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Abstract—While acquiring channel state information at the
transmitter (CSIT) in time division duplexing systems can exploit
channel reciprocity, acquiring accurate CSIT in frequency divi-
sion duplexing massive multiple-input multiple-output systems is
not trivial. The two main difficulties in these systems are the
scalability of the downlink reference signals and the overhead as-
sociated with the required uplink feedback. Although several ap-
proaches for ensuring scalability and reducing overhead by lever-
aging some presumed channel properties have been studied, exist-
ing schemes do not offer a fully satisfactory solution. In this work,
we propose a novel cooperative method which exploits low-rate
beam-related information exchange between the mobile terminals,
reduces the overhead under the assumption of the so-called grid-
of-beams design, and strikes a balance between CSIT acquisition
overhead, user spatial separability and coordination complexity.

I. INTRODUCTION

Massive MIMO (mMIMO) has been identified as one
important enabler for achieving higher performance in 5G
communications [1]. The original mMIMO implementation is
based on time division duplex (TDD) operation, which allows
to design near-optimal linear precoders, as downlink channels
can be estimated through orthogonal uplink sounding exploiting
channel reciprocity [1]. In contrast, in FDD mode, channel
estimation has to be carried out through downlink reference
signals (RSs) and subsequent uplink feedback. In general, there
exists a one-to-one correspondence between RSs and antenna
elements. Therefore, training and feedback overhead is often
associated with unfeasibility in the FDD mMIMO regime,
where few resource elements are left for data transmission [2].

Nevertheless, operating in FDD remains appealing to mobile
operators for crucial reasons, including i) most radio bands
below 6 GHz are paired FDD bands, ii) the base stations (BSs)
have higher transmit power available for the RSs than the user
equipments (UEs), iii) overall deployment and operation costs
are reduced as fewer BSs are required in FDD networks [2].

The grid-of-beams (GoB) approach has been proposed in
5G specifications to reduce such overhead [2], [3]. According
to this concept, the UEs see low-dimensional virtual (effective)
channels instead of the actual ones, where the former
incorporate the precoder vectors relative to the beams. In
particular, one orthogonal RS is allocated to each beam in the
GoB codebook [4]. Thus, estimating such effective channels
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reduces the overhead, as it becomes proportional to the
codebook size and independent from the number of antenna
elements. Unfortunately, the substantial reduction in training
(and feedback) overhead often entails a drastic performance
degradation [5] as the digital precoder for data transmission is
optimized for reduced channel representations which might not
capture the prominent characteristics of the actual channels.

Another option consists in designing the GoB with a large
number of beams, and then training a small subset of beams
which contains the most relevant channel components [2], [6],
[7]. The number of such components depends on several factors,
including the frequency band and the radio scattering environ-
ment, which is in general beyond the designer’s control. Nev-
ertheless, when multi-antenna UEs are considered, statistical
beamforming at the UE side can be exploited to let the UEs ex-
cite a suitable channel subspace, with the aim to further reduce
the number of relevant components to be estimated [8], [9].

Interestingly, a so-far unexplored opportunity to further cut
the training overhead arises in the multi-user case. The idea is
to capitalize on the common paths which can be found among
several UE channels. This paper shows that there exists in fact
an interesting trade-off between i) training the beams which
capture the largest channel gains for each UE, and ii) training
the beams which might capture somewhat weaker paths but are
common to multiple UEs, so as to reduce the training overhead.
The essence of such trade-offs is captured in Fig. 1, where UE
2 can capitalize on its weaker paths to reduce the number of
activated beams at the BS side. Another factor entering the
trade-offs is that focusing on beams that are common to multiple
UEs can lead to reduced spatial separability among them.

In this paper, we show that the above trade-off can be
explored through coordination between the UEs when the GoB
is used at both the BS and UE sides. To enforce coordination,
we propose a low-overhead exchange protocol exploiting device-
to-device (D2D) communications. In our scheme, the UEs ex-
change beam-related information over the beam coherence time,
which allows for low-rate updates [10]. Finally, we propose a
beam selection algorithm which exploits the exchanged informa-
tion and enables to strike a balance between overhead and spa-
tial separability, towards spectral efficiency (SE) maximization.

II. SYSTEM MODEL

Consider a single cell mMIMO network (refer to Fig. 1),
where the BS is equipped with NBS�1 antennas and serves (in
downlink transmission) K�NBS UEs with NUE antennas each.



A. Channel Estimation with Grid-of-Beams
We assume FDD operation, i.e. the downlink and uplink

channels are not reciprocal, and that GoB is exploited at both
the BS and UE side. Let us define the beam codebooks BBS and
BUE used for the GoB precoding and combining, respectively, as

BBS,
{
v1,...,vBBS

}
, BUE,

{
w1,...,wBUE

}
, (1)

where vv ∈C
NBS×1, v ∈ {1,...,BBS}, denotes the v-th beam-

forming vector in BBS, and ww ∈ CNUE×1, w ∈ {1,...,BUE},
denotes the w-th beamforming vector in BUE. To ease the
notation, we assume that BUE is the same across all the UEs.

UE 1

UE 2

BS

Fig. 1: Scenario example with K=2 UEs. Stronger paths are
marked in bold. Uncoordinated SNR-based beam selection re-
sults in MBS =5 beams to train. In this example, UE 2 could in-
stead opt for the non-bold light blue beams to achieve MBS =3.

A New Radio (NR)-like OFDM-based modulation scheme is
assumed. We consider a resource grid consisting of T resource
elements. Among those, τMBS are allocated to RSs, and T−
τMBS to data, where MBS denotes the number of beams that are
trained among the ones in BBS and τ is the duration in OFDM
symbols of their associated RSs (one each beam [4]). The re-
ceived training signal Yk∈C

MUE×τ at the k-th UE, where MUE
is the number of activated beams at the UE side, is expressed as

Yk=

√
P

T
WH

kHkVS+WH
kN, ∀k∈{1,...,K} (2)

where S∈CMBS×τ contains the orthogonal (known) RSs, with
SSH = IMBS

, V,
[
v1 ...vMBS

]
∈CNBS×MBS is the normalized

training precoder, Hk∈C
NUE×NBS is the channel between the

BS and the k-th UE, and Wk,
[
wk,1...wk,MUE

]
∈CNUE×MUE

is the training combiner relative to the k-th UE. Note that
both V and Wk contain beamforming vectors belonging to the
GoB codebooks BBS and BUE. The matrix N∈CNUE×τ , whose
elements are i.i.d. CN (0,1), denotes the Gaussian thermal noise,
while P is the total transmit power available at the BS in the
considered coherent (over both time and sub-carriers) frame.

Following the training stage, the UEs are able to estimate
their instantaneous GoB effective channels, defined as

H̄k,WH
kHkV∈C

MUE×MBS , ∀k∈{1,...,K} (3)

which are fed back to the BS to close the CSIT acquisition loop.

B. Data Signal Model

Let us consider a single resource element. We assume a single
stream per UE and denote with x ,

[
x1 ...xK

]
∈ CK×1 the

Gaussian-distributed transmitted data vector, with E[xxH]=IK .
The received data signal x̂k at the k-th UE is expressed as

x̂k=

√
P

T
w̄H
k H̄kV̄x+w̄H

k n̄k, ∀k∈{1,...,K} (4)

where V̄ ,
[
v̄1,...,v̄K

]
∈ CMBS×K is the normalized digital

data precoder, H̄k is the GoB effective channel between the
BS and the k-th UE, w̄k∈C

MUE×1 is the digital data combiner
relative to the k-th UE, and n̄k,WH

knk∈C
MUE×1.

Let W,{W1,...,WK} and W̄,{w̄1,...,w̄K}. The instan-
taneous SINR γk(V,V̄,W,W̄) at the k-th UE is as follows:

γk(V,V̄,W,W̄),

∣∣w̄H
k H̄kv̄k

∣∣2∑
j 6=k
∣∣w̄H

k H̄kv̄j
∣∣2+

(
T/P

) , (5)

where the dependence on V and W is due to H̄k=WH
kHkV.

III. COORDINATED BEAM SELECTION AND REPORTING

In this section, we formulate the optimal beam selection prob-
lem, highlighting the role that coordination plays in the consid-
ered scenario. To achieve this goal, we introduce the notion of
relevant channel components and take a closer look at the beam
reporting procedure defined in the current 5G specifications.

A. Exploiting The Relevant Channel Components

In the classical GoB implementation all the beams in the
grid are trained regardless of their actual relevance, i.e. MBS =
BBS. As pointed out in Section I, such an operating mode is
feasible for small GoBs only, although that in turn leads to high
performance loss [2]. In order to avoid exchanging performance
for overhead, the intuition is to use a large GoB with few
(accurately) selected beams to train, so as to keep MBS small.

Let us define the set Mk containing the relevant channel
components (or beam pairs) of the k-th UE as follows:

Mk,
{

(v,w) :EHk

[∣∣wH
wHkvv

∣∣2]≥ξ}, (6)

where ξ is a predefined power threshold, e.g. 10 dB.
Remark 1. The set Mk is solely dependent on the second
order statistics of the channel Hk, for fixed BBS and BUE. In
particular, we refer to the beam coherence time to denote the co-
herence time of such statistics. The beam coherence time Tbeam
is much longer than the channel coherence time Tcoh [10].

Likewise, we define the subset MBS
k ⊆Mk containing the

relevant beam pairs relative to the k-th UE, when the latter
adopts Wk as its receive GoB combiner, as follows:

MBS
k (Wk),{(v,w)∈Mk :ww∈Wk}, (7)

where we introduced the notation MBS
k (·) to highlight that

the set MBS
k is dependent on the selected GoB combiner

Wk. Indeed, applying some receive beams means focusing on
specific relevant beam pairs and neglecting some others. In Sec-
tion III-C, we will show that a proper (joint) combiner selection
can be made at the UEs so as to maximize the sum-rate.



B. UE Reporting and Training Overhead

The impact on the performance of the downlink GoB
precoding is related to the UE reporting procedure made to
assist the BS in the precoder selection. This is a standard
procedure in the current 3GPP release [3]. In particular, we
assume that the k-th UE has full knowledge of the second order
statistics of its channel and reports to the BS the setMBS

k (Wk)
– also known as precoding matrix indicator (PMI) [3] –
following an appropriate GoB combiner (beam) selection.

In general, UE reporting does not impose any restriction
on which GoB precoder is actually used by the BS. Since
the downlink precoding is transparent to the UEs – the UEs
see only the effective channel – the BS can use whatever
GoB precoder V without the need to inform the UEs [4].
Nevertheless, since combining operation is expected at the
UE side, it is essential for the BS to design the GoB precoder
so that it best matches the combiners indicated by the UEs. In
particular, the BS is expected to train all the relevant beam pairs
in ∪Kk=1M

BS
k (Wk). The latter is thus critical in measuring

the overall training overhead for the considered scenario.
Let us define the training overhead ω(W) as follows:

ω(W),
τ

T
MBS =

τ

T

∣∣∣ K⋃
k=1

MBS
k (Wk)

∣∣∣. (8)

The largest overhead reduction is achieved when the UEs coor-
dinate (in the beam domain) so that (8) is minimized, which is

min
W

ω(W). (9)

However, a balance between achievable beamforming gain and
required training overhead, as well as multi-user interference
(spatial separability), has to be considered in the beam
decision process at the UEs. In the following, we formulate
the optimal coordinated beam selection problem.

C. Optimal Coordinated Beam Selection

We define the data rate Rk obtained at the k-th UE as

Rk(V,V̄,W,W̄),(
1−ω(W)

)
log2

(
1+γk(V,V̄,W,W̄)

)
. (10)

Let H = {H1, ... ,HK}. The optimal GoB beamformers
(V∗, W∗) are then found through solving the following
optimization problem:

(V∗,W∗)=argmax
V,W

EH

[
max
V̄,W̄

K∑
k=1

Rk
(
V,V̄,W,W̄

)]
. (11)

Solving (11) is not trivial, due to the mutual optimization of the
(constrained) GoB and (unconstrained) data beamformers. A
common approach consists in decoupling the design, as the GoB
precoder can be optimized through long-term statistical infor-
mation, whereas the unconstrained data ones can depend on the
instantaneous CSIT [11]. The same approach is followed here.

D. Coordinated Beam Selection with Zero-Forcing Precoding

Towards simplification, we assume Zero-Forcing (ZF) as
the data precoder at the BS side and a single receive beam per
UE, i.e. MUE =1. Thus, we have H̄,

[
h̄T

1...h̄
T
K

]T∈CK×MBS ,
where h̄k,wH

kHkV∈C
1×MBS is the effective channel vector

between the BS and the k-th UE. Therefore, the received data
signal x̂∈CK×1 at all the UEs can be expressed as

x̂=

√
P

T
βH̄V̄x+n, (12)

where V̄,H̄†=H̄H(H̄H̄H)−1∈CMBS×K is the ZF precoder,
β , ‖H̄†‖−1

F is its power normalization factor, and n is the
Gaussian thermal noise vector at all the UEs.

Based on (12), the SINR of the k-th stream (relative to the
k-th UE) can be expressed as follows:

γZF
k (V,W),(P/T )Tr

((
H̄H̄H)−1

)−1

. (13)

The sum-rate maximization problem in (11) is then turned
into a simpler long-term beam selection problem, where the
optimal GoB beamformers (V∗,W∗) can be found as follows:

(V∗,W∗)=argmax
V,W

EH

[ K∑
k=1

Rk
(
V,W

)]
, (14)

where

Rk(V,W),
(
1−ω(W)

)
log2

(
1+γZF

k (V,W)
)
. (15)

In general, the perfect knowledge of the global instantaneous
effective CSI at a central coordinator is needed to solve
(14). Such information is not available without training all
the possible combinations of beams in BBS and BUE, which
requires MBS =BBS and goes against the main idea behind
the training overhead reduction. Moreover, the problem in (14)
is a non-trivial subset selection problem. In the following, we
will propose a low-overhead approach (exploiting second order
statistics) to deal with (14) in a decentralized manner, where
each UE autonomously feeds back an optimized beam set
(PMI) to assist the BS with the design of the GoB precoder V.

IV. DECENTRALIZED COORDINATED BEAM SELECTION

In this section, we introduce a decentralized beam selection
algorithm for the considered scenario. The decentralized
approach allows to avoid gathering large-dimensional CSI
data at a central node, e.g. the BS, thus reducing additional
feedback and coordination overhead. Towards this goal, we
first introduce an approximate rate metric for algorithm
derivation purposes. In particular, we reformulate (14) through
Jensen’s inequality, which allows to exploit the second order
channel statistics instead of the instantaneous effective CSI.

In this respect, an approximate rate R̄ for the generic UE
can be defined as follows:

R̄(V,W),
(
1−ω(W)

)
log2

(
1+EH

[
γZF(V,W)

])
, (16)

where we have removed the dependence on k as the SINR
γZF is the same for each UE (refer to Eq. (13)).



We focus now on the log factor in (16). In particular, the
expected SINR for the generic UE can be expressed as

EH

[
γZF(V,W)

]
=(P/T )EH

[( K∑
k=1

λ−1
k

)−1
]
, (17)

where λk is the k-th eigenvalue of the matrix H̄H̄H.
In addition, due to the inverse function being convex, the

expected SINR in (17) can be upper bounded as

(P/T )EH

[( K∑
k=1

λ−1
k

)−1
]
≤(P/T )EH

[
K−2

K∑
k=1

λk

]
. (18)

For algorithm derivation purposes, we will thus introduce
the following approximate rate metric:

R̂(V,W),
(
1−ω(W)

)
log2

(
1+γ̂(V,W)

)
, (19)

where

γ̂(V,W),ρEH

[ K∑
k=1

λk

]
=ρEH

[
Tr
(
H̄H̄H)]

=ρ

K∑
k=1

Tr
((

VT⊗wH
k

)
Σk

(
conj(V)⊗wk

))
, (20)

having defined the constant ρ,(P/T )K−2 and the channel co-
variance matrix of the k-th UE Σk,EHk

[
vec(Hk)vec(Hk)H],

and where ⊗ denotes the Kronecker product.
The optimal GoB beamformers (V∗,W∗) can then be found

through solving the following optimization problem:

(V∗,W∗)=argmax
V,W

R̂
(
V,W

)
. (21)

Although no instantaneous information is needed to solve
(21) through (20), the problem in (21) still requires a central
coordinator knowing Σk ∀k and which dictates the beam
strategies to each UE. In the following section, we turn to a
heuristic approach to solve (21) in a decentralized fashion.

A. Decentralized Coordinated Beam Selection Algorithm

In order to achieve decentralized coordination, we propose
to use a hierarchical information structure requiring small
overhead. In particular, an (arbitrary) order among the UEs is
established, for which the k-th UE has access to the beam de-
cisions carried out at the (higher-ranked) UEs k+1,...,K. This
configuration is obtainable through e.g. D2D communications1.
We further assume that such exchanged beam information is per-
fectly decoded at the intended UEs. The full signaling sequence
of the proposed hierarchical beam selection is given in Fig. 2.

Let us consider w.l.o.g. the beam selection at the k-th
UE, i.e. at the k-th step of the algorithm. We define the
set Wk+1 , {w∗k+1, ... ,w

∗
K} containing the beam decisions

which have been fixed prior to the k-th step. According to the

1The 3GPP Release 16 is expected to support point-to-point side-links which
facilitate cooperative communications among the UEs with low resource con-
sumption [12]. The NR side-link is thus a cornerstone for the proposed scheme.
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Fig. 2: Signaling sequence of the proposed coordinated beam
selection for K = 3. The beam decision made at each UE
leverages the D2D-enabled beam-related information (PMI)
coming from higher-ranked UEs in a hierarchical fashion.

hierarchical structure, the k-th UE knows the set Bfix(Wk+1),
∪Kj=k+1M

BS
j (w∗j ) (refer to Fig. 2). Therefore, the k-th UE

can construct a partial GoB precoder Vk+1 containing the
beamforming vectors relative to the indexes in Bfix(Wk+1).
Likewise, the k-th UE can compute a partial ω(Wk+1).

The proposed decentralized beam selection w∗k at the k-th
UE can be then expressed in a recursive manner as follows:

w∗k=argmax
wk

fk
([

VkVk+1

]
,{wk,Wk+1}

)
, (22)

where colm(Vk)=vm ∀m∈M
BS
k (wk), and

fk(V,W),
(
1−ω(W)

)
Tr
((

VT⊗wH
k

)
Σk

(
V*⊗wk

))
. (23)

The intuition behind the proposed algorithm is to let the k-th
UE select the wk∈BUE maximizing the k-th term of the sum in
(20), while taking into account the pre-log factor (1−ω(W)),
in a greedy manner. This decentralized problem can be
addressed using linear (exhaustive) search in the codebook
BUE at each UE. In this case, the linear search does not involve
a large computational burden as |BUE|=BUE, which is expected
to be in the order of NUE, i.e. small in practical scenarios.

V. SIMULATION RESULTS

We evaluate here the performance of the proposed algorithm
for K=7 UEs. We assume NBS =64 and NUE =4. For the code-
books, we consider BBS =32 and BUE =8. The beamforming
vectors in BBS and BUE are steering vectors sampled according
to the inverse cosine function over the interval [0,π], as in [7].
Furthermore, we assume that each UE is allowed to indicate
4 relevant beam pairs to the BS at most, i.e. the set MBS

k (w∗k)
is truncated to its 4 strongest elements ∀k, according to 3GPP



specifications [4]. We assume that the UEs use the popular
least square (LS) method [8] to estimate their instantaneous
effective channels, which are then fed back to the BS for ZF
precoder design (refer to Fig. 2). We consider the realistic
3GPP micro-cell scenario operating in 2.1 GHz assuming the
spatial channel model. Further details on the channel model
can be found in [13]. All the plotted data rates are the averaged
– over 10000 Monte-Carlo iterations – instantaneous sum-rates.

A. Results and Discussion

We compare the proposed algorithm with the following
algorithms: i) uncoordinated, and ii) coordinated (overhead min-
imization). In the uncoordinated benchmark, no coordination
among the UEs is exploited and the beam decisions at the UEs
are designed to maximize their local SNR (refer to Fig. 1). The
overhead minimization algorithm follows the same hierarchical
structure proposed in Section IV-A, but where the UEs aim to
minimize the pre-log factor in (8) rather than solving (22).

In Fig. 3, we show the sum-rate as a function of the SNR, for
a channel coherence time Tcoh =16 ms. Both the coordinated
algorithms outperform the uncoordinated benchmark, with
equal sum-rate values obtained with up to 5 dBs less. The
performance gap between the coordinated algorithms decreases
with the SNR, as the overhead minimization algorithm
becomes less prone to channel estimation errors due to poor
beam selection in terms of beamforming gain.
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Fig. 3: Sum-rate vs SNR. The channel coherence time is 16 ms.
The coordinated algorithms outperform the uncoordinated one.

In Fig. 4, we show the SE gain over the uncoordinated
benchmark as a function of the channel coherence time Tcoh.
Two areas can be identified: i) Tcoh < 20 ms, i.e. vehicular
or fast pedestrian channels, where coordinated beam selection
is essential and lead to performance gains up to 100%; ii)
Tcoh≥20 ms, where less gains (up to 10%) are achieved with
the coordinated algorithms. In particular, the overhead mini-
mization algorithm performs even worse than acting without
coordination for Tcoh≥20. This is because the training overhead
becomes negligible for long channel coherence times, and it is
more important to focus on the log factor (i.e. SINR) in (16).
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Fig. 4: Gain over uncoordinated beam selection vs channel
coherence time. The SNR is 5 dB. Less gains are achieved
with the proposed coordinated algorithm as Tcoh increases.

VI. CONCLUSIONS

In this paper, we have shown that beam-domain coordination
between the UEs offers a convenient mean to reduce the
training overhead in FDD mMIMO networks. We have
proposed a decentralized beam selection algorithm exploiting
D2D communications and which allows for substantial
performance gains, in particular under fast channels. In
the proposed algorithm, the overhead reduction is achieved
through letting the UEs align on some common effective
channel subspaces. Future works include thus the extension
to more effective transceivers, capable to cope with both
increased spatial correlation and channel estimation errors.
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