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Abstract. The caption retrieval task can be defined as follows: given a
set of images I and a set of describing sentences S, for each image i in I we
ought to find the sentence in S that best describes i. The most commonly
applied method to solve this problem is to build a multimodal space and
to map each image and each sentence to that space, so that they can be
compared easily. A non-conventional model called Word2VisualVec has
been proposed recently: instead of mapping images and sentences to a
multimodal space, they mapped sentences directly to a space of visual
features. Advances in the computation of visual features let us infer that
such an approach is promising. In this paper, we propose a new Recurrent
Neural Network model following that unconventional approach based on
Gated Recurrent Capsules (GRCs), designed as an extension of Gated
Recurrent Units (GRUs). We show that GRCs outperform GRUs on the
caption retrieval task. We also state that GRCs present a great potential
for other applications.

Keywords: multimodal embeddings · deep learning · capsule networks.

1 Introduction

This paper proposes a novel deep network architecture for the caption retrieval
task: given a set of images and a set of sentences, we build a model that ought
to find the closest sentence to an input image. That task is important because
retrieving captions in natural language using images implies getting closer to
a human understanding of visual scenes. Numerous works have attempted to
address that task; most of them are making use of a multimodal space where
sentences and images are projected and compared [7, 9, 13, 16]. Word2VisualVec
[4, 6] relies on another approach, the authors built a model to project sentences
directly in a space of visual features: as the quality of visual features is constantly
improving, the authors stated that learning visual sentence embeddings rather
than projecting them in a more complicated multimodal space was a promis-
ing approach. In this paper, a model following this unconventional approach is
proposed.

Projecting images and sentences in the same space, whether multimodal or
simply visual, implies that representations of images and sentences as mathe-
matical objects must be derived. Since the recent breakthrough of deep learning,



2 Danny Francis, Benoit Huet, and Bernard Merialdo

Convolutional Neural Networks (CNNs) have shown compellingly good perfor-
mances in computer vision tasks. In particular, some of them [15, 10] are able
to learn visual features that they use to classify images from a big dataset such
as ImageNet [3]. Some works have also shown that these visual features could
be successfully used in other tasks with different datasets [24]. In particular,
most recent works on caption retrieval have used features coming from a ResNet
[10] which had been trained on ImageNet for a classification task [7, 9]. In our
work, we will extract features thanks to a ResNet that had been finetuned on
MSCOCO [17] by the authors of [7]. Deriving visual sentence representations is
the main part of our work. Recurrent Neural Networks (RNNs) such as Long
Short-Term Memory units (LSTMs) [12] and Gated Recurrent Units (GRUs) [2]
have proved to deliver state-of-the-art results on various language modeling tasks
such as translation [21], automatic image captioning [23] or caption retrieval [7].
In the last version of Word2VisualVec [6], the authors showed that concatenat-
ing a representation derived by a GRU with a Word2Vec [18] representation and
a bag-of-words representation to get a multi-scale sentence representation lead
to better results in visual sentence embedding for caption retrieval. However,
we argue that using these kinds of representations cannot be optimal: pooling
all words together without putting attention on relevant parts of the sentence
does not reflect the complexity of images; and the current state-of-the-art model
for image and caption retrieval is based on object-detection and cross-attention
[16], which corroborates our statement that sentences should be processed in
a finer way. Our work aims at proposing a new architecture corresponding to
and addressing that issue: how to analyze a sentence so that important visual
elements are emphasized?

Our research has been inspired by recent works on capsule networks [20, 11].
This new architecture shows promising results in computer vision. In capsule
networks, neurons are replaced by so-called capsules, that take vectors as inputs
and output vectors. These output vectors are routed towards subsequent cap-
sules through a predefined routing procedure, that can be seen as an attention
mechanism: relevant vectors are routed towards relevant capsules. We think that
this principle can be successfully used in Recurrent Neural Networks, and the
Gated Recurrent Capsule that we introduce in this paper is a novel architecture,
and is to our best knowledge the very first occurrence of recurrent unit using
capsules.

Our contributions in this paper are three-fold:

– we introduce Gated Recurrent Capsules (GRCs), a novel RNN architecture
which extents conventional GRUs so that information flow focuses on critical
data items;

– we propose to address the caption retrieval task using the newly proposed
GRCs architecture;

– we demonstrate experimentally that GRC enable higher performance when
compared to state of the art Word2VisualVec (employing GRUs) in the
MSCOCO caption retrieval task.
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Our paper is divided in five sections. Having introduced the extent of the
paper in Section 1, we will describe related works in Section 2. In Section 3 we
will describe our model for caption retrieval. Section 4 details results obtained
by our model. We will conclude the paper in Section 5.

2 Related Work

Several works have been done on building visual-semantic embeddings. Most
of them are based on the construction of a multimodal space where sentences
and images are projected and compared. In [7], Faghri et al. used a GRU to
map sentences to a multimodal space; images were simply mapped to that space
through a linear transform. They obtained good results by finetuning the ResNet
they used to produce visual features: that is the reason why we used one of
their finetuned ResNets to produce visual features in our model. Another more
complex model proposed by Gu et al. [9] showed that results could be boosted
by the use of two generative models (one generating images and one generating
sentences) in addition to a GRU and a ResNet. More recently, [16] has shown
that even better performances could be reached by processing images with an
object detection model combined with cross-attention instead of deriving global
visual features.

Another approach has been proposed recently: instead of mapping images
and sentences to a multimodal space, [4, 6] proposed to derive visual features
from images and to map directly sentences to the space of visual features. This
approach is promising as the quality of visual features is constantly increasing.
Moreover, it avoids mapping images to a more complex space. Our work follows
that unconventional approach. It has been inspired by recent works on capsule
networks [20, 11]. Capsule networks have shown promising results in computer
vision. However to our best knowledge they have not been used yet in a recurrent
fashion for natural language processing apart from [8]; however, the architecture
presented in [8] is using a complex GRUs setup to process and route the infor-
mation, leading to much more learnable parameters, which is a drawback that
our architecture does not have.

3 Visual Sentence Embeddings

Word2VisualVec is a non-conventional approach to caption retrieval, as it maps
sentences directly to a visual features space. Our model follows that approach.

3.1 Word2VisualVec

In [4], a first version of Word2VisualVec was proposed. It consisted in apply-
ing a multilayer perceptron on vectorized sentences to project these sentences
in a space of visual features. Three vectorization methods were discussed in
that paper: bag-of-words, word hashing and averaging Word2Vec embeddings.
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Fig. 1. Word2VisualVec and our variant with a GRC. In Word2VisualVec, three sen-
tence representations (Word2Vec, BoW and GRU) are concatenated and then mapped
to a visual features space. In our model, we replaced the final hidden state of the GRU
by the average of all final hidden states of a GRC.

In [6], the authors of [4] improved Word2VisualVec by concatenating three sen-
tence representations. In that paper, a sentence representation was produced by
concatenating a bag-of-words, a Word2Vec and a GRU representation of the sen-
tence. Then, it was projected in a space of visual features through a multilayer
perceptron. Figure 1 shows how Word2VisualVec works in practice.

On top of good performances in caption retrieval, this visual representation
of sentences showed an interest in multimodal query composition: the authors
showed that visual words features could be added or subtracted to images fea-
tures and form multimodal queries. Authors also stated that further gains could
be expected by including locality in Word2VisualVec representations.

3.2 Gated Recurrent Capsules

Gated Recurrent Units were introduced by Cho et al. in [2]. They are similar to
LSTMs: they have similar performances and are well adapted to NLP because
they can handle long-term dependencies in sentences. We preferred GRUs to
LSTMs because they have less parameters for similar performances. More for-
mally, a GRU is composed of an update gate ut and a reset gate rt, and can be
described with the following expressions:

ut = σ(Wxuxt +Whuht−1 + bu), (1)

rt = σ(Wxrxt +Whrht−1 + br), (2)

h̃t = tanh(Wxhxt +Whh(rt ◦ ht−1) + bh), (3)

ht = (1− ut) ◦ ht−1 + ut ◦ h̃t, (4)
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Fig. 2. A Gated Recurrent Unit: for each input xt, a new value h̃t is computed, based
on xt, rt and ht−1, where rt expresses how much of ht−1 should be reset to compute
h̃t. Eventually, ht is computed based on h̃t, ht−1 and ut, where ut expresses how much
of h̃t should be used to update ht−1 to ht

with xt the t-th input and ht the t-th output or hidden state of the GRU.
Here and throughout the paper, ◦ denotes the Hadamard product and σ de-
notes the sigmoid function. The equations above can be explained as follows:
for each input xt, the GRU computes rt and ut based on the input and the
previous state ht−1. It computes a new value h̃t based on xt, rt and ht−1,
and rt expresses how much of ht−1 should be reset to compute h̃t. Eventu-
ally, ht is computed based on h̃t, ht−1 and ut, and ut expresses how much of
h̃t should be used to update the hidden state ht of the GRU. Learned param-
eters are (Wxu,Whu, bu,Wxr,Whr, br,Wxh,Whh, bh). In our case, the xt corre-
spond to word embeddings: if s is a sentence of length L, then it is first con-
verted into a list (w1, ..., wL) of one-hot vectors, and each one-hot vector is
mapped to a word embedding using a lookup matrix We. Therefore, we have
(x1, ..., xL) = (Wew1, ...,WewL). The coefficients of We are learned, but they are
initialized to precomputed word embeddings to avoid overfitting problems.

Capsules were designed by [20] for image processing. The idea behind capsules
for computer vision consists in making complex computations and outputting a
pose vector and an activation. This output is then routed towards subsequent
capsules according to some predefined routing algorithm. The goal of that ar-
chitecture is to have each capsule learning to recognize a visual feature based
on what previous capsules have recognized before. For instance, some capsules
could recognize eyes, a nose, a mouth and their respective positions. Then they
would send their outputs to another capsule aiming at recognizing a whole face.
It is architectured to avoid losing spatial information as common CNN do due to
pooling operations. We think that capsules can also successfully perform other
tasks such as NLP-related tasks, as our proposed model does.

In a nutshell, what we would like to do is to produce different embeddings that
would attend to different semantic sides of the input sentence. A sentence would
be divided into sub-sentences, and each of those sub-sentences would attend to
a particular element of an image. These sub-sentences representations are then
processed to build an embedding for the whole sentence.

In our model, all capsules share the same parameters and are similar to GRUs.
In the following, we will explain the differences between them and actual GRUs.
A recurrent capsule layer should process a sentence word-by-word and make
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updates in a way that would put attention on important words: the hidden state
of each capsule should reflect one semantic side of the input sentence. Therefore,
we need to define a routing procedure depending on current states and incoming
words. For that purpose, we will use hidden states of capsules at time t− 1 and
the incoming word xt to find how relevant a word is to a given capsule. More
formally, if we consider the k-th capsule with k ∈ {1, ..., Nc}, update gates and
reset gates will be the same as for a GRU:

u
(k)
t = σ(Wxuxt +Whuh

(k)
t−1 + bu), (5)

r
(k)
t = σ(Wxrxt +Whrh

(k)
t−1 + br), (6)

We also compute h̃
(k)
t as we do in a GRU:

h̃
(k)
t = tanh(Wxhxt +Whh(r

(k)
t ◦ h

(k)
t−1) + bh), (7)

We would like to make our routing procedure trainable via gradient descent,
so we need to define differentiable operations. For that purpose, we will assume

that for each capsule, for a given word wt, we have a coefficient p
(k)
t ∈ [0, 1] such

that
h
(k)
t = (1− p(k)t )h

(k)
t−1 + p

(k)
t ĥ

(k)
t (8)

with
ĥ
(k)
t = u

(k)
t ◦ h̃

(k)
t + (1− u(k)t ) ◦ h(k)t−1, (9)

which is the actual update computed in a GRU. The coefficient p
(k)
t is a routing

coefficient, describing to what extent a given capsule needs to be updated by
the incoming word. As in [11], routing can be seen as an attention mechanism,
putting attention on relevant words in our case. However, while the authors of
[11] use Gaussians determined by EM-routing to compute this coefficient, we
propose to compute it in a simpler manner. More details are provided in the
next section. We can expand the last equation to get the following update:

h
(k)
t = (1− p(k)t u

(k)
t ) ◦ h(k)t−1 + p

(k)
t u

(k)
t ◦ h̃

(k)
t (10)

We can notice that it boils down to multiplying the update u
(k)
t by a coefficient

p
(k)
t . Then, how to compute p

(k)
t ? For that purpose, we define an activation

coefficient a
(k)
t for each capsule:

a
(k)
t = |αk|+ log(P

(k)
t ). (11)

In the last equation, the αk are random numbers drawn from a normal prob-
ability distribution (we found that 0.1 and 0.001 were good values for the mean
and the standard deviation of the normal probability distribution). The αk are
important to our model because all capsules share the same parameters: if all
activations are the same when they start processing a sentence, they will be
all the same at the end. These random numbers break the symmetry between
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capsules; this is needed for our model to work properly. We assume P
(k)
t ought

to represent the semantic similarity between the current hidden state of the

capsule h
(k)
t−1 and the incoming word xt: if the incoming word is semantically

similar to the previous hidden state, P
(k)
t should be high, and if it is different,

then it should be low. One can intuitively imagine that the cosine similarity

cos(h
(k)
t−1, ĥ

(k)
t ) =

〈
h
(k)
t−1
|ĥ(k)

t

〉
‖h(k)

t−1
‖2×‖ĥ(k)

t ‖2
corresponds to a relevant definition of the se-

mantic similarity between the current hidden state of the capsule and the in-
coming word: if the incoming word has a different meaning than previous words,

then one can expect that ĥ
(k)
t will reflect that different meaning. Therefore we

define P
(k)
t as:

P
(k)
t = cos(h

(k)
t−1, ĥ

(k)
t ). (12)

Then we can compute p
(k)
t according to the following formula:

pt =
softmax(

a
(1)
t

T , ...,
a
(N)
t

T )

M
(13)

where M is the maximal coordinate of the vector softmax(
a
(1)
t

T , ...,
a
(N)
t

T ) and T is
a hyperparameter controlling the sharpness of the routing procedure (the higher
T , the more we have one routing weight equal to 1 and all others equal to 0).

Our routing is different from those that were introduced in [20, 11]: the out-
puts of capsules are not combinations of all previous capsules outputs. Only the
weights of the routing procedure depend on these previous capsules outputs.

Please note that if T → +∞, then all capsules receive the same inputs and
produce the same hidden states: it is strictly equivalent to a GRU. Therefore,
GRCs are an extension of the GRUs. The interest of GRCs over GRUs is that
they can provide different representations of the same sentence, with attention
put on some relevant parts of it. This idea is shown on Figure 3. Moreover, a
GRC has the same number of trainable parameters as a GRU, but it has the
ability to make more complex computations: for that reason we think that this
architecture could be successfully used for other tasks than caption retrieval.

The model we propose for caption retrieval is similar to Word2VisualVec, but
we replace the GRU by a GRC, as shown on Figure 1. Instead of concatenating
the last hidden state of a GRU to a Word2Vec and a bag-of-words representa-
tions, we concatenate the average of the last hidden states of a GRC. We also
tried to derive a weighted average of the hidden states of a GRC based on a soft-
attention mechanism described in [5] but results did not improve. We reported
our results in Section 4.3 for information.

3.3 Improving Word2VisualVec with GRC

As we said in Section 3.1, Word2VisualVec relies on three representations of sen-
tences: bag-of-words, average of Word2Vec embeddings and GRU. GRCs provide
another representation that we can concatenate to the three previous ones. More
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Fig. 3. Gated Recurrent Capsules: all capsules share the same learned parameters θ.
The inputs of capsule i at time t are a word embedding xt and its hidden state at time
t−1 h

(i)
t−1. Its output is h

(i)
t , and it is computed through the routing procedure described

in Section 3.2. This routing procedure can be seen as an attention model: each output
depends on how semantically similar the incoming word is to previously processed
words. It ensures that each capsule generates a sentence embedding corresponding to
one important visual element of the sentence.

precisely, let us assume that we processed a sentence of length L with a GRC

containing Nc capsules. Then, if h
(1)
L , ..., h

(Nc)
L are the final hidden states of its

capsules, the corresponding representation vGRC of the sentence is the average
of all these hidden states:

vGRC =
1

Nc

Nc∑
k=1

h
(k)
L . (14)

This representation is intermediate between the GRU and the Word2Vec repre-
sentations: it is the sum of Nc different hidden states, each of them corresponding
to a particular part of a whole sentence.

Our goal is to map sentences to corresponding images in a space of visual
features. One way to measure the efficiency of that kind of mappings is to eval-
uate the model on caption retrieval. When the model projects both images
and sentences in a common multimodal space, recent works have shown that
triplet ranking losses were efficient [7]. However in our case, sentences are di-
rectly mapped to a space of visual features, no transformation is made on image
feature vectors. We found, in accordance with [6], that using the mean squared
error (MSE) gave better results than a triplet ranking loss. Therefore, consider-
ing a mini-batch B = ((s1, x1), ..., (sNb

, xNb
)) of sentence-image pairs (Nb is the

size of the mini-batch), we defined the loss function LMSE(B) as follows:

LMSE(B) =
1

Nb

Nb∑
k=1

‖fθ(sk)− φ(xk)‖22 , (15)

where φ is a function mapping images to image features and fθ is a function map-
ping sentences to image features where θ is the set of all trainable parameters.
Our objective is to find a θ̂ minimizing LMSE :

θ̂ = argminθ(LMSE(B̄)) (16)

where B̄ is the set of all possible image-sentence pairs. We use the RMSProp
method to optimize fθ, following the procedure we describe in Section 4.2.
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4 Comparison with Word2VisualVec

4.1 Dataset

We evaluated how our models performed on the caption retrieval task on the
MSCOCO dataset [17]. This dataset contains 123000 images with 5 captions
each, and we split it into a training set, a validation set and a test set according
to [14]. The training set contains 113000 images, the validation set contains 5000
images and the test set contains 5000 images.

As for data preprocessing, we converted all sentences to lowercase and re-
moved special characters (apart from spaces and hyphens). We limited the vo-
cabulary to 5000 most used words, and replaced all other words by an ”UNK”
token. Regarding images, we projected them to a space of visual features. For
that purpose, we used the penultimate layer of the ResNet-152 from [7] to get
2048-dimensional features vectors.

4.2 Parameters

Regarding the sentence embedding part of our model, we set its parameters as
follows: we set the maximum sentence length to 24 (if longer the sentence is
cut after the 24-th word). We initialized We using 500-dimensional Word2Vec
embeddings trained on Flickr. We also used these embeddings to compute the
Word2Vec part of sentences representations. These embeddings are the same as
the ones that the authors of Word2VisualVec used in [6]. Regarding the GRC,
we found that a model with 4 capsules and T = 0.4 performed well. The GRU
in Word2VisualVec and the GRC capsules in our model have 1024-dimensional
hidden states.

We trained our models using the RMSProp method [22] with mini-batches
of 25 image-sentence pairs during 25 epochs. We followed the same learning
rate decay procedure as in [6]: the learning rate was initially 0.0001 and we
divided it by 2 when the performance of the model on the validation set did
not increase during three consecutive epochs. We made all our implementations
using the TensorFlow [1] library for Python and used the default parameters of
the RMSProp optimizer: decay = 0.9, momentum = 0.0 and epsilon = 1e-10.

4.3 Results and Discussion

To prove the interest of our model, we compared it to Word2VisualVec. We
compared the two versions we described in Section 3.2: the one with the average
of final hidden states of capsules and the one with the soft-attention mechanism
proposed in [5]. We reported our results in Table 1. They show that our model
performs better than Word2VisualVec, and that the attention mechanism does
not provide much improvement.

Moreover, we also wanted to see on which kind of sentences GRCs were
more efficient than GRUs. For that purpose, we listed all the sentences that
our model ranked in the top 9 sentences and that were ranked worse than rank
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Table 1. Results of our experiments on MSCOCO. R@K denotes Recall at rank K
(higher is better). Best results among all models are in bold.

MSCOCO

Model
Caption Retrieval
R@1 R@5 R@10

Word2VisualVec 32.4 61.3 73.4
W2V + BoW + GRC 33.4 62.2 74.0

W2V + BoW + GRC + Attention 32.8 62.3 74.2

100 by Word2VisualVec. We also listed sentences ranked by Word2VisualVec in
the top 9 that were ranked worse than rank 100 by our model. Our results are
summarized in Table 2.

We noticed that sentences on which GRCs were outperforming GRUs were
more likely sentences containing multiple visual concepts. We provide some ex-
amples in Figure 4. We think that this observation implies that GRCs could be
used efficiently to derive finer visual sentence embeddings, taking into account
important local elements. A possible direction of research would be to find how
to combine it with an object detection model such as Faster R-CNN [19] to take
advantage of that interesting property of GRCs.

5 Conclusion

In this paper, we introduced a novel RNN architecture called Gated Recurrent
Capsules (GRCs). We built a model to address the caption retrieval task by
mapping images and sentences to a visual features space. We showed in our
experimental work that the models obtained using the proposed GRCs are sur-
passing those from earlier works (employing GRUs). Moreover, we stated that
GRCs could potentially be used in any typical RNN tasks, as they are an exten-
sion of GRUs. An interesting future research direction would be to map outputs
of capsules to local visual features.

Table 2. For each model: number of sentences ranked in top 9 for the right image by
one model and above rank 100 by the other model. Ten sentences are ranked in top 9 by
Word2VisualVec while ranked above rank 100 by our model, and seventeen sentences
are ranked in top 9 by our model while ranked above rank 100 by Word2VisualVec.
We also reported these numbers of sentences without counting sentences containing
”UNK” tokens. This table shows that GRCs are performing better than GRUs on
much more sentences than GRUs compared to GRCs.

Word2VisualVec Our model

Total 10 17

Total without UNK tokens 3 11
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Fig. 4. Compared results of Word2VisualVec and our model on three images.
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