GRADUATE SCHOOL AND RESEARCH CENTER AT THE HEART OF THE DIGITAL SOCIETY

Screaming Channels

When Electromagnetic Side Channels Meet Radio Transceivers Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, Aurélien Francillon

RESSI

15-05-2019

Who are we?

System and Software Security Group at EURECOM s3.eurecom.fr

I am a PhD student "on radio side channels"

Side Channels, The Idea

Theory

Secure lock is impossible to open

Implementation

Different sound if we make a partial correct guess

Attack

Open it with a few attempts

Embedded Devices and Side Channels

Secure systems: E-Passport, Smartcard, ...

Crypto against stealing, cloning, tampering, ...

Generally protected against attacks which require physical access

Conventional Side Channels

data

In Practice

Collection

E.g. loop probe + oscilloscope

Many Analyses/Attacks SPA, CPA, TPA, ... SEMA, CEMA, TEMA, ...

Embedded Devices and Side Channels

_		
	_	

Secure systems: E-Passport, Smartcard, ...

Crypto against stealing, cloning, tampering, ...

Generally protected against attacks which require physical access Connected devices: Smart watch, camera, ...

Crypto protects the communication channel

Only remote attacks are considered

Remote Side Channels

Remote Timing Non constant time Caches

AES, TLS, ... WPA3 (Dragonblood)

EM?

Physical access Local

Problems When Adding Wireless Capabilities

Implementation: Mixed-signal Chips

Idea:

CPU + Crypto + Radio Same chip

Benefits:

Low Power, Cheap, Small Easy to integrate

Examples: BT, BLE, WiFi, GPS, etc

Issues

Reminder Time vs. Frequency Up-conversion

Issues

Analog/RF Noise Sensitive

Digital Noise resilient Noise Source

Same Chip Noise Coupling

Careful Design Radio Still Works

Problems, the global view

Strong noise source

Mixed-signal chip

Easy propagation

Screaming Channels The Idea

Screaming Channels Idea

Screaming Channels in Action

	Set Center Frequency	
ֈֈֈֈՠՠֈ֍ՠՠֈ֍ՠՠֈՠՠֈՠՠֈՠՠֈՠՠֈՠՠֈՠՠֈՠՠՠֈՠՠ		຺຺຺ຬ຺ຘຬຉຉຉຆຎຎຎຬຆຬຆຎຎຎຬຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎຎ
-50/808		

Click, wheel or drag a digit to change center frequency; SPACE or numeric key for direct input. Hold SHIFT to disable carry.

Screaming Channels: Leak Broadcast

From Digital Noise To Noise On The Radio Signal

Possible Impact on Radio Transmission

m & Société numérique

Practical Case We Observed

Extraction

Quadrature Amplitude Demodulation

Extraction

Attack

Attacking

Targets: Cortex-M4 + BT TX TinyAES, mbedTLS

Extraction: Automated via radio Known plaintext

Attacks: Correlation, Template Code based on ChipWhisperer Much more advanced attacks exist

Correlation @ 10m

Sophia Antipolis

Quick Demo

File Edit View Search Terminal

> sc-attack --data-path ~/phd/dumps/traces/tinyae s_anechoic_10m_080618_attack/ --bruteforce --numtraces 100 attack tra_templates/10m/ --variable p _xor_k

Evolution of the attack

cm

m

m

m

m

Protection

Countermeasures

Resource constraint devices: Cost, power, time to market, etc.

Classic HW/SW:

Masking, noise, key refresh (expensive, not complete)

Radio off during sensitive computations (real time constraints)

Specific (HW):

Consider impact of coupling on security during design and test (hard, expensive)

Final remarks

Reference to a Similar Effect

1-5. (6) Propagation of TEMPEST Signals (U). - There are four basic means by which compromising emanations may be propagated. They are: electromagnetic radiation; conduction; modulation of an intended signal; and acoustics. A brief explanation of each follows.

a. (G) Electromagnetic Radiation (U). - Whenever a RED signal is generated or processed in an equipment, an electric, magnetic or electromagnetic field is generated. If this electromagnetic field is permitted to exist outside of an equipment, a twofold problem is created; first the electromagnetic field may be detected outside the Controlled Space (CS); second the electromagnetic field may couple onto BLACK lines connected to or located near the equipments, which exit the CS of the installation.

b. (G) Line Conduction. - Line Conduction is defined as the emanations produced on any external or interface line of an equipment, which, in any way, alters the signal on the external or interface lines. The external lines include signal lines, control and indicator lines, and a.c. and d.c. powerlines.

c. (€) Fortuitous Conduction. - Emanations in the form of signals propagated along any unintended conductor such as pipes, beams, wires, cables, conduits, ducts, etc.

d. (€) [Six lines redacted.]

Figure 1-5. - Amplitude-Modulated Carrier (U) (U)

e. (G) Acoustics (U) - Characteristically plaintext processing systems are primarily electrical in function. However, other sources of CE exist where mechanical operations occur and sound is produced. Keyboards, printers, relays -- these produce sound, and consequently can be sources of compromise.

Tempest Fundamentals [5] From '80s Declassified 2000

- 1. Radiation
- 2. Conduction
- 3. Modulation of an intended signal (redacted)
- 4. Acoustic

Responsible Disclosure

Major vendors & multiple CERTS

Multiple acknowledgements of the relevance and generality of the problem

2 vendors are reproducing our results 1 vendor is actively looking at short/long-term countermeasures

Conclusion

General problem if sensitive processing and wireless tx

- HW AES, WiFi, other chips
- any device with radio?

A new point in the threat model space

Remote EM attacks

Must be considered

- Design and test of new devices
- Smart countermeasures (specific)

Many open directions for future research

- More distant, less traces
- Different crypto and wireless technologies
- Attack the protocol

Questions?

Code https://www.github.com/eurecom-s3/screaming_channels More Info https://s3.eurecom.fr/tools/screaming_channels

Giovanni Camurati @GioCamurati

Acknowledgements

- The authors acknowledge the support of SeCiF project within the French-German Academy for the Industry of the future, as well as the support by the DAPCODS/IOTics ANR 2016 project (ANR-16-CE25-0015).
- We would like to thank the FIT R2lab team from Inria, Sophia Antipolis, for their help in using the R2lab testbed.

References

- [1] Agrawal, Dakshi, et al. "The EM Side-Channel(s)" CHES '02
- [2] Genkin, Daniel, et al. "ECDH key-extraction via low-bandwidth electromagnetic attacks on PCs." Cryptographers' Track at the RSA Conference. Springer, Cham, 2016.
- [3]Tempest attacks against AES: <u>https://www.fox-it.com/en/wp-content/uploads/sites/11/Tempest_attacks_against_AES.pdf</u>
- [4] Van Eck Phreaking

https://en.wikipedia.org/wiki/Van_Eck_phreaking

 [5] NSA. "NACSIM 5000, Tempest fundamentals." Technical Report. 1982. Document declassified in 2000 and available at <u>https://cryptome.org/jya/nacsim-5000/nacsim-5000.htm</u>

Third-Party Images

 "nRF51822 - Bluetooth LE SoC : weekend die-shot" - CC-BY– Modified with annotations. Original by zeptobars https://zeptobars.com/en/read/nRF51822-Bluetooth-LE-SoC-Cortex-M0

GRADUATE SCHOOL & RESEARCH CENTER IN DIGITAL SCIENCE

Backup Slides

Some Attack Data

Distance	Environment	Implementat ion	# Attack Traces	# Template Traces
1 m	Office	tinyAES	52589 x 500	70000 x 500
3 m	Anechoic Room	tinyAES	718 x 500	70000 x 500
5m	Anechoic Room	tinyAES	428 x 500	70000 x 500
10 m	Anechoic Room	tinyAES	1428 x 500	130000 x 500

Attack on Hardware AES, possible?

- Hardware AES implementations are used for link layer encryption
- Attacking turns out to be more difficult than software AES
 - Faster calculation, higher radio resolution is needed
 - Most of the time blackbox implementations
- We ran some experiments
 4/16 bytes recovered

