claims have been identified [15, 17], and study the step estimat-
ing the veracity of a given claim (expressed as structured data) w.r.t.
trusted reference data. The core issue in fact checking with KBs is
that the reference information is incomplete, i.e., some true entities

and relationships are missing. In particular, information is usually
very sparse for topics in the long tail. For this reason, KBs are used
under the Open World Assumption (OWA), i.e., a fact not in the KB
can either be false or just missing [8, 12]. Fact checking algorithms
therefore state if fact f is a valid missing fact in KB R, a task that
can be seen as a special case of link prediction in graphs [5].

Algorithms to address these problems come from different intu-
itions. Some of them rely on paths and sub-graphs in the KB: they
assume that training examples are available and learn models to
label new facts to be tested [13, 14, 23]. Other approaches assume
that constraints over the KB have been defined and can be exploited
to validate a given fact [18]. Others rely on embeddings to model
a candidate predicate between two entities as a translation in the
corresponding low dimensional vector space [3, 28].

Due to the richness and diversity of algorithms, it is important to
conduct fair experimental evaluations to assess the potential of each
proposal. Thorough evaluation of fact checking algorithms requires
systematic control over the training and test data, and the quality of
reference information. To support rigorous empirical evaluations, a
fact generation system must be able to produce multiple scenarios
with low user effort and clear evaluation results.

This paper aims to take a major step in this direction. We present
a new benchmark for fact checking algorithms covering a wide
range of scenarios. Since the algorithms come from different re-
search fields and rely on different hypothesis over the claims and
the KBs, we introduce a benchmark that is centered on the proper-
ties of the data. Our scenario generator is the first tool conceived
to support empirical evaluations of fact checking algorithms as per
the requirements outlined above. It takes as input a predicate for a
KB (e.g., capital for DBpedia) and creates scenarios of increasing
complexity in terms of training, test, and reference data. We then
analyze a variety of algorithms to answer the following questions:

• How do fact checking systems fare in absolute terms with
existing KBs?

• Are there other approaches that can perform the same task
and how do they compare to fact checking solutions?

• What are the properties of the data that most affect the
quality of the results?

To answer these questions, we identify and study the impact of
different aspects of the training and test data.

Example 1.1. Consider the example claims in Table 1. Predicate
capital is a one-to-one (functional) predicate, which contains facts
for cities and states as triples capital(city,state). Intuitively, it is
easier to recognize as false the claim that Sacramento (capital city of
California) is not the capital of Arizona than the fact that Worcester
(largest city in Massachusetts) is not the capital of Massachusetts.
Similarly, a false claim that Paris is the capital of Japan is easier
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Scenario Example Claims
Fu

nc
tio

na
l

1 capital(Phoenix, Arizona)
capital(Sacramento, Arizona)

2 capital(Boston,Massachusetts)
capital(Worcester, Massachusetts)

3 capital(Boston,Massachusetts)
capital(Osaka, Japan)

N
on

fu
nc
t. 4 award(J. Kittinger, War Prisoner Medal)

award(J. Kittinger, Bronze Star Medal)
award(J. L. Morgan, Bronze Star Medal)

award(L. Linke, 2009 RTHK)

Table 1: Scenario examples, false claims in italic.

to verify than the claim that Osaka is the capital of Japan. Going
beyond capitals, stating if someone is really the winner of an award
is harder, in general, as many people can win the same award and
the same person can win more than one.

The observations above are natural given our background knowl-
edge as humans, but we need formal notions to capture the com-
plexity of fact checking different claims w.r.t. a given KB. In this
work, we define four properties of the facts to address this problem:
popularity, transparency, homogeneity, and functionality. While we
do not claim that this list is complete, every property radically
affects the quality of the claim assessment. Such properties are
therefore the fundamental building blocks for our generator of fact
checking scenarios of different complexities.

We present next our testing infrastructure (Section 2). We de-
scribe the methods tested in our comparison (Section 3), includ-
ing link prediction algorithms that are not specifically “branded"
as fact checking methods. We introduce the data properties that
model the complexity of our test scenarios and the algorithms to
generate datasets that satisfy such properties (Section 4). We re-
port the results of the experimental evaluation and the insights
gained from it (Section 5). Finally, we discuss related work and
open challenges that emerged from our study (Sections 6 and 7).
Our infrastructure and code for scenario generation are available
online (http://github.com/huynhvp/Benchmark_Fact_Checking).

2 THE BENCHMARK
We first give some background and fix the terminology. We then
introduce the architecture of our benchmark platform.

Background. A fact is defined as a triple that has the form of
(“subject" s, “predicate" p, “object" o). Natural language processing
techniques are used to convert a textual claim into a structured
format. Facts can be classified into categories, such as numerical,
quote, and object property. We focus on object properties, which
are facts stating a relationship between the subject and the object
in a sentence, e.g., Sacramento is the capital of California.

A Knowledge Base (KB) is a direct graph where nodes correspond
to entities (subject or object in a fact) and edges model binary
predicates among entities. We focus on algorithms taking as input
a KB and a fact that is not part of it. Such algorithms assess if the
fact belongs to the missing part of the KB (therefore is “true") or
no (is “false"). Most entities in a KB have a predicate defining their
type (e.g., general as “thing”, or specific as “person” or “company”).

Figure 1: The benchmark architecture.

Fact checking scenario. Any benchmark has a set of standard
application scenarios that can be tested against different systems
sharing similar functionalities. This implies that every scenario
is correctly interpreted by the systems. In our benchmark, a fact
checking scenario is defined for a predicate of interest p with a
triple (R, T , D), where R is the reference data (the KB), T is the
training data (positive and negative p facts, sound w.r.t. R), and D is
the test data: true and false p facts, or claims, missing from the KB.

Benchmark architecture. Our benchmark, namely BUCKLE, con-
sists of three components. Two components create the data for the
training (T ) and test data (D) in a scenario, while the third combines
and executes them over the fact checking systems, as depicted in
Figure 1. A user interacts with BUCKLE by creating fact checking
tasks for a predicate in a KB. For the input predicate, the system
creates multiple scenarios, according to the configuration. Target
algorithms are then executed and compared on such scenarios.

The role of data. Every data aspect plays a role in the creation of
a fact checking scenario. Our goal is to support the automatic gen-
eration of scenarios of increasing complexity without assumptions
on the target algorithm. This means that we introduce structural
and semantic properties of R, T , and D, and propose algorithms to
efficiently enforce such properties in the datasets.

3 FACT CHECKING ALGORITHMS
We classify different fact checking algorithms according to the
methods they use to solve the problem. We include link prediction
algorithms even if they were not designed for fact checking, as
they can nonetheless perform the task. All algorithms assume that
either training examples T (labelled facts) or reference information
R (the KB) are available to build the models for checking claims in
D. A common assumption is that the KB is trustable, and training
examples are derived from it. In the following, we assume that the
given test claims are missing from the KB.

Structure Based Algorithms. Given a claim p(s , o), this group of
algorithms makes a decision for it by exploiting the topological
structures identified in the KB by the p triples. The KB triples are
used to learn the alternative paths (different from p) between their
subjects and objects. Properties of the paths are then modeled as
features in a classifier that decides if predicate p holds for the given
s and o. We consider four algorithms from this family.

Knowledge Linker (KL) builds an internal model based on a
weighted adjacency matrix with edge weights computed as the
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in-degree of each node in the KB [5]. The model ignores the labels
(semantics) of the predicates and evaluates the validity of an input
fact based on the proximity between its subject and object. In our
tests we use the Metric closure for computing the distance, as it
performs best in practice [16]: every path connecting a given subject
and object is mapped to a score computed on the frequency of the
nodes in the KB. The more often the node occurs in KB, the less
information it conveys.

Discriminate Predicate Path Mining (KG-Miner) exploits fre-
quent anchored predicate paths between pair of entities in the
KB [23]. Given a claim (s, p, o) and positive examples P that satisfy
p in the KB, it collects the predicate paths for every node pair in P
having subject with the same type of s (subject set φ(s)) and object
with type of o (object set φ(o)). From each subject u ∈ φ(s) and
corresponding object v ∈ φ(o), predicate paths that alternatively
represent predicate p are extracted from the KB with a depth-first
search (DFS) traversing the graph from u to v up to a length m. The
information gain of paths and corresponding labels are computed
based on their number of occurrences. It then selects the most dis-
criminative paths and plugs them into training with positive and
negative examples in a logistic regression model that optimizes
the Area Under Receiver Operating Characteristic (AUROC). This
model is then used to compute the likelihood of a claim.

Path Ranking Algorithm (PRA) is based on the same process
of KG-Miner, but with important differences [14]. For extracting
features from the (positive and negative) training set of triples,
it uses a two-sided, unconstrained random walk starting at the
source and corresponding target nodes to retrieve connected paths
between them. Top k paths for each training instance are kept based
on their number of occurrences and are collected into a feature
matrix. A value in the matrix corresponding to a training instance
(s, p, o) is the probability of arriving at the target node o by a walk
starting at source node s and following a specific path among its top
k paths. The feature matrix is then used with a classifier (trained
on positive and negative examples) to validate the input claim.

Sub-graph Feature Extraction (SFE) extends PRA by extracting
features from sub-graphs in the KB [13]. Given a parameterm, the
sub-graph of depth m for each node n is the result ofm breadth-first
search steps starting at it. A sequence of predicates that connects
a source node to target node is obtained by intersecting the sub-
graphs of source and target. SFE uses such sequences to identify
binary features that disregard the frequency (KG-Miner) or the
probability (PRA) of feature paths. Features are then used in a
classifier trained on positive and negative examples.

Embedding Based Algorithms. Embeddings encode entities and re-
lationships in the KB into a low-dimensional vector space while pre-
serving certain information of the graph and minimizing a margin-
based ranking loss. A relationship in the graph is interpreted as a
translation from subject entity to object entity in such space. To
check a fact p(s, o), these methods measure the relevance of the
embedding representations s of s and o of o w.r.t. embedding repre-
sentation p of predicate p though a specific score function f(s, p, o).
We consider two algorithms for this family.

Translating Embeddings (TransE) represents a predicate p from
triple p(s, o) as a translation from subject s to object o on the same
low-dimensional embedding space, that is s + p ≈ o if (s, p, o) is

true [3]. Its score function is defined as: f (s,p,o) = ∥s + p − o∥,
where ∥.∥ can be either L1 or L2 norm. TransE has drawbacks
when dealing with non functional predicates. As it uses the same
embedding space for both entities and predicates, a many-to-one
predicate generates identical embedding representations for differ-
ent subject entities in it. To address this issue, TransH enables an
entity to have different embedding representations w.r.t. the differ-
ent predicates it participates [28]. For each predicate p, it introduces
a predicate-specific hyperplanewp (normal vector) and defines an
embedding vector p on this hyperplane.

There are other methods that can verify claims by exploiting con-
straints (logical rules) defined on the KB [1, 11, 18] Unfortunately,
in general KBs do not come with a set of rules and it is not clear
how to obtain a large number of high quality rules with existing
mining methods [12, 21]. For this reason, we leave the evaluation
of such rule-based algorithms to future work.

4 FACT SELECTION AND GENERATION
While the training T and test D datasets are produced separately
(possibly with different input parameters), they are based on com-
mon properties of the data and can therefore be generated by one
set of algorithms. We therefore blur the distinction between the
training and test in the discussion of a unified dataset generator.

Each dataset includes true and false facts for a specific predicate,
as in the examples in Table 1. We identify four independent proper-
ties for the datasets, and build scenarios that have different levels
of difficulty based on how such properties are set and combined.

4.1 Popularity
Given any KB in our test, the true fact that Sacramento is the capital
of California is easier to automatically check compared to the true
fact that Kinshasa is the capital of Zaire. In fact, even if both facts are
missing in the KB, the two entities in capital(Sacramento,California)
are more “popular" in the reference data R than the African city
and country. This can be naturally captured by distinguishing facts
based on their amount of context information. In particular, we
characterize the entities based on their structural properties. We
define the popularity G(x) of an entity x as the number of incoming
and outcoming edges for its node in the KB graph. For a given fact
p(s, o), we compute the popularity of its entities (s, o) with the score:

G(p, s,o) =min(G(s),G(o)) ∗ (1 +
max(G(s),G(o))

Ḡ(p)
) (1)

where Ḡ(p) is the average popularity of all entities in the same pred-
icate. Themin operator avoids that a pair (s, o) get high popularity
for one entity only. Higher popularity scores identify pairs with
bigger context, which are easier to fact check.

For an example, consider facts f1: capital(Sacramento,California),
f2: capital(Honolulu, Hawaii), and f3: capital(Kinshasa,Zaire). The
popularity values in the KB DBpedia are 942 for Sacramento, 23298
for California, 1101 for Honolulu, 1144 for Hawaii, 205 for Kinshasa,
and 328 for Zaire. With Ḡ(capital) = 1452, these lead to popularity
scores 16056, 1968, and 251 for f1, f2, f3, respectively. More popular
entities have less missing values in the KB and it is easier for the
algorithms to create robust contexts for fact checking decisions.
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4.2 Transparency
In fact checking, the false facts are the ones driving the evaluation
of the performance of an algorithm. However, there are many ways
to generate false facts. We first review existing methods for their
selection and then motivate and introduce our approach.

Random generation. Consider a scenario with 50 US capitals as
true facts taken from a trusted KB. From these 50 correct triples, we
can generate 200 incorrect triples by random matching each capital
to 4 other states for a total of 200 statements, as shown for the first
scenario in Table 1. Since the capital predicate is functional, all the
generated incorrect facts are truly false.

LCWA generation. To generate false facts that are truly incorrect
also for non functional predicates, some ideas have been exploited
in the literature. [8, 12, 21]. The Local-Closed World Assumption
states that if a KB contains one or more object (resp. subject) values
for a given subject (resp. object) and predicate, then it contains all
possible occurrences for the two entities involved for that predi-
cate [8, 12]. For example, if the KB states that “Homer" is author
of “Odyssey", it implies that the KB contains all author facts for
“Homer" and “Odyssey". This intuition suggests that for any person
in the KB, any new pair combination for author with “Homer” as
subject or “Odyssey" as object is a false fact.

Also, to ensure high accuracy for the generated negative facts,
the types of the entities are required to be the same in a new fact.
More precisely, given a function T returning the type, a true fact
p(x ,y) ∈ R, and a generated false fact p(x ,y′) < R, then it must be
the case that T(y) = T(y′).

Finally, it has been noted that semantically connected negative
examples lead to better rules in the context of rule mining [21]. As
the KB also states that “Thomas Hobbes” has been a translator of
“Odyssey”, this is a valuable false fact for author in graph constraint
mining. In fact, it can lead to a rule stating a contradiction between
the birth year of the author and the release year of the book.

We denote with LCWA generation the approach based on these
ideas. This false facts generation method correctly outputs facts
that are false, but has some drawbacks that we discuss next.

Ambiguous false facts. Consider again the scenario with US
capitals as true facts and false triples generated by randommatching
capitals and states. While the true facts are structurally connected
in R (e.g., a capital always has more than one relationships with its
state), the false facts have little in common in the KB. The facts are
false, but they are not ambiguous, thus easy to identify as false by
any algorithm. In other words, for any fact checking method, the
true and the false facts have completely different internal represen-
tations that are easy to classify.

In Table 1, the second scenario contains false facts from another
predicate between cities and states, largestCity. For each state in the
correct capital-state triples, the scenario includes its largest city in
the datasets as false facts. Since the large cities and the capital cities
overlap and share properties in R, they are less “transparent” and
harder to distinguish by the fact checking algorithms. For a given
predicate p, this property is controlled by setting the percentage of
false facts from pairs connected by any predicate different from p.

Issues with LCWA. It seems a valid idea to get meaningful
false facts with the LCWA generation, where there always exists

an alternative relationship between a subject and an object. Un-
fortunately, this approach introduces an important problem: many
generated false facts resort to very few direct predicates. For exam-
ple, given nearestCity(Yosemite National Park, Mariposa California)
as a true fact, the LCWA-based generator extracts a false triple
location(Yosemite National Park, California). This is a false fact, but
in practice this approach leads to predicate location accounting for
≈90% of the generated false facts for predicate nearestCity. A spe-
cific predicate appearing frequently among negative triples (such
as location) leads to a strong evidence for the classification of false
facts. For example, with methods that use logistic regression, predi-
cate location is the feature with largest absolute weight.

While we need to avoid this drift, we want false facts coming
from related predicates to create ambiguous, non transparent facts.
To solve this problem, we give an algorithm for false fact generation.

Random walk generation. The first issue in the LCWA gen-
eration is considering only direct (1-hop) predicates between two
entities for alternative paths, as this choice drastically reduces the
number of alternatives. For a predicate p, a dataset should contain
multiple false facts from distinct predicates that are semantically
close to p. Given a true fact p(s,o), we extend one-hop paths (di-
rect predicates) to more general predicate paths between the given
subject and object, i.e., s

p1
−−→

p2
−−→ . . .

pk
−−→ o. Given the nearestCity

example above, (Yosemite National Park, location, isPartO f −1, Los
Angeles California) is an ambiguous false fact based on a nearestCity
triple and a 2-hop path.

To generate such triples, we introduce our random walk genera-
tion of negative examples, reported in Algorithm 1.

The algorithm starts with the generation of candidate facts S(x)
(resp. O(y)) by exploiting the LCWA assumption for subject x (resp.
object y) in a true fact p(x,y). For example, the candidate fact lo-
cation(Yosemite National Park, California) for nearestCity(Yosemite
National Park, Mariposa California).

Then, the algorithm checks the types of the entities involved
with a notion less strict than the equality. We say that type of y
(T(y)) is consistent to type of y′ (T(y′)) if they share path nodes in
the type hierarchy of the KB. We define a function ∥T(y)∥ that
returns the size of a type path, e.g., it returns 3 for type path
“Thing/Place/ProtectedArea” obtained from y entity Yosemite Na-
tional Park. This function allows us to test overlap of the path wrt
a given threshold c . In the LCWA generation, this threshold coin-
cides with the size of the type path, as it constraints all subject or
object occurrences in a training or test dataset to have the same
type. However, the higher the threshold c , the more difficult it is to
find negative facts. To get more paths, we relax this condition with
a value that is the minimum between a KB-depending threshold
and the actual type path (for DBpedia, we use c=4).

If types are compatible, the algorithm extracts all possible paths
with length smaller than a threshold t between the subject and
object, e.g., D3

(Yosemite,Calif ornia) for Yosemite National Park and
California.1 For each path p in these possible paths, a random walk
is initialized from the subject to each intermediate node that follows
the predicates in the path. For example, forp ∈ D3

(Yosemite,Calif ornia)

1We use t=3 in our experiments as it allows to efficiently compute rich paths. Triples
for RDF/S predicates, such as Domain and Range, are ignored in the navigation.
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input: P - reference data kb, true triples P for predicate
rel ∈ kb, n false triples for predicate rel
output: set of false triples N
for (x , rel ,y) in P do

S(x) = {(x , rel ′,y′)|(x , rel ′,y′)∈ kb & (x , rel ,y′)< kb};
for (x , rel ′,y′) in S(x) do

if ∥T(y) ∩ T(y′)∥ ≥ min(c, ∥T(y)∥) then
Dt
(x,y′)

: predicate paths of maxlength t from x to
y′

for path in Dt
(x,y′)

do
o: node reached by a random walk starting
from x and following path
if ∥T(y) ∩ T(o)∥ ≥ min(c, ∥T(y)∥) then

if (x , ∗,o)< N & (x , rel ,o)< kb then
N .append(x ,path,o)

O(y) = {(x ′, rel ′,y)|(x ′, rel ′,y)∈ kb & (x ′, rel ,y)< kb};
for (x ′, rel ′,y) in O(y) do

if ∥T(x) ∩ T(x ′)∥ ≥ min(c, ∥T(y)∥) then
Dt
(y,x ′)

: predicate paths of maxlength t from y to
x ′

for path in Dt
(y,x ′)

do
s: node reached by a random walk starting
from y and following path
if ∥T(x) ∩ T(s)∥ ≥ min(c, ∥T(y)∥) then

if (s, ∗,y)< N & (s, rel ,y)< kb then
N .append(s,path,y)

if len(N) < n then
for (x , rel ,y) in kb\P and (x , rel ,y) ∼ P do

do same as above
if len(N) == n then

break
Algorithm 1: Random walk generation of negative facts.

with p = location − isPartO f −1, a walk initialized at Yosemite Na-
tional Park reaches Catheys California. If the identified triple sat-
isfies the LCWA and the type consistency check, it is appended to
the construction of the new false fact. In the example, triple loca-
tion(Yosemite National Park, Catheys California) is kept as a false
fact for the nearestCity predicate. Notice that the new false fact
is semantically closer to the input true fact than the produced by
LCWA-method as Catheys and Mariposa are at the same adminis-
trative level, while California is at a higher level.

We initialize every time only one random walk per path. This
increases the likelihood of selecting diverse predicates in the alter-
native paths. Notice also that we can create multiple false facts for
a single true fact. More precisely, we can add a new false fact for
each path, which is useful if the number of require false triple n is
larger than the true triples as input.

False facts generated by LCWA and random walk generators are
reported in Table 2. In addition to facts created from 1-hop paths,
our random walk generation produces ambiguous facts whose se-
mantics is expressed by a path of predicates. Consider the false
facts with Will Smith’s spouses in the second row. Since Will Smith
has a child named Jaden Smith who associates with Ta-Ku in a
music band, the random walk generation is able to conclude that
(Will Smith, spouse, Ta-Ku) is a non transparent false fact. Also,

starting from either the subject or the object, more false triples
can be identified. The diverse semantics of false facts effectively
increases the hardness of a scenario. Finally, as the random walk
generator generalizes the LCWA approach, it is possible that some
facts are produced by both, e.g., (Will Smith, child, Jaden Smith).

4.3 Homogeneity
We started with a scenario with capital triples for US states, as this
is a setting studied in several fact checking papers. But, in such
a well scoped scenario, all entities are semantically close to each
other. That is, to check whether a US city in D is capital of a US
state, the algorithms rely on the information from other US capitals
and cities in T . In reality, data is heterogeneous, e.g., covering both
US and European cities. To break homogeneity, the datasets should
contain capitals of world countries, so that the facts model a more
general concept of capital, as in the third scenario in Table 1. The
fourth scenario of Table 1 is also not homogeneous, as people get
awards in different domains (RTHK is a music award).

For a predicate p, this property can be controlled by clustering
semantically the entities in the KB. We then determine the difficulty
of the scenario based on the number of the selected clusters in the
dataset: the smaller the number, the easier the scenario.

We employ bottom-up hierarchical clustering to partition pairs
of entities (subject s , object o) of a given predicate p, denoted as
{p(s,o)i }i=1..N , into multiple clusters in which pairs (s,o) belong-
ing to same cluster have similar semantics. To calculate this likeli-
hood, a measure of similarity between {(s,o)i }

p
i=1..N is required.

For the sake of simplicity, we initially take the average of euclidean
distances in the embedding space between subjects d(si , sj ) and ob-
jects d(oi ,oj ) [3]. However, if a predicate has its domain and range
with same type, the subject of a triple can also be the object for
another triple. For example, child(Murray Deutch, Howard Deutch)
and child(Howard Deutch, Zoey Deutch). To identify these cases
(subject of a triple appearing as object of another triple), it is there-
fore necessary to take also a cross-distance d(si ,oj ) into account.
Cross-distance helps to better discriminate these cases, thus leading
to more accurate clusters. In addition, when dealing with predicates
having different domains and range types, the cross-distance acts as
a regulation term in the similarity calculation. Two pairs with large
cross-distance will not belong to the same cluster. In summary, we
use the following metric in our clustering:

d(i, j) = [d(si , sj ) + d(oi ,oj ) + d(si ,oj ) + d(oi , sj )]/4 (2)

with i, j = 1 . . .Np .
With clustering methods, a challenging question is how to select

a good number of clusters k that correctly represent the underlying
structure. Intuitively, we can convert the problem of searching k
into searching a threshold d (or distance). Here we use the Elbow
method [25]. The number of clusters is selected by computing the
gradient of the plot with the number of cluster vs. the threshold for
d . The curve is expected to flatten out at the point giving maximum
gradient of the plot, the “elbow", and we select the corresponding
number of clusters as k . For example, in a plot for the nearestCity
predicate, a plain plateau appears from the threshold d=1.2, and the
corresponding number of clusters (k=115) is selected.

We report in Table 3 examples of homogeneous clusters obtained
for four predicates. For nearestCity, our approach identifies one
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Predicate LCWA generator Random walk generator
nearestCity (Death Valley National Park, location, California) (Death Valley National Park, isPar tOf −1, Indian Village, California)

(Death Valley National Park, location − isPar tOf −1, Catheys, California)
(Cleveland Forest, location, San Diego, California) (RM National Park, locatedInArea−1 − locatedInArea, Larimer, Colorado)

(Cleveland Forest, sourceMountain−1, r eдion, Orange, California)
spouse (Will Smith, child , Jaden Smith) (Will Smith, child , Jaden Smith)

(Will Smith, child − associatedMusicalAr tist−1, Ta-Ku)
(Julian Carroll, successor , John Brown Jr) (Julian Carroll, successor , John Brown Jr)

(John Brown Jr, almaMater − almaMater−1, Karl Forester)
manufacturer (SEAT 133, assembly , Fiat) (Peugeot 306, desiдner , Pininfarina)

(Alfa Romeo Giulietta, assembly − f oundationPlace−1, Fiat)
(Ferrari 458, desiдner , Pininfarina) (Ford Vedette, r elatedMeanOf T ranspor tation − product−1, Simca)

(GMC Typhoon,manuf acturer − division, Chevrolet)
employer (Yasheng Huang, almaMater , Harvard University) (Yasheng Huang, almaMater , Harvard University)

(Yasheng Huang, employer − af f il iat ion, MIT)
(Bob Jones III, chancellor−1, BobJones University) (Bob Jones III, chancellor−1, BobJones University)

(John Dickson Carr, deathPlace − city−1, BobJones University)
Table 2: False facts generated by LCWA and random walk algorithms.

Predicate Cluster
(Santa Barbara, California)
(San Luis Obispo, California)

nearestCity (Los Angeles, California)
(Death Row Records, Dr. Dre)

foundedBy (Aftermath Entertainment, Dr. Dre)
(Death Row Records, Dick Griffey)

(BMW 3 Series (F30), BMW)
manufacturer (Toyota Corolla (E120), Toyota)

(Ford Sierra, Ford Motor Company)
(Tim Berners-Lee, MIT)

employer (William L.Langer, Harvard University)
(William L.Langer, University of Chicago)

Table 3: Homogeneous clusters for four predicates based on
embeddings and our measure of distance.

cluster containing locations related to USA (in the table); a second
example contains Canada’s national parks. For manufacturer, two
identified domains are the car and the railways industries (car
examples in the table). For predicates foundedBy and employer,
music labels and scientists have been identified, respectively.

4.4 Functionality
The last property characterizes the functionality of a predicate.
A functional or inverse functional predicate is easier to model than
a one-to-many predicate, such as persons in the author predicate
with one or more books, but each book has at most one author. The
hardest case is with many-to-many predicates, such as award, i.e.,
persons who got a prize or a recognition. In the fourth scenario of
Table 1, notice how the facts are not functional: the same person
can win different awards and the same award can be given to mul-
tiple people. We profile predicates in the reference KBs to identify
functional and not functional ones.

5 RESULTS
Our scenario generator exposes the four properties described above.
In this section, we test how such properties affect the quality of
results for several fact checking algorithms.

KB.Our algorithmsworkwith any RDFKB, but for the sake of space
we report the results for tests done on DBpedia, a KB with triples
extracted from Wikipedia. From these triples, we construct a graph
by assigning each unique entity to a graph node, and converting
the triple into a directed edge with label “predicate" from the entity
“subject" to entity “object". We obtain a directed graph with ≈4M
nodes, ≈27M edges, and 671 predicates. We treat the KB as trusted
(i.e., assumed correct) but incomplete (open world assumption).

Datasets. In our test cases for fact checking, we focus on predi-
cates with different characteristics. We select functional and non
functional predicates and identify three predicates that are popular
(appear in more than 10K triples in the KB) and one that is represen-
tative of the long tail: manufacturer (non functional: many to many,
31514 triples), nearestCity (non functional: many to many, 15016
triples), foundedBy (mostly functional, 10444 triples), employer
(non functional: many to many, 5337 triples). Tested predicates
have entities as objects, because this kind is supported by most
methods. Our techniques can generate training and test datasets
also for properties involving literal values, e.g., birthDate or salary.

Each test case involves an unique training scenario (for KG-
Miner and SFE) and multiple testing scenario with 300 examples
and a positive/negative label ratio of 1.0. In every testing scenario,
entities are picked randomly according to the values of the four
properties; however, to allow a fair comparison between different
experiments, we reuse as much as possible the true facts across
multiple generations. By default, all triples are correct, i.e., true and
false facts are labelled correctly. Triples in the testing datasets are
removed from the KB in the experiments.

Metrics. For evaluation of the different algorithms, we use the
Area Under the Receiver Operating Characteristic curve (AUROC)
and execution times. We identify AUROC as the primary quality
indicator because is a genericmeasure (independent of the threshold
values) and its curve is effective for visualization.

Algorithms. For the sake of space and clarity, we report results for
a subset of the algorithms discussed in Section 3. Algorithms PRA
and TransH are not reported as their behaviour is similar to SFE
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and TransE, respectively, with the latter methods outperforming
the former ones in all cases.

5.1 Popularity
We start analyzing how the popularity of a fact influences the
output of the fact checking methods. In this experiment we fix
transparency/homogeneity to 1/1 for the training data, and to 1/0.5
for the testing data. The training datasets are always created select-
ing triples at random, while for the testing datasets the selection
strategy varies across top-50 popular pairs, bottom-50 pairs in pop-
ularity (non-popular), and pairs taken randomly.

Method Predicate Popular Non-Popular Random

KG
-M

in
er nearestCity 0.84 0.58 0.69

foundedBy 0.80 0.63 0.81
manufacturer 0.55 0.51 0.53
employer 0.58 0.38 0.50

KL

nearestCity 0.87 0.66 0.76
foundedBy 0.82 0.67 0.80

manufacturer 0.90 0.85 0.92
employer 0.69 0.43 0.66

SF
E

nearestCity 0.72 0.60 0.68
foundedBy 0.63 0.60 0.81

manufacturer 0.54 0.53 0.55
employer 0.66 0.50 0.62

Tr
an
sE

nearestCity 0.49 0.40 0.43
foundedBy 0.75 0.60 0.75

manufacturer 0.72 0.47 0.60
employer 0.62 0.46 0.48

Table 4: AUROC results. Training data T selected randomly
(KG-Miner and SFE only), testing data D selected according
to popularity.

Aswe can see from Table 4, all algorithms obtain worse results on
testing sets with low popularity compared to popular and random
ones. Specifically, nearestCity shows a clear trend: Popular triples
are easier to fact check than the ones selected at Random, which are
easier to check than the Non-Popular triples. This is due to a large
difference in popularity values G among entities of this predicate,
as we can see from the 3 examples f1, f2, f3 discussed in Section 4.1.

We observe that for random triples KG-Miner and SFE do not
obtain good results in the datasets. This is explained by the training
data containing a mix of popular and non popular entities, but all
involving few distinct paths. KL and (to a smaller extent) TransE are
more robust to this issue. To better explain the results, we looked
at some statistics for the datasets in this experiment, as reported
in Table 5. The table reports for each predicate and each dataset
the number of distinct paths identified over all triples, the average
frequency of every path (e.g., a value of 2 means that all distinct
paths appear twice over all triples), and the average popularity of
each triple. We observe in Table 5 that for predicate manufacturer
there is a large difference in the number of distinct paths and their
average frequency between the training data and the test data. This
is reflected by KG-Miner and SFE reporting significantly worse
results in Table 4 for manufacturer.

# distinct Avg. freq, Avg.
Predicate Dataset paths of paths popularity

ne
ar
es
tC
ity Random Train 19 8.8 42

Popular Test 91 7.6 41
Random Test 42 10.2 38
Non-Pop. Test 32 9.9 7

fo
un

de
dB

y Random Train 72 18.2 120
Popular Test 151 30.0 595
Random Test 90 18.0 64
Non-Pop. Test 58 7.3 10

m
an
uf
ac
t. Random Train 11 2.3 42

Popular Test 49 9.4 151
Random Test 49 4.5 38
Non-Pop. Test 51 4.3 16

em
pl
oy

er Random Train 31 4.4 35
Popular Test 39 9.2 65
Random Test 62 4.9 25
Non-Pop. Test 50 4.9 7

Table 5: Structural properties for the datasets. Training
datasets are used only with KG-Miner and SFE.

KL and TransE are also the ones showing biggest benefit with
popular triples. This confirms that their algorithms are affected by
the popularity of the entities involved, while the others rely more
on the variety of the paths, e.g., KG-Miner and SFE work well for
foundedBy, which has a large number of distinct paths. We also
experimentally verified that if training is done with popular pairs
only, the qualitative results improve for the Popular test dataset.

5.2 Transparency and Homogeneity
Transparency is used as a proportion of ambiguous false facts over
non-ambiguous ones. Homogeneity is responsible for determining
how many true and false facts are semantically close to each other,
besides randomly-matched pairs. The two properties vary in the
range [0..1].

For transparency, value 1 is the case when all false facts are
generated by random matching, while value 0 denotes a dataset
with ambiguous, type-compatible instances only. For homogeneity,
value 1 represents the case with all facts from the same cluster,
while value 0 stands for a random selection that proportionally
involves every clusters. The difficulty level of a scenario is directly
proportional to transparency and homogeneity, and the dataset
with high values for both is the easiest one.

We evaluate the impact of transparency and homogeneity prop-
erties by reporting in a two dimensional matrix the results from
multiple experiments where we vary the values of the properties
for the test datasets over values 0, 0.2, 0.5, and 1. In the training
data we fix both transparency and homogeneity to 1.

Qualitative results for KG-Miner and SFE are reported in Figure 2.
As expected, the algorithms perform best on scenarios with high ho-
mogeneity and high transparency (top-right area of every matrix),
and like a random classifier on scenarios with low value of two
properties (bottom-left area). Interestingly, homogeneous nearestC-
ity and foundedBy datasets of low transparency still give slightly
good AUROC. Overall, the homogeneity property has strong impact



CIKM ’19, November 3–7, 2019, Beijing, China Viet-Phi Huynh and Paolo Papotti

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.65 0.71 0.77 0.91

0.59 0.62 0.66 0.73

0.55 0.58 0.60 0.63

0.52 0.52 0.52 0.53

nearestCity

0.56

0.64

0.72

0.80

0.88

(a) nearestCity - KG-Miner

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.63 0.72 0.79 0.90

0.52 0.55 0.61 0.77

0.46 0.49 0.52 0.72

0.40 0.40 0.45 0.64

foundedBy

0.4

0.5

0.6

0.7

0.8

0.9

(b) foundedBy - KG-Miner

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.59 0.57 0.59 0.64

0.48 0.46 0.49 0.49

0.42 0.40 0.42 0.37

0.37 0.36 0.37 0.33

manufacturer

0.36

0.42

0.48

0.54

0.60

(c) manufacturer - KG-Miner

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.53 0.54 0.58 0.66

0.46 0.46 0.48 0.53

0.43 0.43 0.39 0.49

0.44 0.41 0.45 0.35

employer

0.36

0.42

0.48

0.54

0.60

0.66

(d) employer - KG-Miner

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.88 0.91 0.93 0.98

0.60 0.62 0.66 0.71

0.61 0.61 0.65 0.64

0.61 0.59 0.61 0.59

nearestCity

0.64

0.72

0.80

0.88

0.96

(e) nearestCity - SFE

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.58 0.60 0.82 0.93

0.50 0.59 0.65 0.81

0.51 0.58 0.64 0.77

0.48 0.56 0.64 0.78

foundedBy

0.48

0.56

0.64

0.72

0.80

0.88

(f) foundedBy - SFE

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.56 0.63 0.70 0.78

0.55 0.56 0.61 0.58

0.55 0.55 0.58 0.56

0.55 0.57 0.58 0.54

manufacturer

0.56

0.60

0.64

0.68

0.72

0.76

(g) manufacturer - SFE

0.0 0.2 0.5 1.0
Homogeneity

1.
0

0.
5

0.
2

0.
0

Tr
an

sp
ar
en

cy

0.61 0.77 0.76 0.88

0.47 0.50 0.58 0.71

0.47 0.52 0.54 0.69

0.48 0.53 0.62 0.64

employer

0.48

0.56

0.64

0.72

0.80

0.88

(h) employer - SFE

Figure 2: AUROC matrices of KG-Miner and SFE in scenarios with different homogeneity and transparency.

and clear trend on the performance of unambiguous scenario (high
transparency). For SFE, in most cases the performance is more pro-
portional to transparency than homogeneity. These observations
confirm our sense that these two properties play an important role
on the behavior of path-based algorithms, such as KG-Miner and
SFE. It may also be noted that SFE performs better than KG-Miner in
most cases, particularly for homogeneous nearestCity and employer.
After manually inspecting the paths and the sub-graphs, in these
cases the two methods do not differ much. However, the difference
in performance is explained by the different classifiers they use.

Results for TransE are shown in Figure 3. In general, scenarios
with high transparency have good quality results. For example, in
foundedBy with high homogeneity and transparency we observe re-
sults comparable to the other methods. Transparency also strongly
affects the quality of TransE. The less transparent is at triple, the
more difficult to fact check. Due to the embedding-based nature
of TransE, the homogeneity has a more limited effect here. This is
due to the nature of the clusters, which have been computed with
embeddings, thus both entities in true and false facts are close to
each other. Subject and object in false triples are semantically close
to subject and object in the true facts, thus in some cases they have
similar distances.

Figure 3 also shows that KL achieves very good results for sce-
narios with high transparency, regardless of the homogeneity level,
and outperforms the other algorithms in most cases. KL directly
relates its decision to the distance between subject and object in
each triple in the test scenario. Hence, an unambiguous scenario
polarizes these distances and is perfectly classified. Unsurprisingly,
decreasing the transparency also degrades the performance of KL.
For example, Worcester is not capital of Massachusetts, but it is
one of its largestCities. Due to the lack of semantics, KL treats both

Worcester and Boston as capital of Massachusetts because it finds
good proximity between each city and the state in the graph. In
terms of homogeneity, we observe a behavior similar to KG-Miner
and SFE. With smaller and more homogeneous clusters (high ho-
mogeneity), it is easier for KL to identify better paths.

5.3 Functionality
Among the four predicates we tested in this evaluation, foundedBy
is the simplest one as it is the most functional. In most cases, any-
thing has been founded by only one person or company. As we
can see from the results of all experiments on Popularity, Homo-
geneity, Transparency, all fact checking methods work better
for the foundedBy scenario, rather than other predicates. The fact-
checking task is clearly more robust for functional predicates than
non-functional ones.

5.4 Execution times
We report in Table 6 the average execution times for every algorithm
to fact check 300 triples in one scenario on a machine with a 8 core
1.6Ghz CPU and 30 GB RAM.

Algorithm Time (seconds)
KL 1420

KG-Miner 30
SFE 20

TransE 5
Table 6: Average execution time (sec) for a scenario.

KL is computationally expensive, with more than 1400 seconds
on average, and slower than path-based methods (KG-Miner, SFE),
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Figure 3: AUROC matrices of TransE and KL in scenarios with different homogeneity and transparency.

which takes 20 to 30 seconds, and embedding-based algorithms
(TransE), up to 5 seconds. However, for TransE, the computational
cost is moved from the testing to the training step, where it takes
more than 4 hours to learn the model. The training step for KG-
Miner and SFE runs as quickly as their testing step and time to
build an adjacency matrix in KL is much smaller (≈ 600s) than
TransE’s learning time. For our algorithms to enforce data proper-
ties (Section 4), execution times are always in seconds, assuming
embeddings for the KBs have been pre-computed.

5.5 Take away messages
We draw some conclusions about the four data properties from the
experimental evaluation.
(1) More popular triples are easier to fact check for all algorithms
(Table 4).
(2) More complex data stuctures do not necessarily lead to better
results. In some cases (Table 4), a simple path (KG-Miner, KL) does
better than a sub-graph (SFE). However, for more challenging set-
ting, the richer information provided by sub-graphs leads indeed
to better results (Figure 2).
(3) Whereas KG-Miner and SFE significantly depend on the struc-
tural properties of the entities in the KB, TransE is more stable and
KL benefits from its independence from the predicates labels in the
paths. On the other hand, labelled output paths and graphs can be
used as an explanation for a fact checking decision.
(4) All methods perform better with functional predicates than non
functional ones.
(5) Finally, KL and TransE do not need labelled training data, a
crucial property in many real use cases.

Figure 4: Qualitative comparison for two algorithms exe-
cuted on the same fact checking scenario.

The experiments show that our benchmark enables the effective
comparison of different algorithms over the same fact checking
scenario. We built a GUI to let users do the analysis with an in-
teractive process. In the system, users select a KB, a predicate to
test, and the desired values for the four data properties. Once a
scenario has been generated, users select and tune the algorithms
to be executed. For example, by selecting KL, the choice between
metric and ultra-metric closure appears as an option. After the exe-
cution, qualitative results are visualized with the receiver operating
characteristic curve, as shown in Figure 4. With the benchmarking
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tool, qualitative differences in the results of all algorithms become
evident with datasets involving non functional predicates, more
ambiguous datasets, and less popular entities. The tool also enables
to replicate experimental settings from papers in the literature.

6 RELATEDWORK
We focus on fact checking methods based on reference informa-
tion in the forms of knowledge graphs. This is different from fact
checking approaches that exploit documents on the Web [19, 26],
databases of previously checked claims (https://fullfact.org), and
relational datasets [4], but also from the study of trust and misin-
formation spread in social networks [10, 22].

Qualitative experimental evaluations of fact checking systems
have already been conducted [5, 11, 13, 14, 18, 23]. We reused sys-
tems from these earlier studies, but our work differs in several
ways. First, previous evaluations have involved a limited number
of systems, typically one or two, while this is the first benchmark
that supports qualitative comparison for a large number of differ-
ent systems. Second, earlier studies have considered mostly simple
scenarios that did not fully stress the functionalities of the tested
systems.We generate scenarios of increasing complexity, ultimately
highlighting that several cases are still far from satisfactory quali-
tative results. Finally, datasets and code for this work is available
online. We believe this is crucial towards advancing reproducibility
and the experimental culture of the community.

In the context of fact checking, there have been proposals for
the comparison of verification tools on a fixed set of claims (e.g.,
https://herox.com/factcheck). Related efforts in creating generic
benchmarks have focused on the collection of suites of scenarios [7,
20] (https://docs.openml.org/benchmark/) or on the execution time
to train models of increasing size (https://mlperf.org/). In contrast,
we are closer in spirit to benchmark approaches where scenarios of
increasing complexity are generated from existing data collections,
i.e., the KBs of interest. Other works have studied how sampling
and class imbalance affect link prediction methods [30], but they
do not study the properties we introduce in this work.

7 CONCLUSIONS
Our effort should not be mistaken as aiming primarily for a per-
formance competition. The benchmark aims at covering a range of
scenarios to answer the questions we posed in Section 1. Specifi-
cally, we can now observe a diverse set of systems and inputs that
allow us to derive conclusions about the different fact checking al-
gorithms. We showed that a single data property can have a bigger
impact on the qualitative results than algorithmic choices. While all
methods perform well in simple scenarios, qualitative differences
in the results become evident with more complex datasets in terms
of the properties we have introduced. Experimental results vary in
most cases from around 0.5 to 0.95 AUROC for a fixed algorithm,
fixed KB predicate, and fixed ratio of training/test data.

Based on the lessons that we have learned, one future direction
clearly stands out. As different models shine in different data sit-
uations, we envision a system that can take the best from all of
them by picking the right algorithm at runtime, based on our data
properties. We plan to extend our work in this direction and identify
more data properties to better assess fact checking algorithms.
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