Privacy Preserving Neural Network Classification
Beyza Bozdemir¹, Gamze Tillem², Melek Önen¹, Orhan Ermis¹
¹EURECOM, France
²Cyber Security Group, Delft University of Technology, The Netherlands

Privacy goals in PAPAYA

PAPAYA Objectives
- **Privacy by Design**
 - PP analytics: Neural Networks (NN), clustering, statistics
- **Different Settings**
 - One data owner vs. multiple data owners
 - One querier vs. multiple queriers

Use Cases
- healthcare
 - Arrhythmia Detection
- mobile and phone usage
 - Threat Detection

Analytics example – Neural Network classification

NN Layers and Operations
- **Input Layer**
- **Hidden Layer**
 - Convolutional layer (matrix multiplications)
 - Activation layer (sigmoid, tanh, etc.)
 - Pooling layer
 - Fully connected layer
- **Output Layer** (softmax, etc.)

Privacy by Design Challenges
- **Privacy vs. efficiency**
 - Deep NN ⇒ Significant overhead with cryptographic tools
- **Privacy vs. accuracy**
 - Complex operations (sigmoid, softmax, etc.) ⇒ Not suitable to crypto tools

Privacy by Design

- **Non-interactive**
- **Only linear operations (eg. AF is approximated to x²)**
- **Expensive in computation cost**
- **No communication cost**

References:

Privacy Preserving Neural Network Classification: A Hybrid Solution

Flexible solution: 2 settings

1. **1st Scenario: Client-Server**
 - Paillier for linear operations
 - Optimized computational overhead
 - Less computation time compared to [1]
 - Paillier for x²
 - New interactive protocol to compute x²
 - 2PC for comparison only (ReLU case)
 - Optimized communication overhead
 - Less bandwidth usage compared to [2]
 - Similar level of accuracy as in [1, 2]

2. **2nd Scenario: Two-Server**
 - Paillier for linear operations
 - Optimized computational overhead
 - Less communication overhead
 - Similar level of accuracy as in [1, 2]

Hybrid Solution

Privacy Preserving Neural Network Classification – Existing solutions

with Homomorphic Encryption [1]
- Interactive – Client is involved
- Linear operations and comparisons
- Efficient in computation cost
- Expensive in communication cost

with Secure Two-party Computation [2]
- Non-interactive
- Only linear operations (eg. AF is approximated to x²)
- Expensive in computation cost
- No communication cost

Results

<table>
<thead>
<tr>
<th>Technique</th>
<th>Computation Cost (s)</th>
<th>Communication Cost (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE [1]</td>
<td>297</td>
<td>372.2</td>
</tr>
<tr>
<td>2PC [2]</td>
<td>1.2</td>
<td>47.6</td>
</tr>
<tr>
<td>Hybrid Solution</td>
<td>10</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Technique
- HE: Homomorphic Encryption
- 2PC: Secure Two-party Computation

Analytics example – Neural Network classification

- Computation cost 30-fold better than [1]
- Communication cost 27-fold better than [2]

References: