
Exact Gaussian Process Regression with Distributed
Computations

Duc-Trung Nguyen
EURECOM

Campus Sophia Tech, France
duc-trung.nguyen@eurecom.fr

Maurizio Filippone
EURECOM

Campus Sophia Tech, France
Maurizio.Filippone@eurecom.fr

Pietro Michiardi
EURECOM

Campus Sophia Tech, France
Pietro.Michiardi@eurecom.fr

ABSTRACT
Gaussian Processes (GPs) are powerful non-parametric Bayesian
models for function estimation, but suffer from high complexity
in terms of both computation and storage. To address such issues,
approximation methods have flourished in the literature, including
model approximations and approximate inference. However, these
methods often sacrifice accuracy for scalability.

In this work, we present the design and evaluation of a distributed
method for exact GP inference, that achieves true model parallelism
using simple, high-level distributed computing frameworks. Our
experiments show that exact inference at scale is not only feasible,
but it also brings substantial benefits in terms of low error rates and
accurate quantification of uncertainty.

CCS CONCEPTS
• Computing methodologies → Gaussian processes; MapReduce
algorithms;

KEYWORDS
Regression, Matrix Factorization, Distributed computing

1 INTRODUCTION
The availability of large amounts of training data, together with the
advent of cloud computing and high-level parallel and distributed
programming models, have determined unprecedented advances in
building large-scale statistical models to solve inference tasks. In this
work we are interested in probabilistic machine learning, whereby
Bayesian inference offers a principled approach to model complex
phenomena allowing accurate quantification of uncertainty.

In particular, we focus on Gaussian processes (GPs) [43], which
are powerful non-parametric Bayesian models for function estima-
tion, that do not impose any explicit parametric form. GPs are robust
to noisy data, resist overfitting because they are naturally regularized,
and produce uncertainty estimations. In applications where “know-
ing when the model doesn’t know” is of vital importance (e.g., life
and environmental sciences, and autonomous systems), GPs have
become a prime choice modeling approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC ’19, April 8–12, 2019, Limassol, Cyprus
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04. . . $15.00
https://doi.org/10.1145/3297280.3297409

Exact GP inference is inherently computationally demanding,
which is a limiting factor that in the past has restricted GP appli-
cations to only very small training set sizes, in the order of a few
hundreds data points. The main computational bottleneck for exact
GP inference is that it requires O(n3) time complexity and O(n2)
space complexity, with n being the number of training samples.

To overcome this limitation, the machine learning community fo-
cused on methods to “sparsify” GPs and to approximate intractable
computations. Some work have focused on methods to alleviate the
computational burden related to the kernel matrix by using inducing
points [15, 22, 41, 48] or structured random features [50]. These
methods allow one to transform expensive computations from the
entire training data, such as the covariance and inverse covariance
matrix calculations, to a small set of representative input points.
Other works proposed methods to allow tractable and computation-
ally efficient computations: for example, [7, 23] have shown that
training approximate GPs can proceed using small batches of data,
thus allowing for the design of embarrassingly parallel algorithms
that are also referred to as the “data parallelism” approach [6].

In summary, practical approaches to scale GPs to large training
sets resort to various forms of approximations, trading lower ac-
curacy and confidence for faster training times. The problem we
address in this work is how to design distributed algorithms that
allow exact inference at scale. A naive approach of scaling up com-
putational resources to meet the requirements of GP inference with
large training sets is not practical: 1) vertical scalability is super lin-
ear in terms of costs, 2) the availability of cloud computing makes it
both practical and relatively cheap to revert to scale-out solutions, 3)
the advent of distributed computing frameworks, which expose sim-
ple programming models, suggest that achieving “model parallelism”
is conceptually possible. The endeavor of this work is to design and
implement a full-fledged distributed GP inference method, which
does not resort to any approximate computation.

The challenges we address in this work are as follows. We design
distributed, in-memory data representations to store and manipulate
large and dense covariance matrices, as discussed in section 4. We
design efficient, distributed linear algebra primitives, with focus on
those required for GP regression (GPR), with access to a high-level
only programming model, based on a shared-nothing architecture,
as presented in section 5. We combine such primitives to design an
exact, distributed GPR algorithm, that scales with the number of
training points and computational resources.

In summary, our results indicate that exact GP inference at scale
brings several benefits, when compared to approximate solutions,
in terms of low error rates and accurate uncertainty quantification,
which is important for several application domains.

https://doi.org/10.1145/3297280.3297409

SAC ’19, April 8–12, 2019, Limassol, Cyprus Duc-Trung Nguyen, Maurizio Filippone, and Pietro Michiardi

2 RELATED WORK
This section overviews a fraction of recent advances into the design
of scalable Gaussian Process regression, and covers a selection of
parallel and distributed linear algebra primitives. A brief introduction
to Gaussian Process regression is discussed in section 3.

It is well-known that the primary computational bottleneck for GP
regression is the inversion of the kernel matrix, which costs O(n3)
and O(n2) time and space complexity, respectively. To address this
challenge, several approximation techniques have been proposed,
that we can group in two categories: local approximations and sparse
approximations (including low-rank approximations).

The idea of local approximation is that of partitioning the input
domain into a set of local and independent regions. Each region
contains a small amount of training points, for which independent
GP regression can be computed efficiently [9], since the sample
covariance matrices are block diagonal. However, neighboring local
regions and their respective GP models can produce conflicting
predictions, an issue that has been largely studied in various ways
[11, 37, 38, 45].

The idea of sparse approximations, instead, are based on the con-
struction of a set ofm < n variables called inducing variables, which
are representative of the original data [41]. As such, the complexity
of these methods is reduced to O(nm2). Several strategies to com-
pute an approximate posterior distribution of the “full” GP has been
proposed. Two popular methods are the Fully Independent Training
Conditional (FITC) [41] and the Variational Free Energy (VFE) [48].
In particular, VFE approximates the true posterior by finding a surro-
gate (and simple) posterior which minimizes the distance to the true
posterior. The inducing points are defined as variational parameters
which are jointly optimized with the model hyper-parameters, by
minimizing the Kullbak-Leibler divergence between the variational
distribution and the exact posterior distribution over the latent func-
tion values. VFE has inspired many other works, including scalable
methods that use mini-batches of data, such as stochastic varia-
tional inference [23], variational features [22], structure exploiting
inference[50, 51] and distributed learning [15].

Alternative approaches cope with scalability bottlenecks without
relying on inducing variables. In [11], Deisenroth et al. introduce
the robust Bayesian Committee Machine (rBCM), combining Gen-
eralized Product of GP Experts and Bayesian Committee Machine
(BCM). It uses a hierarchical computation tree whose leaf nodes
are named GP experts. The data is divided into small regions and
assigned to GP Experts, which perform computations in parallel
and independently. The results are recombined by theirs parents
recursively. In [8], Zhenwen Dai et al. exploit the computational
structure of the sparse Gaussian process formulation, to distribute
computation across several worker machines, which exploit GPUs
to speed-up the inference process. In [39] Hao Peng et al. propose
to use the parameter server architecture [31], and suggest an asyn-
chronous approach to gradient computation and model update. They
introduce a delay limit parameter to cope with the instabilities due
to an asynchronous gradient update mechanism.

Although the methods above can handle massively large data,
they all rely on some forms of approximations, which imply trading
lower training times for higher error rates, as well as larger variance.

Our approach is different from such works, because we explicitly
avoid approximations, aiming at exact inference at scale.

Exact GP regression for large training data requires scalable lin-
ear algebra primitives, whose aim is to distribute matrix operations
across several machines. The design of efficient algorithms to im-
plement matrix factorization and inversion has been the subject of
several studies. Noteworthy examples are well-known libraries such
as LaPACK [1, 2], ScaLaPACK [4, 5], BLAS [28], BLAS level 2
[12] and BLAS level 3 [13]. These libraries operate at low-level and
are highly optimized for multi-core processors and are generally
integrated within higher-level languages.

The design of parallel algorithms for matrix factorization has
also received a great deal of attention by the research community.
In particular, prior works focus on specialized hardware such as
orthogonal processors [3, 27, 47], on compute grids [19], on shared
multi-processor systems [16] on shared memory systems [54] and
on database systems [21].

Matrix factorization algorithms designed to execute on distributed
systems have also flourished in the past. For example, the works
presented in [34, 42] suggest a data-flow programming model that
bears many similarities to modern systems such as the one we use in
this work, i.e., Apache Spark. In the realm of distributed systems,
there exist several variations of factorization algorithms, that target
e.g. distributed memory systems [20, 36], as well as asynchronous
programming models [26, 35].

Recent works that are closest to our approach present a Map
Reduce algorithm to proceed with matrix inversion [52], Apache
Spark variants [29, 32] and an algorithm based on the DryadLinq
programming model [40]. These approaches differ from our algo-
rithms as they tackle full matrix inversion, whereas we focus on
efficient matrix factorization. The work in [53] introduces data struc-
tures and basic matrix operations for Apache Spark, which is the
system we use in our work. SPIN [33] proposes a distributed ver-
sion of Strassen’s matrix inversion algorithm for Apache Spark:
this approach, however, suffers from scalability issues due to the
requirement to introduce data redundancy.

Other works, such as MadLINQ [40], require the design of new
systems, supporting asynchronous point-to-point communication
primitives. Along the same lines, Sparkler is a modified version
of Apache Spark that can factorize large low-rank matrices [29].
It uses a distributed hash map to keep track the locations of data
and supports point-to-point data transfer to avoid the coordination
overheads. In this case, the price to pay for asynchronous communi-
cation primitives is a decreased tolerance to failures, thus requiring
the implementation of a checkpointing mechanism, which introduces
overheads. Along the same lines of the above works that support
asynchronous operations, noteworthy examples are MatrixMap [25],
YinMem[24], which focus on the optimization of the abstract repre-
sentation of the computational graphs behind matrix operations.

In summary, what sets apart our work from the literature is that we
propose a general, distributed design pattern enabling a wide range
of linear algebra operations, that we use for exact GP inference.

3 DISTRIBUTED GP REGRESSION
We now describe our approach to exact Gaussian Process (GP) re-
gression, which we cast as a distributed algorithm operating on

Exact Gaussian Process Regression with Distributed Computations SAC ’19, April 8–12, 2019, Limassol, Cyprus

distributed data structures. First, we present the basics of GP in-
ference for regression problems, and emphasize the computational
challenges and scalability bottlenecks of GP prediction. Then we out-
line the structure of our approach, and dedicate subsequent sections
to delve into the details of its components.

3.1 Classical GP regression
We briefly review Gaussian processes (GPs) [44], and the com-
putational requirements for predictions and kernel learning. Let’s
assume a dataset D of n input vectors X = [x1, · · · , xn], each of
dimension D, corresponding to a n × 1 vector of target variables
y = [y(x1), · · · ,y(xn)]⊤. If f (x) ∼ GP(µ,kθ), then any collection
of function values f has a joint Gaussian distribution,

f = f (X) = [f (x1), · · · , f (xn)]⊤ ∼ N(µX ,KX ,X), (1)

with mean vector and covariance matrix defined by the mean
vector and covariance function of the Gaussian process: (µX)i =
µ(xi), and (KX ,X)i j = kθ (xi , xj). The covariance function kθ is
parametrized by θ . Assuming additive Gaussian noise, y(x)| f (x) ∼
N(y(x); f (x),σ 2), then the predictive distribution of the GP evalu-
ated at the n∗ test points indexed by X∗, is given by

f∗ |X∗,X , y, θ ,σ 2 ∼ N(E[f∗], cov(f∗)), (2)

E[f∗] = µX∗
+ KX∗,X [KX ,X + σ

2I]−1y, (3)

cov(f∗) = KX∗,X∗
− KX∗,X [KX ,X + σ

2I]−1KX ,X∗
. (4)

KX∗,X represents the n∗ × n matrix of covariances between the
GP evaluated at X∗ and X , and all other covariance matrices follow
the same notational conventions. µX∗

is the n∗ × 1 mean vector, and
KX ,X is the n × n covariance matrix evaluated at the training inputs
X . All covariance matrices depend on the kernel parameters θ .

Algorithm 1: Prediction and log marginal likelihood for
Gaussian process regression.

Data: X (training data), y (targets), k() (covariance function),
σ 2 (noise level)

1 L := cholesky(KX ,X + σ I)
2 α := L⊤\(L\y)
3 E[f∗] := KX∗,Xα

4 v := L\KX ,X∗

5 cov(f∗) := KX∗,X∗
− v⊤v

6 logp(y|X) := − 1
2y

⊤α −
∑
i logLii − n

2 log 2π
Result: E[f∗] (predictive mean), cov(f∗) (predictive

covariance), logp(y|X) (log marginal likelihood)

A practical implementation of GP regression (GPR) is shown
in Algorithm 1 [44]. The algorithm uses Cholesky decomposition,
instead of directly inverting the covariance plus noise matrix, since
it is faster and numerically more stable. The algorithm returns the
predictive mean and variance for noise free test data: to compute the
predictive distribution for noisy test data y∗, we simply add the noise
variance σ 2 to the predictive variance of f∗. Model selection through
hyper-parameter optimization is discussed in detail in section 7.

3.2 Computational challenges and scalability
bottlenecks

The main computational bottleneck for GP inference is solving the
linear system [KX ,X +σ

2I]−1y, which involves expensive operations
related to matrix inversion. The standard procedure for GPR is to
compute the Cholesky decomposition of the n × n kernel plus noise
matrix, which requires O(n3) operations and O(n2) storage. After-
wards, the predictive mean and variance of the GP cost respectively
O(n) and O(n2) per test point x∗.

In this work, we aim at a distributed, exact GPR implementation
involving p machines which, in the ideal case, yieldsO(n

3

p) complex-
ity. In a distributed setting, this limit is hardly attainable because the
overhead associated to message exchange can dominate computa-
tional costs. Additionally, for the training set sizes we are interested
in, also the simple construction and storage of the covariance matrix
KX ,X is challenging, as discussed in section 4.

With this context in mind, the bottlenecks we address in this
work are as follows. Since our approach targets large scale training
data, we consider I/O bottlenecks that are inherent to any iterative
algorithm that repeatedly accesses large quantities of data: we design
new distributed data structures and lookup primitives to quickly
iterate over input data. Due to the rigid communication patterns
imposed by the programming model we use, we address network
bottlenecks that affect any distributed algorithm by promoting local,
independent operations to be concurrently executed on each machine,
to reduce the message passing overheads. Finally, we address the
computational bottlenecks by a careful algorithm design, which
favors the adoption of efficient, low-level numerical libraries.

3.3 Overview of our approach
We begin with a brief description of the programming model and
runtime system we assume for our work. We use a distributed, shared-
nothing architecture, whereby a collection of machines operate on
distributed data structures in parallel, in a synchronous way. The
application of a series of high-order functions is handled by a driver
machine, and materializes as a directed acyclic graph, describing
the various stages of data transformations: each stage is broken into
parallel tasks, that execute the same function on different pieces of
data. Stage boundaries require synchronization akin to the “bulk-
synchronous processing”, by Valiant et. al., in [49]. The driver ma-
chine coordinates message broadcast, which is a limiting factor that
imposes a strict communication structure to our algorithms.

The main steps of our approach are as follows. Training data
reside on a distributed file system. It must be read, and transformed
to build the distributed kernel matrix KX ,X , which we keep in RAM
for efficiency, stored in a custom data structure, as described in
section 4. Then, the algorithm proceeds with an in place, distributed
Cholesky factorization, which we discuss in section 5. At this point,
we solve the linear system exemplified by Line 2 of Algorithm 1.
We achieve this using the factorized matrix, and distributed forward
and backward substitution method, which we describe in section
6. Similarly, we solve the linear system exemplified by Line 4 of
Algorithm 1, and output the predictive mean and covariance. Finally,
we approach model selection by an original method to estimate
hyper-parameters, as discussed in section 7.

SAC ’19, April 8–12, 2019, Limassol, Cyprus Duc-Trung Nguyen, Maurizio Filippone, and Pietro Michiardi

4 DISTRIBUTED DATA STRUCTURES
To proceed with distributed GPR we need to build and store the
covariance matrix K . To do so, we design an efficient, in-memory
matrix representation that supports the access patterns of our algo-
rithms, in particular for the distributed Cholesky decomposition.

Irrespectively of the algorithmic variant we may chose for the
Cholesky decomposition, there are three kinds of data access pat-
terns we are interested in: i) determine if a machine holds a matrix
region susceptible of being either factorized or updated; ii) access
a given matrix region to compute its factorization; iii) access the
range of matrix region(s) to update. To factorize a given matrix K ,
algorithmic Cholesky variants operate on different matrix elements:
rows, columns or blocks. We call such elements storage units, which
we represent as key/value pairs: thus, σi =< ki ,v >. The key of a
storage unit is a unique identifier, which carries positional informa-
tion of the storage unit within the matrix; the value of a storage unit
is the matrix element itself, e.g. a matrix row.

Storage units are randomly mapped to machines: each holds multi-
ple storage units that we organize in a tree-like structure. Hence, each
machinem holds a handler to a storage tree Tm , which is designed
for fast lookup operations. The storage tree is an enhanced form of
self-balancing AVL binary tree [17], whose nodes contain individual
storage units. Its root stores, unlike other nodes, the minimum and
maximum key identifiers, which we callminKeym andmaxKeym ,
of the storage units within the tree. A node with key i (which we call
node i), in addition to left and right pointers to descendants, stores a
pointer, which we call the next pointer, to node j that is the closest
to i, so that there is no node j ′ such that i < j ′ < j.

Storage trees are built in a pre-processing step, and only require
insert operations. If a machine stores k storage units, then its storage
tree height is logk . Insert operations, in addition to finding the right
position for the node, also require to updateminKey,maxKey, and
the next pointer: they thus cost two O(logk) lookup operations.

Next, we develop the membership and lookup procedures sup-
porting the algorithms we use in GPR. Membership queries of
the form “σi ∈ Tm” do not require lookup operations, but only
a compare operation with minKeym and maxKeym meta-data as-
sociated to each storage tree. The first lookup procedure is called
pivotLookup(Key i), and it is used to find a “pivot” region i,
potentially stored on a machinem: it involves a simple binary search
algorithm on the storage tree Tm , and thus costs O(log (k)) for a
given storage tree holding k storage units. The second procedure is
called rangeLookup(Key l): it is a variant of a binary search
algorithm, that uses the next pointer as a short-cut mechanism to
speed-up traversal of very deep trees. Our goal is to support range
queries of the form “∀σi , i ∈ [l, r]”, which are frequent in Cholesky
decomposition algorithms. The procedure returns only the σ with
the smallest key satisfying the lookup range: that is, σ =< ki ,v >,
with i ≥ l and i < j, ∀j , i ∈ [l, r]. Subsequent storage units within
the lookup range are accessed with the next pointer.

Computing the covariance matrix. Building the covariance matrix
KX ,X can conceptually be viewed as a simple Cartesian product
among the training inputs X : for all possible input pairs xi , x j we
apply the kernel function k(xi , x j). This seemingly trivial operation
is extremely costly if implemented naively on a distributed system.

In this work we design a lightweight mechanism which builds the
covariance matrix incrementally. The original dataset D is divided
into multiple subsets Di such that the each one can be stored on a
single machine. In iteration i, we only compute the covariance of
datapoints in Di and D. The final covariance matrix results from the
union of each of its components and its storage in memory according
to our storage unit format.

5 DISTRIBUTED CHOLESKY
FACTORIZATION

The Cholesky algorithm is one of the most popular methods to
factorize matrices. Given a symmetric, positive-definite real matrix
A ∈ Rn×n , the Cholesky decomposition computes a lower triangular
matrix L such that A = LL⊤, where matrix L has real and positive
diagonal entries.

Designing a distributed Cholesky matrix factorization algorithm
requires a careful approach to efficiently exploit parallelism. In this
work, we focus on the Block Partitioned Cholesky (BPC) variant.

In the remainder of this section, we assume a generic matrix A to
be represented as discussed in section 4. Each machine holds a frac-
tion of the storage units the matrix is divided into: for a given storage
unit, we assume its elements to be sorted according to their position
in the original matrix. Since we focus on the design of a distributed
Block-partitioned Cholesky algorithm, we use block matrices as
storage units. Figure 1 illustrates how matrix A is subdivided into
b × b block matrices, and how position identifiers are assigned to
storage units.

Block row

b

b

Storage tree
Machine 1

Storage tree
Machine 2

Pivot region: A11

Left panel: A21

Right panel: A22

Block row

b

b

Pivot region: A11

Left panel: A21

Right panel: A22

Color Legend:
 Machine 1
 Machine 2
 Inactive

Iteration 1: top
Iteration 2: bottom

0

1

2

3

4

5

6

7

8

10

11

12

13

9

14

0

1

3

6 11

8

12

14

4

2

5 9

7

10

13

0

1

2

3

4

5

6

7

8

9

10

11

12

13 14

Figure 1: Matrix representation for the BPC algorithm.

Block-partitioned Cholesky operates as follows: at each iteration,
it selects a pivot region to factorize (in this case, a block matrix), uses

Exact Gaussian Process Regression with Distributed Computations SAC ’19, April 8–12, 2019, Limassol, Cyprus

it to update and factorize regions of the matrix we call the left-panel,
and finally uses the factorized left-panel to update the remaining ma-
trix regions that we call the right-panel. The next iteration considers
the updated right-panel as the matrix to decompose, and proceeds
recursively as illustrated in figure 1.

Algorithm 2: Distributed Block-partitioned Cholesky.
Data: A ∈ Rn×n , M number of block-rows in A, b block size

1 Procedure Block-partitioned Cholesky(A)
/* Executed by the driver */

2 pid = 0 /* Current pivot region identifier */

3 i = 0
4 while i < M do

/* Number of active block rows */

5 r = M − i − 1

/* Parallel lookup on all machines */

6 A(i)
11 = pivotLookup (pid)

/* Collect region in a single machine */

/* Region factorization */

/* LAPAC factorization routine */

7 L(i)11 = dpotrf (A(i)
11)

/* One to many communication */

8 broadcast (L(i)11)

9 if i < M − 1 then
/* Parallel update: left panel */

10 L(i)21 = updateLPanel (pid , r)

/* One to many communication */

11 broadcast (L21)

/* Parallel update: right panel */

12 Ã(i)
22 = updateRPanel (pid , r)

13 pid = pid + r

Algorithm 2 outlines the main procedure implementing the dis-
tributed Block-partitioned Cholesky algorithm. The algorithm is
governed by a single parameter, b, which determines the size of a
sub-matrix block: b is automatically determined based on the mem-
ory constraints of a single machine.

The main procedure is called by the driver machine, that holds
information about the total number M of block rows in matrix A, the
number r of block rows that are susceptible of being accessed in the
current iteration, the identifier pid of the pivot region in an iteration,
and the current iteration i.

The first operation is a distributed lookup to identify the machine
holding the current pid, which we call A(i)

11 : this is the current pivot
region at iteration i. The pivot region is factorized in a single machine
to obtain L

(i)
11 , using an efficient serial implementation. Then, the

driver distributes L(i)11 to all machines.
Next, the algorithm computes the factorization of the left-panel,

A
(i)
21 . This operation is executed in parallel only by those machines

holding relevant storage units to factorize: hence, we use our range
lookup, to find storage units to factorize. This step produces the

factorized left-panel L(i)21 = (A
(i)
21)

−1(L(i)11)
⊤. Since L(i)21 is required to

update the right-panel, it needs to be broadcast to all machines.
Finally, the algorithm updates the right-panel Ã(i)

22 , which requires
a similar range lookup as described for the left-panel, and an efficient
update procedure to avoid materializing very large matrices, resulting
from a naive computation of Ã(i)

22 = A
(i)
22 − L

(i)
21 (L

(i)
21)

⊤.

Algorithm 3: Update left panel procedure.
Data: pivot identifier pid , r : active block-rows

/* Note: L(i)11 available on all machines */

1 Procedure UpdateLPanel(pid , r)
/* Executed in parallel by each machine */

/* Find the first block in the update range */

2 B = rangeLookup (pid)

/* Scan relevant blocks using next pointer */

3 while B.next , NULL ∧ B.key ≤ pid + r − 1 do
/* Update using matrix multiplication */

4 B = BL(i)11
/* Select next block */

5 B = B.next

Algorithm 4: Update right panel procedure.
Data: pivot identifier pid , r : active block-rows

/* Note: L(i)21 available on all machines */

1 Procedure UpdateRPanel(pid , r − 1)
/* Executed in parallel by each machine */

/* Find the first block in the update range */

2 B = rangeLookup (pid + r − 1)

/* Scan relevant blocks using next pointer */

3 while B.next , NULL do
4 B̃ = A22 − L(i)21 (L

(i)
21)

⊤

/* Select next block */

5 B = B.next

Algorithm 3 provides the details of procedure UpdateLPanel.
The gist of the procedure is to find relevant sub-matrix blocks to
update. To do so, we use our efficient storage tree to find the first (in
terms of key identifier) storage unit within the update range; then,
subsequent blocks are obtained using the next pointer. The update
operation consists in a simple matrix multiplication, which we carry
out using BLAS level-3 primitives [13].

Algorithm 4 provides the details of procedure UpdateRPanel.
Each machine determines its state, active or not, depending on the
range lookup function: once the first storage unit within range is
found, we use the next pointer to update all relevant sub-matrix
blocks. At the matrix A level, the update procedure requires to
compute Ã(i)22 = A

(i)
22 − L

(i)
21 (L

(i)
21)

⊤. Working at the block level, the

update operation avoids materializing the large matrix L
(i)
21 (L

(i)
21)

⊤.

Each machine holding a block of matrix Ã
(i)
22 , computes it using the

corresponding blocks of matrices A(i)
22 and L

(i)
21 (L

(i)
21)

⊤.

SAC ’19, April 8–12, 2019, Limassol, Cyprus Duc-Trung Nguyen, Maurizio Filippone, and Pietro Michiardi

6 DISTRIBUTED SYSTEMS OF LINEAR
EQUATIONS

The distributed BPC algorithm proceeds with an in place matrix
factorization, and produces the output exemplified by Line 1 of
Algorithm 1. At this point, we solve the system of linear equations
exemplified by Line 2 and Line 4 of Algorithm 1 using distributed
forward and backward substitution algorithms.

The two algorithms, which we describe next, use the same “design
pattern” we conceived for the BPC algorithm. They are iterative and
proceed by solving (locally) a fraction of the linear system, and by
updating (in parallel) the vectors that appear in system to solve.

Storage tree
Machine 1

0

1

8 11 14

2

3

4

5

6 9

7 10 12

13

8

3 12

1 6 11 14

7

4 10

2 5 9 13

0

Storage tree
Machine 1

Storage tree
Machine 2

Pivot region: P1

Left panel: H1

Right panel: K1

Driver
Machine

L x

Driver
Machine

y

=

s1

u1

0

1

8 11 14

2

3

4

5

6 9

7 10 12

13

8

3 12

1 6 11 14

7

4 10

2 5 9 13

0

Storage tree
Machine 2

Pivot region: P2

Left panel: H2

Right panel: K2

Driver
Machine

L x

Driver
Machine

y

s2

=

u2

Color Legend:
 Machine 1
 Machine 2
 Inactive

Iteration 1

Iteration 2

Figure 2: Example of distributed forward substitution and ma-
trix/vector representations. Grayed out areas are “inactive”, as
they are not involved in computations.

Distributed forward substitution. The forward substitution algo-
rithm solves the problem Lx = y, where L is a n×n lower triangular
matrix, y is a n×1 vector. Figure 2 illustrates how matrix L and

Algorithm 5: Distributed forward substitution.
Data: L ∈ Rn×n lower triangular matrix, b block size, n rows in L, y

constant vector, x unknowns vector
1 Procedure Forward Substitution(L, b , n, y, x)

/* Executed by the driver */

2 i = 0
3 while i < n/b do

/* Define “solve” and “update” regions */

4 s (i) = [ib ,min((i + 1)b , n)
5 u (i) = [min((i + 1)b + 1, n), n]
6 x(i)s = x[s (i)]; x(i)u = x[u (i)]

7 y(i)s = y[s (i)]; y(i)u = y[u (i)]

/* One to many communication */

8 broadcast (y(i)s)

/* Parallel lookup on all machines */

9 P (i) = pivotLookup (i)

/* Local to worker hosting P (i)
*/

/* LAPAC forward substitution routine */

10 x(i)s = dptrts (P (i), y(i)s)

/* Collect to driver */

11 x(i)s = collect (x(i)s)

/* One to many communication */

12 broadcast (x(i)s)

/* Distributed matrix vector multiply */

/* Collect to driver */

13 v = collect (H (i)x(i)s)

/* Update for next iterations */

14 L = K (i)

15 x = x(i)u
16 y = y(i)u − v
17 i = i + 1
18 return x

vectors x, y are represented, where they are stored, and can be used
to describe our distributed forward substitution algorithm. Note that
matrix L is distributed across all machines, according to the data
structure defined in section 4. Instead, vectors x and y are stored on
the driver machine: as also pointed out in [53], it is reasonable to
assume such vectors to fit into the memory of a single machine.

Algorithm 5 illustrates the main steps of our iterative process.
The design pattern consists in solving the system one block at the
time, on a single machine, while exploiting all distributed machines
to update matrix vectors x and y, before moving forward to explore
the next blocks to ingest. In each iteration i, our algorithm identifies
a pivot region that we denote by P (i): this is the block (i, i) of L. We
also identify a left panel and a right panel, which we denote by H (i)

and K (i), respectively (see Figure 2). Vectors x and y are partitioned
according to the position of the pivot region: s(i) and u(i) denote
regions of the vectors that our algorithm solves and updates at each
iteration. The key idea to enable a distributed algorithm design is to
rewrite the original linear system as:

Exact Gaussian Process Regression with Distributed Computations SAC ’19, April 8–12, 2019, Limassol, Cyprus

P (i)xs (i) = ys (i)

K (i)xu (i) = yu (i) − H (i)xs (i)

Hence, the driver machine broadcasts the vector ys (i) and triggers
a parallel lookup to find the pivot region P (i). The machine holding
P (i) performs a local forward substitution to compute xs (i) ; then, the
driver collects the result.1 Next, the driver broadcasts xs (i) , triggers
the distributed matrix-vector multiplication H (i)xs (i) involving all
machines hosting blocks of H (i), collects the resulting vector and
computes yu (i) −H (i)xs (i) . At this point, as shown in Figure 2 (bot-
tom), a new iteration starts: the driver selects a new pivot region
P (i+1), which determines H (i+1) and K (i+1), and repeats the above
procedure until the whole x vector is solved.

Distributed backward substitution. The backward substitution al-
gorithm solves the problem LT x = y, where L is a n×n upper trian-
gular matrix, y is a n×1 vector. The algorithm is similar to forward
substitution, but it applies to the transpose of L: as a consequence,
our algorithm is specular with respect to the anti-diagonal of LT .
The first pivot region corresponds to the lower-right corner of the
matrix (as opposed to the upper-left corner), and left and right panels
H and K are the block-row adjacent to the pivot and sub triangular
matrix excluding the pivot, respectively.

The main difference between backward and forward substitution
is that it requires our range lookup procedure to be augmented with
an additional next pointer, which helps navigating the storage tree
by row. The construction cost of the new pointer is equivalent to
what discussed in section 4, and is payed only once, during the
computation of the covariance matrix.

7 MODEL SELECTION
For a statistical model to be a practical tool in an application, it is nec-
essary to make decisions about the details of its specification: with
model selection, we address the issue of choosing the continuous
hyper-parameters of the covariance function.

A common way to estimate hyper-parameters θ for GPR amounts
to maximizing the marginal likelihood, computed as:

logp(y|X , θ) = −
1
2
y⊤K−1

y y −
1
2
log |Ky | −

n

2
log 2π , (5)

where Ky = KX ,X + σ I . The optimization problem can be solved
by taking the partial derivatives of the marginal log likelihood w.r.t.
hyper-parameters, which is given by:

∂

∂θi
logp(y|X , θ) =

1
2
yTK−1

y
∂Ky

∂θi
K−1
y y −

1
2

Tr(K−1
y
∂Ky

∂θi
), (6)

where Tr() indicates the trace operator. Gradient based optimization
of hyper-parameters can be carried out with various methods, in-
cluding L-BFGS, gradient descent, and conjugate gradient. In this
work we use L-BFGS, and define a novel initialization technique to
address the efficiency and scalability of model selection.

Since the convergence rate of a gradient-based method to compute
hyper-parameter can be slow, our technique proceeds in two distinct

1Our approach saves on communication costs as broadcasting yr (i) is cheaper than

collecting P (i) at the driver to perform the local forward substitution.

Subset size
|Bj |

log(θi (bj))

b1 b2 b3 b4 b5 bτ

log(θi (bj))(1)

log(θi (bj))(2)

log(θi (bj))(K)

Figure 3: Illustration of the initialization procedure to estimate
GP parameters, based on a multi-fidelity approach.

phases. In the initialization step, we use several small subsets of the
full training set, which can fit a single machine, and train in parallel
multiple-fidelity GPRs [14] to estimate a series hyper-parameters,
for an increasing training set size. This step concludes by fitting a
simple regression model to the hyper-parameter data, to infer an
initialization of the hyper-parameters for the optimization process on
the full training set. In the training step, we perform gradient-based
estimation of hyper-parameters on the full training set, and impose a
computational budget, which we label λ, in terms of the number of
iterations the optimization is allowed to perform.

More formally, let Bj be a subset of D (the full dataset), sampled
uniformly at random with replacement, with j ∈ (1, · · · , τ). Also, let
|Bj | = bj , with:

bj = k1n + j
k2 − k1

τ
n

where we have min {bj } = k1n, max {bj } = k2n, and k1,k2 ≪ 1.
The procedure to build the τ subsets Bj is repeated K times, such
that we can train a regression model using K data points for each
subset size bj .

Then, the key idea of the initialization phase is to build a simple
regression model such that θi (Bj) = д(bj), using bj , θ

∗
i (B

k
j) ∀j ∈

{1 · · · τ } ,∀k ∈ {1 · · · K} to train the model, where θ∗i (B
k
j) is the

parameter obtained by gradient-based minimization of the marginal
log likelihood of the “small” GPRs using input Bj . Figure 3 illus-
trates the gist of our model. In this work, we use a linear regression
model in logarithmic space,2 that is, we have that:

logθi (Bj) = wT b,

where w = {w1,w2, · · · ,wτ }
T is the vector of model weights,

and b = {b1,b2, · · · ,bτ }T is the vector of training subset sizes.
We learn model parameters by minimizing the loss function L =∑τ
j=1(θi (Bj) − θ∗i (Bj))

2etbj , where t is an additional parameter of
the loss function, which weights the (decaying) contribution of each
subset Bj depending on its size.

The initialization step can be easily parallelized. We have im-
plemented a “locality preserving” sampling procedure that builds
2The choice for this model is inspired by Silverman’s “rule of thumb” [46].

SAC ’19, April 8–12, 2019, Limassol, Cyprus Duc-Trung Nguyen, Maurizio Filippone, and Pietro Michiardi

subsets Bj using the distributed dataset D, while making sure for
subset sizes to be evenly distributed across machines. Each machine
contributes to building the training data for our “log-linear” model
of the GPR parameters, and to train local models using the local
training data. Then, the driver machine collects all local models in
each worker machines, and produces an average model.

At this point, the driver machines proceeds by coordinating a
distributed execution of the L-BGFS algorithm using Line 18 to find
the optimal hyper parameters θi of the full GPR model, which is
constrained by the “early stopping” mechanism based on an iteration
budget λ.

8 EXPERIMENTAL EVALUATION
In this section we proceed with an experimental evaluation of our dis-
tributed approach to GPR, and compare it to alternative approaches
from the state of the art that use various forms of approximations.

Methodology. In our experiments, we use three well-known, pub-
licly available datasets from UCI,3 namely Protein, Powerplant and
Airline. The Powerplant and Protein datasets were pre-processed
according to the methodology in [7], whereas the Airline dataset
is pre-processed according to the methodology described in [23].
For each dataset, we build several training sets of different sizes.
Powerplant has 4 training sizes: {1, 2, 5, 9.469}×103; Protein has 6
training sizes: {1, 2, 5, 10, 20, 45.515}×103; Airline has 7 training
sizes: {10, 20, 40, 60, 80, 100, 120}×103. With each training size,
10 folds of data are constructed. The test dataset sizes are 99, 215
and 104 for the Powerplant, Protein and Airline datasets respectively.

The metrics we use in our evaluation are the Standardized Mean
Square Error (SMSE) and mean standardized log loss (MSLL), as
defined in [44]. We also report the training times of each approach.

We compare our Apache Spark implementation of the distributed
GPR (that we label DistGPR)4, against an optimized TensorFlow
implementation of the sparse variational GP (which we label SVGP)
from GPFlow [10], and against an approximate GP that uses ran-
dom Fourier feature expansion of the kernel matrix and stochastic
variational inference (which we label DGP-RFF) as presented in [7],
which can both run on a single machine.

The experiments are set up as follows: SVGP and DGP-RFF run
on a single machine with 128GB RAM, and 32 cores, whereas our
DistGPR runs on an Apache Spark cluster with 1 master node and
10 workers, connected by 1 Gbps network. Each worker has 32GB
RAM and 6 cores. All experiments are repeated 10 times, and our
figures report the average metrics computed across such trials.

Finally, in our experiments, we configure our approach using
the following parameters K = 30, τ = 10, λ ∈ {0, 3, 7} and k2 =
max(0.2, 6000/n), k1 =max(0.3k2, 1000/n). When using SVGP, we
use Z =

√
N inducing points, and for the DGP-RFF approach we use

as many Fourier features as inducing points in SVGP, and configure
it to be a shallow GP (single layer).

Experimental results. Figure 4 shows the comparison between our
DistGPR and both approximate methods, SVGP and DGP-RFF

3https://archive.ics.uci.edu/ml/datasets.html
4https://github.com/DistributedSystemsGroup/DistGP-code

respectively. Each row in the figure corresponds to a different perfor-
mance metric, while each column indicates a different dataset. The
x-axis in the figure reports the training set sizes (in the order of 103).

We observe that exact inference pays off in terms of lower error
rates, when compared to approximate methods. Indeed, approximate
inference techniques might suffer from lack of training data, as
visible for the DGP-RFF approach for the Powerplant and Protein
datasets. In addition, approximate methods can experience problems
to optimize hyper-parameters. As shown in the Airlines dataset,
the optimization of inducing points can lead to suboptimal choices,
which hurt performance of SVGP. Overall, our approach outperforms
or is on par with all alternatives, on both our metrics.

Another key observation is that, for our DistGPR method, costly
hyper parameter estimation exhibit diminishing returns: large values
of the computational budget λ do not bring substantial benefits, and
instead result in long training times. Our multi-fidelity initialization
technique is sufficient to estimate good (albeit not optimal) hyper
parameters, and allows our method to scale up to problems involving
large covariance matrices.

Figure 5 illustrates the training time of each approach. As ex-
pected, approximate methods are much faster than exact ones, and
the difference amplifies with increasing training set sizes. For the
largest dataset, Airlines, SVGP can be up to one order of magni-
tude faster than our method, whereas DGP-RFF exhibit surprisingly
small training times, which are mainly due to the “mini-batch” based
stochastic optimization used to compute the posterior. A close look
at DistGPR indicates that it scales roughly linearly with training set
size (the figure is in log scale). Large values of the computational
budget λ imply an order of magnitude larger training times, which
cannot be justified by lower error rates. As a concluding remark,
we stress that our experimental platform is limited by the 1Gbps
network infrastructure: faster networks, e.g. 10 Gbps or more, are
becoming the norm, and we expect our training times to decrease
significantly with such modern fabrics.

9 CONCLUSION
With the pervasiveness of machine learning in modern society, the
study of statistical models enabling a principled approach to the
quantification of uncertainty is truly important. Current methods,
such as GP modeling, suffer from hard computational challenges,
that have largely been addressed through approximation techniques.

In this work, we set to study the design and evaluation of a dis-
tributed approach to exact GP inference for regression. Motivated by
the abundance of computing resources at a relatively cheap prices,
and the advent of widely accessible, high-level distributed program-
ming frameworks, we presented perhaps the first attempt to achieve
model parallelism for GP inference. We introduced new, efficient
data structures in support to a range of distributed linear algebra
primitives, and defined a unifying design pattern to control paral-
lelism and memory consumption.

Using publicly available datasets for regression tasks, we com-
pared our distributed approach to optimized, single machine im-
plementations of state-of-the-art approximate variants, which are
known to scale to very large training data. Our results illustrated
the trade-off between lower error rates and better quantification of
uncertainty offered by exact inference and lower training times of

https://archive.ics.uci.edu/ml/datasets.html
https://github.com/DistributedSystemsGroup/DistGP-code

Exact Gaussian Process Regression with Distributed Computations SAC ’19, April 8–12, 2019, Limassol, Cyprus

2 4 6 8
0.035

0.040

0.045

0.050

SM
SE

Powerplant

0 10 20 30 40
0.3

0.4

0.5

0.6

0.7

Protein

25 50 75 100 125

0.4

0.6

0.8

Airline

2 4 6 8

1.55

1.50

1.45

1.40

M
SL

L

0 10 20 30 40

0.5

0.4

0.3

0.2

25 50 75 100 125

0.4

0.2

0.0

SVGP DistGPR =0 DistGPR =3 DistGPR =7 DGP-RFF

Figure 4: Comparison of different GP regression approaches, as a function of increasing training set sizes (×103).

2 4 6 8
1.0

1.5

2.0

2.5

3.0

3.5

Lo
g(

tra
in

in
g

tim
e

in
 se

cs
) Powerplant

0 10 20 30 40
1

2

3

4

Protein

25 50 75 100 125

3

4

5
Airline

SVGP DistGPR =0 DistGPR =3 DistGPR =7 DGP-RFF

Figure 5: Training times of different GP regression approaches, as a function of increasing training set sizes (×103).

approximate methods. Many critical applications require high pre-
dictive confidence, and our work presented a practical approach to
exact Gaussian Process regression, which enables such performance.

The performance we measured for our method was bounded by
the capacity of our experimental platform. Network speed and mem-
ory capacity are key to lower training times and even larger datasets
(e.g. MNIST). While additional experiments on public clouds could
reveal interesting, our work indicated that modern distributed com-
puting frameworks require further work to introduce simple and safe
interfaces for message broadcast. Finally, we believe our work could
be combined with approximate approaches, which we plan to study
in the future. A detailed comparison to the standard parameter server
approach [30] is also truly desirable.

ACKNOWLEDGMENTS
MF gratefully acknowledges support from the AXA Research Fund.
Pietro Michiardi was partially supported by KPMG.

REFERENCES
[1] E. Anderson et al. 1999. LAPACK Users’ Guide (Third Ed.). Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA.
[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz,

S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen. 1990. LAPACK: A
Portable Linear Algebra Library for High-performance Computers. In Proceedings
of the 1990 ACM/IEEE Conference on Supercomputing (Supercomputing ’90).
IEEE Computer Society Press, Los Alamitos, CA, USA, 2–11.

[3] S. S. Bansal, B. Vishal, and R. Gupta. 2002. Near Optimal Cholesky Factorization
on Orthogonal Multiprocessors. Inf. Process. Lett. 84, 1 (2002), 23–30. https:
//doi.org/10.1016/S0020-0190(02)00222-3

[4] L. S. Blackford et al. 1997. ScaLAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA.

[5] Jaeyoung Choi et al. 1996. Design and Implementation of the ScaLAPACK
LU, QR, and Cholesky Factorization Routines. Sci. Program. 5, 3 (Aug. 1996),
173–184.

[6] Arindam Choudhury, Prasanth B. Nair, and Andy J. Keane. 2002. A Data Parallel
Approach for Large-Scale Gaussian Process Modeling. In Proceedings of the
Second SIAM International Conference on Data Mining, Arlington, VA, USA,
April 11-13, 2002. SIAM, 95–111. https://doi.org/10.1137/1.9781611972726.6

[7] Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. 2017.
Random Feature Expansions for Deep Gaussian Processes. In Proceedings of the
34th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR,

https://doi.org/10.1016/S0020-0190(02)00222-3
https://doi.org/10.1016/S0020-0190(02)00222-3
https://doi.org/10.1137/1.9781611972726.6

SAC ’19, April 8–12, 2019, Limassol, Cyprus Duc-Trung Nguyen, Maurizio Filippone, and Pietro Michiardi

International Convention Centre, Sydney, Australia, 884–893.
[8] Zhenwen Dai, Andreas C. Damianou, James Hensman, and Neil D. Lawrence.

2014. Gaussian Process Models with Parallelization and GPU acceleration. CoRR
abs/1410.4984 (2014). arXiv:1410.4984

[9] K. Das and A. N. Srivastava. 2010. Block-GP: Scalable Gaussian Process Re-
gression for Multimodal Data. In 2010 IEEE International Conference on Data
Mining. 791–796. https://doi.org/10.1109/ICDM.2010.38

[10] Alexander G. De G. Matthews, Mark Van Der Wilk, Tom Nickson, Keisuke
Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James
Hensman. 2017. GPflow: A Gaussian Process Library Using Tensorflow. J. Mach.
Learn. Res. 18, 1 (Jan. 2017), 1299–1304.

[11] Marc Peter Deisenroth and Jun Wei Ng. 2015. Distributed Gaussian Processes. In
Proceedings of the 32Nd International Conference on International Conference
on Machine Learning - Volume 37 (ICML’15). JMLR.org, 1481–1490.

[12] Jack J. Dongarra et al. 1988. An Extended Set of FORTRAN Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw. 14, 1 (March 1988), 1–17.
https://doi.org/10.1145/42288.42291

[13] J. J. Dongarra et al. 1990. A Set of Level 3 Basic Linear Algebra Subprograms.
ACM Trans. Math. Softw. 16, 1 (March 1990), 1–17. https://doi.org/10.1145/
77626.79170

[14] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. In Proceedings of the 35th International
Conference on Machine Learning (Proceedings of Machine Learning Research),
Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, Stockholmsmassan,
Stockholm Sweden, 1437–1446.

[15] Yarin Gal, Mark van der Wilk, and Carl E. Rasmussen. 2014. Distributed Vari-
ational Inference in Sparse Gaussian Process Regression and Latent Variable
Models. In Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2 (NIPS’14). MIT Press, Cambridge, MA, USA,
3257–3265.

[16] Alan George, Michael T Heath, and Joseph Liu. 1986. Parallel Cholesky factor-
ization on a shared-memory multiprocessor. Linear Algebra and its applications
77 (1986), 165–187.

[17] Evgenii Landis Georgy Adelson-Velsky. 1962. An Algorithm for the Organization
of Information. Doklady Akademii Nauk USSR 146, 2 (1962), 263–266.

[18] W.R. Gilks, S. Richardson, and D. Spiegelhalter. 1995. Markov Chain Monte
Carlo in Practice. Taylor & Francis.

[19] Laura Grigori and Xiaoye S. Li. 2006. Performance Analysis of Parallel Right-
Looking Sparse LU Factorization on Two Dimensional Grids of Processors. In
Applied Parallel Computing. State of the Art in Scientific Computing. Springer
Berlin Heidelberg, Berlin, Heidelberg, 768–777.

[20] Fred G. Gustavson, Lars Karlsson, and Bo Kågström. 2007. Three Algorithms for
Cholesky Factorization on Distributed Memory Using Packed Storage. In Applied
Parallel Computing. State of the Art in Scientific Computing, Bo Kågström, Erik
Elmroth, Jack Dongarra, and Jerzy Waśniewski (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 550–559.

[21] Joseph Hellerstein et al. 2012. The MADlib analytics library: or MAD skills, the
SQL. Proceedings of the VLDB Endowment 5, 12 (2012), 1700–1711.

[22] James Hensman, Nicolas Durrande, and Arno Solin. 2017. Variational Fourier
Features for Gaussian Processes. J. Mach. Learn. Res. 18, 1 (Jan. 2017), 5537–
5588.

[23] James Hensman, Nicoló Fusi, and Neil D. Lawrence. 2013. Gaussian Processes
for Big Data. CoRR abs/1309.6835 (2013). arXiv:1309.6835

[24] Y. Huang, Y. Yesha, M. Halem, Y. Yesha, and S. Zhou. 2016. YinMem: A
distributed parallel indexed in-memory computation system for large scale data
analytics. In 2016 IEEE International Conference on Big Data (Big Data). IEEE,
214–222. https://doi.org/10.1109/BigData.2016.7840607

[25] Y. Huangfu, J. Cao, H. Lu, and G. Liang. 2015. MatrixMap: Programming
Abstraction and Implementation of Matrix Computation for Big Data Applications.
In 2015 IEEE 21st International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 19–28. https://doi.org/10.1109/ICPADS.2015.11

[26] Mathias Jacquelin, Yili Zheng, Esmond Ng, and Katherine A. Yelick. 2016.
An Asynchronous Task-based Fan-Both Sparse Cholesky Solver. CoRR
abs/1608.00044 (2016).

[27] S. G. Kratzer. 1992. Massively parallel sparse LU factorization. In [Proceedings
1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation.
136–140. https://doi.org/10.1109/FMPC.1992.234896

[28] Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T. Krogh. 1979.
Basic linear algebra subprograms for Fortran usage. ACM TOMS 5, 3 (1979),
308–323.

[29] Boduo Li, Sandeep Tata, and Yannis Sismanis. 2013. Sparkler: Supporting Large-
scale Matrix Factorization. In Proceedings of the 16th International Conference
on Extending Database Technology (EDBT ’13). ACM, New York, NY, USA,
625–636. https://doi.org/10.1145/2452376.2452449

[30] Mu Li et al. 2014. Scaling Distributed Machine Learning with the Parameter
Server. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (OSDI’14). USENIX Association, Berkeley, CA,
USA, 583–598.

[31] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. 2014. Communication
Efficient Distributed Machine Learning with the Parameter Server. In Advances in
Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., Red Hook,
NY 12571, USA, 19–27.

[32] Jun Liu, Yang Liang, and Nirwan Ansari. 2016. Spark-based large-scale matrix
inversion for big data processing. IEEE Access 4 (2016), 2166–2176.

[33] Chandan Misra, Swastik Haldar, Sourangshu Bhattacharya, and Soumya K. Ghosh.
2018. SPIN: A Fast and Scalable Matrix Inversion Method in Apache Spark. In
Proceedings of the 19th International Conference on Distributed Computing and
Networking (ICDCN ’18). ACM, New York, NY, USA, Article 16, 10 pages.
https://doi.org/10.1145/3154273.3154300

[34] Dianne P. O’Leary and G. W. Stewart. 1985. Data-flow Algorithms for Parallel
Matrix Computation. Commun. ACM 28, 8 (Aug. 1985), 840–853. https://doi.
org/10.1145/4021.4025

[35] G. Oliva, R. Setola, and C. N. Hadjicostis. 2016. Distributed asynchronous
Cholesky decomposition. In 2016 IEEE 55th Conference on Decision and Control
(CDC). IEEE, 4414–4419. https://doi.org/10.1109/CDC.2016.7798939

[36] Christopher J. Paciorek, Benjamin Lipshitz, Wei Zhuo, Prabhat, Cari G. Kaufman,
and Rollin C. Thomas. 2015. Parallelizing Gaussian Process Calculations in R.
Journal of Statistical Software 63, 10 (2015), 1–23.

[37] Chiwoo Park and Daniel W. Apley. 2018. Patchwork Kriging for Large-scale
Gaussian Process Regression. Journal of Machine Learning Research 19, 7 (2018),
1–43.

[38] Chiwoo Park and Jianhua Z. Huang. 2016. Efficient Computation of Gaussian
Process Regression for Large Spatial Data Sets by Patching Local Gaussian
Processes. Journal of Machine Learning Research 17, 174 (2016), 1–29.

[39] Hao Peng, Shandian Zhe, Xiao Zhang, and Yuan Qi. 2017. Asynchronous Dis-
tributed Variational Gaussian Process for Regression. In Proceedings of the 34th
International Conference on Machine Learning (Proceedings of Machine Learning
Research), Doina Precup and Yee Whye Teh (Eds.), Vol. 70. PMLR, International
Convention Centre, Sydney, Australia, 2788–2797.

[40] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, Thomas
Moscibroda, and Zheng Zhang. 2012. MadLINQ: Large-scale Distributed Matrix
Computation for the Cloud. In Proceedings of the 7th ACM European Conference
on Computer Systems (EuroSys ’12). ACM, New York, NY, USA, 197–210. https:
//doi.org/10.1145/2168836.2168857

[41] Joaquin Quiñonero Candela and Carl Edward Rasmussen. 2005. A Unifying View
of Sparse Approximate Gaussian Process Regression. J. Mach. Learn. Res. 6 (Dec.
2005), 1939–1959.

[42] Padma Raghavan. 1992. Distributed Sparse Matrix Factorization: QR and
Cholesky Decompositions. Ph.D. Dissertation. University Park, PA, USA. UMI
Order No. GAX92-14255.

[43] CE. Rasmussen and CKI. Williams. 2006. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, USA. 248 pages.

[44] Carl Edward Rasmussen. 2004. Gaussian Processes in Machine Learning.
Springer Berlin Heidelberg, Berlin, Heidelberg, 63–71. https://doi.org/10.1007/
978-3-540-28650-9_4

[45] Carl E. Rasmussen and Zoubin Ghahramani. 2002. Infinite Mixtures of Gaussian
Process Experts. In Advances in Neural Information Processing Systems 14, T. G.
Dietterich, S. Becker, and Z. Ghahramani (Eds.). MIT Press, Cambridge, MA,
USA, 881–888.

[46] B. W. Silverman. 1986. Density estimation for statistics and data analysis. Mono-
graphs on Statistics & Applied Probability, Vol. 26. Chapman and Hall, London.

[47] Przemysław Stpiczyński. 1992. Parallel Cholesky factorization on orthogonal
multiprocessors. Parallel Comput. 18, 2 (1992), 213 – 219. https://doi.org/10.
1016/0167-8191(92)90080-Q

[48] Michalis K. Titsias. 2009. Variational Learning of Inducing Variables in
Sparse Gaussian Processes. In In Proc. of AISTATS (JMLR Proceedings), Vol. 5.
JMLR.org, 567–574.

[49] Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103–111.

[50] Andrew Gordon Wilson, Christoph Dann, and Hannes Nickisch. 2015. Thoughts
on Massively Scalable Gaussian Processes. CoRR abs/1511.01870 (2015).
arXiv:1511.01870

[51] Andrew Gordon Wilson and Hannes Nickisch. 2015. Kernel Interpolation for
Scalable Structured Gaussian Processes (KISS-GP). CoRR abs/1503.01057 (2015).
arXiv:1503.01057

[52] Jingen Xiang, Huangdong Meng, and Ashraf Aboulnaga. 2014. Scalable matrix
inversion using MapReduce. In HPDC. ACM, 177–190.

[53] Reza Bosagh Zadeh, Xiangrui Meng, Burak Yavuz, Aaron Staple, Li Pu, Shivaram
Venkataraman, Evan R. Sparks, Alexander Ulanov, and Matei Zaharia. 2015.
linalg: Matrix Computations in Apache Spark. CoRR abs/1509.02256 (2015).
arXiv:1509.02256

[54] D. Zheng and T.Y.P. Chang. 1995. Parallel cholesky method on MIMD with
shared memory. Computers & Structures 56, 1 (1995), 25 – 38.

http://arxiv.org/abs/1410.4984
https://doi.org/10.1109/ICDM.2010.38
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
http://arxiv.org/abs/1309.6835
https://doi.org/10.1109/BigData.2016.7840607
https://doi.org/10.1109/ICPADS.2015.11
https://doi.org/10.1109/FMPC.1992.234896
https://doi.org/10.1145/2452376.2452449
https://doi.org/10.1145/3154273.3154300
https://doi.org/10.1145/4021.4025
https://doi.org/10.1145/4021.4025
https://doi.org/10.1109/CDC.2016.7798939
https://doi.org/10.1145/2168836.2168857
https://doi.org/10.1145/2168836.2168857
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1016/0167-8191(92)90080-Q
https://doi.org/10.1016/0167-8191(92)90080-Q
http://arxiv.org/abs/1511.01870
http://arxiv.org/abs/1503.01057
http://arxiv.org/abs/1509.02256

	Abstract
	1 Introduction
	2 Related Work
	3 Distributed GP Regression
	3.1 Classical GP regression
	3.2 Computational challenges and scalability bottlenecks
	3.3 Overview of our approach

	4 Distributed Data Structures
	5 Distributed Cholesky Factorization

	6 Distributed Systems of Linear Equations
	7 Model Selection

	8 Experimental Evaluation
	9 Conclusion
	References

