
RuDiK: Rule Discovery in Knowledge Bases

Stefano Ortona§ Venkata Vamsikrishna Meduri˘ Paolo Papotti8
§ Meltwater ˘ Arizona State University 8 EURECOM

stefano.ortona@meltwater.com vmeduri@asu.edu papotti@eurecom.fr

ABSTRACT
RuDiK is a system for the discovery of declarative rules over
knowledge-bases (KBs). RuDiK discovers both positive rules,
which identify relationships between entities, e.g., “if two
persons have the same parent, they are siblings”, and neg-
ative rules, which identify data contradictions, e.g., “if two
persons are married, one cannot be the child of the other”.
Rules help domain experts to curate data in large KBs. Pos-
itive rules suggest new facts to mitigate incompleteness and
negative rules detect erroneous facts. Also, negative rules
are useful to generate negative examples for learning algo-
rithms. RuDiK goes beyond existing solutions since it dis-
covers rules with a more expressive rule language w.r.t. pre-
vious approaches, which leads to wide coverage of the facts
in the KB, and its mining is robust to existing errors and
incompleteness in the KB. The system has been deployed for
multiple KBs, including Yago, DBpedia, Freebase and Wiki-
Data, and identifies new facts and real errors with 85% to
97% accuracy, respectively. This demonstration shows how
RuDiK can be used to interact with domain experts. Once
the audience pick a KB and a predicate, they will add new
facts, remove errors, and train a machine learning system
with automatically generated examples.

PVLDB Reference Format:
Stefano Ortona, Vamsi Meduri, Paolo Papotti. RuDiK: Rule Dis-
covery in Knowledge Bases. PVLDB, 11 (12): 1946 - 1949, 2018.
DOI: https://doi.org/10.14778/3229863.3236231

1. INTRODUCTION
Building large RDF knowledge-bases (KBs) is a popular

trend in information extraction. Significant effort has been
put on KBs creation in the last 10 years in the research
community (e.g., Yago), as well as in the industry [1].

Unfortunately, due to their creation process, KBs are usu-
ally erroneous and incomplete. KBs are bootstrapped by
extracting information from sources with minimal or no hu-
man intervention. Automation brings large scale, but also
introduces noisy data to the KBs, as incorrect facts are
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propagated from the sources or introduced by the extrac-
tors [1]. Also, most KBs do not limit the information of
interest with a schema that defines instance data, and let
users add facts defined on new predicates by simply insert-
ing new triples. Since closed world assumption (CWA) does
not hold in KBs [1, 2], a missing fact is considered unknown
rathen than false (open world assumption).

As a consequence, the amount of errors and incomplete-
ness in KBs can be significant, with up to 30% errors for facts
derived from the Web. Since KBs are large, e.g., Wikidata
has more than 1B facts and 300M different entities, check-
ing all triples to find errors or to add new facts cannot be
done manually. A popular curation approach is to execute
rules to improve data quality [2]. We consider two types of
rules: (i) positive rules to enrich the KB with new facts and
thus increase its coverage; (ii) negative rules to spot logical
inconsistencies and identify erroneous triples.

Example 1: Consider a KB with information about parent
and child relationships. A positive rule is the following:

r1 : parent(b, a) ñ child(a, b)

stating that if a person a is parent of person b, then b is
child of a. A negative rule has similar form, but different
semantics. For example (DOB stands for Date Of Birth):

r2 : DOB(a, v0) ^ DOB(b, vi) ^ v0 ą vi ^ child(a, b) ñ K

states that person b cannot be child of a if a was born after
b. By querying the KB with r2, we identify noisy triples
stating that a child is born before one of her parents.

To be enforced over a KB, rules must be manually crafted,
a task that can be difficult for domain experts without a
CS background. Also, the rule creation process is usually
expensive, as large KBs can have thousands of rules.

We demonstrate RuDiK (Rule Discovery in Knowledge
Bases) [3], a rule discovery system1. Its features include:

1. Automatic discovery and selection of both positive and
negative rules in a GUI.

2. Numerical and string value comparisons in the rules,
which enable a large number of patterns to be ex-
pressed in the rules.

3. Realistic assumptions on the quality of the given KB:
rules can be discovered over noisy and incomplete KBs.

4. Incremental algorithms, which greedily materialize the
KB as a graph with low memory footprint, enabling
execution on commodity machines.

1https://github.com/stefano-ortona/rudik
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Figure 1: RuDiK architecture.

2. RuDiK SYSTEM OVERVIEW
Figure 1 shows the system architecture of RuDiK. We give

an overview of the modules, and then describe the main
methods (more details are in the full paper [3]). The system
input is a KB and one of its predicates (e.g., married).

(1) Example Generation. Rules are mined from pos-
itive and negative examples for the given predicate (e.g., a
set of pairs of person who are married and a set for persons
who are not). Examples determine the quality of the rules,
but crafting a large number of examples is a tedious and ex-
pensive exercise. The example generation module takes care
of this task. It is initialized by positive examples from the
KB and creates negative examples with an approach that is
robust to missing data and errors in the KB.

(2) Incremental Rule Miner. The input of the module
are positive and negative examples for the input predicate.
In contrast to the traditional ranking of a large set of rules
based on a measure of support [2], our module identifies a
small set of approximate rules, i.e., rules that do not neces-
sarily hold over all the examples, since data errors and in-
completeness are in the nature of KBs. A greedy algorithm
incrementally materializes the KB as a graph by navigat-
ing only the paths that potentially lead to promising rules,
thus minimizing disk-access and memory footprint. These
techniques enable the mining with a complex rule language.

(3) Rules Execution. Good rules in the output cover
several input positive examples, and as few input negative
examples as possible. Rules are then executed over the KB
as SPARQL queries to produce new facts, identify inconsis-
tencies, and generate training data for learning frameworks.

2.1 Generating Negative Examples
Given a KB kb and a target predicate rel P kb (e.g.,

child), we create two sets of examples. The first, namely
the generation set G, consists of positive examples for rel,
i.e., all pairs of entities px, yq such that xx, rel, yy P kb. The
second, namely the validation set V , contains counterexam-
ples for rel. Differently from classic databases, we cannot
assume that a fact that is not in a KB is false (closed world
assumption), thus everything that is not stated is unknown
(open world assumption). This implies that we must be
careful in generating negative examples (truly false facts).

One simple way of creating false facts is to randomly select
pairs from the Cartesian product of the entities. While this
process gives negative examples with high precision, only a
very small fraction of these entity pairs are semantically re-
lated. This issue has effects in the applications that consume
the generated negative examples. In fact, unrelated entities
may have no meaningful relationships. If there are no se-
mantic patterns in the examples, this is reflected in lower
quality in the generated rules. To generate negative exam-

ples that are correct and that are semantically related, we
identify the entities that are more likely to be complete, i.e.,
entities for which the KB contains full information. This
is done by exploiting the notion of Local-Closed World As-
sumption (LCWA) [1, 2]. LCWA states that if a KB contains
one or more object values for a given subject and predicate,
then it contains all possible values. Under this assumption,
we identify entities that are likely to be complete and gener-
ate negative examples by taking the union of entities satis-
fying the LCWA. For example, if rel “ child, a negative ex-
ample is a pair px, yq s.t. x has some children in the KB who
are not y, or y is the child of someone who is not x. More-
over, for a candidate negative example over entities px, yq,
we require that x must be connected to y via a predicate
that is different from the target one. In other words, given
a KB kb and a predicate rel, px, yq is a negative example if
xx, rel1, yy P kb, with rel1 ‰ rel. This restriction guarantees
that, for every px, yq P V , x and y are semantically related.

2.2 Rule Mining: Problem Formulation
Our goal is to automatically discover Horn Rules with

universally quantified variables only. A Horn Rule is a dis-
junction of atoms with at most one unnegated atom. An
atom is a predicate connecting two variables, two entities,
an entity and a variable, or a variable and a constant.

We define the discovery problem for a single target pred-
icate in the KB given as input (e.g., child). To obtain all
rules for a KB, we compute rules for every predicate in it.
We characterize a predicate with two sets of examples (i.e.,
pairs of entities). The generation set G contains examples
for the target predicate, while the validation set V contains
counterexamples for the same. Consider the discovery of
positive rules for the child predicate; G contains true pairs
of parents and children and V contains pairs of people who
are not in a child relation. If we want to mine negative rules,
the sets of examples are the same, but they switch role. To
discover negative rules for child, G contains pairs of people
not in a child relation and V contains true pairs.

An exact solution for our mining problem is composed by
the minimal set of rules that covers all pairs in G and none
of the pairs in V . We minimize the number of rules in the
output to avoid overfitting rules covering only one pair, as
such rules have no impact when applied to the KB.

Example 2: Consider the discovery of positive rules for
predicate couple between two persons using as example the
Obama family. G contains a positive example (Michelle,
Barack), and V two negative examples with their daughters
(Malia, Natasha). Given three rules:

r3 : livesIn(a, v0) ^ livesIn(b, v0) ñ couple(a, b)

r4 : hasChild(a, vi) ^ hasChild(b, vi) ñ couple(a, b)

r5 : hasChild(Michelle,Malia) ^ hasChild(Barack,Malia)

ñ couple(Michelle, Barack)

Rule r3 states that two persons are a couple if they live in
the same place, while rule r4 states that they are a couple
if they have a child in common. Assuming the information
livesIn and hasChild are in the KB, both rules r3 and r4
cover the positive example. Rule r4 is an exact solution,
as it does not cover any negative example, while this is not
true for r3, as also the daughters live in the same place.
Rule r5, which explicitly mentions entity values (constants),
is also an exact solution, but it applies only for the positive
example, i.e., it does not imply new facts from the KB.
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If any of the hasChild relationships between the parents
and the daughters is missing in G, the exact discovery would
find only r5 as a solution. This highlights that the exact
discovery is not robust to data problems in KBs. Even if
a valid rule exists semantically, missing triples or errors for
the examples in G and V can lead to faulty coverage.

Given errors and missing information in KBs, we drop
the requirement of exactly covering the sets with the rules.
However, valid rules should cover examples in G, while cov-
ering elements in V can be an indication of incorrect rules.
We model this idea as a weight associated with every rule.
Weights enable the modeling of the presence of errors in
KBs. Consider the case of negative rule discovery, where
V contains positive examples from the KB. We will show
in the demonstration several negative rules with significant
coverage over V , which corresponds to errors in the KB. The
approximate version of the discovery problem aims to iden-
tify rules that cover most of the elements in G and as few
as possible elements in V . Since we do not want overfitting
rules, we do not generate in R rules having constants only.
We can map this problem to the weighted set cover problem.

2.3 Rule Mining: Incremental Algorithm
Our goal is to discover a set of rules to produce an optimal

weighted set cover for the given examples. We define the
weight for a rule to capture its quality w.r.t. G and V : the
better the rule, the lower the weight. The weight is made
of two components normalized by a parameter α. The first
component captures the coverage over the generation set G
– the ratio between the coverage of r over G and G itself.
The second component quantifies the coverage of r over V .
Parameter α defines the relevance of the components: a high
value steers the discovery towards rules with high precision,
while a low value champions the recall.

The weight definition is extended to define a marginal
weight that quantifies the weight increase by adding a new
rule r to a set of rules R. Since the weighted set cover
problem aims at minimizing the total weight, we never add
a rule to the solution if its marginal weight is greater than
or equal to 0. The greedy solution guarantees a log(k)
approximation to the optimal solution, where k is the largest
number of elements covered in G by a rule r in R.

The greedy algorithm for weighted set cover assumes that
the universe of rules R has been generated (sets are avail-
able). One way to generate R is to translate the KB into a
directed graph and map a valid rule to a path in the graph
from a node x to a node y, for every pair px, yq P G. Clearly,
computing all possible paths is prohibitive, as their number
is very large. We avoid the generation of the universe R
by considering at each iteration the most promising path on
the graph. Inspired by the A˚ algorithm, for each example
px, yq P G, we start the navigation from x. We keep a queue
of candidate paths, and at each iteration we expand the
path with the minimum marginal weight (admissible heuris-
tic for A* formulation). Whenever a path becomes valid,
we add the corresponding rule to the solution and we do
not expand it any further. The algorithm keeps looking for
plausible paths until one of the termination conditions of
the greedy cover algorithm is met.

The simultaneous rule generation and selection brings
multiple benefits. First, we do not generate the entire graph
for every example in G. Nodes and edges are generated on
demand, whenever the algorithm requires their navigation.

<Barack_Obama, 
  Sr.,barack_Obama> 

<Bob_Marley, 
  Julian_Marely> 

<Carol_Chomsky, 
  Aviva_Chomsky> 

<Clint_Eastwood, 
  Scott_Eastwood> 

<Theodore_Roosvelt, 
  Archibald_Roosvelt> 

<William_Shakespeare, 
  Susanna_Hall> 
<Woody_Allen, 
  Moses_Farrow>

<Robert_Todd_Lincoln,

  Abraham_Lincoln>

<Darth_Vader,

  Kylo_Ren>

<Nancy_Reagan,

  Ronald_Reagan>

<Vladimir_Nabokov,

  Charles_Dickens>

Figure 2: Coverage of three negative rules for pred-
icate child over generation and validation sets.

Second, the weight estimation leads to pruning unpromis-
ing rules. If a rule does not cover new elements in G or
in V , then it is pruned. These benefits enable us to en-
large the search space and consider also predicate atoms in
the rules with literal comparisons beyond equalities. To dis-
cover such atoms, we materialize edges that connect literals
with symbols from tă,ď,‰,ą,ěu, e.g., an edge ‘ă’ from a
node “March 31, 1930” to a node “March 21, 1986”. Unfor-
tunately, the original KBs do not contain this information
explicitly, and materializing such edges among all literals is
infeasible. However, since our algorithm discovers paths for
a pair of entities from G in isolation, the size of the graph re-
sulting for one pair of entities is orders of magnitude smaller
than the KB, thus we can compute all literal pairwise com-
parisons within a single example. Besides equality compar-
isons, we add ‘ą’,‘ě’,‘ă’,‘ď’ relationships between numbers
and dates, and ‰ between all literals. This language al-
lows us to discover rules such as the one stating that only
Americans can become the president of U.S.A.:

bornIn(a, x)^ x ‰ U.S.A.ñ  president(a,U.S.A.)

3. DEMONSTRATION SCENARIOS
The audience will be able to use RuDiK to discover pos-

itive and negative rules from four popular and widely used
KBs, namely DBPedia, Yago, Freebase, and Wikidata2.
Participants will analyze the automatically discovered rules
with a debugger that visualizes the coverage of the examples
for each rule in the output. After selecting a rule, this can be
executed to generate new facts or to identify contradictions
in the KB. Users can assess the new facts and the errors, and
compare the outcome of rules coming from different mining
configurations. We now present the demonstration scenarios
we will use to show the main features of RuDiK.
Rule Mining. First, the users will select a KB, a predicate
of interest, such as couple or founder, and the kind of rules
they want to discover (positive or negative). This triggers
the generation of the negative examples and the automatic
discovery of rules. The discovered rules will then be pre-
sented to the audience in their logic formalism in a result
set. Every rule can be expanded to see more details, includ-
ing the corresponding SPARQL query, an English transla-
tion, and statistics over its support over the given examples.
In particular, the examples in the generation and validation
sets are displayed with different coloring according to how
they are covered by the rules in the output. Figure 2 shows

2available at wiki.dbpedia.org, www.yago-knowledge.org,
developers.google.com/freebase, www.wikidata.org
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the coverage of three negative rules for the child predicate
in DBPedia (e.g., Rule 1 corresponds to r2 in Section 1).
By hovering the mouse over a rule, users can isolate and
highlight examples covered just by the rule. This visual-
ization enables a debugging of the generation process and
highlights the pivoting role played by the examples. Every
example can be expanded with a click to visualize the other
entities involved in the rule(s) execution.

The interface will also be used to show the impact of dif-
ferent configuration settings, as discussed next.
Role of LCWA. We will show the impact of the LCWA as-
sumption for the generation of negative examples. Given a
predicate p, users will be able to test three generation strate-
gies: RuDiK strategy (as detailed in Section 2.1), Random
(randomly select k pairs px, yq from the Cartesian product
s.t. triple xx, p, yy R kb), and LCWA (RuDiK strategy with-
out the constraint that x and y must be connected). The
results will show that Random and LCWA have both very
high precision, but RuDiK examples lead to better rules.
This is because randomly picked examples from the Carte-
sian product of subject and object often involve entities from
very different time periods, and negative rules pivoting on
time constraints are usually correct. Instead, by forcing x
and y to be connected with a different predicate, RuDiK gen-
erates semantically related examples that lead to more rules.
Negative rules such as parent(a, b) ñ notSpouse(a, b) are
not generated with random strategies, since the likelihood
of randomly picking (in G) two people that are in a parent
relation is very low. We will show that the RuDiK strategy
enables the discovery of more types of rules, and not only
rules involving time constraints.
Role of Set Cover. Our problem formulation leads to a
concise set of rules in the output, which is preferable to the
large set of rules obtained with a ranking based solution.
Users will be able to verify this by obtaining the output
rules according to their weight, without the set cover pro-
cessing. Results will show that correct rules oftentimes are
not ranked among the top-10, and that some meaningful
rules are below the 100th position. For example, the only
valid negative rule for the predicate founder, which states
that a person born after the company was founded cannot
be its founder, figures at a rank of 127 when emitted by the
ranking-based version of RuDiK, whereas it is included in
the compact set discovered by the default version of RuDiK.
Role of Literals. One of the main features of RuDiK is
the use of literals comparisons in the rules. To show that in-
cluding literal values has a considerable impact on accuracy,
both for positive and negative rules, we will allow users to
enable and disable it. The effect will be particularly evident
for negative rules, where rules without literals find less than
half potential errors and with a lower precision. For predi-
cate founder, we will show that a negative rule with literals
discovers 79 potential errors on DBPedia with a 95% preci-
sion, while no errors are detected with rules without literals.
Role of Noise. Since our methods are designed to be ro-
bust, we will let attendees inject erroneous examples in the
system input. While small amount of errors (up to 10%)
have little effect on the quality of the results, increasing the
noise percentage leads the algorithm to start discovering in-
correct rules. However, we will show that even with more
than 50% error rate, correct rules are discovered. Moreover,
the precision of the results can be improved by tuning the
parameter α to obtain rules that favour precision over recall.

Figure 3: Rule Execution over the KB.

Rule Execution. Once a rule in the output is selected,
users can run it on the KB to either infer new facts or to
identify inconsistencies. As shown in Figure 3, for each out-
put, the left-hand side instantiation of the rule will be dis-
played, effectively showing the provenance for each result.
In the figure, we see the execution of the negative rule r2
of Example 1, which covers 4 target examples in DBPedia.
More specifically, the target predicate (child) is displayed
with a red arrow, while alternative paths on the graph rep-
resenting the left-hand side of the rule are shown with pur-
ple edges. This graphical representation enables users not
only to quickly identify erroneous triples in the kb, but also
to visually materialize paths on the graph that lead to the
generation of such rules. By clicking on an entity, users can
expand its surrounding graph. Moreover, users can select al-
ternative paths and verify the coverage of the resulting rules
against the input examples. For each rule, we report statis-
tics such as the size of the sub-graph generated by the rule
and the time spent for generation and validation queries.

Finally, we will demonstrate how discovered negative rules
provide Machine Learning frameworks with training exam-
ples of quality comparable to examples manually crafted by
humans. The quality of the negative examples will be quan-
tified by training the same Machine Learning system with
different training sets and by measuring the ultimate qual-
ity on the same test data. For this scenario, we will use
DeepDive, a ML framework for information extraction [4].
DeepDive extracts entities and relations from text articles
via distant supervision. The key idea behind distant super-
vision is to use an external source of information (e.g., a KB)
to provide training examples for a supervised algorithm. As
KBs provide positive examples only, we will show how the
quality of the output of DeepDive increases when trained
with negative examples obtained with our rules.
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Incremental knowledge base construction using DeepDive.
PVLDB, 8(11):1310–1321, 2015.

1949


