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Abstract—We consider the problem of trajectory optimization
for an autonomous UAV-mounted base station that provides
communication services to ground users with the aid of landing
spots (LSs). Recently, the concept of LSs was introduced to
alleviate the problem of short mission durations arising from
the limited on-board battery budget of the UAV, which severely
limits network performance. In this work, using Q-learning, a
model-free reinforcement learning (RL) technique, we train a
neural network (NN) to make movement decisions for the UAV
that maximize the data collected from the ground users while
minimizing power consumption by exploiting the landing spots.
We show that the system intelligently integrates landing spots
into the trajectory to extend flying time and is able to learn the
topology of the network over several flying epochs without any
explicit information about the environment.

I. INTRODUCTION

The large-scale use of unmanned aerial vehicles (UAVs) is
envisioned for a multitude of applications in the society of the
future, with “last mile” delivery of goods to consumers being a
frequently cited one. Commercial deployment of autonomous
drones to deliver food and groceries to customers in Iceland’s
capital Reykjavik has started very recently, putting the Ice-
landic air authorities at the top of the list of countries that
allow autonomous drone flight [1]. More countries are bound
to follow, opening up markets to a variety of applications other
than just cellular-connected delivery or survey drones.

One promising idea is to leverage the versatility of drones
for the mobile communication infrastructure itself. Deploying
mobile base stations (BSs) mounted on UAVs could provide
network operators with the capability to react fast and effi-
ciently to sudden demand increases in localized areas, e.g.
caused by crowded events, as well as immediately re-establish
destroyed networks in disaster and search-and-rescue scenar-
ios. Alternative carrier systems such as fixed-wing aircraft or
balloons (as in Google’s spin-off Loon) could also be used
to establish network coverage and Internet connectivity in the
vast areas around the globe currently without it.

No matter the scale of the established network, the Quality
of Service (QoS) afforded to the network’s users is strongly
dependent on the location of the UAV BS. Previous works
either addressed the placement problem of finding a drone
position that maximizes the system’s QoS goals, e.g. in [2],
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[3], or the trajectory planning problem where the drone’s flying
path from start to end is optimized with respect to the QoS
goals, e.g. in [4]–[7]. When only addressing the placement
problem, the performance while flying to and from the des-
ignated position is not being optimized. In [5], considering
the whole trajectory allows the authors to jointly optimize
scheduling and user association, whereas the authors of [4] and
[6] consider the power consumption of the UAV and attached
BS in addition to the QoS. A large number of works exist that
investigate the general challenges and opportunities in wireless
communications with UAVs, summaries of which are provided
in [8], [9].

As this work focuses on small and versatile multirotor type
drones, of which the quadcopter is the most commonly used
example, power consumption and battery energy density re-
strictions are central constraints for UAV BS mission planning.
A typical quadcopter fitted with a small base station as used
in experiments at Eurecom [10] can only sustain a mission
duration of around 15 minutes. As power consumption for
flying usually exceeds power consumption of the carried BS
by far, the authors in [6] introduced the concept of landing
spots (LSs), where a UAV BS can land thus saving energy
while continuing to serve users.

Q-learning, a model-free reinforcement learning (RL) tech-
nique, has received a lot of attention in a variety of fields since
it was employed in a seminal paper by Mnih et al. [11] for
stable training of a neural network (NN) playing Atari video
games with superhuman performance. The combination of a
deep NN and Q-learning was considered to be inherently un-
stable until then [12]. Reinforcement learning in combination
with deep NN training has not been considered widely for
challenges in UAV communications. In [13], the authors use
RL with a deep recurrent NN to plan paths for a network of
cellular-connected UAVs while minimizing interference in the
ground network. The concept of optimizing a trajectory of a
UAV BS through a NN trained with reinforcement Q-learning
was introduced in [7], however without any consideration of
power consumption and LSs.

In this work, we consider the UAV acting as a mobile BS
serving a group of ground users maximizing the sum of the
information rate over the whole flying time with a limited
amount of energy in the drone’s battery at the start. Movement
decisions are therefore made based on the UAV’s current
position and battery content, as well as the expectation of the
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Fig. 1. UAV BS movement decisions are made based on the drone’s current
state, i.e. position and battery content. While LSs offer the possibility to
conserve energy, the UAV BS might have to sacrifice QoS for some users.

total sum rate that can be achieved until the battery has run
out. To save energy during the mission, the UAV is allowed
to land in designated LSs as depicted in Fig. 1.

II. SYSTEM MODEL

We consider a square grid world G = [0, g]× [0, g] with the
UAV serving K ground users located at positions (ak, bk) ∈ G
with k ∈ {1, ...,K} and L landing spots with equal height H
contained within. The LSs and their locations are given by the
set

L =
{(
xli, y

l
i

)
, i = 1, . . . , L, :

(
xli, y

l
i

)
∈ G

}
.

A. UAV Model

The UAV starts its mission from an initial position (x0, y0)
and is assumed to travel at constant altitude H with a max-
imum velocity V , i.e. v(t) ≤ V . The mission is over when
the drone’s battery is empty defined as time tf , by which the
UAV is supposed to be in the final position (xf , yf ). During
the mission, t ∈ [0, tf ], the drone’s position is given by x(t)
and y(t), which are smooth functions of class C∞ and defined
as

x :

(
[0, tf ]→ R
t→ x(t)

)
y :

(
[0, tf ]→ R
t→ y(t)

)
(1)

subject to

x(0) = x0, y(0) = y0 (1a)
x(tf ) = xf , y(tf ) = yf (1b)

The UAV battery’s energy content is denoted by

b(t) ≥ 0, ∀t ∈ [0, tf ] (2)

during mission time with a full charge when the mission be-
gins, i.e. b(0) = bmax. Power consumption of the autonomous
UAV BS is modeled by a flying and mobility component pf (t),
as well as a communication and computation component pc(t)
which is assumed to be constant during the mission, i.e.

pc(t) = pc, ∀t ∈ [0, tf ]. (3)

Energy usage for flying is constant as well, except when the
drone has landed in a designated LS, i.e.

pf (t) =

{
0, ∀t : (x(t), y(t)) ∈ L,
pf , otherwise.

(4)

It follows that the UAV’s battery content evolves according to
.

b(t) = −pf (t)− pc (5)

with
.

b(t) representing the time derivative of b(t).

B. Communication Channel Model

The communication links between UAV BS and the group
of K users are modeled as orthogonal point-to-point channels
with log-distance path loss, random small-scale Rayleigh
fading and a constant attenuation factor in under non-line-
of-sight (NLOS) conditions. The information rate for the k-th
user, k ∈ {1, ...,K} located at static position (ak, bk) ∈ G at
ground level is given by

Rk(t) = log2 (1 + SNRk(t)) , (6)

where the signal-to-noise ratio (SNR) with transmit power Pk,
UAV-user distance dk(t) and path loss exponent α = 2, is
defined as

SNRk(t) =
Pk
N
· dk(t)−α · 10XRayleigh/10 · βshadow. (7)

Small-scale fading was modeled as a Rayleigh distributed
random variable XRayleigh with scaling factor σ = 1. At-
tenuation through obstacle obstruction is a discrete factor
βshadow = 0.01 under NLOS conditions, and βshadow = 1
everywhere else.

Using the described model, the maximization problem can
be formulated as

max
x(t),y(t)

tf∫
t=0

E

[
K∑
k=1

Rk(t)

]
dt (8)

subject to aforementioned constraints (1a), (1b), (2) and (5).

III. Q-LEARNING

RL in general and Q-learning in particular, allows an agent
to optimize its actions in an environment that can be repre-
sented by a Markov decision process (MDP). The learning
process constitutes a cycle of interactions between the agent,
observing state st ∈ S and performing an action at ∈ A
at time t, and the environment, which subsequently assigns
a reward rt ∈ R to the agent. The state and action space,
S and A respectively, are part of the problem definition as
a finite MDP 〈S,A,P, R, γ〉 with state transition probability
Pa(s, s′) = P (st+1 = s′ | st = s, at = a), reward function
Ra(s, s

′) and discount factor γ ∈ [0, 1) which controls the
importance of future rewards in relation to present reward.

The agent’s goal is to learn a behavior or policy that
maximizes its received reward, which is given as a distribution
over actions given state

π(a|s) = P [at = a|st = s] , ∀a ∈ A, s ∈ S. (9)



To find the optimal policy π∗(a|s), Q-learning relies on
iteratively improving the state-action value function Qπ which
is also called Q-function. With respect to a policy π, the Q-
function maps each state-action pair to a Q-value representing
an expectation of total future reward when following policy π.
With the discounted sum of all future rewards at time t called
return Rt ∈ R and defined as

Rt ,
T−1∑
k=0

γkrt+1+k (10)

and reaching the terminal state at time t+ T , the Q-function
is given as

Qπ(s, a) = Eπ{Rt | st = s, at = a}, ∀a ∈ A, s ∈ S. (11)

Without requiring a model and using the observed state
transitions and rewards, the Q-function is updated after each
transition as follows:

Qπ(st, at)← Qπ(st, at)+

α
(
rt + γmax

a′
Qπ(st+1, a

′)−Qπ(st, at)
)

(12)

with learning rate α ∈ [0, 1] determining to what extend
old information is overridden and discount factor γ ∈ [0, 1)
balancing the importance of short-term and long-term reward.
γ approaching 1 will make the agent focus on gaining long-
term reward, whereas choosing γ = 0 will make it consider
only the immediate reward of an action [12].

IV. NEURAL NETWORK TRAINING AND ALGORITHM

A. Neural Network Approximation of the Q-Function

In traditional Q-learning, the Q-function is usually repre-
sented by a multidimensional table that contains one Q-value
for each state-action pair. It becomes immediately evident that
this is not practical in large state and action spaces as the table
size would grow exponentially when adding space dimensions
or polynomially when increasing the magnitude of state or
action space.

A way out of this dilemma is the use of a NN, the Q-
net, which approximates the optimal Q-function Q∗(s, a) by
a network Qπ(s, a; θ) with parameters θ:

Qπ(s, a; θ) ≈ Q∗(s, a). (13)

The main advantages of this approach include the NN’s
ability to generalize from few data samples to the whole state
space and the NN’s higher training data efficiency. A more
detailed comparison of table- and NN-based Q-learning for
UAV BS trajectory optimization can be found in [7].

Fig. 2 shows the NN architecture used in this work. One
state space sample containing drone position, current battery
content and landing spot availability forms the input. Two fully
connected hidden layers with n = 100 units each are followed
by the output layer with outputs equal to the cardinality of
the drone’s action space. All neurons are rectified linear units
(ReLU).
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Fig. 2. Neural network architecture consisting of four input and nine output
neurons representing the state and action space respectively, as well as two
hidden and fully connected layers with n = 100 neurons each.

B. Training Process Improvements

It is known that combining Q-learning with a deep NN to
represent the Q-function can lead to instability, oscillations
and even catastrophic divergence in the training process.
Sutton identified three main elements as the cause of such
instability calling them the deadly triad [12], i.e. function
approximation, bootstrapping and off-policy training, which
are all present in the Q-net algorithm. Mnih et al. [11] showed
that improvements to the training can be made to stabilize the
process.

Experience replay [14] is a technique to reduce correlations
in the sequence of training data. Each new experience tuple
e = (st, at, rt, st+1) is stored into a buffer, the replay memory.
Instead of directly using the most recent experiences, a mini-
batch of temporally uncorrelated data is sampled uniformly
from the replay memory and used for training. This increases
training data efficiency as samples can be reused multiple
times and reduces the variance of updates as the samples’
temporal correlation is broken. As those training samples were
obtained under different network parameters, the use of replay
memory mandates the use of an off-policy learning method
such as Q-learning.

The second improvement, target network separation [15],
addresses the problem of correlated target Q-value yi and Q-
value estimate Q(si, ai; θ) inside the loss function as described
in line 13 of Algorithm 1 below. Both values are taken from
the same NN which can lead to oscillations or divergence in
the policy. By cloning the primary network periodically and
generating target values exclusively from this separate target
network, a delay is added between the time an update is made
at the time the update affects the targets yi, making divergence
and oscillations less likely [11].

C. Training Algorithm

In the following, the NN training algorithm is described in
more detail.



Algorithm 1 Q-network training [11]
Initialize replay memory M to size D
Initialize primary network Q with random parameters θ
Initialize target network Q̂ with random parameters θ̂

1: for n = 0 to Nmax do
2: Initialize state s0 = (x0, y0, bmax, boolls), t = 0
3: if (n mod Ntarget = 0) then
4: θ̂ ← θ
5: end if
6: while b ≥ 0 do

7: at =

{
randomly select from A, with probability ε
argmaxa′ Q(st, a

′; θ), otherwise

8: Observe rt, st+1

9: Store e = (st, at, rt, st+1) in M
10: for i = 0 to m do
11: Sample (si, ai, ri, si+1) uniformly from M

12: yi =

{
ri, if terminal
ri + γmaxa′ Q̂(si+1, a

′; θ̂), otherwise

13: Compute Li(θ, θ̂) = E
[
(yi −Q(si, ai; θ))

2
]

14: end for
15: θ ← θ − η · 1

m∇θ
∑m
i=1 Li(θ, θ̂)

16: t = t+ 1
17: end while
18: ε← εfinal + (εstart − εfinal)e−λn
19: end for

After initialization of replay memory buffer and network
parameters, a new learning episode is started by resetting the
time index and the drone’s position, as well as the drone’s
battery (line 2). Every Ntarget episodes, the target network
parameters θ̂ are updated (line 4).

As long as there is energy left in the UAV’s battery, the
mission continues and the agent makes a movement decision
according to the ε-greedy policy. With probability ε, an action
is randomly selected from the action space A and otherwise
the action that maximizes the Q-function in the current state.
Subsequently, the environment assigns a reward rt and prop-
agates the UAV to the next state st+1. The new experience
tuple is saved in the replay memory (line 9).

To train the Q-net, a minibatch of m experiences is sampled
uniformly from the replay buffer, the target value yi is set using
the target network and the loss computed (lines 10-14). Using
SGD or a derivative thereof, the primary network parameters
θ are updated with learning rate η (line 15). After the battery
is empty and the mission is over, the probability for random
exploration of the state space is exponentially decayed with
decay constant λ (line 18). Algorithm 1 terminates when the
final learning episode n = Nmax is reached.

V. SIMULATION

As depicted in Fig. 3, the algorithm is tested in a grid
world of size 1000m×1000m discretized by 100m steps (121
unique geometric positions). The UAV’s start and final position
are at the origin and the upper right corner, respectively. The

UAV serves K = 10 users. While Fig. 3 illustrates the scenario
with L = 1 LS, Fig. 4 depicts the L = 2 LS scenario.

In addition to landing on a LS, the action space of the
UAV is limited to 8 movement direction due to the geometric
restrictions. Possible control actions are given by

v ∈
{[

0m s−1

0

]
,

[
12.5m s−1

φ

]
,

[
17.7m s−1

φ+ π
4

]}
with φ ∈ {0, π2 , π,

3π
2 }. The UAV is assumed to travel at a

constant altitude of H = 40m. The drone’s battery content is
bmax = 31 Wh when fully charged. Power consumption for
flying and communication is assumed to be pf = 400 W and
pc = 40 W, respectively. These values reflect our experiences
from real-world UAV BS experiments at Eurecom [10].

The basis of the reward signal is formed by the instan-
taneous sum information rate as computed in Equation (6).
Additional punishments (negative reward) are given to the
drone for stepping out of the 11 by 11 grid world, as well
as for failing to return to the final position before the battery
runs out and the mission is over. For discovering and landing
in a LS for the first time, a one-off “discovery” reward is given
to the agent. As the numerical value of these punishments and
rewards can be chosen freely by the environment designer, it
is reasonable to fix them to values in the same range as the
expected sum rate, the reward signal’s main component.

VI. RESULTS

Fig. 3 depicts the final learned trajectories when applying
Algorithm 1 to a scenario similar to the one investigated in
[6], where dynamic programming (DP) was used to obtain
a model-based solution. Two trajectories are shown for cell-
edge SNRs of 10dB and -15dB. The cell-edge SNR is defined
as the SNR of the radio link between the UAV at center
position (500m, 500m) and a user maximally far apart, e.g.
at (0m, 1000m). For a low cell-edge SNR, the drone ignores
the LS and instead flies around the maximum sum rate point
near the user cluster in the lower right corner and returns to
the final position in time before its battery runs out. Under
high cell-edge SNR conditions (10dB), the UAV BS learns to
obtain an overall higher sum rate result by landing in the LS
and extending the mission duration by conserving energy. The
results obtained with Algorithm 1 mirror the DP model-based
results, which are known to be optimal [6].

In addition to the environmental parameters described in
Section V, the second scenario includes an obstacle that causes
shadowing and obstructs the LOS connection to some users.
The shadowed areas are depicted in Fig. 4 as gray, where the
darker regions are shadowed from multiple users. The right LS
is in the shadow of the obstacle whereas the left LS provides
a LOS connection to all 10 users.

Fig. 4 shows two results for high shadowing loss (β = 0.01)
and low shadowing loss (β = 0.1), both under high cell-edge
SNR conditions (10dB). With low shadowing, the drone stays
on the direct line between start and final position until reaching
the LS where it lands and conserves energy. With the minimum
amount of energy left in the battery that is required to reach



Fig. 3. Final trajectories for cell-edge SNRs of 10dB and -15dB.

Fig. 4. Final trajectories for high and low shadowing loss factor.

the final position, it restarts from the LS to arrive at the final
position in time.

In contrast, higher shadowing loss leads the agent to realize
that the left LS, despite being far away from most users and
requiring more energy to reach, leads to a better overall sum
rate result in the long run. Even under challenging conditions
with random small-scale fading and shadowing obstacles in the
environment, the Q-net agent is able to discriminate between
multiple LSs and different channel conditions to achieve the
best long-term result. Fig. 5 shows the overall collected data
per training episode (or completed mission) during the learning
process. The training converges for both shadowing conditions
to a stable solution at about n = 32, 000 episodes.

VII. CONCLUSION

We have introduced a Q-learning system that trains a NN to
make movement decisions for an autonomous UAV BS under

Fig. 5. Collected data per training episode for trajectories in Fig. 4.

an energy constraint with the help of LSs. In contrast to previ-
ous works [6], the presented system can utilize LSs efficiently
to extend mission duration and maximize the sum rate of the
transmission without a model or any prior information about
the environment. The training procedure was shown to adapt
effectively to complex environmental effects like small-scale
fading and obstacle shadowing.
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