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Introduction

The Dirichlet Process Mixture Model algorithm presented here aggregates the vari-
ational inference method presented by Bishop in [1], the use of a Beta prior on
the Dirichlet process responsible for the mixing proportions in [2] and the use of a
Gamma prior on the concentration parameter of the Dirichlet process proposed by
3].

The current variational inference algorithm approximates the posterior distri-
bution of the dataset by a mixture of multivariate Gaussians, inferring the mixing
proportions from a stick-breaking process which concentration is inferred from a
Gamma distribution.

1 Derivation

Our goal is to approximate the model evidence P(x) and the posterior distribu-
tion P(W|x) by a variational distribution ¢(W') using a method called mean field
approximation, where W is a set of latent variables learnt by the algorithm.

1.1 Kullback-Leibler divergence

This is achieved using the reversed Kullback-Leibler defined in equation 1 where 0
is a set of hyperparameters used by the prior distribution.

q(W)

o Wiz.0)™ @)

Dici(allp) = [ a(W)tn

The KL divergence is equal to 0 when ¢(W) = p(W|x). We thus want to

minimize this divergence to obtain ¢(W') as close as possible to the true posterior
distribution.

p(Wlx,0
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Maximizing the lower bound £ defined in equation 2 is equivalent to minimizing
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Optimizing equation 2 is also achieved by maximizing the log marginal likelihood
defined in equation 3 where E, is the expectation with respect to the distribution

q.

Inp(x|@) > L(q,0)

p(W,x|0)
[aw e (3)
> Byl p(W, 210)] — Eqfing(W)

v

The algorithm described thereafter provide a deterministic way to optimize the
lower bound. The result obtained by equation 3 should thus increase at each it-
eration. This equation can thus be used to check implementation errors in the
algorithm.

1.2 One exponential family to rule them all

The current algorithm approximates the data using a mixture of exponential-family
distributions. To perform this approximation,the parameters of these likelihoods
will averaged or sampled from their base distribution, a.k.a the posterior.

In order for the model to represent accurately a wide range of inputs, the deriva-
tion of the algorithm has been performed in exponential family. This representa-
tion allows the algorithm to handle numerous probability distributions with little
changes.

The mapping of several probability distributions with their exponential family
representation is given in appendix A. Most distributions are interesting choices for
likelihoods, for which the exponential family representation of their base distribu-
tion is given in appendix B.

Exponential-family likelihoods and conjugate priors

Table 0.1 gives possible choices of representations based on the format of a given
feature or set of features. Note that any bounded continuous data can be scaled if
the bounds are known to fit between [0, 1] or [0, +oo[. The conjugate prior of the
Dirichlet was introduced in [4].

Given the exponential-family likelihood of a mixture model containing an infinite
number of components (equation 4 where [z = i] is the Iverson bracket), the base
distribution is computed in equation 5 where A; has the same dimension as n;
and Ag is a scalar. 1) and X respectively contain the natural parameter(s) of the
likelihood and the natural parameters of the base distribution. The base distribution
has thus one parameter more than the likelihood.
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pl@alzn) = [T (il@a) i ™Twn) — () ™ (4)
i=1

pFIN) = hoy(nf) exp(AL 15 + Az (—ar(nF)) — ap(X)) (5)

Here, we distinguish the base measure h and the log-partition a of the likelihood
and the base distribution with a subscript. Since the parameters alone allow this
distinction, we did not include it in the remaining of this study.

Data description Domain Multivariate | Likelihood Conjugate prior

Integer € [0, +00] N No Poisson Gamma

Integer € [0, 4o00] N Yes Multl.varlate ?
Poisson

Float € [0, +oo] R* Yes | Multivariate ?
Gamma

Float €] — 0o, +00f R No Normal Normal-Gamma

Float €] — oo, 400 R Yes Multivariate Normal-Wishart
Normal

Boolean {True, False} No Binomial Beta

Boolean {True, False} Yes Mu.ltlvar‘late ?
Binomial

) Any number of . . .
String, Boolean . No Multinomial Dirichlet
distinct values

Table 0.1 — Likelihood and conjugate prior according to data format

Data transformations and constraints

In Table 0.1, rows highlighted in light gray describe cases for which the conjugate
prior still has to be investigated while dark gray rows describe cases where the
analytical form of the normalization factor for the conjugate prior is not known.
Due to this proportional form, we cannot compute E,[n*] and E,[—a(n*)] where
n* represents the natural parameter(s) of the likelihood. This computation requires
indeed the derivative of the unknown log-partition (normalization factor) of the pos-
terior which is unknown since the posterior has the same form as the conjugate prior.



To solve this constraint, we here apply a transformation on the data' so
that univariate and multivariate data for which the domain is [0;1] or [0;4o00[
now become defined in | — co; +o00[ and can thus be approximated by a mixture of
multivariate normal instead of using Beta or Gamma univariate distributions. Let
¢p(x) be the cumulative distribution function (CDF) of a probability distribution
p and prl(aﬁ) be the inverse cumulative distribution (quantile function) of this
distribution,

For x € [0,1], Fy'(z) €] — 00, +oo[. Similarly if 2 € [0, +oo[, ¢r(Fy'(2)) €
| — 00, +00]. Note that the inverse mapping can be applied to the transformed data
and results in the original data without any loss of information.

The CDF and inverse CDF of N(0,1) are given in Figures 1 and 2, while fig-
ures 3 and 4 show the CDF and inverse CDF of I'(1, 2) (shape and scale parameters).

08

Figure 3 — ¢ér(z),k=1,0 =2 Figure 4 — Fp'(z),k=1,0 =2

LFS (Beta(a, B), po, 00) # N(u, o) except for Fy ' (Beta(1,1), po,00) = N(po,00). So we can’t
really give a prior on the data, nor get the inverse parameter mapping for the posterior. Hence
prior parameters will have to be given for normal distributions instead of Beta or Gamma.
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It must eventually be noted that multivariate distributions are able to efficiently
express the correlations between features, while a loss of information will occur when
using a product of distributions to represent a set of features. However, the Poisson
distribution is very well suited to represent natural numbers. This is why using a
product of mixtures of Poisson distributions must be compared with using a mix-
ture of multivariate normal distributions when dealing with multivariate features
for which the domain is N.

1.3 Approximating the underlying distribution

Variational inference allows us to approximate likelihood and posterior distributions
from a Dirichlet Process mixture prior. We now make the assumption that the data
can be described by a product of probability distributions:

M
qW) =[] a(Wy) (6)
=1

We here choose the following approximation of the true posterior, setting W =
{’U, ”7*7 z, w}:

q(v,n", z,w) = 4a,s(v)  ¢-(N) - ¢:(2) - ggy 95 (W) (7)

Where gq g(v) is a beta distribution, ¢, is an exponential-family distributions
and ¢,(z) is a multinomial on the cluster assignment variable z. Note that the prod-
uct of exponential-family distributions is an exponential-family distribution, which
allows ¢, to include Normal-Wishart, Gamma and Dirichlet posterior distributions.

The mixing proportions w computed in equation 8 are obtained from from a
Dirichlet process, hence the use of a Beta distribution (equation 13) to sample the
cluster weights v; from a stick-breaking process (v; ~ Beta(1,w)).

i—1
mi(v) = v [[(1 = vy) (8)
j=1
w can be given as prior parameter, though it has a significant effect over the
weight of each component and thus the number of components actually used by
the fitted approximate posterior. This is why our model integrates over w, which
become a latent variable.

A truncation parameter K on the number of clusters is used, which implies that
mr(v) = 0 for k > K, thus g(vp = 1) = 1. The current algorithm will be later
extended by learning the truncation level K by variational inference, hence allowing
an infinite number of clusters depending on the data complexity.

Notice that the first parameter of the Beta distribution is fixed to 1. We could
have allowed a hyperparameter aq instead taking arbitrary values, then ¢, 5(v) (eq.

5



20) would still be a Beta distribution of parameters ay = ag + Ny while 85 would
be unchanged (eq. 23). However, we could no longer integrate out w as gy, ,,(w)
(eq. 28) would no longer be a Gamma distribution.

We now write in equation 9 the joint probability of the random variables, with
0= {)\, S0, T'()}.

p(x,v,n", z,w|0) = p(x|z, n")p(z|v)p(n*|A)p(v|w)p(w|so, o) 9)

Defining hereafter the distributions, with N the size of the dataset:

[
=
=

p(xlz,m") (h(@n) expi T (n) — a(nir)) ™" (10)
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Mult(m(v))
n=1k=1
N K
= [I I mx(v)™* (11)
n=1k=1
N K k-1
=TT ITCon JT (2 =)=
n=1k=1 7=1
K
PN = TT bl expNT % + Aa(—a() — a(N) (12
k=1
K
p(vjw) = H Beta(1,w) (13)
k=1
p(w|50,r0) = F(‘SOer) (14)

Where sg and rq are respectively the shape and rate parameters of the Gamma
prior on w.

1.4 Coordinate ascent algorithm

Since equation 7 is an approximation of equation 9, we now perform the derivation of
each term of 7. Below, the star in ¢,*(z) denotes the expectation of this factor under
all latent variables except z. Those computation start from the joint probabilities
defined in equation 9.
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Figure 5 — Graphical model representing the Dirichlet Process Mixture Model
according to the plate notation

In g (2) = Eype w[lnp(x,v,n*, z,w)] + const
= Ep[Inp(x|n*, 2)] + Ey[In p(z|v)] + const

N K
= >3 zu(Inh(@n) + Bymi] " T(@n) + Bgl—a(mp)]  (15)
n=1k=1
k-1
+Elnv] + > E[ln(1 - vz)]) + const
=1

Taking the exponential of both sides, we get

N K
g (z) o< [T I1 Pl

n=1k=1

With

In poi = Inh(@n) + Eq[ni]" T(an) + Eq[~a(n;)]
k—1 (16)
+E[lnvg] + > E[ln(1 — v;)]
i=1
Where h(xy,) and T'(x,,) are respectively the base measure and sufficient statis-
tics of the likelihood distribution. Remember that Vn ZkK:1 Znk = 1 and z,, €
{0,1}. We can get rid of the proportionality by performing the following normal-
ization:

Thus



E[znk’] = Tnk (19)

The current ¢ distribution makes an approximation by setting an upper bound
K on the number of clusters resulting in the truncation of the stick breaking process
represented by the following beta distribution. This implies ¢(vg = 1) = 1.

IHQQ,B( ) E"? zw[l p(m,v,n*,z,w)]+const
=E, [lnp( |v)] + Ey[ln p(v|w)] + const

_ZZEznk <lnvk+21n 1—w; ) + Z ( (1—1)Inwvyg
n=1k=1
+ (Elw] = 1) In(1 —vg) — (InT(1) + InT'(E[w]) — InT'(1 4+ E[w]))) + const

N K k—1
= Z Z Tk <1n v + Z In(1 — vz)>

i=1

n=1i=k+1
—In B(1, E[w]) + const

K-1
(E +Z Z rm—1>ln1—vk —|—Zrnklnvk
1

(20)

Where B(a, ) = Fr(ﬁfi(gﬁ)) Taking the exponential of both sides, we recognize

da.p(v) as a Beta distribution.

K-
o,p(v H Beta(o, Br) (21)
With
ap =1+ N (22)
N K
B =Elw]+ Y > 7 (23)
n=1i=k+1

Where Nk = 27]:[:1 Tnk

The next term of ¢ is:



Ingi(n*) = Ey 2 wllup(e,v,n*, 2, w)] + const

E
E,

[lnp(x|n*, 2)] + Inp(n*|A) + const

tllﬂz
M=

Elzui] (Inh(@n) +mi" T(n) - a(nf))

3
Il
—
i
—

_|_
M=
[
B

h(ng) + X mf — Aaa(nf) — a()\)) + const

k]:Vl p
= Z Z <1n n) " h(ng)) + (roT(Tn) + )\1)T e — (A2 +7ox) a(ng)
n=1 k=1
A)) + const
(24)

The exponential of this term is an exponential-family distribution taking the

following parameters:

K
H (k) exp(Tiymfs + Tha(—a(nf)) — a(7k))
k=1

N
Tkl = Al + Z rnkT(wn)

n=1

N
The =A2+ D Tnk

n=1

Eventually, the last term of ¢ is:

Ingy, g, (W) = Ey e z[Inp(z, v, 0", 2, w)] + const
=E, [lnp('v|w)] + Inp(w|so, o) + const
= Z Eq[In(1 — vg)] —InT(w) + InT'(w + 1))

— 1n I‘(so) + sglnrg+ (sg — 1) Inw — row + const

Kl wl'(w)
=(w—1) Y Egln(l—vg)]+ (K —1)In
k=1 I'(w)

—InT'(so) + solnrg+ (so — 1) Inw — row + const

K-1
=(sp—2+K)lnw— (ro - Z E,[In(1 —vk)]> w

k=1
— Eq[In(1 — vg)] — InT'(sg) + soInrg + const

(25)

(28)



g, g, (w) is thus a T' distribution with shape g and rate go.

g1=s0+K -1 (29)
K-1

go =10 — Z Eq[In(1 — vg)] (30)
k=1

The expectations required to compute equation 19 are defined below, with
the derivative of the I" function:

Ellnvg] = ¢(ar) — ¥ (ax + Bk) (31)

Elln(1 — vg)] = ¢(Bk) — (ax + Br) (32)
_n

Elw] = ” (33)

E[lln w] = v(g1) — In g2 (34)

Note that E[ln(1 —vg)] must be set to 0. E[n;] and E[—a(n;;)] depend on the an-
alytical form of the posteriors and are detailed in Appendix B for most distributions.

This algorithm iterates between an expectation and maximization steps until a
convergence is reached. The expectation step is composed of equations 31 to 34 and
19 which requires the expectation of the sufficient statistic terms depending on the
underlying exponential-family distribution (See Appendix B). The maximization
step contains equations 22, 23, 26, 27, 29 and 30. Equation 35 is used to monitor
convergence, i.e. the iterations should stop when this bound does not increase more
than a given threshold e.

After convergence, the predictive density of a new data point is computed in
equation 47.

1.5 Lower bound

We now continue the derivation of equation 3 by inserting the joint probability from
equation 9 and the ¢ distribution from equation 7.

Inp(x|60) = Eq[lnp(x, z, 1%, v|0)] — Eq[Ing(z, 1", v)]
= Eq[In p(z|2, n*)] + Eq[In p(2[v)] + Eq[In p(n*[A)]
+ Eq[In p(v|w)] + Eq[In p(w|so, 70)] — Eq[In ga,5(v)]
— Eg[lngr(n™)] — Eq[Ingr(2)] — Eq[In ggy,g, (w)]

Each term can be computed as follow, by taking the corresponding expectation
of the logarithm under certain variables:

(35)
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M=
M=

Eq[lnp(|z,n%)] = rak (Inh(@n) +EMi] T (@n) + E[-a(mf)])  (36)

3
I
—_
£
Il
—

IS
=
=
N
=
I
M=
NE

k—1
Tk <Eq[ln vg] + Z E,[In(1 - vz)]>

=1

3
Il
—
i

1

N oo foe)
=> > ( ( > Tm‘) Eqy[In(1 — vg)] + rpEq[In Uk]) (37)
n=1k=1 \ \i=k+1
N K
=3 (alzn > K)ESIn(1 — vp)] + q(zn = k)E,[In ;)
n=1k=1

We truncated the summation at K, so E[ln(1 — vk )] = 0 and ¢(z, = k) = 0 for
k > K where

q(zn > k) Z Tni (38)
i=k+1
q(zn = k) = rn (39)
K
Ey[lnp(n*|A)] = > (nh(ng) + XTEm;] + AE[-a(m)] = a(A))  (40)
k=1
K
Eq[In p(v|w)] Z( E[ln(1 — vp)] — InT(Efw]) + InT(Efw] + 1)) (41)
E,[Inp(w|so, r0)] = solnrg —InI'(sp) + (so — 1)E[ln w] — roE[w] (42)
K
Bylln (0] = 3 (( ((ar = DE[n(vr)] + (B ~ DE[n(L - vy)
Pt (43)
—InT(ax) — InD(Bg) + In (e + )
K
(- ()] = 3 (h(mf) + THEmE] + woB[-a(ni)] — a(me))  (44)
k=1
K
qlng-(z Z Z Tk IN Ty (45)
n=1k=1
Eq[Ingg, g, (w)] = g1In g2 — InT(g1) + (91 — DE[In w] — g2E[w] (46)
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1.6 Predictive density

For a new data point &1, the predictive density is:

pavnle.0) = [ 3 m(@p(@yalng)dpv.n’l2.0

Kk—l (47)

~ 3 Byl (0)|Eg p(@n 1 )]
k=1

Since 7 (v) is given in equation 8 and v; follows a Beta distribution, we obtain

k—1
oy, Q;
E,lmi(v)] = —% (1 - ) 48
This density is approximated by using a Monte Carlo estimate, i.e. we draw
1000 samples of n;; from the approximation of the posterior ¢;(n*), each allowing
us to compute the corresponding likelihood p(x 41|} ). The estimated likelihood
for a given component is obtained by averaging the likelihood under each sample.

For a Normal likelihood and a Normal-Wishart approximation of the posterior,
this density is a mixture of Student’s t-distributions[1] given in equation 49. py,
Ak, Vi and vy, are the parameters of the Normal-Wishart distribution obtained from
the inverse parameter mapping of 7.

K k-1 ,
p(eyii|z,0) =D <ak II (1 - ) St (en 11|tk Ly, vk + 1 — d))

o\ ok + B o + B
(49)
With
(U +1 - d))\k
Ly=——"V,
k 1+ )\k k (50)

We also report approximations of the log likelihood of a multivariate normal
with ! = L, (Bishop. Note that L ~ w) in equation 51. The first

m
approximation is must faster co compute, although we second one should be more
accurate. Both remain rough approximations of the ground truth, which is the

Student’s distribution with Lj; and a dedicated v.

> W(Vkavk)>_1) - S In N (x|my, W (Vi ug) 1) (51)

m m

In N (z|mg, (

1.7 Incremental training

In a production environment, the ideal model would be a never-ending learning
one. Instead of adapting the whole algorithm in order to handle streaming data to

12



perform an incremental training, the simplest way to keep this model up to date
with the current data flow while taking into account the data previously seen is to
make the model evolve by performing periodic batch training where today’s prior
takes the value of yesterday’s posterior.

Conclusion and future work
The following tasks have been achieved:

e Mean field variational inference for mixture of exponential-family distributions

o Handle several data types and complete derivation for most distributions re-
quired by the previous genericity

— Float and integers of various ranges with data transformations and mix-
tures of multivariate normal and Poisson distributions

— Strings with a mixture of categorical distributions

e Use a Dirichlet process to compute the the mixing proportions with a Beta
prior

e Put a Gamma prior on the the scaling parameter w used by the Dirichlet
process

Future work includes:

e Learn the truncation level K by variational inference
e Handle lists of actions by including HMM in the variational inference
e Distribute the algorithm

Additional steps while extending the algorithm are:

e Benchmark the algorithm on Amadeus’ datasets

e Compare the algorithm to others, such as GMM, Collapsed Gibbs sampling
and truncated Gibbs sampling

13



Appendix A

Derivation of exponential-family
distributions

Exponential-family distributions are probability distributions which can be written
into a specific form described in equation A.1, where h(z) is a known function, 1(0)
is the natural parameter, T'(z) the sufficient statistics and A(f) the normalization
factor of the exponential-family distribution.

h(z) exp(n(6) - T(x) — A(6)) (A1)

Table A.1 describes the mappings between the original distribution and its
exponential-family representation. The inverse parameter mapping allows the com-
putation of the distribution parameters from the natural parameters.
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Gl

Natural Inverse parameter Base Sufficient
Distribution Parameter(s) 6 Log-partition A(0)
parameters 7 mapping measure h(z) | statistic T'(z)
Binomial (known 1 n
P In Tp Tre=n T —nln(l —p)
number of trials n) z
Inp; en 1
Multinomial (known 1,---,pp with )
( pi, Pk with Z?:l e =1 kn! ‘ 0
number of trials n) S opi=1 [T =
In g, e'lk Tk
a—1 m+1 Inz
Beta a, B 1 InT'(o) + InT(8) — InT(a+ )
B— n+1 In(1 - z)
a; —1 m+1 Inzy
Dirichlet Qe : : 1 : Y InT(e) —InT (Zf:i a_,)
ap—1 me+ 1 In
a—1 m+1 Inz
Gamma o, 1 InT(a) —alnpj
-6 —12 x
Poisson A In A el % T A
Multivariate normal us > u 75172’17]1 (271—)*% T LTSk L (|
) - 2 2
(k dimensions) -1yt —in! xx!
Wishart v 7%V’1 7%771’1 1 T B (dn2 4 In[V]) + InTa(2)
N s(@n2+In +Inly(5
(k dimensions) nd-l 2 +d+1 In|z|
”;d 72%34 In|A|
Normal-Wishart -1 Ix+v1 —2m J A
po, A, V,n 2 (Mot ) o\ -1 (271')’% - —dImA+ %2+ 2 |V|+InTq(2)
(k dimensions) oA (—2772 + "3—:}) 2T A
7%’\ 2m +d AzzxT
r e InT(a)
Conjugate prior of Gamma Do s s —14 1 aln Inp
f(a,Blp,q,r,s) o 157((:7 ’ Inp m @
—q 2 B
Ao m In (Sleth)
Conjugate prior of Beta N . (F<Q>F<d)) 0
5y \ Yo 3 05 0, Yo In g en «
(o BIX w0, u0) o ()™ gyt
([ ()1 (3)) 070 In yo &3 B

Table A.1 — Exponential-family representation of several probability distributions




Multivariate normal

We here took advantage of following property tr(a’ - b) = vec(a) - vec(b) with a
and b vectors. We thus assume a vectorization of the matrices at the second-to-last
step of the Normal and Normal-Wishart derivations. This allows us to use the trace

property: tr(a’ Be) = tr(ca® B).

Let d be the dimension of the space,

N(z|p,X) = (27) 2 |%| 2e2@-wS " (@-—p)

1 1 1
= —ep(—y S - Sz - p) TS (@ - )
\/27rd 2
_ exp(tr (E_lu:cT 1 2 xasT) l,uTE_lp, - 1hrl |2])
md 2 2 2
L exp TSt S In|S)
- €x
,/ _
= h(z) exp(n(0) - T A(9))
(A.2)
This gives us the following parameter and inverse parameter mappings:
{ m=X"p {H:—énz_l’"ll
’72——’2 ! 23_—*772
Wishart
| ’n—d—l —tr(V e
2 2
WalV,n) = =
22 |V]2L4(3)
1 _
= exp(—3 tr(V " 'z) % x| — n—dln2 - —ln V|- lnl"d(g))
T
V 1 r n n
= exp : —(z(dIn24+mn|V])+1InTy(=))
n— z2i 1 In |$’ 2 2
= h(z) exp(n(8) - T(x) — A(0))
(A.3)

Where I'; is the multivariate gamma function and the parameter mappings are
m=—3V! =iy’
Ny = =41 n=2n+d+1
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Normal-Wishart

The following derivation also assumes a preliminary vectorization of the matrices
as explained above.

AV, n~W(AIV,n) (A.4)
w10, A, A ~ N (o, (AA) ™) (A.5)
(/’l‘aA) ~ NW(/J,(),)\?V,TL) (AG)

n—d—1 —tr(Vv_IA)

A 2 e =
2% V|2 Ty(2)

NW (@, Alpo, AV, n) = (27) 5 [(AA) Y|z e 3 (@m0 ANz ko)

! 7 exp(tr ()\Auga:T) — %tr ()\Ama:T) — %ugAAuo

2w
1 1 —d-1 d
— 5 |(A) 7 = (VI + %m IA| - % In 2
— S In|V|—Inlu(3))
1 n—d—1 d 1 1
= In|A|+ =1 “In|A| - i AA
27rdexp( 5 A+ 5 ImA+ S In Al = S pg Mo
1 1 T 1 T nd
— (VA i (Mpoz )—§tr (\Maz )—71112
— S In|V| - InTu(3))
T
e In|A|
1 —3(mopf A+ V1) A d
= dexp . — (—*IDA
V2T HoA xl A
—1X AxzT

+ %dlm + gln\V\ +lan(Z))>

= h(z) exp(n(0) - T(x) — A(6))
Which results in the following parameter mappings
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73

m= %l Ko = =3,
m2 = —5(Hopd A+ V1) A= —2m -
M3 = oA V= (—2172 + "5’:]’4"')
1
m=—3A n=2m+d

Conjugate prior of the Beta distribution

The hyperparameters of this prior are A9, xg and yg. However, its normalization
factor does not have a closed form which limits the possible uses of this distribution.

r Ao
W(a75’A05$07y0) X <Im) .’Egyg
r
X exp </\0 In (m) +alnzg + ﬁlny())
T
WY () s
o exp In zg . Q
In g B

= h(z) exp(n(0) - T(x) — A(0))

Where the parameter mappings are

7 = Ao Ao =M
79 = Inxg T = 6727
n3 = Inyo Yo = eq

Conjugate prior of the Gamma distribution

The hyperparameters of this prior are p, g, 7 and s.
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f(a, Blp,q,m,8) o T(a) 3o
o p* e P (o) T 3O

xexp((a—1)Inp—Bg—rInT(a) + aslnp)

T
r InT'(a) (A.9)
S aln g
X exp . —Inp
Inp Q@
—q g

= h(z) exp(n(9) - T(x) — A(0))

Where the parameter mappings are

m=r p=em
2 =s =4
ng =1Inp T=n
m=—q s=1m
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Appendix B

Derivation of conjugate priors in
exponential family

Given an exponential-family likelihood expressed in equation B.1, its base distribu-
tion is given by equation B.2, where A\; has the same dimension as n* and Ag is a
scalar. The base distribution has thus one parameter more than the likelihood.

plaln*) = hi(z) exp(n™ T(z) — a()) (B.1)

p(7*IA) = hy(n") exp(A] 7" + Xa(—ar (")) — ap(N)) (B.2)

In the case of a conjugate prior, the posterior is thus

p(*|7) = ho(n*) exp(ri 0" + ma(~a(n*)) — ay(T)) (B.3)

We can then compute the expectation of each term of the sufficient statistics:

E[n*] = 8%(;’1' ) (B.4)
Bl-a(r)) = 22T (B.5)

More generally, given a likelihood and a prior, the posterior is

20



n

p(* |21, A) o< p(n*|A) [ [ p(iln®)

i=1
= ho(1") expON 1" + X (= (1)) = (V)
([T (@) exp(n™ Y (i) = nay(n®)) (B.6)
=1 i=1

i=1

n T
o hy(n") exp ((Al + ZT($¢)> n+ (A2 + n)(—az(n*)))

The parameters of the posterior are thus

{Tl =M+ T()

9 =X +n

Beta - Conjugate prior of Binomial likelihood

p(*|A) = h(n*) exp(A{ 0™ + Aa(—a(n®)) — a(N))

= exp ()\1 In . LA AonIn(l —p) — a(A))
-Pp
r \* A ()
= 1—p)"e B.7
(1 - p) 1 ( ) (B.7)
— p(/\1+1)71(1 o p)(n)\gf)qﬁ»l)flefa()\)
Pt —p)t
B(a, )
We recognize a Beta distribution with parameters
M=a-—1 a=MX\+1
Ay = Oto=2 B=nl— M\ +1

The expectation of terms of the sufficient statistics for the posterior are given
thereafter, where v is the digamma function.

Eln*] = aa(g;l- )
= 68 (InT(m1 +1)+InT(B) —InI'(m + S+ 1)) (B.8)
i

=¢(n+1)=¢(n+p+1)
= ¢(a) —P(a+ B)
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aa(. .. ’7-2)

El-a(n”)] = <

=9 (In(e) +InT(nmy =71 + 1) —InT(a+n2 =1+ 1))  (B.9)
2

=nyp(nre —1 +1) —nY(a+nm —11 + 1)

= ny(8) —ny(a+ f)

Dirichlet - Conjugate prior of Multinomial likelihood

p*[A) = h(n*) exp(ATn* + Aa(—a(n*)) — a(X))
In py
=exp [AL [ ¢ | —a(¥)

In pp, (B.10)

We recognize a Dirichlet distribution with parameters

)\11 a1 — 1

Ain+1
A= ¢ | = )

)\lm Ay, — 1

Am + 1
Ao =0 !

The expectations for the posterior are
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da(Ty,- )
87‘1

= (987'1 <§:IDF(T1¢ +1)—InT (i(ﬁi + 1)))

i=1 i=1

E[n*] =

Yl +1) =9 (2% mi+ 1)

= : (B.11)
Y(Tim +1) = 2% 1 + 1)
Ylon) = (i ai)
Y(am) — ¥ (% i)

E[-a(n")] =0 (B.12)
Gamma - Conjugate prior of Poisson likelihood
p(n*IA) = h(n") exp(An” + A2(—a(n’)) — a(X))

=exp(AIn Ao — AoXg — InT'(a) + aln(pB))
_ ﬁ A1, —X2)o .
= F(a))\o e (B.13)
_ 8% ya-1,-8%
O

We recognize a Gamma where A\ is the parameter of the Poisson distribution.
{)\1:04—1 {a:)\l—i-l
Ay =P B = A2

The expectations are

da(Ty,--+)
87’1

O (mT(r +1) = (1 + 1) ) (B.14)

- 87‘1
=¢(n+1)—Inp
=¢(a) —Inp

Eln] =
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(B.15)

Normal-Wishart - Conjugate prior of Normal likelihood

P IA) = h(n*) exp(ATn* + Xa(—a(n*)) — a(X))

1 1
= (QW)_% exp | AT R (—Q,uTE_lu - 21n|2) —a(A)

d 1 1 1 _
= (2m) exp (M Ap - PALA - Do A~ Dol AT~ a(3))
d 1 1
= (2m) 72 exp ((quo)TAu = 5(popg Ao + VA = Sdop’ Ap
1
+ 5((71 —d—1)+1)In|A| - a(A))

_d 1 1 1 _
= (27) "2 exp (tr(AoAuug) — SHo doApo — 5 tr(oApp”) — Str(VTIA)

—d—1 1
+ %IH|A| + §ln|A\ - <;11n)\0+ %lln2+ gln\V\ +lan(Z)>)
—tr -1
|A|n7(2171€ (‘; A)

(27) "2 [ Ao A |2 e 2 (Hh0) Do A(u—pro)
nd n
22 |V[2L4(3)

(B.16)
We recognize a NW (u, Alpo, Mo, V', n) distribution with the following param-
eters. The previous derivation used transformations such as |[AA| = A A| or
|A71| = |A|7! and assume the vectorization of the matrices.
— A1
A11 = Moo Ho = 53
A1z = (pop ro + V1T Ao = Ao 7
T
A2 = Ao V= ()\12 _ Ali:\11>
do=n—d n=X\+d

Which implies the constraint A\g = n —d. We used the notation B~ = (B~1)7.
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The expectations for the posterior are given below, where E[n*| contains a vector
and a matrix and E[—a(n*)] is a scalar. 7 is the natural parameter of the posterior,
corresponding to A for the prior. We also used the previous inverse parameter

mapping.

Oa(T11, )

Efp']= |, 7™ (B.17)

da(--,T12, )
0112
-T
T
T11711
T2 — ———
T2

8&(7’11,“-): 0 —gl 2+(7‘2—|—d)d1n2+7'2+d1n
87’11 87‘11 2
d
—HnPd (7—2 + ) >
2
0 Tg+d T11’T1Tl
= - 1 -
67-11 ( 2 712 T2
T —1
— o <_7_2+d1n<<1_7117-127-11> ‘7.12>>
8T11 2 T2
0 To+d _
= 67'11 (— 5 111(7'2 — T1TlT121T11)>

. (T2 + d)(Tl_zl + T1_2T)T11

219 — 27’31 7'1_21 T11
(B.18)

Where we used |B — zx!| = (1 — 2" B~ 'z)|B| and axg% = (B + BT)z.

7\ 7
da(--- ,112,--) 0 [ QIDTQJF (T2+d)dln2+ ntd, i THTLL
0T12 0T12 2 2 To
d

+1 m(TZ; ))

0 ( D) +d ’7’11Tirl )
= — In|re — ——

87’12 T2
0 To+d _

-T T _-T
To+d [ Tia T11Ti1T12 _r
== T _—1 + T12
(B.19)
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Using 20°X°10 — _ x~TqpT X T and 9% = | x| X7

. aa( .. ’7-2)
El-a(n”)] = <5
0 d (to +d)d o +d T117h -
=3 —*1117'2+271n2+ 2 In le—g
87’2 2 2 2 T

_ AT -1
w2 (2 (o (2T )

72

d(d—1) d o+d 1—i
+<4ln7r+izllnf< 5 + 2)

d d 1 (mtd+1—i B T _—
_—27_2+21H2+2;77/)<2>+87_2<—2ID(TQ—TIIT12T11>

d d
+ % Inmg — % In |m12| — B In (7’2 — TlTlTﬁlTll) + 5 ln7'2>

d 1 mtd+1—d\ 1 _
= 51112 + 3 Zw <2> — —In(m — 71T17'1217'11)
i=1

2 2
T 1 In | 1z| + 1 1 n 1 d
_ — —In|r shnm+ - —
21y — 27';[[17'1_217'11 2 P 21y — 27'1T17'1_217'11
1 d+T ~
=-|1= = %1 +d1n2—1n|7'12|+1117'2—111(7'2—7':EF17'1217'11)
2 To — Ti1T12 T11
d .
To+d+1—1
+> v (2) )
i=1
(B.20)
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Conjugate prior of Gamma likelihood

p*[A) = h(n*) exp(AL n* + Ao(—a(n*)) — a(X))

—exp | AT [ _@ + do(—InT(a) + aInT(B)) — a(A)
=exp(AM1(a—1) = A2 — AeInT(a) + oaln 8 — a(A)) (B.21)
- (ln)\u)aflef)‘mﬁ —a(N)
(appe
pa—le—ﬂq
*Tay s

We recognize the corresponding conjugate prior with the following parameters,

where p,q,r,s > 0 and f(«,B|p,q,r,s) x li’(aileiﬁq if a, B > 0, 0 otherwise.

)\11 =eP p = In )\11
A12 =¢q q = A12
/\2:7“ 7“:)\2
)\2:—8 S:—)\g

Which implies the constraint r = —s.

The expectation of the sufficient statistic terms cannot be computed for the
corresponding posterior since we don’t have the analytical form of the normalization
factor.

Conjugate prior of Beta likelihood

p(*IX) = h(n*) exp(ALn* + A2(—a(n*)) — a(X))

a—1

=exp | AT 5 + A(—InT(a) —InT(B) + nT(a + B)) — a(N\)
—exp (Anfa— 1)+ da(B— 1) + doln m - a()
_ F(Oé + B) re n a=1, B—le—a()\)
T+ B\ 0w )% (0 Ao ) e—aN) A= A1
F(a + ﬁ) Ao o, B
> <F(a)F(ﬁ)> Tod

(B.22)
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We recognize the corresponding conjugate prior w(«, 8|Ag, o, yo) with the fol-
lowing parameters

A1 = €0 Ao = A2
)\12 = e¥o rog — In )\11
A2 = Ao Yo = In A12

As previously, the expectations for the posterior cannot be computed due to the
missing analytical form of the normalization factor.
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