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Motivation



Quantification of Uncertainty with Expensive Models

• Climate modeling

Kennedy and O’Hagan, J-RSS-B, 2001
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Quantification of Uncertainty with No Models

• Classification and progression of neurodegenerative diseases

Filippone et al., AoAS, 2012 – Lorenzi, Filippone et al., NeuroImage, 2017 – Lorenzi and Filippone, ICML, 2018
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A Unified Framework

A model might be expensive to simulate/inaccurate

• Emulate model/discrepancy using a surrogate

A model might not even be available

• Replace it with a flexible statistical model

Probabilistic Deep Models for Accurate Modeling and

Quantification of Uncertainty
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Probabilistic Deep Nets



Learning from Data – Function Estimation

• Take these two examples
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• We are interested in estimating a function f(x) from data

• Most problems in Machine Learning can be cast this way!
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Deep Neural Networks

• Implement a composition of parametric functions

f(x) = f(L)
(

f(L−1)
(
· · · f(1) (x) · · ·

))
with

f(l)(h) = g
(

h>W (l)
)

f(1)x f(2) f(3) f(4) y

W (1) W (2) W (3) W (4)
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Back-propagation – Probabilistic Interpretation Loss

• Inputs : X = {x1, . . . , xN}
• Labels : Y = {y1, . . . , yN}
• Weights : W = {W (1), . . . ,W (L)}

Quadratic Loss p(Y |X ,W ) ∝ exp(−Loss)
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• Back-propagation minimizes a loss function

• . . . equivalent as optimizing likelihood p(Y |X ,W )
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Bayesian Inference

• Inputs : X = {x1, . . . , xN}
• Labels : Y = {y1, . . . , yN}
• Weights : W = {W (1), . . . ,W (L)}

p(W ) p(W |Y ,X )

p(W |Y ,X ) =
p(Y |X ,W )p(W )∫
p(Y |X ,W )p(W )dW
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Bayesian Deep Neural Networks

• Regression example
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Bayesian Deep Neural Networks

• Classification example
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Stochastic Variational Inference

• Bayesian inference is intractable due to this integral

log [p(Y |X )] = log

[∫
p(Y |X ,W )p(W )dW

]

• Lower bound for log [p(Y |X )]

Eq(W ) (log [p (Y |X ,W )])−KL [q(W )‖p (W )] ,

where q(W ) approximates p(W |Y ,X ).

• Kullback-Leibler divergence KL – “distance” between q and p

Optimize the lower bound wrt the parameters of q(W )

Graves, NIPS, 2011
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Stochastic Variational Inference

• Assume that the likelihood factorizes

p(Y |X ,W ) =
∏
k

p(yk |xk ,W )

• Doubly stochastic unbiased estimate of the expectation term
• Mini-batch

Eq(W ) (log [p (Y |X ,W )]) ≈ n

m

∑
k∈Im

Eq(W ) (log [p(yk |xk ,W )])

• Monte Carlo

Eq(W ) (log [p(yk |xk ,W )]) ≈ 1

NMC

NMC∑
r=1

log[p(yk |xk , W̃ r )]

with W̃ r ∼ q(W ).
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Stochastic Variational Inference

• Assume a factorized Gaussian approximate posterior:

q(W ) =
∏
ijl

q
(
W

(l)
ij

)
=
∏
ijl

N
(
µ

(l)
ij , (σ

2)
(l)
ij

)
(1)

• Reparameterization trick

(W̃
(l)
r )ij = σ

(l)
ij ε

(l)
rij + µ

(l)
ij ,

with ε
(l)
rij ∼ N (0, 1)

• Optimization wrt µ
(l)
ij , (σ

2)
(l)
ij with automatic differentiation

Kingma and Welling, ICLR, 2014
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Stochastic Gradient Optimization

E
{
∇̃parqLowerBound

}
= ∇parqLowerBound
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Stochastic Variational Inference - Simple Illustration

parq
′ = parq +

αt

2
∇̃parq(LowerBound) αt → 0
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Form of Approximating Distribution

Approximating distribution q(W ) can have the following forms:

• Fully factorized

−
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0
5

• Full covariance Σ = LL>

−
5
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• Normalizing Flows, Real NVPs, Stein VI - change of measure

determined by det(Jacobian)

−
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0
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−
5

0
5

Rezende et al., ICML, 2015 – Dinh et al., ICLR, 2017 – Liu and Wang, NIPS, 2016
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Initialization of SVI matters

• Initialization can be an issue

• We proposed a novel way to initialize SVI well
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Rossi, Michiardi and Filippone, arXiv, 2018
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Is There an Easier Way?

• Dropout is Variational Inference with Bernoulli-like q(W )

• At training time, apply dropout

Iteration 1 Iteration 2 Iteration 3 . . .

. . .

• At test time, “sample” networks with different dropout masks
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Gaussian Processes as Infinitely-Wide Shallow Neural Nets

• Take W (i) ∼ N (0, αi I )

• Central Limit Theorem implies that F

is Gaussian

...

...

ΦX F

W (0) W (1)

• F has zero-mean

• cov(F ) = Ep(W (0),W (1))[Φ(XW (0))W (1)W (1)>Φ(XW (0))>]

Neal, LNS, 1996 – Rasmussen and Williams, 2006
20



Gaussian Processes as Infinitely-Wide Shallow Neural Nets

• Take W (i) ∼ N (0, αi I )

• Central Limit Theorem implies that F

is Gaussian

...

...

ΦX F

W (0) W (1)

• F has zero-mean

• cov(F ) = α1Ep(W (0))[Φ(XW (0))Φ(XW (0))>]

• Some choices of Φ lead to analytic expression of known

kernels (RBF, Matérn, arc-cosine, Brownian motion, . . .)

Neal, LNS, 1996 – Rasmussen and Williams, 2006
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Random Feature Expansions for DGPs - Bochner’s theorem

• Continuous shift-invariant covariance function

k(xi − xj |θ) = σ2

∫
p(ω|θ) exp

(
ι(xi − xj)

>ω
)
dω

• Monte Carlo estimate

k(xi − xj |θ) ≈ σ2

NRF

NRF∑
r=1

z(xi |ω̃r )>z(xj |ω̃r )

with

ω̃r ∼ p(ω|θ)

z(x|ω) = [cos(x>ω), sin(x>ω)]>

Rahimi and Recht, NIPS, 2008 - Lázaro-Gredilla et al., JMLR, 2010
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Random Feature Expansions for DGPs

• Define

Φ(l) =

√
σ2

N
(l)
RF

[
cos
(
F (l)Ω(l)

)
, sin

(
F (l)Ω(l)

)]
and

F (l+1) = Φ(l)W (l)

• We are stacking Bayesian linear models with

p
(
W

(l)
·i

)
= N (0, I )

• Expansion of arc-cosine kernel yields ReLU activations!

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Random Feature Expansions make Deep GPs become DNNs

θ(0) θ(1)

Φ(0)X F (1) Φ(1) F (2) Y

Ω(0) W (0) Ω(1) W (1)

Cutajar, Bonilla, Michiardi, Filippone, ICML, 2017
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Some Results



Results - Model (Depth) Selection

Airline dataset

(n = 5M+, d = 8)
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Convolutional Nets

• Convolutional nets are widely used. . .

• . . .but they are known to be overconfident!

Convolution
+ ReLU

Convolution
+ ReLUPooling Pooling Fully connected layers Output

Guo et al., ICML, 2017
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Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams

Predicted value 

Fr
ac

tio
n 

po
si

tiv
es

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 
0.

1 
0.

2 
0.

3 
0.

4 
0.

5 
0.

6 
0.

7 
0.

8 
0.

9 
1 

27



Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams

Predicted value 

Fr
ac

tio
n 

po
si

tiv
es

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 
0.

1 
0.

2 
0.

3 
0.

4 
0.

5 
0.

6 
0.

7 
0.

8 
0.

9 
1 

28



Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams - Under-confident predictions

Predicted value 
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• We can extract the Expected Calibration Error (ece) score

• The brier score is another measure of calibration
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Calibration as a Measure of Quantification of Uncertainty

• Reliability diagrams - Overconfident predictions
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Reliability diagrams of modern Deep CNNs look like this!

Bayesian treatment of filters fixes it!
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Bayesian CNNs are calibrated

• Inferring parameters of convolutional filter recovers calibration

• Example with Monte Carlo Dropout
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Performance Evaluation of Bayesian CNNs

• Bayesian CNNs are calibrated and achieve better performance

than post calibrated CNNs
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Knowing When the Model Doesn’t Know

• Training on MNIST and test on not-MNIST
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Tran et al., AISTATS, 2019 – Rossi et al., arXiv, 2018 – Lakshminarayanan et al., NIPS, 2017 33



Conclusions



Conclusions

• Inference for Deep Nets is hard

• Scalable stochastic-based approximate inference but...

• ... it is difficult to assess the impact approximations on

quantification of uncertainty

• The connection between Deep Nets and Deep Gaussian
processes can have implications on

• Understanding Deep Learning

• Deriving sensible priors for Deep Learning

• Improving inference borrowing algebraic/computational tricks

from kernel literature

• Cool stuff

• New hardware

• Bayesian compression

34
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We are hiring!

We are hiring PhDs, Post-docs and Assistant Professors
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