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Abstract—We consider in-memory key-value stores used as
caches, and their elastic provisioning in the cloud. The cost
associated to such caches not only includes the storage cost, but
also the cost due to misses: in fact, the cache miss ratio has a
direct impact on the performance perceived by end users, and
this directly affects the overall revenues for content providers.
Our aim is to adapt dynamically the number of caches based on
the traffic pattern, to minimize the overall costs.

We present a dynamic algorithm for TTL caches whose
goal is to obtain close-to-minimal costs. We then propose a
practical implementation with limited computational complexity:
our scheme requires constant overhead per request independently
from the cache size. Using real-world traces collected from the
Akamai content delivery network, we show that our solution
achieves significant cost savings specially in highly dynamic
settings that are likely to require elastic cloud services.

I. INTRODUCTION

In-memory key-value stores used as caches are a funda-
mental building block for a variety of services, including web
services and Content Delivery Networks (CDN). With the
advent of cloud computing, these services have been offered
as managed platforms with a pay-as-you-go model. Amazon’s
ElastiCache [1] and Microsoft’s Azure Redis Cache [2] are
examples of caches that employ popular open source software
such as Memcached [3] or Redis [4].

Elasticity, i.e., the ability to adapt to workload changes, is
a key characteristic of cloud computing: auto-scaling tools,
configured by the users, determine the amount of cloud
resources to deploy. The techniques used to drive the scaling
process have been the subject of many studies in the past—
see [5] and the references therein. These studies mainly
focus on traditional services, such as computing, where the
relation between the performance and the amount of deployed
resources is almost linear.

When considering caches, the relation between a key per-
formance index, the hit ratio, and the resources deployed is
not linear, e.g., doubling the cache size does not correspond
to doubling the hit ratio. The analysis of dynamic adaptation
of cloud caches has received little attention: the few studies
have focused on minimizing storage costs for a given target
hit ratio, ignoring that misses may have different costs and
disregarding the possibility to tune the hit ratio itself.

Several studies have highlighted the cost of delay for web
services [6], i.e., a direct connection between the response time
(or web page load time) and economic losses, for example
because the customer does not finalize a purchase. Notice
that, even a small increase in the miss ratio (e.g., 1%), often

translates into a high variation in the average latency (e.g.,
25%) [7]. Misses can also translate to infrastructure costs
because of the additional load on back-end databases [8], [9].
Beyond these specific examples, we assume that it is possible
to quantify the cost due to misses. Then, when sizing cache
resource allocation, these costs should be considered.

In this paper we study the dynamic assignment of resources
to in-memory data stores used as caches. To this aim, we take
into account the cost of the storage and the cost of the misses,
and we adapt the amount of resources to the traffic pattern
minimizing the total cost. We consider an approach based on
TTL caches [10], and we study a model in which the Time-
To-Live (TTL) is adapted through stochastic approximation
iterations and dynamically converges to the best setting. We
operate the system using a virtual TTL cache, whose virtual
size informs the elastic deployment of cache server instances
to manage incoming requests.

High-throughput caches rely on low complexity operations:
for instance, key lookups and updates in LRU caches have
O(1) complexity per request. This bound is considered a hard
requirement for CDNs running on commodity hardware [11].
The auto-scaling tool, therefore, should not have higher com-
plexity, otherwise it may represent a performance bottleneck.
For this reason, we design a practical policy to automatically
scale-out caches with O(1) complexity per request.

We evaluate such TTL-based solution with a testbed, using
real-world traces collected from Akamai, one of the largest
Content Delivery Networks, for over than 30 days. We show
that our approach can achieve the same savings obtained
by adapting previously proposed solutions based on Miss
Ratio Curves (MRCs) [12], which are less scalable because
they have a per-request computational overhead that grows
logarithmically with the cache size.
Contributions: We make the following contributions.
•TTL-based approach: We propose and study a dynamic
algorithm for TTL caches, which adapts the TTL value to
both misses and storage costs minimizing the total operational
expenditure (§ IV).
•Design and implementation of a horizontally scalable TTL-
based solution: We design and implement a system based on
the TTL approach, which dynamically adds and removes cache
instances in order to maintain the total cost at minimum. We
pay particular attention to system scalability, and provide a
O(1) solution targeted at high-throughput caches (§V).
•Evaluation: We evaluate the TTL-based solution in our
testbed with real-world traces from Akamai, and show that



is able to track the optimal cache configuration and achieve
significantly cost savings specially in highly dynamic settings
(§VI).

II. BACKGROUND AND PROBLEM DEFINITION

In-memory data stores. In-memory key-value stores repre-
sent a fundamental piece of web architectures. They are used
to cache popular contents, so that the web application can
access quickly the frequently requested data – see for instance
the architecture deployed at Facebook [13].

Widely used in-memory stores are Memcached [3] and
Redis [4], whose APIs allow setting a key-value entry, or
retrieving the value given a key. If the cache is full and
a new content needs to be inserted, both systems employ
slight variations of the Least Recently Used policy (LRU). The
amount of RAM assigned to Memcached or Redis instances
is set when the instance is created, and cannot be changed at
runtime. In order to achieve vertical scalability—i.e., changing
the amount of memory at runtime—the only option is to
create a new instance with the desired amount of memory and
transfer the content from the old instance to the new one. Since
this approach requires time and resources, vertical scalability
is usually not considered practical.

On the other hand, horizontal scalability is easy to achieve.
Instances can be added to (or removed from) a cluster of
nodes, with a load balancer tool (such as mcrouter [14])
that manages all aspects related to distributed caches: data
placement and request routing, possibly data replication and
instance failure management. In this paper, we consider the
basic scenario where the content is not replicated across
instances and one load balancer is sufficient for managing the
cluster. The results can be easily extended to any replication
factor the user may decide to adopt.
Elastic on-demand services. Cloud computing enables ser-
vices to be instantiated on demand, according to traffic volume.
In the case of web architectures, for instance, one can augment
the number of servers to accommodate increasing traffic.
Service providers have recently included, among the different
services, in-memory data stores used as caches. Prominent
examples are Amazon’s ElastiCache [1], Microsoft’s Azure
Redis Cache [2] and Google’s Cloud Memorystore [15]. These
managed solutions take care of the details of the caches,
such as software update and maintenance, and provide simple
APIs to create and shut down instances, and manage the
corresponding cluster of such instances.

The user can choose among a set of possible configurations
for each instance. For example, Amazon’s ElastiCache [16]
allows the customer to choose among instances with different
RAM sizes and numbers of cores (vCPUs). Different types of
instances are also available, like regular, spot and burstable
ones. The latter two types refer to instances whose capacity
may be changed (reclaimed) by Amazon. Here, we consider
regular instances.
Problem definition. In this work, we focus on the caches,
without considering the other elements of the cloud caching
service, such as the web server, the back-end databases or the

origin server if the cache is part of a CDN. Our aim is to adapt
over time the total cache size to the content request pattern
in order to minimize the total cost, that is the sum of storage
cost and cost due to the misses.

The storage cost is immediate to evaluate, because it is
determined by the pricing scheme of the cloud provider
(we provide later specific examples for Amazon ElastiCache
service). The provider offers different possible configurations
with different costs. As a design choice, when scaling horizon-
tally, we focus on homogenous instances. Since the cost model
of the service providers usually has a specific granularity
(typically, one hour), we consider fixed intervals that we call
epochs, and the choice of changing the number of instances
is done at the end of each epoch. Let I(h) be the number of
instances selected during the h-th epoch and cs be the cost of
one instance. The storage cost over the first k epochs is then

Cs(1, k) =

k∑
h=1

csI(h).

The other component of the total cost is due to misses.
The cost of a miss can correspond to the additional delay
experienced by the final user or to the additional load on the
origin server, e.g. in terms of number of requests or bytes to
serve. In this work, we assume that the service provider has
the ability to quantify monetarily the miss cost. For example,
there are several studies on the connection between delay and
revenues [6]. We denote by mo the miss cost for object o,
and we assume it to be deterministic and constant over time
(our theoretical results can easily be extended to the case when
miss costs for each object are i.i.d. random variables). Let r(n)
be the object requested by the n-th miss. With some abuse of
notation, we let n ∈ [k1, k2] denote that the n-th miss occurred
in the time interval corresponding to the epochs k1, k1 + 1,
. . .k2, with k1 < k2. The total miss cost per time unit during
the first k epochs is then

Cm(1, k) =
∑

n∈[1,k]

mr(n).

Our goal is to select the number of instances I(1), I(2), . . .
I(k), in order to minimize the total (storage + miss) cost.
The tradeoff is evident. At any epoch, a larger number of
instances decreases the number of misses—and therefore the
corresponding cost—but it causes a higher storage cost. Con-
versely, a smaller number of instances increases the cost due
to misses, but it decreases the storage cost. In what follows
we present a policy that, at the end of each epoch, determines
the number of instances to allocate such that the (expected)
total cost for the next epoch is minimal.
On the complexity of the solution. In order to deliver high
throughput, caches require small processing overheads, i.e.,
O(1) time complexity per request, which is considered a hard
requirement for CDN caches [11]. At high request rates, more
complex operations can pose an intolerable load on the CPU
causing spurious misses [17], i.e. a requested content may
not be served even if present in the cache. Eviction policies
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Fig. 1: Left: CPU load using a fixed number of instances
routing scheme, our TTL-based solution (both with O(1)
time complexity) and an MRC-based solution (with O(logM)
time complexity). Right: Throughput normalized to the fixed
scheme case.

with O(logM) time complexity per request (where M is the
number of objects in the cache) are unpractical, since they
pose high burden on the CPU, as shown also in [18].

Not only the eviction policy, but any operation related to
the cache—including load balancing and cache resizing—
needs to have O(1) time complexity. To show the impact of
the computational complexity on the system, we set up an
experiment focusing on the load balancer. Using the traces
described in Sect. VI, we compare a basic scenario—a fixed
number of cache instances, where the load balancer simply
routes requests—with two improved load balancers based i)
on our TTL-based solution, which has O(1) time complexity,
and ii) on a MRC-based solution, which has O(logM) time
complexity (see Sect. III for a discussion on the complexity of
the MRC computation).

Figure 1, left, shows the CPU load over time for two
representative days when we replay the requests following the
timestamps provided in the trace. The MRC-based solution
leads to almost double the CPU usage compared to the basic
scenario, as well as to our TTL solution. Figure 1, right, shows
the maximum throughput (normalized w.r.t. the basic scenario)
achievable by the different schemes when the requests are
backlogged. While our TTL solution experiences about 8%
throughput reduction due to the additional data structure we
maintain, the MRC solution almost halves the achievable
throughput.

III. RELATED WORK

Elastic resource provisioning of cloud services has been the
subject of many studies. The authors in [5] provide a general
overview of the techniques, such as control theory as used in
[19]. Despite the broad set of results, they are computationally
too expensive, and it is not clear if they can be applied in the
context we consider, where the relation between the resource
deployed and the key performance index (the hit ratio) is not
linear. Moreover, none of them uses stochastic approximation
for resource allocation as we do. Another prominent example
of a general approach for auto-scaling is given by [20] but
the proposed solution is based on methods (e.g., time series

prediction) that are too computationally intensive for the high-
throughput scenario we consider.

Memory management is related to our problem but it
rather aims to determine how the available memory should be
shared among competing applications. Moreover, the proposed
solutions, such as [7] [21] [22], all require computations with
higher complexity than our approach.

As for minimizing costs in a cloud computing environment,
the authors in [23] and [24] explore the use of spot instances
for different aims, such as content replication or decreasing the
overall storage cost. Beside their computational complexity,
the proposed schemes do not take into consideration the cost
due to misses, as we do. The authors in [24] also consider a
policy for modulating the allocation of on-demand instances
to match dynamic needs, but they do not describe it in detail.

Part of our TTL-based solution is based on the concept of
a virtual cache, which maintains the metadata of cacheable
objects, but not their content. These metadata are sometimes
referred to as ghosts. This additional information is used in
many caching schemes (e.g., in the popular ARC [18]) to
decide how to manage the objects in the physical cache.
Instead, we use a virtual cache to size (multiple instances of)
the physical one. A recent work [25] also explores how to
adapt the TTL value to the request pattern by using stochastic
approximation. In particular, the authors focus on vertical
scaling and aim to achieve a target hit ratio, possibly with
a small cache size. On the contrary, our approach addresses
horizontal scaling to minimize the total operational cost.
MRC-based solutions. Miss Ratio Curves (MRCs) are a well-
known tool for cache profiling [12]: in a single graph it is
possible to observe the relation between cache size and miss
ratio, therefore one can compute the storage cost and estimate
the cost of the misses for each possible cache size. The main
issue with MRCs is their computational complexity: the state-
of-the-art algorithm proposed by Olken [26] relies on a tree
data structure and it has O(logM) operations per request.

In order to achieve the target O(1)-complexity per request,
many solutions have been proposed in the literature that com-
pute approximate MRCs [12] [27] [28]. Such solutions share a
common characteristic: they have been designed considering
objects with uniform sizes. On the contrary, many caching
applications exhibit contents with very different sizes.

In order to show the impact of heterogeneous content size
on the accuracy of the approximate computation, we set up a
simple test. We consider the method proposed in [28], which is
based on sampling (but the others operate in a similar way).
We use an IRM trace for which the distributions of object
popularities and object sizes are reported in Fig. 3.

For each request, besides the timestamp and the object iden-
tifier, we have the object size. First, we ignore the actual object
size and assume it to be uniform. In this case, as observed in
[28], the method predicts the MRC with a prediction error
smaller than 3 ∗ 10−3 for different sampling rates.1 When we

1The error is evaluated by measuring the absolute difference between the
exact and the approximated MRCs over all meaningful cache sizes, and then
by computing the mean of these absolute differences.
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Fig. 2: Accuracy of the approximate MRC computation
through sampling, with uniform and nonuniform object sizes.

consider the object sizes, the error increases by one order of
magnitude – note that we took particular care in adapting the
approximate MRC computation in [28] to the heterogenous
case, but it seems that more sophisticated sampling methods
are required.

In summary, the approximate computation of the MRC with
O(1) time complexity per request still needs to be studied
in depth, especially when contents have different sizes. Thus,
the only option is to compute the MRCs exactly, which has
O(logM) complexity per request.

IV. ADAPTIVE TTL BASED SOLUTIONS

In this section, we begin with a key building block for the
design of a horizontally scalable caching system. Our work
draws inspiration from Time-To-Live (TTL) caches, i.e. caches
that are managed by a TTL policy. There are two families
of TTL policy: with and without renewal. In both cases,
upon a miss, the content is stored locally and a timer with
duration equal to T is activated and the content is evicted
when the timer expires. The difference is that, in the case
with renewal, the timer is reset by the following hits for the
content, while it is not affected by them in the case without
renewal. TTL caches are a natural model for DNS caches,
but they have also been proposed as an approximate model to
study the performance of existing replacement policies like
LRU [29]. Moreover, different papers have suggested their
practical use because of their higher configurability as well as
amenability to analysis [10], [25], [30]. While a replacement
policy maintains in the cache as many contents as the available
space buffer allows (contents are evicted only if needed to
make space), under a TTL policy the actual storage vary
over time and is, in theory, potentially unbounded. A real
implementation of a TTL cache will have a finite capacity and
then it may need to evict some contents even if their timer has
not expired yet. Some of these practical issues are discussed
in [10]. In our solution a TTL cache with renewal is used as
a virtual cache, storing only content metadata:2 by computing
its virtual size, our approach steers the addition or removal of
cache server instances.

2For some contents the metadata can have a size comparable with the
content itself, but overall in our experiment the total storage required by the
virtual cache was negligible.

A. Dynamic adaptation

We present an adaptive mechanism based on stochastic
approximation by which the timer value converges to the value
that minimizes the total cost.

The theoretical results hold in the following scenario. We
consider a finite catalogue with N contents and that requests
for the different contents occur according to independent
renewal processes. We denote by λi the request rate for content
i. When the processes are Poisson ones, a given request will
be for content i with probability λi/

∑N
j=1 λj independently

from any previous request. This is (a continuous version of)
the well known Independent Reference Model (IRM) [31].

In what follows, we consider an ideal TTL cache with
renewal and assume that the cloud service charges the user
only for the instantaneous storage occupancy. This differs from
the more realistic scenario described above where the user
needs to pay for the instances independently from their usage,
but we will come back to practical billing in Sect. V-A. Let si
be the size of object i and c be the cost per unit time to store a
unit of content ( [24] shows that prices are almost linear also
for real cloud services). Then, the total cost to store content i
over a time window of duration τ is csiτ . For simplicity, we
denote ci = sic. A miss for content i incurs a cost equal to
mi.

Let Xi(t) be the indicator function for the event “content i is
stored in the cache at time t” and Mi(t) the counting process
of content i misses in the interval [0, t]. We can define the
storage cost and the miss cost analogously to what done in
Sect. II. The total cost over the interval [0, t] is then

C(0, t) = Cs(0, t) + Cm(0, t)

=

N∑
i=1

∫ t

0

Xi(τ)ci dτ +Mi(t)mi. (1)

If the caching policy uses a constant TTL value equal
to T , then each process Xi(t) is a renewal process whose
regeneration points are the time instants at which misses of
content i occur. The renewal reward theorem guarantees that,
for each content, the time-average cost is equal to the expected
cost over a renewal period divided by the expected duration
of a renewal period, i.e.

lim
t→∞

∫ t
0
Xi(t)ci dt+Mi(t)mi

t
=
ciτS,i +mi

τM,i
,

where τS,i is the expected sojourn time of content i in the
cache and τM,i is the expected time between two misses.

The asymptotic time average cost (C) of the system as a
function of T is then

C(T ) = lim
t→∞

C(0, t)

t
=

N∑
i=1

ciτS,i +mi

τM,i
. (2)

We observe that τS,i/τM,i is the asymptotic fraction of time
content i spends in the cache or equivalently, the probability
that content i is in the cache at a random time, that is often
called the occupancy probability and we will denote it by oi.



The inverse of τM,i is the rate at which misses occur that we
can also write as λi(1− hi), where hi is the hit ratio, i.e. the
fraction of requests for content i that incurs a hit. Then we
can rewrite (2) as

C(T ) =

N∑
i=1

cioi + λimi(1− hi). (3)

When arrivals follow a Poisson process, it holds oi = hi
because of PASTA property and moreover hi = 1−e−λiT [10].
Then, (3) becomes

C(T ) =

N∑
i=1

ci + (λimi − ci)e−λiT . (4)

We can check that if T = 0, i.e. no content is stored in the
cache, the cost per time unit is equal to

∑N
i=1 λimi: we pay

systematically for all misses. Instead, if Ti =∞, all contents
are stored indefinitely and the corresponding cost per time unit
is
∑N
i=1 ci.

We could look for the value T ∗ that minimizes the cost (4)
by applying a gradient algorithm as follows:

T (n+ 1) = T (n)− ε(n)
dC
dT

∣∣∣
T (n)

= T (n) + ε(n)

N∑
i=1

λie
−λiT (n) (λimi − ci) ,

where the sequence ε(n) converges to zero as n diverges, but
it is not summable, i.e.

∑
n∈N ε(n) =∞. This approach is not

viable because in a realistic scenario popularities are unknown,
keep changing over time and are not easy to estimate. The
gradient algorithm suggests us a practical solution based on
stochastic approximation [32]. We observe that λie−λiT =
λi(1−hi) is equal to the miss rate for content i. Upon a miss,
this is for content i with probability proportional to λi(1−hi).
Let r(n) be the object requested at the n-th miss and λ̂i(n)
be a random unbiased estimate of the arrival rate λi. Consider
the following update rule for the variable T (n):

T (n+ 1) = T (n) + ε(n)
(
λ̂r(n)mr(n) − cr(n)

)
, (5)

where the correction term λ̂r(n)mr(n) − cr(n) is a random
variable because i) content requests occur according to IRM
and ii) the estimator itself is a random variable. The correction
corresponds “in average” to the gradient dC/dT because, upon
a miss, the fraction of requests for content i is proportional to
λie
−λiT (n), and then E(λ̂imi−ci) = λimi−ci. The following

proposition makes this result formal.

Proposition 1. Let {X(n, T (n))} be a sequence of inde-
pendent random variables such that X(n, T (n)) is equal to
λ̂imi − ci with probability λie

−λiT (n)/(
∑N
j=1 λje

−λjT (n)).
Let {ε(n)} be a non-negative sequence converging to 0, such
that

∑
n∈N ε(n) = ∞ and

∑
n∈N ε

2(n) < ∞. Consider the
update rule

T (n+ 1) = Π[0,Tmax](T (n) + ε(n)X(n, T (n))) ,

where Π[0,Tmax](x) = min(max(0, x), Tmax) is the projection
operator over the interval [0, Tmax], then the sequence T (n)
converges with probability one to i) a stationary point of C(T )
or ii) 0 or Tmax, if 0 and Tmax are local minima of C(T ).

Proof. The result follows from Theorem 2.1 in [32]. All
hypotheses (A2.1)−(A2.7) are satisfied with f(.) = C(.).

If, instead of letting the weights ε(n) converge to zero,
we keep them equal to a small constant value ε0, then, in a
stationary setting, T (n) converges to a neighbourhood of the
limits indicated in Proposition 1. Note that a constant weight
makes it possible to track changes in the system, for example
when popularities keep varying over time.

B. An optimal clairvoyant TTL Policy

In this section we present the optimal TTL policy (referred
to as TTL-OPT), that minimizes the total cost when the
sequence of future requests is known. The cost achieved by
this clairvoyant policy is clearly a lower-bound for any feasible
policy. Among the TTL policies, TTL-OPT plays the same role
as Bélády’s algorithm [33] for replacement policies. Indeed,
Bélády’s algorithm minimizes the miss ratio under knowledge
of the future requests and uniform content sizes. Interestingly,
the optimal clairvoyant TTL policy has polynomial complexity
under heterogeneous content sizes and miss costs, while in
such case finding an optimal replacement policy is an NP-
hard problem [34] (and Bélády’s policy is no more optimal).

Algorithm 1: Optimal Clairvoyant TTL policy (TTL-
OPT)

input : {ci}, storage costs per unit of time, and {mi}, miss costs
input : request sequence

1 foreach request r do
2 j ← obj id of request r
3 tj,next ← time of the next request for obj j
4 cSj ← cj ×

(
tj,next − tnow

)
5 if (cSj < mj ) then
6 Tj ← tj,next − tnow // store j until its next

request
7 else
8 Tj ← 0 // do not store j

We allow the optimal policy TTL-OPT to select a different
TTL value for each content and for each request. The policy is
described in Algorithm 1 and is very simple: given a request
for a content, say j, at time tnow, if the cost to store the content
until its next request (at time tj,next) is smaller than the cost
of a miss for this object, then the content should be stored in
the cache until the next request, i.e. the timer should be set
equal to tj,next − tnow. Otherwise, the object should be served
but not stored. The formal proof of optimality for TTL-OPT
follows.

Proposition 2. The clairvoyant policy TTL-OPT in Algo-
rithm 1 minimizes the sum of storage and miss costs.

Proof. Let Ci(0, t) denote the total cost paid during the inter-
val [0, t] for content i, i.e. Ci(0, t) =

∫ t
0
Xi(t)ci dt+Mi(t)mi.



The total cost C(0, t) in (1) is then given by the sum of the
costs for each content. The possibility to choose the timer
value independently for each content reduces the minimization
of the total cost C(0, t) to separately minimize each term
Ci(0, t). Let {ti,k, k ∈ N} be the sequence of time instants of
the requests for content i. A TTL policy needs to select a TTL
value for each request, let us denote as Ti,k the timer for the
k-th request occurring at time ti,k. We observe that we can
restrict ourselves to consider Ti,k ∈ {0, ti,k+1 − ti,k}. In fact,
consider any sequence of timer values {T̂i,k, k ∈ N}, and let
T̂i,h be a timer such that T̂i,h < ti,h+1 − ti,h. If we replace
T̂i,h with Ti,h = 0, the cost Ci(0, t) cannot increase. Similarly,
we can replace any value T̂i,h such that T̂i,h > ti,h+1 − ti,h
with Ti,h = ti,h+1− ti,h, without increasing the cost Ci(0, t).
Let then Zi,k be an indicator function such that Zi,k = 1 if
Ti,k = ti,k+1 − ti,k, and Zi,k = 0 if Ti,k = 0. The total cost
for content i can then be rewritten as follows:

Ci(0, ti,k) = mi+

k−1∑
h=0

(Zi,hci(ti,h+1 − ti,h) + (1− Zi,h)mi) ,

(6)
where the first term on the right hand side corresponds to the
fact that the first request for content i generates always a miss.
From (6) if follows that Ci(0, ti,k) is minimized by choosing
Zi,h = 1 if ci(ti,h+1 − ti,h) < mi and Zi,h = 0 otherwise.
This corresponds to what TTL-OPT does.

Clearly, the TTL-OPT policy cannot be used online. Never-
theless, given a trace, its cost can be computed (in polynomial
time) and used as a reference.

V. IMPLEMENTATION

A. Practical implementation of the TTL-based scheme

In what follows we progressively introduce some practical
issues one needs to address to implement the TTL-policy.
When to estimate the request rates. A straight application
of (5) would require to update the timer immediately upon
a miss, and then popularity estimates should be available
for contents that are not in the cache. Instead, we will start
estimating content popularity immediately after the content is
stored in the cache and we will then postpone the timer update
to the moment when the estimate is available. The detailed
description follows. Let T (t) be the timer value at time t. If
the timer is updated at t, then we denote as T−(t) the value
immediately before the update. Updates are, as above, driven
by misses, and we denote as tn the time of the n-th miss and
r(n) the corresponding content. Upon a miss, content r(n) is
stored and its timer is set to the current value T (tn). Any new
request for content r(n) before the timer expiration will be a
hit and will reset the timer to T (tn). The number of hits for
content r(n) during the interval [tn, tn + T (tn)] is recorded.
Let us denote this number as Hr(n). The ratio Hr(n)/T (tn) is
an unbiased estimator of the rate λr(n). Once this estimate is
available at time tn + T (tn), the timer is updated as follows:

T (tn+T (tn)) = T−(tn + T (tn))

+ ε(n)

(
−cr(n) +

Hr(n)

Tr(n)
mr(n)

)
. (7)

We observe that T−(tn+T (tn)) may be different from T (tn),
since the timer may have been updated during [tn, tn+T (tn)]
as effect of misses for contents other than r(n).
When to update the timers. As a further refinement, we
notice that the cache is driven by two main events: request
arrival and object eviction. The updates of the timer should be
done when these events occur. This adds an additional small
delay: given a content, the TTL update is triggered by the hit
after the first timer or, if no hit occurs after this time, by the
content eviction. With the above modifications, we observe
that Proposition 1 does not hold, since i) the different updates
are not independent and identically distributed (conditioned
on the current timer value), and ii) the update delays could
in principle affect convergence. There are theoretical results
for stochastic approximation algorithms when the correction
terms are correlated and when updates are delayed, but we let
the study of convergence for further investigation.

The timers are used as keys for organizing the metadata
according to the approach proposed in [9], that manages a
partially ordered data structure with O(1) complexity.

B. Horizontally scalable cache system

The TTL-based scheme discussed so far considers a single
TTL cache, whose billing is based on its instantaneous storage.
In other words, we have considered a perfect vertically-
scalable system, where memory resources can be smoothly
added and removed. We now discuss the design of a prac-
tical horizontally-scalable system inspired by the TTL-based
approach, where storage can only change at finite epochs.

In a horizontally-scalable solution, cache instances can be
added or removed from the cluster, and all instances have
the same configuration. The first design choice to face is the
configuration of a generic instance.
Cache instances. These are the physical caches storing the
contents and have fixed size. They can be implemented using
Memcached or Redis with a simple eviction policy like LRU.
Load balancer. The load balancer performs the ordinary
operations, such as request routing, and content insertion, i.e.,
in case of a miss, after retrieving the object from the origin
or the back-end, it stores it in one of the cache instances. In
addition, the load balancer maintains a virtual cache, with the
references of the requested objects: this virtual cache is going
to be managed as a TTL cache according to the description in
Sect. V-A with O(1) computational cost per request. The size
of the virtual cache depends on the timer value T , which in
turn depends on the number of hits and misses, and on the
corresponding costs for the storage and for the misses. Thus,
the size of the virtual cache can be used to determine the
number of actual instances to employ in the cluster.
Operation. Our scheme is described in Algorithm 2. At every
request, we look for the object key in the virtual cache, update



its position in case of a hit, or add it in case of a miss. Then, we
start evicting objects from the virtual cache if they are expired.
While inserting a new object or removing expired objects, we
update the total size of the cache (the sum of the sizes of non-
expired objects). Clearly, object sizes can be heterogeneous. At
the end of the epoch (line 7), we look at the size of the virtual
cache and we select the number of instances such that the sum
of the sizes is the closest to the virtual cache size (line 8). At
the end of the observation interval, if the number of instances
has changed, the load balancer reassigns the responsibility of
the hash space to the current instances.

Algorithm 2: TTL-based scaling
input : VC, Virtual Cache
input : Sp, Physical cache size
output: I(k + 1), # of the instances in k + 1-th epoch

1 foreach request r do
2 if (r ∈ VC) then
3 REMOVE(r, VC)

4 r.expire← tnow + TTLnow
5 INSERT(r, VC)
6 EVICTEXPIRED(VC)

7 if (epoch k ended) then
8 I(k + 1)← ROUND(VC.size / Sp)

Additional considerations. We observe that, when cloud
instances are added or removed, the object key space responsi-
bility must be rearranged, which may lead to spurious misses
due to route changes. We have experimentally observed that,
since the number of requests within an epoch is usually very
high, the effect of such spurious misses is negligible.

VI. EXPERIMENTAL EVALUATION

Testbed. We evaluate our approach using a testbed that is
representative of a typical web architecture. An application
server is connected to a database and to a cluster of caches.
The application receives the requests and checks if the content
is stored in the cache. If the content is not in the cache, the
application server retrieves the object from the database, serves
the client and stores the object in the cache. For the operations
related to the cache (e.g., object lookup), the application server
relies on a load balancer. We have implemented the scheme
described in Sect. V-B in a custom tool similar to mcrouter
[14]. The tool is able to add or remove the cache instances
from a local cluster, but it can be easily extended to use the
APIs of any cloud cache provider.
Trace. The requests sent to the application server are generated
by reproducing two anonymized traces collected respectively
for 30 and 5 days at two vantage points of the Akamai
CDN. The traces we tested contain the timestamp of the
request arrival, the anonymized object ID and the size of
the requested object. We report the results for the 30-day
trace, since we obtain similar qualitative results with the 5-day
trace. In the 30-day trace, there are 2 · 109 requests for 110
millions contents, whose size varies from a few bytes to tens
of MB. Figure 3 (left-hand side) shows the number of requests
for each object, sorted by rank (in terms of popularity). The
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Fig. 3: Number of requests per object, ordered by rank (left),
and cumulative fraction of the requests for objects up to a
given size (right).

right-hand side shows the empirical Cumulative Distribution
Function (CDF) for the size of the requested objects (without
aggregating requests for the same object).
Settings. For the configurations and the costs, we refer to
Amazon ElastiCache service [16]. For the duration of the
epoch, we consider the minimum billing time, which is one
hour. Among the different instances’ options, we selected the
cache.t2.micro with 0.555 GB RAM and one vCPU, which
costs 0.017$/hour (Jan. 2018, US based). We use a small
instance since it provides a fine granularity when we resize
the cluster: our experimental results shows that one small
instance is sufficient during low traffic periods. Moreover,
bigger instances (e.g., with 3.22 GB or 6.05 GB) have just two
vCPUs, which may limit the cache throughput. Replicating
small instances each with a vCPU helps in maintaining the
throughput while scaling the cluster. As for the cache, we
tested both Redis and Memcached: even if they are both able
to handle heterogeneous object sizes, we report the results for
Redis, since Memcached provides slightly worse performance
due to calcification [21], [22].

In order to determine plausible miss costs, we reasoned
as follows. The production server from which our trace was
collected had an in-memory cache of 4 GB, i.e. roughly
corresponding to eight cache.t2.micro instances. We assume
that this system has been engineered so that storage and
miss costs are equal, a reasonable rule of thumb to achieve
a small total cost. The storage cost can be determined in
our case considering the corresponding hourly cost of eight
cache.t2.micro instances. By dividing this cost by the average
number of misses observed during one hour in production, we
obtain the cost per miss (in our case, 1.4676×10−7$ per miss).
Below we also evaluate the effect of different miss costs.
Previous solutions. Because of the considerations above,
we consider as baseline a scenario with eight cache.t2.micro
instances. We compare also our results with an elastic resource
allocation scenario driven by the MRC-approach, as described
in [12] and discussed in Sect. III. In addition, as a reference,
we consider the scenario with an ideal, vertically scalable,
TTL cache, billed according to its instantaneous size. A
practical TTL-based policy can approach the performance of
this scheme only if i) billing periods become arbitrarily small,
and ii) caches of any size can be rented.
Results. We present here the results for the trace described
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Fig. 4: TTL over time of the virtual cache (left), and cumula-
tive cost of different policies (right).

above. We have also performed an extensive study using
synthetic traces generated according to the IRM model—
which is the arrival pattern for which the theoretical results in
Proposition 1 hold. In such experiments, it is possible to see
that the TTL indeed reaches a stable value, which corresponds
to the minimum cost.

With a real trace, the arrival pattern varies over time. Our
TTL approach continuously tracks such a variation: this is
shown in Fig. 4 (left), where we plot the value of the TTL for
an interval of four representative days: the evolution clearly
follows a daily pattern. The TTL is mirrored by the virtual
cache size (not shown here), which varies from zero (the cost
of the few misses does not justify the storage of the object)
to 3.5 GB. The virtual cache size translates into the number
of instances used in the cluster. From this, it is possible to
compute the total cost for storage and misses. In Fig. 4 (right)
we show the cumulative costs for the first 15 days for the TTL-
based system, and we compare it with a 8-instance fixed-size
cache (corresponding to our reference in-memory production
cache) and the MRC-based approach. The figure plots also the
total cumulative cost of an ideal TTL-cache. The results show
that the TTL-based approach obtains similar cumulative costs
(indistinguishable in the figure) as the MRC-based approach,
but with a O(1) complexity instead of O(logM) complexity.
Overall, with respect to the baseline fixed-size approach, the
TTL-based approach is able to save 17% of the costs.

There is a slight difference (less than 2%) between the
ideal and the practical TTL-based implementation due to
the discretization of cache sizes and of billing periods, and
to the spurious misses caused by object key reallocation.
Interestingly, this result suggests that, at least for typical CDN
applications, there is no need for finer-grained billing periods
or cache sizes, but most of the potential improvement is
already achievable with the current offer.

Figure 4 (right) shows also the results of the clairvoyant
TTL-OPT described in Sect IV-B. We see that there is room
for even more significant cost savings: TTL-OPT achieves a
cost that is one third of the baseline. TTL-OPT assumes to
know the sequence of future requests and is thus unpractical.
Nevertheless, this result suggests that potential improvements
can come from TTL policies that use different TTL values
for different contents (as TTL-OPT does) selecting the timer
value on the basis of a forecast for the next inter-arrival time.
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Fig. 5: Traffic increase at day 7 (increase factor: 7). Number of
requests (top left). Storage and miss costs with TTL (top right),
with fixed number instances when the event is not known in
advance (bottom left) and when it is (bottom right).

In the future we plan to investigate this possibility.
Sensitivity analysis. The update of the TTL is based on (7),
which contains the weights ε(n). As discussed in Sect. IV-A
we keep them equal to a small constant value ε0. We have
experimentally verified that ε0 may vary by 4 orders of
magnitudes with negligible effects (for the experiments shown
here ε0 = 10−4). We also tested the sensitivity to the miss
costs, by scaling them by a factor γ in comparison to the
reference value computed as described above. The TTL-based
approach consistently achieves almost the same cost of the
more complex MRC-based approach (results not shown here
because of space constraints).
A highly dynamic scenario: the Super Bowl case. Cloud-
based services are particularly adapted to time-limited and
highly dynamic settings for which the costs to deploy and
manage an ad hoc infrastructure would not be justified. Our
traces do not correspond to such a scenario. The CDN from
which the trace were collected has been indeed engineered to
satisfy long-term service level agreements with a given number
of content providers. Moreover, the traces have been collected
directly at a cache that is located behind a load balancer that
tries to keep the request rate at a given cache as uniform as
possible. We were not able to find real traces representative
of a highly dynamic request scenario. We decided then to
gauge part of our traces to qualitatively reproduce the traffic
variability at a large-scale event as the Super Bowl. To this
aim, we consider the wireless data traffic generated by the
attendees of the Super Bowl XLVII as described in [35]. In
particular the authors of [35] mention that data traffic at the
stadium increased by a factor of seven during an interval of
about 8 hours (from a couple of hours before the beginning
of the game until midnight). To reproduce such a scenario, we
consider 8 hours of our 30-day trace, and we sample the traffic
before and after this interval, such that the traffic during the
8-hour interval is seven time larger than the average. Figure 5
(top-left) reports the original traffic pattern, and the one shaped
to mymic the Super Bowl one.

We then compare our dynamic TTL-based configuration



with fixed static configurations in two different scenarios. In
the first scenario, the large-scale event is unexpected and then
a static cache system is (optimally) sized on the basis of the
usual traffic (seven times less than the Super Bowl peak). In
the second scenario instead, the occurrence of the event is
known and a cache is instantiated for its duration and sized
on the basis of a traffic forecast that underestimate the peak
traffic by 80%. We derive also this forecast error from [35]. In
fact, the data traffic of Super Bowl XLVII exceeded that of the
previous edition by 80% also due to a half-hour power outage
that caused the game to be suspended, and then people to
spend more time on their mobile (the wireless network was not
affected by the outage). The costs of our adaptive TTL solution
are shown in Fig. 5 (top-right). The figure shows how the
number of instances changes during the game period in order
to amortize the cost due to misses. The corresponding plots for
the two static configuration scenarios are in the bottom part
of the figure. A static configuration incurs a total cost 40%
larger than the TTL dynamic configuration when the event
is not known in advance and 21% larger when the cache is
sized on the basis of the previous edition of the Super Bowl. In
summary, while a fixed number of instances can be engineered
based on past traffic, unexpected events may put a burden on
the caching system. Our dynamic TTL approach is able to
adapt to these sudden changes, and it provides the minimum
cost – we computed the cost also with a MRC-based approach,
obtaining similar results – still maintaining the computational
complexity low. We also observe that the TTL-policy has no a
priori information about the ongoing event and we have kept
the epoch duration to one hour, hence the number of instances
is only updated 8 times during the whole event. If there is some
a priori knowledge about the event like its duration or/and
a traffic forecast, one could exploit it, e.g., by making the
TTL-policy adapt faster during this event or setting the initial
number of instances to the optimal static value predicted on
the basis of the traffic forecast. This would further reduce the
cost of our TTL solution.

VII. CONCLUSION

Dynamic sizing of cloud caches allows cloud users to adapt
the cache size to the traffic pattern and minimize their total
cost, which is given by the cost of the storage and the cost of
the misses. We studied a TTL-based solution to dynamically
track the required cache size. We provided a theoretical lower
bound for the cost achievable by TTL solutions: in fact we
characterize the optimal TTL policy (TTL-OPT) when the
sequence of future requests is known. Moreover, we discussed
a practical low-complexity implementation of a TTL solution,
and evaluated it using real-world traces. Our experiments
shows that our solution is able to track the optimal cache
configuration and achieve significantly cost savings specially
in highly dynamic settings
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