
Betrayed by the Android UI
Yanick Fratantonio

EURECOM
@reyammer

Insomni'hack 2019
March 22nd, 2019

- Yanick Fratantonio (@reyammer)

- Academic
- Assistant Professor at Eurecom (Nice area, France)
- PhD @ UC Santa Barbara

- Research focus: Mobile Systems Security & Privacy

- Hacking / Capture The Flag teams
- Shellphish (UCSB), NOPS (Eurecom)
- The Order of the Overflow (DEFCON CTF organizers)

Whoami

← bad idea

- Recently released all material for my Mobile Security class

- https://mobisec.reyammer.io

- Material
- 800+ slides on the topic
- Coming next week: wargame site dedicated to mobile security

- Reversing challenges / exploitation challenges

MOBISEC class

- UI security matters

- UI attacks are real
- They exist
- They are practical
- They are difficult to eradicate (some of them: open research problem)

Today's talk: Android UI Security

- Users can install third-party apps

- Third-party apps are, by default, sandboxed
- Apps have private storage
- Their capabilities are monitored via the permission system
- Interaction only through well-defined IPC mechanisms

- Very different than usual PC / laptops!
- If an attacker gets code execution on my laptop, it's game over
- Not the case for my Android phone!

Primer on Android security

- Many efforts to
- reduce attack surface
- tighter adherence to principle of least privilege
- exploit mitigation techniques
- permission system refinement
- new permission policies (e.g., clipboard access only for foreground apps)
- SELinux policies / contexts
- limited access to /proc & co.

- Great talk by Nick Kralevich @ BHUSA'17 on Google's
work to shrink the attack surface

Many low-level security mechanisms

- UI attacks can bypass many low-level mechanisms

- Android's Achilles' heel
- Apps have full control of your screen
- Apps can do UI "tricks"
- Not well understood

- Lack of Trusted UI prevents using mobile devices to
control security-critical systems, medical devices, E-IDs, ...

UI security matters

- What is a UI attack?
- An attack involving UI that somehow affects the CIA triad
- User deception

- Focus on "imperceptible attacks"
- Even a security expert cannot notice an attack is going on...
- ... even if I tell you that you are under attack!

- Example of non-imperceptible attack
- Web phishing: a user can always check "the green lock" + domain name

UI attacks

- Clickjacking
- Attacker lures the user to “click” somewhere
- Usual goal: privilege escalation / confused deputy

- Phishing
- Attacker lures the user to insert her credentials / private data somewhere

(and leak them to the attacker)

- But there are some other twists & tricks to abuse
password managers, instant apps, ...

Two big classes

Clickjacking 101

“Draw on top” permission

- Draw arbitrary windows/overlays on top of the screen
- Can be completely custom: shape, content, transparency, position
- Can be clickable ⊕ passthrough

- This permission is used quite often
- 454 out of 4,455 top apps (10.2%)
- Used by Facebook, Skype, Uber, LastPass, ...

- Automatically granted to apps from the Play Store*
- *NOTE: it is possible that this will change soon -- I've heard rumors ;-)

Traditional Clickjacking

Click here

UI Redressing Attacks on
Android Devices Revisited

 Niemietz & Schwenk
BH ASIA 2014

Multi-step clickjacking (?)

- Multi-step clickjacking: some attacks require 2+ clicks

- Challenges
- When to transition to the next stage?
- What if the user clicks “somewhere else”?
- Tricky because the first click lands, by definition, on the *victim* app

- The malicious app is not notified about clicks landing elsewhere
- Exception: FLAG_WATCH_OUTSIDE_TOUCH flag, but the click’s coordinates are set to

(0,0) if click lands on another app
- Where did the user clicked?
- Wheeereeeeee?

Attack: Context-aware Clickjacking

- So, the attacker does not know the coords of clicks
landing outside its malicious app...

- But what if there is only “one way” for a click to not reach
the malicious app?

Multi-step Clickjacking

Target ButtonTarget Button

Clicks do NOT go through

Clicks go through

(100,100)

(200,300)

(0,0)

- We know the user clicked
on the “target” button

- We know we need to
transition to the next step

Cloak & Dagger
IEEE S&P’17

- Clickjacking attack is old

- Google introduced the “obscured” flag
- When the user clicks on a widget, FLAG_WINDOW_IS_OBSCURED is

set if “an overlay was covering the receiving widget”
- An app can decide to “not trust” the click

- Another option: setFilterTouchesWhenObscured()

Protection against clickjacking

“Because an app is obscuring a
permission request, Settings can’t verify

your response.”

Obscured Flag Defense Mechanism

Obscured Flag Bypass

Capture?

Context-Hiding
Attack

Cloak & Dagger
IEEE S&P’17

- Android Accessibility Service (a11y)
- In theory: mechanism for apps to assist users with disabilities
- In practice: super powerful mechanism abused by benign/malicious apps

- “Features”
- App is notified for each UI event
- App can inject UI events (e.g., clicks)

From “Draw on top” to a11y

- Very powerful, but not God-mode (in theory...)

A11y security

“Since an event contains the text of its source privacy can be
compromised by leaking sensitive information such as

passwords. To address this issue any event fired in
response to manipulation of a PASSWORD field does NOT

CONTAIN the text of the password.”

Attack: a11y on steroids

1) Steal PIN

2) Inject PIN and
unlock the phone!

Bonus point: phone
unlock while keeping

the screen off!

Ransomware Example

“Hide overlays” defense

- It works!

- I believe it is enough to prevent clickjacking

“Hide overlays” defense

- …are these defenses widely deployed?
- Not really: only system apps can use "hide overlays" trick

- What about the well-known obscured flag? Is it used?

- “A friend told me…”

But...

Twilight

An Android 6.0-only bug prevents granting permissions
when Twilight is on (fixed in Android 7+)

Clickjacking vulns are still widespread

- Google Play Store

Many more targets

14

- GMail
- Google Authenticator
- Twitter, Facebook
- Google Drive
- Signal, Whatsapp
- Google Chrome
- Lookout Security
- ...

CLICKJACKING IS STILL A WIDESPREAD PROBLEM

- Twitter: “After further review, we do not plan to address this at this time due
to the UX issues you mention”

- Signal: “...without an effective mitigation, there doesn't seem to be anything
for us to do here.”

- Facebook, Whatsapp, Instagram: “...right now we consider it accepted risk
because of the exploitation requirements...“ and “There is a balance between
security and UX, and our threat modeling needs to take them in
consideration.”

Disclosure & Reaction

BACKWARD COMPATIBILITY CONCERNS

UI security previously not really
understood / taken seriously

- Not only it can be easily bypassed...

Back to the “obscured flag”...

- Not only it can be easily bypassed...

- ... but #1: misleading documentation

Back to the “obscured flag”...

FLAG_WINDOW_IS_OBSCURED docs

“This flag indicates that the window that received this motion
event is partly or wholly obscured by another visible window

above it.”

- This is not the case: if the click does not go through other
overlays, the obscured flag does not kick in

- Google knows about it...

FLAG_WINDOW_IS_PARTIALLY_OBSCURED

/**
 * This flag indicates that the window that received this motion event is partly
 * or wholly obscured by another visible window above it. This flag is set to true
 * even if the event did not directly pass through the obscured area.
 * A security sensitive application can check this flag to identify situations in which
 * a malicious application may have covered up part of its content for the purpose
 * of misleading the user or hijacking touches. An appropriate response might be
 * to drop the suspect touches or to take additional precautions to confirm the user's
 * actual intent.
 *
 * Unlike FLAG_WINDOW_IS_OBSCURED, this is actually true.
 * @hide
 */
public static final int FLAG_WINDOW_IS_PARTIALLY_OBSCURED = 0x2;

Same as FLAG_WINDOW_IS_OBSCURED

“Unlike FLAG_WINDOW_IS_OBSCURED,
this is actually true.

- Not only it can be easily bypassed...

- ... but #1: misleading documentation

Back to the “obscured flag”...

- Not only it can be easily bypassed...

- ... but #1: misleading documentation

- ... but #2: it could be abused to mount even worse attacks!

Back to the “obscured flag”...

- This attack can record all “keystrokes”
- It only relies on the “draw on top” permission

Attack: Invisible Grid Attack

- This attack can record all “keystrokes”
- It only relies on the “draw on top” permission

- It abuses the “obscured flag” security mechanism

Attack: Invisible Grid Attack

Attack: Invisible Grid Attack

1

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

2

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Not obscured

Not obscured

Not obscured

Not obscured

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Obscured

Not obscured

Not obscured

Not obscured

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Obscured

Not obscured

Not obscured

Obscured

Where did the user click?

MotionEvent

Attack: Invisible Grid Attack

1
2

3
4

Overlays are drawn
- Invisible
- Clicks passthrough
- FLAG_WATCH_OUTSIDE_TOUCH

1

2

3

4

Overlay #

MotionEvent

MotionEvent

MotionEvent

The “obscured” flag is set accordingly!

Obscured

Not obscured

Obscured

Obscured

Where did the user click?

Attack: Invisible Grid Attack

1
2

3
4

Security mechanism used
as side-channel!

The attacker can use
these patterns to infer

where the user clicked!

Attack: Invisible Grid Attack

These overlays are drawn
invisible during a real

attack

- Bug marked as “Won’t fix, work as intended” (September 30th)

- Bug marked as “High severity” (October 18th)

Disclosure of “a11y on steroids”

- Downgraded to “Won’t fix” because “limiting those services would
render the device unusable” (November 28th)

- “We will update the documentation” (May 4th)

- AND THEY DID!!!11!1!

- AccessibilityEvent’s “security note” is silently removed
- June 6th version vs current version

a11y documentation “patch”

- AccessibilityEvent’s “security note” is silently removed
- June 6th version vs current version

- “Patch the documentation, not the code”

a11y documentation “patch”

- AccessibilityEvent’s “security note” is silently removed
- June 6th version vs current version

- “Patch the documentation, not the code”

- Found a 0day in the docs, still waiting for CVE ;-)

a11y documentation “patch”

Mobile Phishing

The key problem

Mobile Phishing 101

- /proc/*
- getRunningTask API
- Access system log

Phishing Attacks on Modern Android

Mobile Password Managers

How can a password
manager know that this
app is really linked to

facebook.com???

This step is trivial for
browser password managers,

but not on Android...

- Accessibility Service

- Android Autofill Framework (new in Android 8.0)

- OpenYOLO

Three Technologies

In all cases, an app’s package name is
the starting point to map app ↔ website!

- Nobody is checking / vetting package names

- No trust relation between “package” and “subpackage”
- E.g., easy to get an app on the official Play Store with

“com.facebook.evil” package name

- The only constraints:
- No two apps can have the same package name on the Play Store
- No two apps can have the same package name on an Android device at

the same time

Package Names Can’t Be Trusted

Real-World Password Managers

Dashlane

- Heuristic to infer the mapping from the package name
- It splits the package name in components

- E.g., “aaa.bbb.ccc” →”aaa”, “bbb”, “ccc”

- For each component, it checks if at least 3 of its characters are contained
in the “website” field of each entry

“xxx.face.yyy”→”facebook.com”

“com.inst.lin.ube”→
”instagram.com”, “linkedin.com”, “uber.com”

LastPass

- Heuristic to infer the mapping from the package name
- It reverses the package name and check for common suffixes with

“website” fields of each entry

“com.facebook.evil”→”facebook.com”

- Crowdsourced mapping
- Using user-supplied package name ↔ website associations

Keeper

- It takes the package name…

- … it queries the Play Store…

- 1x1 pixels

- Foreground color = Background color

- Make fields transparent

- Set “visibility” field to “gone”

Hidden Fields

Instant Apps

Instant Apps Flow FULL UI
CONTROL!!!

End-to-end attack: phishing with few clicks

com.paypal.evil

- Rely on Digital Asset Links (DAL)

- A website can say “apps signed by this certificate are OK”

- https://www.facebook.com/.well-known/assetlinks.json

The Right Way™

- Rely on Digital Asset Links (DAL)

- A website can say “apps signed by this certificate are OK”

- https://www.facebook.com/.well-known/assetlinks.json

The Right Way™
{
 "relation":
 ["delegate_permission/common.get_login_creds"],
 "target": {
 "namespace": "android_app",
 "package_name": "com.facebook.katana",
 "sha256_cert_fingerprints": [
 "E3:F9:E1:E0:CF:99:D0:E5:6A:05:5B:..."
]
 }
}

Only ~2% of domain names support this

A look at the future

- How can I know that I'm interacting with app XYZ?
- Is it real the facebook app?

- How can the app know that the user intentionally and
knowingly clicked on button X?

- Think about medical devices!

- How can I know that my click has been actually received?
- If you don't have this guarantee, potential for DOS.

- How can I know that the UI's content is "trusted"?
- Important for mobile/digital ID (driving licenses, ...)

Open problems in mobile UI

74

- New API introduced in Android 9.0
- First very big step towards trusted UI
- It shows a system-generated popup asking users for confirmation

- No clickjacking possibilities here

- Security features
- The UI is actually shown/rendered by Trustzone

- Even a root attacker can't do much

- Trustzone is used to generate an attestation code (via cryptography)
that encodes "the user has clicked OK + message was XYZ"

- A network backend can verify the attestation code
- ⇒ The network backend can be very confident that the user knows about this

Android Protected Confirmation

75

- New API in Android: IdentityCredential API
- Support for "secure" mobile driving licenses (and other docs)
- Once again based on TrustZone + attestation tokens

- Even the "rules" are changing
- "Draw on top" permission automatically granted for Play Store apps?
- [Rumor] In Android Q: apps can't "pop out" from background?

- I expect (good) impact on adware and simple phishing attacks

UI security is constantly evolving!

- My students: Andrea Possemato, Simone Aonzo

- Android security team ⇐ top people

- Security teams of the various password managers
(Dashlane, Keeper, LastPass, 1Password)

Acknowledgments

- "Cloak and Dagger: From Two Permissions to Complete
Control of the UI Feedback Loop", IEEE S&P'17

- "ClickShield: Are You Hiding Something? Towards
Eradicating Clickjacking on Android", CCS'18

- "Phishing Attacks on Modern Android", CCS'18

Related Papers

Thanks!

Yanick Fratantonio
EURECOM

@reyammer
https://reyammer.io

yanick.fratantonio@eurecom.fr

... and stay tuned for CTF-style mobile reversing challs on https://mobisec.reyammer.io/!

