
A SUMO-Based Parking Management Framework
for Large-Scale Smart Cities Simulations

Lara CODECÁ
EURECOM

Communication Systems Department
06904 Sophia-Antipolis, France

Codeca@eurecom.fr

Jakob ERDMANN
German Aerospace Center

Institute of Transportation Systems
Rutherfordstr. 2, 12489 Berlin, Germany

Jakob.Erdmann@dlr.de

Jérôme HÄRRI
EURECOM

Communication Systems Department
06904 Sophia-Antipolis, France

Haerri@eurecom.fr

Abstract—We collectively decided that investing in smart cities,
and consequently smart mobility, is the appropriate direction to
solve traffic congestion and sustainable growth issues. Among the
problems linked to traffic congestion, we find the complexity of
efficient multi-modal commuting and the eventual search of a
parking spot. Ideally, mobility should be a transparent service
for the users and the quest to find parking should not exist in the
first place. In order to achieve this goal, we need to study large-
scale parking management optimizations. Recently we reached
the computational power to simulate and optimize large-scale
cities, but problems such as the complexity of the models, the
availability of a reliable source of data, and flexible simulation
frameworks are still a reality. We present the general-purpose
Python Parking Monitoring Library (PyPML) and the mobility
simulation framework. We discuss the implementation details, fo-
cusing on multi-modal mobility capabilities. We present multiple
use-cases to showcase features and highlight why we need large-
scale simulations. Finally, we evaluate PyPML performances, and
we discuss its evolution.

Index Terms—Parking Management, Information Uncertainty,
Large-Scale Mobility Optimizations.

I. INTRODUCTION

Traffic congestion presents a widespread problem in large
urban agglomerations. The increasing number of motorized
vehicles requires transport infrastructure upgrades; however,
these infrastructures have issues with keeping up with the
growth. The study of smart cities aims to improve the ser-
vices by optimizing the available resources, and to provide
new directions for future urban planning. Among the daily
problems we face in our cities, parking presents a variety of
issues that span from time wasted looking for a parking spot,
to increased traffic congestion and pollution in the area [1].

Ideally, parking should be seamlessly integrated into the
trip planning. A person should just set personal preferences
and decide the destination; the system should determine the
most efficient trip in terms of time, preferences, and energy
consumption. Parking availability, location, and integration in
the mobility infrastructure are bound to play a significant role
while deciding which the most efficient plan is. Commuting
is a significant source of traffic congestion [2]. Multi-modal
Park & Ride (P+R) commuting solutions should be provided
seamlessly as a service, and the selection of the parking spot
should be planned before reaching the congested area because
the possible alternative will more likely be suboptimal.

Over time, parking management studies focused on tech-
nology and sensors [3], [4], local optimizations such as time
sharing and bookings [5], and crowd-sourcing approaches to
finding free spots [6]. Large-scale parking management studies
are more complicated to achieve for various reason: (i) the
lack of reliable aggregated information, (ii) the complexity
of city-wide mobility simulation, and (iii) the absence of
flexible optimization tools to implement and evaluate possible
solutions.

Among the information required for parking management
studies, we find location and capacity, current and future
availability, and the possibility of bookings and subscriptions.
Major parking areas are often associated with additional
mobility services such as airports, train and bus stations, and
car sharing. Additional meta-data on the surroundings would
provide significant insight and tuning possibilities for a multi-
modal approach to parking management and optimization. All
the above-mentioned data should be collected and aggregated
in real-time in order to take effective decisions. In reality, some
degrees of uncertainty has to be considered in order to provide
robustness to the system.

Uncertainty may come from different sources. Intelligent
parking areas are equipped with a variety of wireless and
wired sensors used to monitor the status of the spots [3].
These sensors may fail due to interference, systems flaws,
and deterioration over time. Another source of uncertainty
is linked to the processing and aggregation delay of the
gathered data. Furthermore, malicious behavior has an impact
on the consistency of the information associated with parking
management [7], [8]. Last but not least, moving in the di-
rection of smart cities and intelligent interconnected vehicles,
connectivity issues play their role in the coherence of the
crowd-sourced information, even without taking into account
malicious behavior.

We decided to study large-scale parking management op-
timizations using Simulation of Urban MObiltiy (SUMO)
[9] with the Monaco SUMO Traffic (MoST) Scenario [10],
and we implemented the general-purpose Python Parking
Monitoring Library (PyPML) and additional Traffic Control
Interface (TraCI) [11] API. PyPML is freely available on
GitHub https://github.com/lcodeca/pypml under
GPLv3 license.



The use of PyPML with the additional TraCI API we imple-
mented enables the study of large-scale parking management
optimizations. The abstraction provided by PyPML allows
flexibility in the implementation of various optimizations,
focusing on the problem at hand, and not the data aggregation.
The additional TraCI APIs are meant to provide the tools
to easily actuate the optimization, with a focus on flexible
multi-modal optimization strategies. For example, using this
framework is possible to study the impact of various park-
ing optimizations on time spent looking for a parking spot,
pollution generated by cruising for parking, efficient usage
of multiple parking areas, access and location of multi-modal
hubs, and more.

In the remainder of this paper, we discuss the state-of-the-
art, the simulation framework, and we present and evaluate
multiple optimizations. Section II presents the current state
of parking management options and simulation tools. The
simulation framework and the implementation details are dis-
cussed in Section III. In Section IV we showcase and evaluate
multiple parking management optimizations, and in Section
V we evaluate PyPML performances. Finally, we discuss
conclusion and future work in Section VI.

II. RELATED WORK

Since the ’90s, a lot of work has been done on Parking
Guidance and Information (PGI) systems, Parking Reserva-
tion Systems (PRS), and Intelligent Parking Assistant (IPA)
applications. Extensive surveys can be found in [12] and [13],
with a focus on wireless communication in [14].

The default architecture of an intelligent parking manage-
ment system is mainly composed of the monitoring mechanism
(sensor and video-based), the information gathering and dis-
semination, the telecommunication infrastructure, and finally
the (centralized or distributed) controller. An old example of
this infrastructure based on wireless sensors network can be
found in [15]. The authors present and evaluate a prototype
based on low-cost wireless sensors disseminated in a parking
lot, where the information detected are reported to a central
database. Another example of an intelligent parking manage-
ment infrastructure is presented in [16]. Along with wireless
sensors, the authors discuss the use of high-range smart
devices and wireless payment solutions to enable convenient
management of public parking in the urban area. With this
focus, they present a conceptual architecture of IPA and the
prototype-scale simulations of the system.

Over time, multiple approaches have been used to optimize
the parking management systems.

A critical factor in the optimization is the parking availabil-
ity prediction. In [17] the authors present an analytical model
for both on and off-street parking availability predictions based
on multivariate spatiotemporal models. They use the model to
predict parking availability and the prediction errors are used
to create the recommendations. The results are validated using
real-time parking data in the areas of San Francisco and Los
Angeles.

Another approach is based on resource reservation and pric-
ing. For example, iParker [18] is a system based on dynamic
resource allocation and pricing using mixed-integer linear pro-
gramming. iParker offers guaranteed parking reservations with
the lowest possible cost and searching time for drivers, and the
highest revenue and resource utilization for parking managers.
In the paper, the authors propose pricing policies that can be
implemented in practice. In [19], the authors present a smart
parking platform based on genetic optimization algorithms.
The architecture is based on IoT, and the free parking space
closest to the current location is computed with a genetic
algorithm. An agent-based approach is presented in [20],
where a dynamic parking negotiation and guidance platform
is used to consider negotiable parking prices. The agent-based
coordination network mediates the interaction between drivers
and car park operators. The agents have capabilities including
planning, monitoring, and coordination.

All the solutions mentioned above are validated using a
small number of parking lots, disseminated over a restricted
area. The motivation is quite simple: the complexity of analyti-
cal models and the scalability of large-large scale parking man-
agement simulation always presented an issue. Nonetheless,
we have the necessity of large-scale smart city optimization
in order to achieve sustainable growth in our cities. PyPML
and the simulation infrastructure we present aims to address
precisely this issue, enabling large-scale parking optimizations
with a focus on multi-modal commuting infrastructure.

III. SIMULATION FRAMEWORK

SUMO [9] is an open-source general-purpose microscopic
traffic simulator that includes various tools to import, model,
and reshape traffic mobility. The active community enables the
support required to implement extensions, and the developers
made possible for us to include the additional TraCI API in
SUMO. The functionality required to work with parking areas
are implemented in SUMO v1.0.0.

In order to work with large-scale parking optimizations, a
state-of-the-art mobility scenario is required. We chose MoST
Scenario1 [21] because it is based on real data and contains
parking area information. The MoST Scenario details and
usage are presented in Section IV-A.

Figure 1 presents the overview of the simulation framework.
SUMO, at the top in yellow, loads the configuration files
from MoST Scenario, and it runs the simulation. The solid
arrows are calls to the TraCI API. PyPML, to the right in
blue, reads from SUMO and aggregates the data. The dashed
arrows are calls between the actual optimization, at the bottom
in green, and PyPML. We decided to separate the monitoring
from the actuation to achieve more flexibility and enhance
performances, empowering the user with full control of the
additional information that can be requested to SUMO, and
the actuation.

1MoST Scenario: https://github.com/lcodeca/mostscenario (Last access:
9/2018)



Fig. 1. Simulation Framework Overview.

In the following paragraphs, we discuss in more detail the
implementation of this framework; the code is open source
and available on GitHub2.

A. SUMO and Parking Areas

SUMO has built-in parking capabilities. Parking areas and
street parking spaces are defined similarly. These areas are
used to remove the vehicles from the network and are defined
using the <parkingArea> element in the XML configura-
tion files [22]. It is possible to define the position and angle of
each parking spot to obtain fish-bone or parallel parking. Each
parking area has a fixed capacity defined through its attributes
and child elements. Vehicles cannot enter the parking area
once this capacity is reached.

SUMO includes a model for dynamically rerouting to an
alternative parking area once the target area is at capacity. This
model uses location-based triggers to encode the area in which
a driver gains knowledge about the capacity conditions (e.g.,
when reaching the full parking space or earlier via parking
guidance system). To make use of this model, the user must
define rerouter elements that declare the trigger location and
the list of alternative parking areas associated [23], with both
probability and visibility. The probabilities are normalized
over all the definitions in a rerouter, and if the visibility is set,
the occupancy of the parking area is known before reaching it.
This mechanism allows the model of line-of-sight (visibility
is false) and the presence of a parking information system
(visibility is true) as well. To model individual preferences
concerning the choice of the alternative parking area, it is
possible to define weights associated with probability, capacity,
occupancy, distance, and time.

Nonetheless, there are limitations. The capacity of a parking
area is fixed and it is not directly linked to the dimensions
of the parking vehicles. Some workarounds can be done to
overcome the problem, but the solution is cumbersome and
not flexible.

2SUMO repository: https://github.com/eclipse/sumo (Last access: 9/2018)
PyPML repository: https://github.com/lcodeca/pypml (Last access: 9/2018)

There is no built-in solution to study parking subscription,
variable parking capacity by vehicle type and rerouting choice
linked to multi-modal solutions.

B. TraCI and Parking Management

In order to interact with the simulation at runtime,
we use TraCI. Some API required to work with parking
management were already available; others were implemented
and integrated into version 1.0 of SUMO. The complete
documentation is available on-line3. The capacity and the
current occupancy of a parking area are accessible using
the generic simulation.getParameter function.
For each simulation step, the list of vehicle identifiers
that are stopping and restarting is available through
simulation.getParkingStartingVehiclesIDList
and simulation.getStopEndingVehiclesIDList
respectively. Before SUMO 1.0, the association between
the vehicle that is stopping and the parking area was
unavailable. In order to create the connection, we implemented
vehicle.getNextStops, a generic interface that returns
the list of upcoming stops (both parking areas and other kinds
of stops) associated with a vehicle.

Moving from parking monitoring to optimiza-
tion, other APIs are required to actuate the
computed optimization. Among the APIs already
available we have simulation.findRoute and
simulation.findIntermodalRoute, two interfaces
used to find the best route and the best inter-modal route
respectively. Additionally, the collection of APIs to create a
person trip are already implemented:

• person.appendDrivingStage,
• person.appendWalkingStage,
• person.appendWaitingStage.

These functions can be used to build a multi-modal trip: the
driving stage can be used for both riding a vehicle (e.g., public
transports and car sharing) and drive a vehicle.

Until now, the possibility of rerouting a vehicle to a different
parking area was not implemented, and the association be-
tween the vehicle and the passengers was not available at run-
time. We implemented vehicle.rerouteParkingArea
to change the parking destination of a vehicle; by default, the
behavior is similar to the rerouters: a new route to the parking
area is defined, and to maintain consistency in the simulation,
the walking route for the passengers is set. Additionally, we
implemented vehicle.getPersonIDList to obtain the
list of people in the vehicle, necessary information to update
the plan for the passengers in a case more efficient solution
can be found. For example, if the selected parking destination
is full, but an alternative parking area that is further away by
walk has the current occupancy very low (higher probability
of finding the free spot on arrival) may be a better option. In
case there is a bus line available between the new parking area

3TraCI documentation: http://www.sumo.dlr.de/daily/pydoc/traci.html (Last
access: 9/2018)



and the final destination of the passengers, it becomes the best
choice, even while being further away.

While performing an optimization, it is essential to take into
account that the presence of rerouters alters the simulation, and
SUMO internal routines have priority over TraCI API.

C. PyPML: Parking Monitoring

PyPML is a parking monitoring library written in Python
that uses TraCI to retrieve and aggregate information
on the simulation. The monitoring is built using the
TraCI.StepListener class provided by SUMO. This
implementation implies that at each simulation step the moni-
toring function implemented by PyPML collects and aggregate
data. PyPML uses TraCI subscriptions [24] everywhere pos-
sible to improve performances.

For each parking area, we aggregate by default the current
occupancy, the occupancy over time, and the projections by
vehicle type. With projections, we mean the intention of a
vehicle of using a parking area. This information is updated
monitoring the changes in the upcoming stops for each ve-
hicle. Additionally, both capacity and subscription for each
vehicle type can be set and modified over time, enabling the
modeling of reserved areas. Finally, for each parking area,
the uncertainty is modeled with a normal distribution, defined
through parameters µ and σ.

The set of parking areas handled by PyPML can be directly
initialized using a dictionary or can be updated at runtime
using getter and setter functionalities. It is possible to limit
the number of vehicles monitored in order to minimize the
overhead. The fastest option monitors only the vehicles that
have a stop defined from the beginning of the simulation.
The slowest option monitors every vehicle in the simulation,
allowing more flexibility in the final optimization, but paying
its price with additional overhead.

In order to access the aggregated information, iterators are
provided for passengers, vehicles, parking areas, and rerouters.
In case rerouters are defined, the library outputs a warning as
a reminder that internal SUMO routines have priority over
TraCI API, with a possible impact on the optimization.

The main functionalities implemented in PyPML are:
• PyPML.get_free_places,
• PyPML.get_closest_parking,
• PyPML.compute_parking_travel_time.
The function PyPML.get_free_places returns the

number of available spots from the given parking area. The
result can be computed taking into account different options:
uncertainty, projections, subscriptions, and capacity by vehicle
type, if set.

The function PyPML.get_closest_parking performs
a table lookup to return the list of the n reachable park-
ing areas ordered by estimated travel time. The number
of results returned is a parameter in the function. For
performance reasons, the lookup table is updated using
PyPML.compute_parking_travel_time and the user
must call the function. In this way, different kind of estimation
can be done (estimated travel time on an empty network or

with a different network state). This table is computed using
simulation.findRoute, so the weight of the edges can
be manipulated using the edge.setEffort TraCI API.

Limitations: There are some limitations to keep into
account while using PyPML. In order to obtain consistency,
the library must acquire data every time-step of the
simulation. Even if SUMO can handle multiple TraCI
servers, we advise not to use them due to how the TraCI
subscriptions are implemented. PyPML provides the functions
PyPML.get_traci_vehicle_subscription and
PyPML.get_traci_simulation_subscription
in order to retrieve the last time step simulation data
for the subscriptions used by the library. Moreover,
TraCI.simulationStep cannot be used to fast-
forward a simulation, or all the data during that period
will not be processed by PyPML. These limitations are
linked to the use of TraCI and cannot be overcome without
completely changing the interaction with the simulator.
Additionally, the concepts of capacity by vehicle type and
subscription by vehicle type are abstractions provided by
PyPML and SUMO is not aware of them. It implies that
using vehicle.rerouteParkingArea it is possible to
reroute more vehicle of a specific type to a parking area than
the maximum capacity specified in PyPML without getting
errors from SUMO. In this case, the solution is provided by
using PyPML.get_free_places without uncertainty and
enabling capacity and subscriptions flags.

In Section IV we present some examples of parking opti-
mization and their comparison. In Section V we evaluate the
performances of PyPML.

IV. USE-CASES

We compare seven optimizations based on the same mobil-
ity scenario in order to showcase the capabilities of PyPML
and to highlight the impact of features such as uncertainty and
parking area location. We setup three base simulations using
only SUMO capabilities, and then we performed two different
optimizations, both with and without uncertainty.

A. MoST Scenario

The MoST Scenario [21] is a city-wide mobility scenario
based on Principality of Monaco and the neighboring French
cities. It provides a state-of-the-art 3D playground with various
kind of vehicles, vulnerable road users (pedestrians and two-
wheelers), and public transports. The latter is based on buses
and trains, with more than 20 routes with over 150+ stops. The
mobility is built using the activity-based mobility paradigm
[25] and the 14 Traffic Assignment Zone (TAZ) provided by
the scenario. The mobility represents a morning rush hour of
an average weekday, with a population of 35K entities. The
activity-based mobility generation uses multi-modal means of
transports, and vehicles need to find a parking spot in order
for the people to reach their destination. The scenario has
120+ parking area with a total capacity of 60K+ spots, this
information is retrieved from OpenStreetMap (OSM) [26] and
the Monaco parking website [27]. Figure 2 shows the location



Fig. 2. MoST Scenario overview and parking locations.

of the parking areas, the TAZ in red, and the streets are
colored by priority (light blue, lower priority; dark blue, higher
priority).

B. SUMO: full, partial, and no visibility.

The first three optimizations are the one built-in in SUMO
and achieved using static configuration files. The parking
rerouters are positioned on every edge containing a parking
area. One option is to use the rerouters to provide complete
visibility on the availability of every other parking area, by
using the visible tag set to true. In this case, each vehicle
has the opportunity to reroute to a different parking area in
case its destination is full. The vehicles use the default choice
model configuration and drive to the closest free parking
area. This solution can be associated with the presence of
information signs scattered in the city. Another possibility is
to remove the visibility in the rerouter completely. In this case,
each vehicle has to reach the parking area to discover if it is
full, and the choice of the next-best parking has to be taken
without knowing the availability in the surrounding parking
areas. Again, vehicles drive to the closest alternative. Finally,
we created a middle ground more realistic and already used
in the cities, where only parking areas with more than 1000
spots are marked as visible, allowing preemptive rerouting.

In these experiments, there is no uncertainty in the values
used for the optimization.

C. PyPML: parking areas load balancing and driver-oriented
optimizations

In order to implement these optimizations all the rerouters
must be removed from the simulation; otherwise SUMO has
the final word on the optimization. We implemented two
different optimizations that would represent different points
of view, the driver that requires parking very close to the
destination, and the parking areas administrator that wants to
optimize the use of all the resources. Both these optimizations
can be implemented using the same set of APIs provided by
the framework, focusing on the logic behind them, and leaving
the data aggregation to PyPML.

1) Parking areas load balancing: In one experiment the
optimization is based on the centralized load balancing of
the parking areas. In this case, every minute all the parking
areas are checked to evaluate if load balancing is required. The
availability is computed using PyPML.get_free_places
and taking into account the predictions (number of vehicles
that expressed the intent of using the parking area). If the load
balancing is required, a selection of vehicles is rerouted to an
alternative parking area, close to the previously selected one,
with more availability. The alternative options are gathered
using the function PyPML.get_closest_parkings; af-
ter their evaluation, the vehicle’s plan is updated using
TraCI.rerouteParkingArea.

In one version of the experiment, there is no uncertainty, so
the values obtained are always correct. In the other experiment,
the function PyPML.get_free_places is called with the
uncertainty parameter set, where the error is a normal distri-
bution with µ = 0 and σ = capacity ∗ 0.2.

2) Proactive vehicle optimization: The last variation is
based on a selfish decision taken by each vehicle. Every
minute the vehicle asks for the current availability of the
chosen parking, taking into account the predictions. In case
the parking has less than ten spots available, the vehicle looks
for an alternative, it evaluates the alternatives, and finally, it
updates the plan. The functions used in this variant are the
same used by the parking areas load balancing, but in this
case, the decision is decentralized and driver-oriented.

In one experiment the values are always correct, and in the
other, the normal distribution for the uncertainty used by the
previous optimization is applied.

D. Evaluation

We compared the different experiment using the following
metrics: parking occupancy over time, number of destination
changes, and total travel time for both vehicle and person.
In all the figures: Full Visibility, Partial Visibility, and No
Visibility are the experiment described in Section IV-B; Proac-
tive Veh. and Proactive Veh. with Unc. are the experiment
described in Section IV-C2, proactive vehicles with and with-
out uncertainty; Proactive P.M. and Proactive P.M. with Unc.
are the experiment described in Section IV-C1, the centralized
load balancing of the parking management with and without
uncertainty.

1) Occupancy over time.: Although the optimization uses
the complete MoST Scenario with 127 parking areas, we
selected only a few of them to showcase the different behavior
that can be seen. Figure 3 presents the occupancy over time
of four parking areas in Monaco, all with the same capacity
(250 spots), and positioned in strategic locations. We selected
them to show how the same optimization algorithm performs
differently in different locations. The parking areas are located
as follow:

• “Centre” is located in the middle of Monaco city.
• “Centre-Riviera” is close to “Centre”, but is on the

shoreline, close to the sea.



Fig. 3. Parking occupancy over time.

• “East Border” is located in the city but close to the east
border with France; in this location, we find one of the
main gateways (major roads) to access the city.

• “West Border” is still located in the city but on the
western border with France; close to this location, we
have three main gateways to Monaco.

It is important to keep into consideration that, given the limited
size of the city, all four parking areas are located in an area
of three square kilometers.

Analyzing the four graphs we can see that the only parking
area that never reaches full capacity is the “East Border”. It is
mainly due to reachability issues, it is further away from the
center compared to others parking areas, and once the vehicles
are already inside the city, reaching it in congested traffic is
an issue.

Focusing on a single graph and then comparing the behavior
with the others, we see that the three SUMO optimizations
tend to behave similarly, reaching full capacity almost at
the same time. On the contrary, we can notice two different
behaviors in the load balancing with and without uncertainty,
showing that the presence of errors in the data makes harder

(a) Travel Time.

(b) Number of Parking Changes.

Fig. 4. Distributions.

to achieve a consistent load balancing.
Additionally, the presence of uncertainty in the information

makes two different behaviors, the selfish vehicle optimization,
and the centralized load balancing, produce similar results.

2) Total travel time and destination changes.: Figure 4
shows the distribution of the total travel time (4a) and the
distribution of the number of the parking destination changes
(4b). Regarding travel time, the SUMO experiment without
visibility and the four experiments with the optimization as-
sisted by PyPML look very similar, but the same experiments
evaluated in terms of rerouting showcase a very different be-
havior. Aside from the centralized load balancing without un-
certainties, all the other experiments require many changes in
the parking destination, showing instability in the optimization.
This unstable behavior is better outlined in Figure 5, where
the Empirical Cumulative Distribution Function (ECDF) of
the number of parking destination changes is plotted for all
the experiments. The graph shows the similarity between full
visibility and the centralized load balancing without uncer-
tainty, and at the same time, how impactful is the presence of
uncertainty in the centralized optimization.

Finally, Figure 6 show the mean number of parking desti-
nation changes (6a) and mean total travel time (6b). In these
simplified graphs, we can see how uncertainty has different
impacts on different optimizations. In Figure 6a we see that
uncertainty increases the number of rerouting in case of
centralized optimization, but decreases them for selfish vehicle
optimization. Additionally, the impact of uncertainty on the
median travel time for both vehicles and people is reversed
compared to the number of destination changes.

On another note, we can see that for both proactive vehicles



Fig. 5. Cumulative distribution function of the number of parking changes.

optimizations the number of outliers (vehicles with more
than ten destination changes) is higher than all the other
optimizations (Figure 5). Nonetheless, the selfish optimization
manages to achieve low mean travel times compared to others
(Figure 6b).

Remarks

The use-cases we presented show how PyPML allows
easy implementation and comparison of different large-scale
parking managers, and how location and uncertainty plays
an essential role in the optimizations. Due to the large-scale
nature of these optimizations, simulation performances present
a significant concern.

V. PERFORMANCE EVALUATION

It is well known that the use of TraCI presents a bottleneck
in the simulation. We want to be sure that the use of PyPML
to monitor the parking areas and the simple use of TraCI to
retrieve the parameters we used in the evaluation is linear.

We run all the simulation using a computer with an SSD
hard drive, 16G Synchronous DDR3 RAM with speed 1.600
MT/s, and an Intel R© CoreTM i7-6500U CPU at 2.50GHz and
4.096 KB cache.

The metrics are the one provided by SUMO under the
performances section in the statistics [28]:

• Duration: the amount of elapsed time (ms) while com-
puting the simulation.

• Updates Per Second (UPS): the number of simulated
vehicles on average per second of computation time.

Figure 7 shows duration and UPS comparison between the
base experiment without data collection and without TraCI,
and the seven use-cases presented. The base simulation with-
out TraCI is the fastest and more efficient. The three SUMO
simulation that uses TraCI only to retrieve the data used for the
evaluation, see the duration doubled and the UPS halved. The
four optimizations that use PyPML present a comparable level
of deterioration with the SUMO experiments, showing that the

(a) Mean number of parking changes. The bars represents the
95% percentile.

(b) Mean travel time. The bars represents the 95% percentile.

Fig. 6. Parking Destination Changes and Travel Time.

Fig. 7. Performances

deterioration scales with the complexity of the optimization,
and not with the parking monitoring in itself.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the general-purpose Python
Parking Monitoring Library (PyPML), a tool integrated with
the Simulation of Urban MObiltiy (SUMO) framework that
uses Traffic Control Interface (TraCI) to gather and aggre-
gate the parking monitoring information. PyPML presents an
abstraction layer that can be interrogated to optimize and



take decisions on large-scale parking management. In order
to actuate the optimization, we implemented additional TraCI
APIs that are already integrated in SUMO v1.0.0.

We implemented, evaluated and compared seven optimiza-
tions in order to highlight the necessity of large-scale parking
management optimizations and to showcase PyPML capabil-
ities. Three optimizations were made using only the built-in
functionality of SUMO. Two different kinds of optimization
(centralized load balancing and selfish vehicle decision) were
performed both with and without uncertainty using PyPML.
The evaluation shows the necessity of modeling uncertainty
and the impact of the parking locations on the optimizations.
Finally, we evaluated PyPML performances compared to the
base simulation without TraCI and the SUMO simulations
without PyPML, showing that the degradation in performances
for the monitoring is only linked to the use of TraCI, and not
the abstraction.

In the future, we plan to use this framework to work
on parking areas management used as multi-modal hubs,
evaluating different optimizations focused on the trade-off
between best parking usage, and user-centered trip plans.

Additionally, as we showed how uncertainty plays a sig-
nificant role in the optimizations, we are going to add the
possibility of having uncertainty on a per-vehicle basis, and
not only linked to the parking areas.

PyPML is freely available on GitHub under GPLv3 license:
https://github.com/lcodeca/pypml.

ACKNOWLEDGMENT

This work was partially funded by the French Government (Na-
tional Research Agency, ANR) through the “Investments for the
Future”, ref. #ANR-11-LABX-0031-01. EURECOM acknowledges
the support of its industrial members, namely BMW Group, IABG,
Monaco Telecom, Orange, SAP, ST Microelectronics and Symantec.

REFERENCES

[1] D. King, “Estimating environmental and congestion effects from cruising
for parking,” in Transportation Research Board 89th Annual Meeting,
Washington DC, United States, 2010.

[2] Beaudoin, Justin and Farzin, Y Hossein and Lawell, C-Y Cynthia Lin,
“Public transit investment and sustainable transportation: A review of
studies of transit’s impact on traffic congestion and air quality,” Research
in Transportation Economics, vol. 52, pp. 15–22, 2015.

[3] Idris, MYI and Leng, YY and Tamil, EM and Noor, NM and Razak, Z,
“ park system: a review of smart parking system and its technology,”
Information Technology Journal, vol. 8, no. 2, pp. 101–113, 2009.

[4] Karbab, ElMouatezbillah and Djenouri, Djamel and Boulkaboul, Sahar
and Bagula, Antoine, “Car park management with networked wireless
sensors and active RFID,” in Electro/Information Technology (EIT), 2015
IEEE International Conference on. IEEE, 2015, pp. 373–378.

[5] Lei, Chao and Ouyang, Yanfeng, “Dynamic pricing and reservation for
intelligent urban parking management,” Transportation Research Part
C: Emerging Technologies, vol. 77, pp. 226–244, 2017.

[6] Gupte, Sanket and Younis, Mohamed, “Participatory-sensing-enabled
efficient Parking Management in modern cities,” in Local Computer
Networks (LCN), 2015 IEEE 40th Conference on. IEEE, 2015, pp.
241–244.

[7] B. Hoh and T. Yan and D. Ganesan and K. Tracton and T. Iwuchukwu
and J. Lee, “TruCentive: A game-theoretic incentive platform for trust-
worthy mobile crowd-sourcing parking services,” in 15th International
IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE,
2012, pp. 160–166.

[8] Timpner, Julian and Schürmann, Dominik and Wolf, Lars, “Trustworthy
parking communities: helping your neighbor to find a space,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no. 1, pp.
120–132, 2016.

[9] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Devel-
opment and Applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[10] L. Codeca and J. Härri, “Towards multimodal mobility simulation of C-
ITS: The Monaco SUMO traffic scenario,” in VNC 2017, IEEE Vehicular
Networking Conference, November 27-29, 2017, Torino, Italy, Torino,
ITALY, 11 2017.

[11] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and
J.-P. Hubaux, “TraCI: an interface for coupling road traffic and network
simulators,” CNS 08 Proc. 11th Commun. Netw. Simul. Symp., pp. 155–
163, 2008.

[12] Hassoune, Khaoula and Dachry, Wafaa and Moutaouakkil, Fouad and
Medromi, Hicham, “Smart parking systems: A survey,” in Intelligent
Systems: Theories and Applications (SITA), 2016 11th International
Conference on. IEEE, 2016, pp. 1–6.

[13] A. O. Kotb and Y. Shen and Y. Huang, “Smart Parking Guidance, Mon-
itoring and Reservations: A Review,” IEEE Intelligent Transportation
Systems Magazine, vol. 9, no. 2, pp. 6–16, Summer 2017.

[14] Djahel, Soufiene and Doolan, Ronan and Muntean, Gabriel-Miro
and Murphy, John, “A communications-oriented perspective on traffic
management systems for smart cities: Challenges and innovative ap-
proaches,” IEEE Communications Surveys & Tutorials, vol. 17, 2015.

[15] V. W. s. Tang and Y. Zheng and J. Cao, “An Intelligent Car Park
Management System based on Wireless Sensor Networks,” in 2006 First
International Symposium on Pervasive Computing and Applications,
Aug 2006, pp. 65–70.

[16] R. E. Barone and T. Giuffre and S. M. Siniscalchi and M. A. Morgano
and G. Tesoriere, “Architecture for parking management in smart cities,”
IET Intelligent Transport Systems, vol. 8, no. 5, pp. 445–452, August
2014.

[17] T. Rajabioun and P. A. Ioannou, “On-Street and Off-Street Parking Avail-
ability Prediction Using Multivariate Spatiotemporal Models,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2913–2924, Oct 2015.

[18] A. O. Kotb and Y. Shen and X. Zhu and Y. Huang, “iParker – A
New Smart Car-Parking System Based on Dynamic Resource Allocation
and Pricing,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 9, pp. 2637–2647, Sept 2016.

[19] I. Aydin and M. Karakose and E. Karakose, “A navigation and reser-
vation based smart parking platform using genetic optimization for
smart cities,” in 2017 5th International Istanbul Smart Grid and Cities
Congress and Fair (ICSG), April 2017, pp. 120–124.

[20] Shuo-Yan Chou and Shih-Wei Lin and Chien-Chang Li, “Dynamic
parking negotiation and guidance using an agent-based platform,” Expert
Systems with Applications, vol. 35, no. 3, pp. 805 – 817, 2008.

[21] L. Codeca and J. Härri, “Monaco SUMO Traffic (MoST) Scenario: A 3D
Mobility Scenario for Cooperative ITS,” in SUMO 2018, SUMO User
Conference, Simulating Autonomous and Intermodal Transport Systems,
Berlin, GERMANY, 05 2018.

[22] “SUMO Parking Areas,” http://sumo.dlr.de/wiki/Simulation/
ParkingArea, (Last access: September 2018).

[23] “SUMO Rerouting to alternative Parking Areas,” http://sumo.dlr.de/wiki/
Simulation/Rerouter#Rerouting to an alternative Parking Area, (Last
access: September 2018).

[24] “SUMO TraCI Subscriptions,” http://sumo.dlr.de/wiki/TraCI/Object
Variable Subscription, (Last access: September 2018).

[25] M. Balmer, K. Axhausen, and K. Nagel, “Agent-based demand-modeling
framework for large-scale microsimulations,” Transportation Research
Record: Journal of the Transp. Res. Board, no. 1985, pp. 125–134, 2006.

[26] M. Haklay, “How good is volunteered geographical information? A
comparative study of OpenStreetMap and Ordnance Survey datasets,”
Environment and planning. B, Planning & design, vol. 37, no. 4, p.
682, 2010.

[27] “Monaco Parking Website,” https://monaco-parking.mc, (Last access:
September 2018).

[28] “SUMO Simulation Output,” http://sumo.dlr.de/wiki/Simulation/Output,
(Last access: September 2018).


