Graduate School and Research Center in Digital Sciences

A MEC-based extended virtual sensing for automotive services

Avino, Giuseppe; Bande, Paolo; Frangoudis, Pantelis A.; Vitale, Christian; Casetti, Claudio; Chiasserini, Carla Fabiana; Gebru, Kalkidan; Ksentini, Adlen; Zennaro, Giuliana

IEEE Transactions on Network and Service Management, July 2019

Multi-access edge computing (MEC) comes with the promise of enabling low-latency applications and of reducing core network load by offloading traffic to edge service instances. Recent standardization efforts, among which the ETSI MEC, have brought about detailed architectures for the MEC. Leveraging the ETSI model, in this paper we first present a flexible, yet full-fledged, MEC architecture that is compliant with the standard specifications. We then use such architecture, along with the popular OpenAir Interface (OAI), for the support of automotive services with very tight latency requirements. We focus in particular on the Extended Virtual Sensing (EVS) services, which aim at enhancing the sensor measurements aboard vehicles with the data collected by the network infrastructure, and exploit this information to achieve better safety and improved passengers/driver comfort. For the sake of concreteness, we select the intersection control as an EVS service and present its design and implementation within the MEC platform. Experimental measurements obtained through our testbed show the excellent performance of the MEC EVS service against its equivalent cloud-based implementation, proving the need for MEC to support critical automotive services, as well as the benefits of the solution we designed.

Document Doi Bibtex

Title:A MEC-based extended virtual sensing for automotive services
Type:Journal
Language:English
City:
Date:
Department:Communication systems
Eurecom ref:5987
Copyright: © 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Bibtex: @article{EURECOM+5987, doi = {http://dx.doi.org/10.1109/TNSM.2019.2931878}, year = {2019}, month = {07}, title = {{A} {MEC}-based extended virtual sensing for automotive services}, author = {{A}vino, {G}iuseppe and {B}ande, {P}aolo and {F}rangoudis, {P}antelis {A}. and {V}itale, {C}hristian and {C}asetti, {C}laudio and {C}hiasserini, {C}arla {F}abiana and {G}ebru, {K}alkidan and {K}sentini, {A}dlen and {Z}ennaro, {G}iuliana}, journal = {{IEEE} {T}ransactions on {N}etwork and {S}ervice {M}anagement, {J}uly 2019}, url = {http://www.eurecom.fr/publication/5987} }
See also: