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Abstract

Multi-fidelity models are prominently used in various science and engineering
applications where cheaply-obtained, but possibly biased and noisy observations
must be effectively combined with limited or expensive true data in order to con-
struct reliable models. The notion of applying deep Gaussian processes (DGPs)
to this setting has recently shown great promise by capturing complex nonlinear
correlations across fidelities. However, the architectures explored thus far are bur-
dened by structural assumptions and constraints which deter such models from per-
forming to the best of their expected capabilities. In this paper we propose a novel
approach for DGP multi-fidelity modeling which treats DGP layers as fidelity lev-
els and uses a variational inference scheme to propagate uncertainty across them.
In our experiments, we show that this approach makes substantial improvements
in quantifying and propagating uncertainty in multi-fidelity set-ups, which in turn
improves their effectiveness in decision-making pipelines.

1 Introduction

Multi-fidelity models [4, 7] are designed to fuse limited true observations (high-fidelity) with
cheaply-obtained lower granularity representations (low-fidelity). Gaussian processes [GPs; 9] are
well-suited to multi-fidelity problems due to their ability to encode prior beliefs about how fidelities
are related, yielding predictions accompanied by uncertainty estimates. GPs formed the basis of sem-
inal autoregressive models (AR1) investigated by [4] and [6], and are suitable when the mapping
between fidelities is linear, i.e. the high-fidelity function ft can be modeled as:

ft(x) = ρft−1 (x) + δt (x) , (1)

where ρ is a constant scaling the contribution of samples ft−1 drawn from the GP modeling the data
at the preceding fidelity, and δt(x) models the bias between fidelities. However, this is insufficient
when the mapping is nonlinear, i.e. ρ is now a nonlinear transformation such that:

ft(x) = ρt (ft−1 (x)) + δt (x) . (2)

The additive structure and independence assumption between the GPs for modeling ρt (ft−1 (x))
and δt (x) permits us to combine these as a single GP that takes as inputs both x and f∗

t−1(x), which
here denotes a sample from the posterior of the GP modeling the preceding fidelity evaluated at x.
This can be expressed as ft(x) = gt

(
f∗
t−1 (x) , x

)
.
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(a) Left: Overfitting in the NARGP model. Right:
Well-calibrated fit using proposed MF-DGP model.
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(b) Left: AR1 cannot capture nonlinear mappings.
Right: Fixed by compositional structure of MF-DGP.

Figure 1: Limitations addressed and resolved jointly by MF-DGP. Blue and red markers denote low
and high-fidelity observations respectively. Shaded regions indicate the 95% confidence interval.

Deep Gaussian processes [DGPs; 2] are a natural candidate for handling such relationships, allow-
ing for uncertainty propagation in a nested structure of GPs where each GP models the transition
from one fidelity to the next. However, DGPs are cumbersome to develop and approximations are
necessary for enabling tractable inference. While motivated by the structure of DGPs, the nonlinear
multi-fidelity model (NARGP) proposed in [8] amounts to a disjointed architecture whereby each GP
is fitted in an isolated hierarchical manner, preventing GPs at lower fidelities from being updated
once they have been fit. Consider the example given in Figure 1a. In the boxed area, we would
expect the model to return high uncertainty to reflect the lack of data available, but overfitting in
NARGP results in predicting an incorrect result with reasonably high confidence.

Contribution: In this work, we propose the first complete interpretation of multi-fidelity modeling
using DGPs, which we refer to as MF-DGP. In particular, we leverage the sparse DGP approxima-
tion proposed in [10] for constructing a multi-fidelity DGP model which can be trained end-to-end,
overcoming the constraints that hinder existing attempts at using DGP structure for this purpose. Re-
turning to the example given in Figure 1a, we see that our model fits the true function properly while
also returning sensibly conservative uncertainty estimates. Additionally, our model also inherits the
compositional structure of NARGP, alleviating a crucial limitation of AR1 (Figure 1b).

2 Multi-fidelity Deep Gaussian Process (MF-DGP)

The application of DGPs to the multi-fidelity setting is particularly appealing because if we assume
that each layer corresponds to a fidelity level, then the latent functions at the intermediate layers are
given a meaningful interpretation which is not always available in standard DGP models. The first
attempt at using compositions of GPs in a multi-fidelity setting [8] relied on structural assumptions
on the data to circumvent the intractability of DGPs, but this heavily impairs their expected flexibil-
ity. Recent advances in the DGP literature [1, 10] have leveraged traditional GP approximations to
construct scalable DGP models which are easier to specify and train; we build our extension atop the
model presented in [10] to avoid the constraints imposed on selecting kernel functions in [1].

2.1 Model Specification

Let us assume a dataset D having observations at T fidelities, where Xt and yt denote the nt inputs
and corresponding outputs observed with fidelity level t:

D =
{(

X1, y1
)
, . . . ,

(
Xt, yt

)
, . . . ,

(
XT , yT

)}
.

For enhanced interpretability, we assume that each layer of our MF-DGP model corresponds to the
process modeling the observations available at fidelity level t, and that the bias or deviation from the
true function decreases from one level to the next. We use the notation Ft

l to denote the evaluation at
layer l for inputs observed with fidelity t; for example, the evaluation of the process at layer ‘1’ for
the inputs observed with fidelity ‘3’ is denoted as F3

1. A conceptual illustration of the proposed MF-
DGP architecture is given in Figure 2 (left) for a dataset with three fidelities. Note that the GP at each
layer is conditioned on the data belonging to that level, as well as the evaluation of that same input
data at the preceding fidelity. This gives greater purpose to the notion of feeding forward the original
inputs at each layer, as originally suggested in [3] for avoiding pathologies in deep architectures.
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Figure 2: Left: MF-DGP architecture with 3 fidelity levels. Right: Predictions using same MF-DGP.

At each layer we rely on the sparse variational approximation of a GP for inference, thus obtaining
the following variational posterior distribution:

q
(
Ft
l |Ul

)
= p

(
Ft
l |Ul; {Ft

l−1,Xt},Zl−1

)
q (Ul) , (3)

where Zl−1 denotes the inducing inputs for l, Ul their corresponding function evaluation, and
q (Ul) = N (Ul|µµµl,ΣΣΣl) is the variational approximation of the inducing points. The mean and
variance defining this variational approximation, i.e. µµµl and ΣΣΣl, are optimized during training. Fur-
thermore, if Ul is marginalized out from Equation 3, the resulting variational posterior is once again
Gaussian and fully defined by its mean, m̃l, and variance, S̃l:

q
(
Ft
l |µµµl,ΣΣΣl; {Ft

l−1,Xt},Zl−1

)
= N

(
Ft
l | m̃t

l , S̃
t
l

)
, (4)

which can be derived analytically. The likelihood noise at lower fidelity levels is encoded as additive
white noise in the kernel function of the GP at that layer.

We can then formulate the variational lower bound on the marginal likelihood as follows:

LMF-DGP =
T∑

t=1

nt∑
i=1

Eq(f i,t
t )

[
log p

(
yi,t|f i,t

t

)]
+

L∑
l=1

DKL (q (Ul) || p (Ul;Zl−1)) ,

where we assume that the likelihood is factorized across fidelities and observations, and DKL de-
notes the Kullback-Leibler divergence. Samples from the model are obtained recursively using the
reparameterization trick [5] to draw samples from the variational posterior.

Model predictions with different fidelities are also obtained recursively by propagating the input
through the model up to the chosen fidelity. At all intermediate layers, the output from the preceding
layer is augmented with the original input, as will be made evident by the choice of kernel explained
in the next section. The output of a test point x⋆ can then be predicted with fidelity level t as follows:

q (f ⋆
t ) ≈

1

S

S∑
s=1

q
(
f s,⋆
t |µµµt,ΣΣΣt; {f s,⋆

t−1, x⋆},Zt−1

)
, (5)

where S denotes the number of Monte Carlo samples and t replaces l as the layer indicator. This
procedure is illustrated in Figure 2 (right).

2.2 Multi-fidelity Covariance

For every GP at an intermediate layer, we opt for the multi-fidelity kernel function proposed in [8],
since this captures both the potentially nonlinear mapping between outputs as well as the correlation
in the original input space:

kl = kρl
(
xi, xj ;θθθρl

)
kf−1
l

(
f∗
l−1(x

i), f∗
l−1(x

j);θθθf−1
l

)
+ kδl

(
xi, xj ;θθθδl

)
, (6)

3



Linear 1 Linear 2 Nonlinear 1 Nonlinear 2

AR1

x

f
(x

)

x

f
(x

)

x

f
(x

)

x

f
(x

)

NARGP

x

f
(x

)

x

f
(x

)

x

f
(x

)

x

f
(x

)

MF-DGP
(default)

x

f
(x

)

x

f
(x

)

x

f
(x

)

x

f
(x

)

MF-DGP
(alternate)

x

f
(x

)

x

f
(x

)

x

f
(x

)

x

f
(x

)

Figure 3: Comparison across methods and benchmarks for challenging multi-fidelity scenarios. The
importance of choosing an appropriate kernel for MF-DGP is also reinforced here.

where kf−1
l denotes the covariance between outputs obtained from the preceding fidelity level, kρl

is a space-dependent scaling factor, and kδl captures the bias at that fidelity level. At the first layer
this reduces to k1 = kδ1

(
xi, xj ;θθθδ1

)
.

In [8], it was assumed that each individual component of the composite kernel function is an RBF
kernel, and we shall also assume this to be the default setting for MF-DGP. However, this may not be
appropriate when the mapping between fidelities is linear. In such instances, we propose to replace
kf−1
l with an alternate linear kernel such that the composite intermediate layer covariance becomes:

kl = kρl
(
xi, xj ;θθθρl

)
f∗
l−1(x

i)⊤f∗
l−1(x

j) + kδl
(
xi, xj ;θθθδl

)
. (7)

3 Experimental Evaluation

In the preceding sections, we demonstrated how the formulation of state-of-the-art DGP models can
be adapted to the multi-fidelity setting. Through a series of experiments, we validate that beyond its
novelty and theoretic appeal, the proposed MF-DGP model also works well in practice.

Improved UQ: We empirically validate MF-DGP’s well-calibrated uncertainty quantification by
considering experimental set-ups where the available data is generally insufficient to yield confident
predictions, and higher uncertainty is prized. In Figure 3, we consider multi-fidelity scenarios where
the allocation of high-fidelity data is limited or constrained to lie in one area of the input domain. In
all of the examples, our model yields appropriately conservative estimates in regions where insuffi-
cient observations are available. As evidenced by the overfitting exhibited by AR1 for the LINEAR
2 example, deep models can also be useful for problems having linear mappings.

Table 1: Model comparison on multi-fidelity benchmark examples. ‘Default’ indicates use of the
kernel listed in Equation 6, while ‘alternate’ indicates that the covariance in Equation 7 was used.

Mean Squared Error
Benchmark nlow nhigh AR1 NARGP MF-DGP
Linear 1 12 6 0.0074 2.0711 0.0156 (alternate)
Linear 2 12 5 0.1071 0.5937 0.1157 (alternate)
Nonlinear 1 50 14 0.1385 7.1270e-5 0.0004 (default)
Nonlinear 2 50 14 0.2307 0.0331 0.0205 (default)
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Figure 4: Experimental design loop.
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Figure 5: MF-DGP fit to Borehole function.

Benchmark Comparison: We also compare the predictive performance of MF-DGP to AR1 and
NARGP on the same selection of benchmark examples. Twenty randomly-generated training sets are
prepared for each example function, following the allocation of low and high-fidelity points listed in
Table 1. The results denote the average mean squared error obtained using each model over a fixed
test set covering the entire input domain. The obtained results give credence to our intuition that
MF-DGP balances out issues in the two modeling approaches; it performs as well as NARGP on the
nonlinear examples where AR1 falters, and outperforms the former on linear examples.

Multi-fidelity in the Loop: We further assess MF-DGP using an expository experimental design
loop whereby points are sequentially chosen to reduce uncertainty about a function of interest. Start-
ing with 20 low-fidelity and 3 high-fidelity observations, we learn the NONLINEAR 1 function by
selecting to observe points where the variance of the predictive distribution at the high fidelity is
largest. Figure 4 shows how the mean squared error against a constant test set evolves as more
points are collected, averaged over 5 runs with different initial training data. Here we also compare
against a standard GP trained on the high-fidelity observations only. As expected, NARGP and MF-
DGP perform best as the model structure better represents the underlying data. Although NARGP and
MF-DGP both converge to a similar solution once enough points are sampled, the benefit of using
MF-DGP is evidenced in the initial steps of the procedure, whereby it fits the data sensibly after only
few iterations.

Real-world Simulation: We fit MF-DGP to a two-level function that simulates stochastic water
flow through a borehole [11] and depends on eight input parameters, for which a dataset of 150 low
and 40 high-fidelity points was generated. Figure 5 illustrates the performance of MF-DGP for a test
set containing 1000 high-fidelity points, where it achieves an R2 of 0.98.

4 Conclusion

Reliable decision making under uncertainty is a core requirement in multi-fidelity scenarios where
unbiased observations are scarce or difficult to obtain. In this paper, we proposed the first complete
specification of a multi-fidelity model as a DGP that is capable of capturing nonlinear relationships
between fidelities with reduced overfitting. By providing end-to-end training across all fidelity levels,
MF-DGP yields superior quantification and propagation of uncertainty that is crucial in iterative
methods such as experimental design. In spite of being prevalent in engineering applications, we
believe that multi-fidelity modeling has been under-explored by the machine learning community,
and hope that this work can reignite further interest in this direction.
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