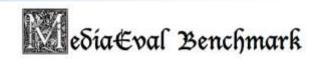


Affective Multimodal Analysis for the Media Industry

O. Ben-Ahmed and B. Huet EURECOM Sophia Antipolis, France

Motivation and Context

- Media Industry and Multimedia Retrieval
 - Indexing and retrieval
 - Annotation
 - Summarization and Trailer creation
 - Enrichments and hyperlinking
- NexGenTV (ANRT National):
 - Multimodal analysis for enriching broadcast content via second screen applications
- ANTRACT (ANR National):
 - Mine video archive to provide information for historians
- MeMAD (H2020 EU):
 - Provide new methods to translate Image and Sounds into Words (for indexing, retrieving, repurposing and accessibility)



Predicting Media Interestingness (PMI)

- Automatically analyze media data
- Identify the most attractive content
- Data Driven / Content based approaches
 - gap between low-level features and high-level human perception
- Our proposal
 - Address PMI in association with Media Genre

http://www.dailyherald.com/article/20110627/entlife/706279989/

Why Genre Inference for PMI

Motivation

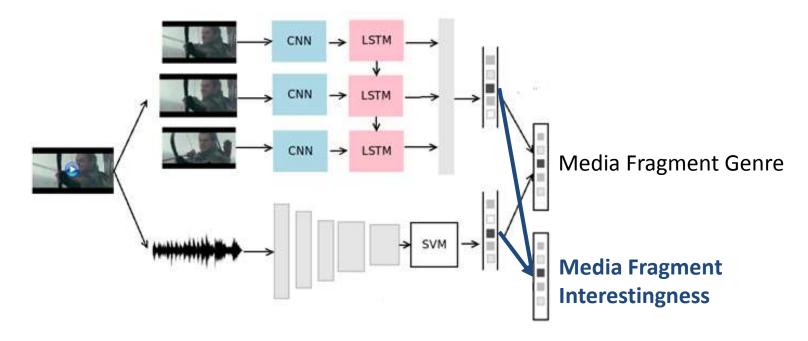
- Interestingness is highly correlated with data emotional content
- Affective representation of data content

Hypothesis

Emotional impact of movie genre can be a factor for interestingness of a video fragment

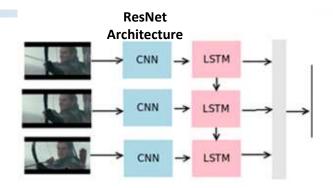
Constraints

- Subjectivity of the task Data collection issues
- Limíted Dátaset

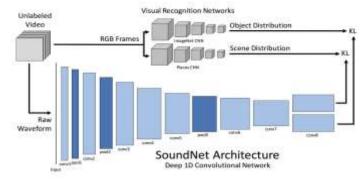

Method

- Mid-level representation based on media genre prediction for PMI
 - Represent each video fragment/image as a distribution of genres
- Transfer Learning
 - Using genre probability distribution to infer Media Fragment Interestingness

Our Framework



Media Genre Prediction

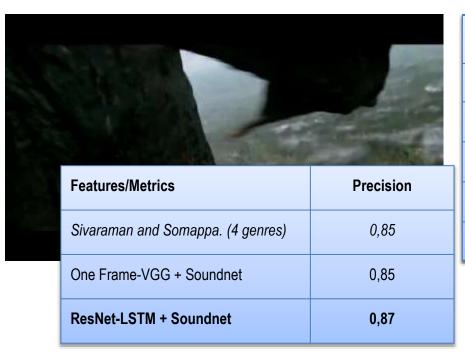

Visual Branch

- Deep CNN for features extraction
- LSTM for modelling temporal cue

Audio Branch

- Deep features extraction : Soundnet
- SVM classifier

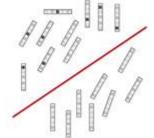
Media Genre Dataset


- Movie trailers dataset
 - K S Sivaraman and G. Somappa. MovieScope
 - 525 YouTube Videos over 4 Genres (available on IMDB)
 - Extended with a 5th Genre
 - Sci-Fi

Trailer Genre	Training	Test	Total
Action	69	44	114
Drama	95	39	134
Horror	99	59	158
Romance	80	39	119
Sci-fi	72	35	107
Total	415	216	632

Media Genre Prediction Example

	Visual	Audio	Audio-Visual
Action	2.5%	33,34%	17.92%
Drama	0%	17,78%	8.89%
Horror	0.37%	2.61%	1.49%
Romance	0%	3.87%	1.93%
Sci-fi	97.12%	42,40%	69,76%



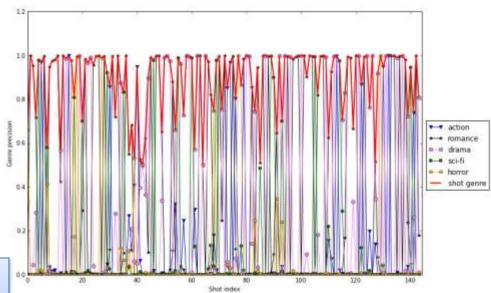
Interestingness Classification

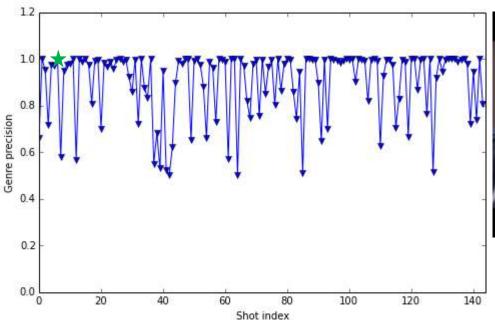
Features vectors

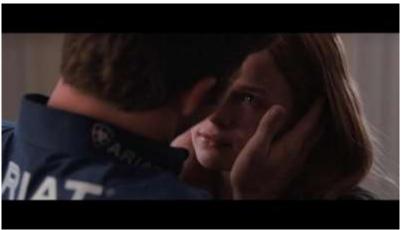
- Probability vector for the genre distribution for video fragments
- Classifier
 - Binary SVM,
 - Including assessors confidence scores
- Modality Analysis
 - Audio genre vector
 - Visual genre vector
 - Audio-Visual genre vector
 - Concatenated visual- and audio-based genre vectors probabilities

Media Interestingness Dataset Media Interestingness Dataset

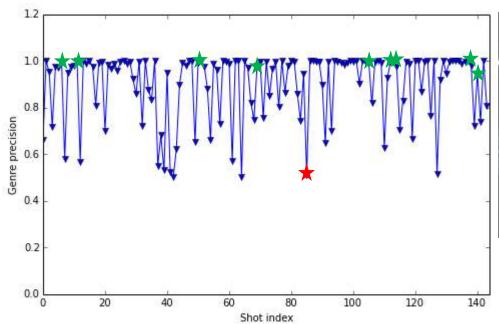
- Creative Commons licensed "Hollywood" Video
 - 103 movie trailers and 4 continuous extracts
 - Shot segmentation
 - 7396 video segments for training and 2435 video segments for testing
 - Low level and mid level features
 - Annotation (GT) performed by human assessors
 - Interesting (1) or Not Interesting (2)


GENRE	Action	Drama	Horror	Romance	Sci-fi
COVERAGE	9.02%	29.86%	6.25%	43.75%	11.11%



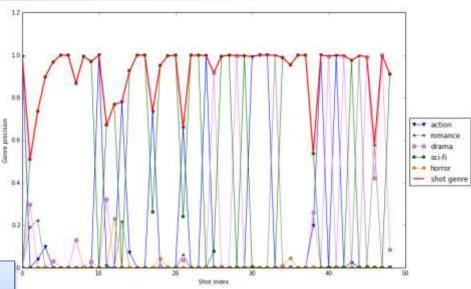


GENRE	Action	Drama	Horror	Romance	Sci-fi
COVERAGE	9.02%	29.86%	6.25%	43.75%	11.11%

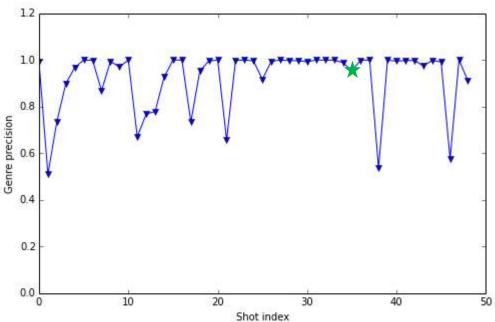


Predicted Interestingness= 1★ Romance = 97,45%

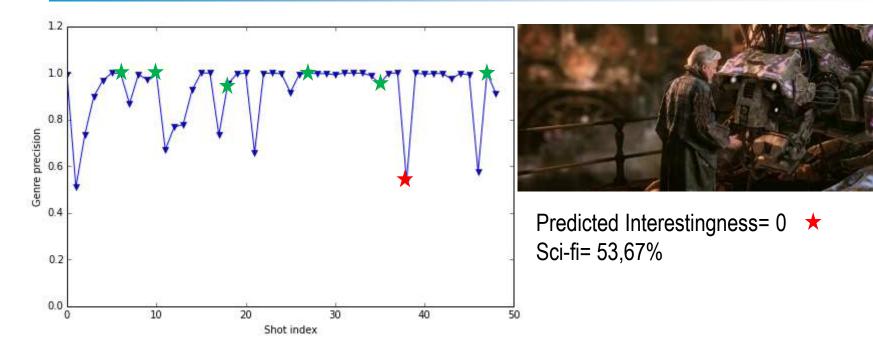
Predicted Interestingness= 0★
Romance = 48,49%


Find Movies, TV shows, Celebrities and more	All v
Movies, TV Celebs, Events News & Community	Watchlist -
FULL CAST AND CREW TRIVIA USER REVIEWS IMD6Pro MORE =	SHARE
+ Tears of Steel (2012) * 5.6	A Rate
12min Short, Sci-Fi 26 September 2012 (UK)	111
TEAS OF STEEL He just wanted to be awesome in space.	
Director: Ian Hubert Writer: Ian Hubert	
Sters: Derek de Lint, Sergio Hasselbaink, Rogier Schip See full cast & crew »	pers
Reviews 7 user 11 critic	

GENRE	Action	Drama	Horror	Romance	Sci-fi
COVERAGE	18.37%	16.32%	6.12%	6.12%	53.06%



GENRE	Action	Drama	Horror	Romance	Sci-fi
COVERAGE	18.37%	16.32%	6.12%	6.12%	53.06%



Predicted Interestingness= 1★ Sci-fi =95,38%

Experiments and Results

	MAP	MAP@10
Audio (Soundnet)	0.1806	0.0511
Visual key frame-VGG (MediaEval'17)	0.1960	0.0732
Visual (LSTM+Resnet)	0.1991	0.0815
VGG+Audio (MediaEval'17)	0.2094	0.0827
Resnet-LSTM+Audio	0.2122	0.0841
Baseline [ref]	0.1716	0.0564

Conclusions and Future Work

- We proposed to train a **Genre Recognition System** as a mid-level representation for **Predicting Media Interestingness**
- **Deep Audio and Visual Features** for Genre Recognition LSTM used to predict Genre over Video Shot duration
- Transfer Learning for Predicting Media Interestingness
- Best Results:
 - 0.21 MAP (on test set) [Previous State of the Art 0.20 MAP]
- Audio brings limited additional information for PMI
- End-to-End joint learning (fine-tuning) of audio-visual features
- Extent mid-level representation with other features (Emotion, Valence/Arousal, etc.)

Recent Related Publications

- Ben-Ahmed, O., J. Wacker, A. Gaballo, B. Huet, *EURECOM @MediaEval 2017: Media genre inference for predicting media interestingness*, MEDIAEVAL 2017, MediaEval Benchmarking Initiative for Multimedia Evaluation, 13-15 September 2017, Dublin, Ireland
- Pini S., O. Ben-Ahmed, M. Cornia, L. Baraldi, R. Cucchiara, Rita; B. Huet, Modeling multimodal cues in a deep learning-based framework for emotion recognition in the wild, ICMI 2017, 19th ACM International Conference on Multimodal Interaction, November 13-17th, 2017, Glasgow, United Kingdom
- Smith, J. R., D. Joshi, B. Huet, W. Hsu, J. Cota, *Harnessing A.I. for augmenting creativity: Application to movie trailer creation*, ACMMM 2017, 25th ACM Multimedia Conference, October 23-27, 2017, Mountain View, CA, USA
- Tiwari S. N., N. Q. K. Duong, F. Lefebvre, C.-H. Demarty, B. Huet, L. Chevallier, Deep features for multimodal emotion classification, on <u>HAL</u>
- Paleari, M., R. Chellali, B. Huet, *Bimodal emotion recognition*, ICSR 2010, International Conference on Social Robotics, November 23-24, 2010, Singapore / Also published as LNCS Volume 6414/2010
- **Mérialdo B. and B. Huet,** *Automatic video summarization*, Book chapter in "Interactive Video, Algorithms and Technologies" by Hammoud, Riad (Ed.), 2006, XVI, 250 p, ISBN: 3-540-33214-6

Questions?

