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Abstract—Time Division Duplexing (TDD) Massive MIMO
(MaMIMO) relies on channel reciprocity to derive the channel
state information at the transmit side (CSIT) from the uplink
(UL) channel estimates. This reciprocity is impacted by the
transmit and receive front ends which are non-reciprocal and
hence a calibration is required to obtain the downlink (DL)
channels from the UL channel estimates. The Cramer-Rao Bound
(CRB) for reciprocity calibration and an optimal algorithm
were derived in [1], [2] recently. In this work, we extend this
and derive a generalized CRB that applies to both coherent
and non-coherent calibration schemes (introduced in [1]). More
importantly, we provide original mean squared error analysis for
the commonly used Least-Squares (LS) estimator under different
parameter constraints, and relate it to the CRB. Finally, we
compare some antenna grouping strategies for calibration based
on their CRB.

I. INTRODUCTION

In this paper Tx and Rx may denote trans-
mit/transmitter/transmission and receive/receiver/reception. In
Time Division Duplexing (TDD) Massive MIMO(MaMIMO),
reciprocity of the propagation channel is exploited to derive
the downlink (DL) channel from the uplink channel (UL)
that is relatively easier to obtain. This becomes clear once
we see that in the UL with one single pilot transmission
from a user equipment (UE) the channel for all the Base
Station (BS) antennas may be derived, whereas, in the DL,
separate pilots are needed for every BS antenna which
becomes prohibitive in the MaMIMO scenario. However, as
the Radio Frequency (RF) components are not reciprocal, the
DL estimation requires additional scale factor to compensate
for the non-reciprocity of the RF front ends.

Many approaches to reciprocity calibration have been pro-
posed in the literature. In UE aided calibration, explicit chan-
nel feedback from a UE during the calibration phase is used
to estimate the calibration parameters.However, a popular ap-
proach is to perform the calibration across the antennas of the
base station (BS) only and is referred to as internal calibration.
The authors of [3] gave the first experimental evaluation for
a Massive MIMO system with a simple algorithm for internal
calibration. [4] improved up on the performance of Argos
by making better use of all the available information in the
least squares fashion. A weighted least squares minimization
was presented in [5]. A faster calibration algorithm called
Avalanche was introduced in [6]. In [7], the authors proposed
a Cramer-Rao bound (CRB) and a penalized maximum like-
lihood estimation approach that performs close to the CRB.
A generalized approach towards reciprocity calibration was
proposed in [1] of which the existing estimation techniques

are special cases. [1] proposes a model where transmission can
happen from a group of multiple antennas at every channel use.
The paper also shows an elegant way to derive the CRB for
this generalized approach. For the first time, it also introduced
a non-coherent approach to reciprocity calibration. In [2],
a variational Bayes based optimal algorithm was presented.
In this paper, we focus on the performance analysis of the
reciprocity calibration algorithms for Massive MIMO. The
main contributions of our current work are as follows.
• Generalized CRB derivation that applies to both coherent

and non-coherent reciprocity calibration techniques.
• We provide an original analysis of the mean squared

error (MSE) for the commonly used Least Squares (LS)
estimator and relate it to the CRB in a manner that makes
the results intuitively appealing.

• Comparison and differentiation of different antenna
grouping strategies based on their CRB.

In the following, bold-face capital letters refer to matrices
and bold-face small letters correspond to column vectors. The
notation ⊗ refers to the Kronecker product.

II. SYSTEM MODEL

The system model and notations are kept similar to that in
[2] for better readability. Consider a system where A represents
a BS and B represents a UE, each containing MA and MB

antennas resp. The channel, as observed in the digital domain,
HA→B and HB→A can be represented by,

HA→B = RBCA→BTA, HB→A = RACB→ATB , (1)

where matrices TA, RA, TB , RB model the response of
the transmit and receive RF front-ends, while CA→B and
CB→A model the propagation channels, respectively from A
to B and from B to A. The dimension of TA and RA are
MA × MA, whereas that of TB and RB are MB × MB .
The diagonal elements in these matrices represent the linear
effects attributable to the impairments in the transmitter and
receiver parts of the RF front-ends respectively, whereas the
off-diagonal elements correspond to non-reciprocity in RF
crosstalk and antenna mutual coupling. It is worth noting that
although transmitting and receiving antenna mutual coupling
are not generally reciprocal [8], theoretical modeling [9] and
experimental results [10], [3], [7] both show that, in practice,
RF crosstalk and antenna mutual coupling are sufficiently
reciprocal to be ignored for the purpose of reciprocity cali-
bration, which implies that TA, RA, TB , RB can safely be
assumed to be diagonal.



Assuming that the system is operating in TDD mode,
the channel responses enjoy reciprocity within the channel
coherence time, i.e., CA→B = CT

B→A. Therefore, we obtain
the following relationship between the channels measured in
both directions:

HA→B = RBT
−T
B︸ ︷︷ ︸

F−T
B

HT
B→AR−TA TA︸ ︷︷ ︸

FA

= F−TB HT
B→AFA. (2)

Note that the studies in [11], [12] pointed out that in a practical
multi-user MIMO system, it is mainly the calibration at the
BS side which restores the hardware asymmetry and helps
to achieve the multi-user MIMO performance. Hence, in the
sequel, the focus is on the estimation of FA.

Let us consider an antenna array of M elements partitioned
into G groups denoted by A1, A2, . . . , AG. Group Ai contains
Mi antennas such that

∑G
i=1Mi = M. Each group Ai

transmits a sequence of Li pilot symbols, defined by matrix
Pi ∈ CMi×Li where the rows correspond to antennas and
the columns to successive channel uses. Note that a channel
use can be understood as a time slot or a subcarrier in an
OFDM-based system, as long as the calibration parameter
can be assumed constant over all channel uses. When an
antenna group i transmits, all other groups are considered to
be in receiving mode. After all G groups have transmitted,
the received signal for each resource block of bi-directional
transmission between antenna groups i and j is given by{

Yi→j = RjCi→jTiPi +Ni→j ,
Yj→i = RiCj→iTjPj +Nj→i,

(3)

where Yi→j ∈ CMj×Li and Yj→i ∈ CMi×Lj are received
signal matrices at antenna groups j and i respectively when
the other group is transmitting. Ni→j and Nj→i represent the
corresponding received noise matrix. Ti, Ri ∈ CMi×Mi and
Tj , Rj ∈ CMj×Mj represent the effect of the transmit and
receive RF front-ends of antenna elements in groups i and j
respectively.

The reciprocity property implies that Ci→j = CT
j→i, thus

for two different groups 1 ≤ i 6= j ≤ G, by eliminating Ci→j
in (3) we have

PTi F
T
i Yj→i −YT

i→jFjPj = Ñij , (4)

where the noise component Ñij = PTi F
T
i Nj→i−NT

i→jFjPj ,
while Fi = R−Ti Ti and Fj = R−Tj Tj are the calibration ma-
trices for groups i and j. The calibration matrix F is diagonal,
and thus takes the form of F = diag{F1,F2, . . . ,FG}. Let us
use fi and f to denote the vectors of the diagonal coefficients
of Fi and F respectively, i.e., Fi = diag{fi} and F = diag{f}.
This allows us to vectorize (4) into

(YT
j→i ∗PTi )fi − (PTj ∗YT

i→j)fj = ñij , (5)

where ∗ denotes the Khatri–Rao product (or column-wise
Kronecker product), where we have used the equality,
vec(A diag(x)B) = (BT ∗A)x. Finally, stacking equations
(5) for all 1 ≤ i < j ≤ G yields

Y(P)f = ñ, (6)

with Y(P) defined as
(YT

2→1 ∗PT1 ) −(PT2 ∗YT
1→2) 0 . . .

(YT
3→1 ∗PT1 ) 0 −(PT3 ∗YT

1→3) . . .
0 (YT

3→2 ∗PT2 ) −(PT3 ∗YT
2→3) . . .

...
...

...
. . .


︸ ︷︷ ︸

(
∑G

j=2

∑j−1
i=1 LiLj)×M

.

(7)
A typical way to estimate f consists in solving an LS problem
such as
f̂ = argmin

f
‖Y(P) f‖2

= argmin
f

∑
i<j

‖(YT
j→i ∗PTi )fi − (PTj ∗YT

i→j)fj‖2 , (8)

where Y(P) is defined in (7). This needs to be augmented
with a constraint

C(f̂ , f) = 0, (9)

in order to exclude the trivial solution f̂ = 0 in (8). The
constraint on f̂ may depend on the true parameters f . As we
shall see further, this constraint needs to be complex valued
(which represents two real constraints). Typical choices for the
constraint are
1) Norm plus phase constraint (NPC):

norm: Re{C(f̂ , f)} = ||f̂ ||2 − c , c = ||f ||2, (10)

phase: Im{C(f̂ , f)} = Im{f̂Hf} = 0. (11)

Here Re, Im refer to real and imaginary part, respectively.
2) Linear constraint:

C(f̂ , f) = f̂Hg − c = 0 . (12)

If we choose the vector g = f and c = ||f ||2, then the Im{.}
part of (12) corresponds to (11). The most popular linear
constraint is the First Coefficient Constraint (FCC), which is
(12) with g = e1, c = 1. e1 represents the first column of the
Identity matrix.

The discussion so far has revolved around a coherent
reciprocity calibration scheme where it is assumed that the
transmission from all the antenna groups may be completed
while the channel remains a constant. However, as shown in
[13],[1], this can be relaxed to a scenario where the overall
calibration can occur across T independent coherent time
slots. Within each of these coherent time slots that comprise
of several channel uses, the channel stays constant, but is
independent across different coherent time slots. During these
coherent time slots, the calibration factors are assumed to
remain constant. For completeness, we reproduce the metric
as was introduced in [13],[1].

f̂ = min
f
‖Y(P)f‖2

= min
f

T∑
t=1

∑
i,j∈G(t)
i 6=j

∥∥(YT
j→i,t∗PTi (t))fi − (PTj (t)∗YT

i→j,t)fj
∥∥2

(13)
where Y(P) = [Y1(P(1))T , . . . ,YT (P(T ))T ]T .



III. CRAMER RAO BOUND

The CRB for the coherent calibration scenario was pre-
sented by the same authors in [2]. While the approach to the
computation of the CRB remains the same, we bring in an
important generalization here.
• We discuss the CRB computation for the non-coherent

reciprocity calibration with T coherent time slots as was
introduced in [1], [13]. The non-coherent case reduces to
the coherent case when there is just one coherent time
slot being considered and bi-directional transmissions
between all the antennas can be completed within this
time slot.

Note that while the channel can vary across the different
coherent time slots, the calibration factors vary more slowly
and remain constant across all the coherent slots. Consider a
coherent time slot, t where a set of bi-directional transmissions
are performed. From (3), we have,

Yi→j(t) = RjCi→j(t)R
T
i︸ ︷︷ ︸

Hi→j(t)

FiPi(t) +Ni→j(t).
(14)

We define Hi→j(t) = RjCi→j(t)R
T
i to be an auxiliary inter-

nal channel (not corresponding to any physically measurable
quantity) that appears as a nuisance parameter in the estimation
of the calibration parameters. Note that the auxiliary channel
Hi→j(t) inherits the reciprocity from the channel Ci→j(t):
Hi→j(t) = HTj→i(t). Upon applying the vectorization operator
for each bidirectional transmission between groups i and j, we
have, similarly to (6),
vec(Yi→j(t)) = (PTi (t) ∗Hi→j(t)) fi+ vec(Ni→j(t)). (15)

In the reverse direction, using Hi→j(t) = HTj→i(t), we have

vec(YT
j→i(t)) = (HTi→j(t) ∗PTj )(t)fj + vec(NT

j→i(t)). (16)
Alternatively, (15) and (16) may also be written as

vec(Yi→j(t)) =
[
(FiPi(t))

T ⊗ I
]

vec(Hi→j(t))
+ vec(Ni→j(t))

vec(YT
j→i(t)) =

[
I⊗ (PTj (t)Fj)

]
vec(Hi→j(t))

+ vec(Nj→i(t)).

(17)

In the case of non-coherent calibration, the key point is to pick
only bi-directional transmissions that happen every coherent
time slot. Stack all the bi-directional observations into a vector,

y(t)=
[
vec(Y1→2(t))

T vec(YT
2→1(t))

T vec(Y1→3(t))
T . . .

]T
(18)

The two alternative formulations in (17) can be summarized
into,
y(t) = H(h(t),P(t), t)f + n = F(f ,P(t), t)h(t) + n,

(19)
where h(t) =

[
vec(H1→2)

T vec(H1→3)
T vec(H2→3)

T . . .
]T

,
and n is the corresponding noise vector. The pilot matrix
P is different across different coherent time slots, but to
simplify the notation, we omit the explicit dependence on t
where there is no room for confusion. The composite matrices
H(h(t),P, t) and F(f ,P, t) are given below for an example

scenario where in tth time slot, the bi-directional transmissions
happened between the antenna groups 1, 2 and 3.

H(h(t),P, t) =


PT1 ∗ H1→2 0 0

0 HT1→2 ∗PT2 0
PT1 ∗ H1→3 0 0

0 0 HT1→3 ∗PT3
0 HT3→2 ∗PT2 0
0 0 HT2→3 ∗PT3



F(f ,P, t) =


PT1 F1 ⊗ I 0 0
I⊗PT2 F2 0 0

0 PT1 F1 ⊗ I 0
0 I⊗PT3 F3 0
0 0 PT2 F2 ⊗ I
0 0 I⊗PT3 F3

 .
(20)

Stacking these equations over all T coherent time slots, we
get,

y =

H(h(1),P, 1)...
H(h(T ),P, T )


︸ ︷︷ ︸

H(h,P)

f + n

y =

F(f ,P, 1) 0 0

0
. . . 0

0 0 F(f ,P, T )


h(1)...
h(t)


︸ ︷︷ ︸

h

+n

= H(h,P)f + n = F(f ,P)h+ n.

(21)

Here, F(f ,P) is a block diagonal matrix whose diagonal
block t is F(f ,P, t).The scenario is now identical to that
encountered in some blind channel estimation scenarios and
hence we can take advantage of some existing tools [14],[15],
which we exploit next. Treating h and f as deterministic
unknown parameters, and assuming that the receiver noise n
is distributed as CN (0, σ2I), the Fisher Information Matrix
(FIM) J for jointly estimating f and h can immediately be
obtained from (19) as

J =
1

σ2

[
HH
FH

] [
H F

]
. (22)

The computation of the CRB requires J to be non-singular.
However, for the problem at hand, J is inherently singular.
To determine the CRB when the FIM is singular, constraints
have to be added to regularize the estimation problem. As the
calibration parameters are complex, one complex constraint
corresponds to two real constraints. Further, we are only
interested in the CRB for f in the presence of the nuisance
parameters h. Hence we are only interested in the (1, 1) block
of the inverse of the 2×2 block matrix J in (22). Incorporating
the effect of the constraint (9) on f , we can derive from [16]
the following constrained CRB for f

CRBf = σ2Vf
(
VHf HHP⊥FHVf

)−1 VHf (23)
where PX = X(XHX)†XH and P⊥X = I − PX are the
projection operators on resp. the column space of matrix X and
its orthogonal complement, and † corresponds to the Moore-
Penrose pseudo inverse. The M × (M−1) matrix Vf is such
that its column space spans the orthogonal complement of that



of ∂C(f)
∂f∗ , i.e., PVf = P⊥∂C

∂f∗
. For example, in the FCC case,

∂C(f)
∂f∗ = g = e1, where e1 is the first column of the Identity

matrix. Hence, Vf would be the orthogonal complement of this
matrix which would be the remaining columns of the Identity
matrix.
IV. MSE ANALYSIS FOR THE LEAST SQUARES ESTIMATOR

In this section, we analyze the mean square error for the
LS estimator and compare it with the CRB. From (6), the
metric to be optimized is ||Yf ||2 which was derived as a
result of eliminating the propagation channel C. The same
objective may also be obtained by eliminating the factor h
in (21), specifically by minimizing ||F⊥Hy||2. Here, F⊥
is the orthogonal matrix to F such that F⊥HF=0. F⊥
corresponding to (20) is shown in (24).

F⊥=


I⊗ (F2P2)

∗ 0 0
−(F1P1)

∗ ⊗ I 0 0
0 I⊗ (F3P3)

∗ 0
0 −(F1P1)

∗ ⊗ I 0
0 0 I⊗ (F3P3)

∗

0 0 −(F2P2)
∗ ⊗ I

 (24)

Thus, we can write,
min
f̂
||F⊥H(f̂)y||2 = min

f̂
||F⊥H(f̂)Fh+F⊥H(f̂)n||2, (25)

where the additional term in braces highlights that in this case,
the matrix F⊥H is generated with f̂ . When this is not explicitly
indicated, the matrix is constructed out of the true f . Next, to
get (25) into a more convenient form, we make the following
observation.

F⊥H(f − f̂)F(f − f̂) = 0

=⇒ (F⊥H(f)−F⊥H(f̂))(F(f)−F(f̂)) = 0

=⇒ F⊥H(f)F(f̂) = −F⊥H(f̂)F(f)
(26)

Further, under the assumption of small noise, F⊥H(f̂)n ≈
F⊥H(f)n. From (25), (26) and the small noise assumption,
we can write the LS criterion as,

min
f̂
||F⊥HF(f̂)h−F⊥Hn||2 = min

f̂
||F⊥HHf̂ −F⊥Hn||2.

(27)
At this point, note that F⊥HH is not full rank. This can be
seen as follows.

F⊥HHf = F⊥HFh = 0. (28)
Hence, to regularize the problem, we need to add constraints.
Consider a linear constraint of the form

f̂Hg = c. (29)

Let f̂ =
[
g V

] [ α1

α2:M

]
, where V is the orthonormal com-

plement to the vector g. The notation α2:M indicates the
elements 2 till M of the vector α. α1 denotes the first
element of the same vector. Now, using the constraint f̂Hg =[
α∗1 α∗2:M

] [gHg
VHg

]
= α∗1g

Hg = c. This implies that α1 is

real and is equal to a fixed value c
gHg

. As a result, (27) may
be written in terms of the new parameters α2:M as follows,

min
f̂
||F⊥HHf̂ −F⊥Hn||2 =

min
α2:M

||F⊥HHVα2:M −F⊥Hn+ F⊥HHg c

gHg
||2

(30)

The MSE for this minimization is straightforward and may be
obtained as

MSELS =

σ2V(VHAHAV)−1VHAHBAV(VHAHAV)−1VH .
(31)

Here, A = F⊥HH and B = F⊥HF⊥. In comparison, the
CRB from (23) is given by

CRB = σ2Vf (VHf HHF⊥(F⊥HF⊥)−1F⊥HHVf )−1VHf
= σ2Vf (VHf AHB−1AVf )−1VHf ,

(32)
where we used P⊥F = PF⊥ = F⊥(F⊥HF⊥)−1F⊥H . Further,
note that the matrix Vf is a matrix that has to span the
orthogonal complement of the derivative of the constraint. In
our linear constraint (29), ∂C(f)

∂f∗ = g. Hence, the matrix V is
the same as the desired matrix Vf .

To understand the relation between (31) and (32), let us
write down the expression for a weighted least squares with
weight matrix W.

MSEWLS = σ2VUVH ,
U = (VHAHWAV)−1VHAHWBWAV(VHAHWAV)−1.

(33)
Now, if we choose the weighting factor W as B−1, we get
back the same expression as that of the CRB. This implies,
that to bring down the error variance to that of the CRB, a
weighted least squares is called for. Thus, we establish that
the key difference between the CRB and that of the MSE of
the LS is in the lack of weighting factor (F⊥HF⊥)−1, which
is intuitively appealing as this weighting factor is nothing but
the inverse covariance of the coloured noise in F⊥Hy.

The expression here covers the linear constraint as was given
in II. For the FCC, we need to choose g = e1. In this case
f̂Hg = c chooses the first element of f̂ to be known and the
matrix V is composed of the rest of the columns of the Identity
matrix. Now, the NPC constraint may also be approximated
by a linear constraint in the vicinity of the true f . To see this,
first note that the phase part of the NPC constraint, as given in
(11), is already a linear constraint where in (29), we need to
choose g = f . In the vicinity of the true f , f̂H f̂ may also be
approximated by f̂Hf , and hence the choice of g = f serves as
a linear approximation for the norm and phase part of the NPC
constraint. With this choice, the matrix V spans the orthogonal
complement of the space of f .

V. SIMULATIONS

We perform simulations assuming an i.i.d. Gaussian channel
across the antennas. The Tx and Rx calibration parameters for
the BS antennas are assumed to have random phases uniformly
distributed over [−π, π] and amplitudes uniformly distributed
in the range [1− δ, 1 + δ]. SNR is defined as the ratio of the
average received signal power across channel realizations at an
antenna and the noise power at that antenna. First, we make a
comparison between different grouping schemes on the basis
of their CRB. Consider a system with M = 64 antennas. With
single antenna grouping, the minimum number of channel
uses required for calibration is M . Hence, we assume that
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Fig. 1. Comparison of CRB with different antenna group sizes for M = 64
antenna scenario.

there are M channel uses available for reciprocity calibration
irrespective of the antenna grouping strategy used. At the
same time, the minimum number of channel uses required
for calibration is ([1]) given by G(G − 1) ≥ (2M − 1),
giving G = 12. In this case, the number of antennas in
each group would be 5 or 6 if we distribute the antennas
as equitably as possible across the groups. In this scheme
every antenna group can transmit pilots for multiple channel
uses during the overall M channel uses required for the single
antenna grouping. In Figure 1, we plot the CRB for different
group sizes between the slowest single antenna grouping
(Num groups = M = 64) and the fastest multiple antenna
grouping. Whenever a faster grouping is used, antenna groups
can transmit pilots during multiple channel uses which further
scales down the CRB by that pilot use factor. The CRB with
NPC constraint is averaged over multiple channel realizations
and SNR = 30dB. Two separate curves are displayed for
δ = 0.25 and δ = 0.5. From this plot, we can infer that
given a fixed number of available channel uses, it is more
beneficial to use the smallest possible size for antenna groups.
In the case where there are a sufficient number of channel
uses available, this would imply a preference for the single
antenna grouping over multiple antenna grouping. However, it
is also noteworthy that a grouping with two antennas per group
also has a performance comparable to that of single antenna
grouping while requiring only half the time for calibration.
Fig. 2 compares the MSE that was derived for LS with the
actual performance obtained in simulations using FCC. The
results have been averaged across multiple channel and noise
realizations. A large variation in calibration values (δ = 0.95)
is chosen for this simulation so as to enhance the gap between
the LS performance and the CRB. The simulated MSE is seen
to closely match the theoretical MSE. The plot also shows the
CRB for this case which forms a lower bound, as expected.

VI. CONCLUSION

We first derived a generalized CRB that is applicable to both
the coherent and non-coherent scenarios. Next, we derived
a simple and intuitive relationship between the MSE of the
LS algorithms to the CRB for both NPC and FCC. We also
compared the performance of different grouping strategies for
an i.i.d Rayleigh channel which indicates that given sufficient
number of channel uses, a single antenna per group shows
superior MSE performance.
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Fig. 2. Comparison of simulation MSE for an M = 32 antenna scenario
with the theoretical expression for MSE for the FCC constraint.
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