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Abstract Novelty detection is one of the classic problems in Machine Learning
that has applications across several domains. This paper proposes a novel autoen-
coder based on Deep Gaussian Processes for novelty detection tasks. The learning
of the proposed model is made tractable and scalable through the use of random
feature approximations and stochastic variational inference. The result is a flexible
model that is easy to implement and train, and can be applied to general novelty
detection tasks, including large-scale problems and data with mixed-type features.
The experiments indicate that the proposed model achieves competitive results
with state-of-the-art novelty detection methods.
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1 Introduction

Novelty detection is a fundamental task across numerous domains, with appli-
cations in data cleaning [32], fault detection and damage control [12, 45], fraud
detection related to credit cards [25] and network security [37], along with several
medical applications such as brain tumor [38] and breast cancer [23] detection.
Novelty detection targets the recognition of anomalies in test data which differ
significantly from the training set [36], so this problem is also known as “anomaly
detection”. Challenges in performing novelty detection stem from the fact that
labelled data identifying anomalies in the training set is usually scarce and ex-
pensive to obtain, and that very little is usually known about the distribution
of such novelties. Meanwhile, the training set itself might be corrupted by out-
liers and this might impact the ability of novelty detection methods to accurately
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characterize the distribution of samples associated with a nominal behavior of the
system under study. Furthermore, there are many applications, such as the ones
that we study in this work, where the volume and heterogeneity of data might
pose serious computational challenges to react to novelties in a timely manner and
to develop flexible novelty detection algorithms. As an example, the Airline IT
company Amadeus provides booking platforms handling millions of transactions
per second, resulting in more than 3 million bookings per day and Petabytes of
stored data. This company manages almost half of the flight bookings worldwide
and is targeted by fraud attempts leading to revenue losses and indemnifications.
Detecting novelties in such large volumes of data is a daunting task for a human
operator; thus, an automated and scalable approach is truly desirable.

Because of the difficulty in obtaining labelled data and since the scarcity of
anomalies is challenging for supervised methods [26], novelty detection is normally
approached as an unsupervised machine learning problem [36]. The considerations
above suggest some desirable scalability and generalization properties that novelty
detection algorithms should have.

We have recently witnessed the rise of deep learning techniques as the pre-
ferred choice for supervised learning problems, due to their large representational
power and the possibility to train these models at scale [30]; examples of deep
learning techniques achieving state-of-the-art performance on a wide variety of
tasks include computer vision [29], speech recognition [24], and natural language
processing [7]. A natural question is whether such impressive results can extend
beyond supervised learning to unsupervised learning and further to novelty de-
tection. Deep learning techniques for unsupervised learning are currently actively
researched on [20,21], but it is still unclear whether these can compete with state-
of-the-art novelty detection methods. We are not aware of recent surveys on neural
networks for novelty detection, and the latest one we could find is almost fifteen
years old [34] and misses the recent developments in this domain.

Key challenges with the use of deep learning methods in general learning tasks
are (i) the necessity to specify a suitable architecture for the problem at hand and
(ii) the necessity to control their generalization. While various forms of regulariza-
tion have been proposed to mitigate the overfitting problem and improve general-
ization, e.g., through the use of dropout [17, 41], there are still open questions on
how to devise principled ways of applying deep learning methods to general learn-
ing tasks. Deep Gaussian Processes (dgps) are ideal candidates to simultaneously
tackle issues (i) and (ii) above. dgps are deep nonparametric probabilistic models
implementing a composition of probabilistic processes that implicitly allows for the
use of an infinite number of neurons at each layer [10,15]. Also, their probabilistic
nature induces a form of regularization that prevents overfitting, and allows for a
principled way of carrying out model selection [35]. While dgps are particularly ap-
pealing to tackle general deep learning problems, their training is computationally
intractable. Recently, there have been contributions in the direction of making the
training of these models tractable [4, 5, 8], and these are currently in the position
to compete with Deep Neural Networks (dnns) in terms of scalability, accuracy,
while providing superior quantification of uncertainty [8, 17,18].

In this paper, we introduce an unsupervised model for novelty detection based
on dgps in autoencoder configuration. We train the proposed dgp autoencoder
(dgp-ae) by approximating the dgp layers using random feature expansions, and
by performing stochastic variational inference on the resulting approximate model.
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The key features of the proposed approach are as follows: (i) dgp-aes are unsu-
pervised probabilistic models that can deal with highly complex data distribution
and offer a scoring method for novelty detection; (ii) dgp-aes can model any type
of data including cases with mixed-type features, such as continuous, discrete,
and count data; (iii) dgp-aes training does not require any expensive and po-
tentially numerically troublesome matrix factorizations, but only tensor products;
(iv) dgp-aes can be trained using mini-batch learning, and could therefore exploit
distributed and GPU computing; (v) dgp-aes training using stochastic variational
inference can be easily implemented taking advantage of automatic differentiation
tools, making for a very practical and scalable methods for novelty detection. Even
though we leave this for future work, it is worth mentioning that dgp-aes can eas-
ily include the use of special representations based, e.g., on convolutional filters
for applications involving images, and allow for end-to-end training of the model
and the filters.

We compare dgp-aes with a number of competitors that have been proposed
in the literature of deep learning to tackle large-scale unsupervised learning prob-
lems, such as Variational Autoencoders (vae) [21], Variational Auto-Encoded Deep
Gaussian Process (vae-dgp) [9] and Neural Autoregressive Distribution Estima-
tor (nade) [43]. Through a series of experiments, where we also compare against
state-of-the-art novelty detection methods such as Isolation Forest [31] and Robust
Kernel Density Estimation [28], we demonstrate that dgp-aes offer flexible model-
ing capabilities with a practical learning algorithm, while achieving state-of-the-art
performance.

The paper is organized as follows: Section 2 introduces the problem of novelty
detection and reviews the related work on the state-of-the-art. Section 3 presents
the proposed dgp-ae for novelty detection, while Section 4 and Section 5 report
the experiments and conclusions.

2 Novelty Detection

Consider an unsupervised learning problem where we are given a set of input
vectors X = [x1, . . . ,xn]>. Novelty detection is the task of classifying new test
points x∗, based on the criterion that they significantly differ from the input
vectors X, that is the data available at training time. Such data is assumed to be
generated by a different generative process and called anomalies. Novelty detection
is thus a one-class classification problem, which aims at constructing a model
describing the distribution of nominal samples in a dataset. Unsupervised learning
methods allow for the prediction on test data x∗; given a model with parameters
θ, define predictions as h(x∗|X, θ). Assuming h(x∗|X, θ) to be continuous, it is
possible to interpret it as a means of scoring test points as novelties. The resulting
scores allow for a ranking of test points x∗ highlighting the patterns which differ
the most from the training data X. In particular, it is possible to define a threshold
α and flag a test point x∗ as a novelty when h(x∗|X, θ) > α.

After thresholding, it is possible to assess the quality of a novelty detection
algorithm using scores proposed in the literature for binary classification. Based
on a labelled testing dataset, where novelties and nominal cases are defined as
positive and negative samples, respectively, we can compute the precision and recall
metrics given in equation 1. True positives (TP) are examples correctly labelled
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as positives, false positives (FP) refer to negative samples incorrectly labelled as
positives, while false negatives (FN) are positive samples incorrectly labelled as
negatives.

precision =
TP

TP + FP
recall =

TP

TP + FN
(1)

In the remainder of this paper we are going to assess results of novelty detection
methods by varying α over the range of values taken by h(x∗|X, θ) over a set of
test points. When we vary α, we obtain a set of precision and recall measurements
resulting in a curve. We can then compute the area under the precision-recall curve
called the mean average precision (map), which is a relevant metric to compare
the performance of novelty detection methods [11]. In practical terms, α is chosen
to strike an appropriate balance between accuracy in identifying novelties and a
low level of false positives.

Novelty detection has been thoroughly investigated by theoretical studies [25,
36]. The evaluation of state-of-the-art methods was also reported in experimental
papers [16], including experiments on the methods scalability [14] and resistance
to the curse of dimensionality [46]. In one of the most recent surveys on nov-
elty detection [36], methods have been classified into the following categories. (i)
Probabilistic approaches estimate the probability density function of X defined by
the model parameters θ. Novelties are scored by the likelihood function P (x∗|θ),
which computes the probability for a test point to be generated by the trained dis-
tribution. These approaches are generative, and provide a simple understanding
of the underlying data through parameterized distributions. (ii) Distance-based
methods compute the pairwise distance between samples using various similarity
metrics. Patterns with a small number of neighbors within a specified radius, or
distant from the center of dense clusters of points, receive a high novelty score. (iii)
Domain-based methods learn the domain of the nominal class as a decision bound-
ary. The label assigned to test points is then based on their location with respect
to the boundary. (iv) Information theoretic approaches measure the increase of
entropy induced by including a test point in the nominal class. As an alternative,
(v) isolation methods target the isolation of outliers from the remaining samples.
As such, these techniques focus on isolating anomalies instead of profiling nominal
patterns. (vi) Most unsupervised neural networks suitable for novelty detection are
autoencoders, i.e. networks learning a compressed representation of the training
data by minimizing the error between the input data and the reconstructed out-
put. Test points showing a high reconstruction error are labelled as novelties. Our
model belongs to this last category, and extends it by proposing a nonparametric
and probabilistic approach to alleviate issues related to the choice of a suitable
architecture while accounting for the uncertainty in the autoencoder mappings;
crucially, we show that this can be achieved while learning the model at scale.

3 Deep Gaussian Process Autoencoders for Novelty detection

In this section, we introduce the proposed dgp-ae model and describe the approx-
imation that we use to make inference tractable and scalable. Each iteration of
the algorithm is linear in dimensionality of the input, batch size, dimensionality of
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the latent representation and number of Monte Carlo samples used in the approx-
imation of the objective function, which highlights the tractability of the model.
We also discuss the inference scheme based on stochastic variational inference, and
show how predictions can be made. Finally, we present ways in which we can make
the proposed dgp-ae model handle various types of data, e.g., mixing continuous
and categorical features. We refer the reader to [8] for a detailed derivation of the
random feature approximation of dgps and variational inference of the resulting
model. In this work, we extend this dgp formulation to autoencoders.

3.1 Deep Gaussian Process Autoencoders

An autoencoder is a model combining an encoder and a decoder. The encoder
part takes each input x and maps it into a set of latent variables z, whereas the
decoder part maps latent variables z into the inputs x. Because of their structure,
autoencoders are able to jointly learn latent representations for a given dataset
and a model to produce x given latent variables z. Typically this is achieved by
minimizing a reconstruction error.

Autoencoders are not generative models, and variational autoencoders have
recently been proposed to enable this feature [9, 21]. In the context of novelty
detection, the possibility to learn a generative model might be desirable but not
essential, so in this work we focus in particular on autoencoders. Having said that,
we believe that extending variational autoencoders using the proposed framework
is possible, as well as empowering the current model to enable generative modeling;
we leave these avenues of research for future work. In this work, we propose to
construct the encoder and the decoder functions of autoencoders using dgps. As
a result, we aim at jointly learning a probabilistic nonlinear projection based on
dgps (the encoder) and a dgp-based latent variable model (the decoder).

The building block of dgps are gps, which are priors over functions; formally,
a gp is a set of random variables characterized by the property that any subset of
them is jointly Gaussian [39]. The gp covariance function models the covariance
between the random variables at different inputs, and it is possible to specify a
parametric function for their mean.

Stacking multiple gps into a dgp means feeding the output of gps at each layer
as the input of the gps at the next; this construction gives rise to a composition
of stochastic processes. Assume that we compose NL possible functions modelled
as multivariate gps, the resulting composition takes the form

f(x) =
(
f (NL) ◦ . . . ◦ f (1)

)
(x), (2)

Without loss of generality, we are going to assume that the gps at each layer have
zero mean, and that gp covariances at layer (l) are parameterized through a set
of parameters θ(l) shared across gps in the same layer.

Denote by F (i) the collection of the multivariate functions f (i) evaluated at
the inputs F (i−1), and define F (0) := X. The encoder part of the proposed dgp-
ae model maps the inputs X into a set of latent variables Z := F (j) through a
dgp, whereas the decoder is another dgp mapping Z into X. The dgp controlling
the decoding part of the model, assumes a likelihood function that allows one to
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express the likelihood of the observed data X as p
(
X|F (NL), θ(NL)

)
. The likeli-

hood reflects the choice on the mappings between latent variables and the type of
data being modelled, and it can include and mix various types and dimensionality;
section 3.5 discusses this in more detail.

By performing Bayesian inference on the proposed dgp-ae model we aim to in-
tegrate out latent variables at all layers, effectively integrating out the uncertainty
in all the mappings in the encoder/decoder and the latent variables Z themselves.
Learning and making predictions with dgp-aes, however, require being able to
solve intractable integrals. To evaluate the marginal likelihood expressing the prob-
ability of observed data given model parameters, we need to solve the following

p(X|θ) =

∫
p
(
X|F (NL), θ(NL)

) NL∏
j=1

p
(
F (j)|F (j−1), θ(j−1)

) NL∏
j=1

dF (j) (3)

A similar intricate integral can be derived to express the predictive probability
p(x∗|X, θ). For any nonlinear covariance function, these integrals are intractable.
In the next section, we show how random feature expansions of the gps at each
layer expose an approximate model that can be conveniently learned using stochas-
tic variational inference, as described in [8].

3.2 Random Feature Expansions for dgp-aes

To start with, consider a shallow multivariate gp and denote by F the latent
variables associated with the inputs. For a number of gp covariance functions, it
is possible to obtain a low-rank approximation of the processes through the use of
a finite set of basis functions, and transform the multivariate gp into a Bayesian
linear model. For example, in the case of an rbf covariance function of the form

krbf(x,x
′) = exp

[
−1

2

∥∥x− x′
∥∥>] (4)

it is possible to employ standard Fourier analysis to show that krbf can be expressed
as an expectation under a distribution over spectral frequencies, that is:

krbf(x,x
′) =

∫
p(ω) exp

[
i(x− x′)>ω

]
dω. (5)

After standard manipulation, it is possible to obtain an unbiased estimate of the
integral above by mean of a Monte Carlo average:

krbf(x,x
′) ≈ 1

NRF

NRF∑
r=1

z(x|ω̃r)>z(x′|ω̃r), (6)

where z(x|ω) = [cos(x>ω), sin(x>ω)]> and ω̃r ∼ p(ω). It is possible to increase
the flexibility of the rbf covariance above by scaling it by a marginal variance
parameter σ2 and by scaling the features individually with length-scale parameters
Λ = diag(l21, · · · , l2DF ); it is then possible to show that p(ω) = N

(
ω|0, Λ−1

)
using



Deep Gaussian Process Autoencoders for Novelty Detection 7

Bochner’s theorem. By stacking the samples from p(ω) by column into a matrix
Ω, we can define

Φrbf =

√
(σ2)

NRF

[
cos (FΩ) , sin (FΩ)

]
, (7)

where the functions cos() and sin() are applied element-wise. We can now derive
a low-rank approximation of K as follows:

K ≈ ΦΦ> (8)

It is straightforward to verify that the individual columns of F in the original
gp can be approximated by the Bayesian linear model F·j = ΦW·j with W·j ∼
N (0, I), as the covariance of F·j is indeed ΦΦ> ≈ K.

The decomposition of the gp covariance in equation 4 suggests an expansion
with an infinite number of basis functions, thus leading to a well-known connection
with single-layered neural networks with infinite neurons [35]; the random feature
expansion that we perform using Monte Carlo induces a truncation of the infinite
expansion. Based on the expansion defined above, we can now build a cascade of
approximate gps, where the output of layer l becomes the input of layer l+1. The
layer Φ(0) first expands the input features in a high-dimensional space, followed by
a linear transformation parameterized by a weight matrix W (0) which results in the
latent variables F (1) in the second layer. Considering a dgp with rbf covariances
obtained by stacking the hidden layers previously described, we obtain equations
9 and 10 derived from equation 6. These transformations are parameterized by
prior parameters (σ2)(l) which determine the marginal variance of the gps and

Λ(l) = diag
((
l21
)(l)

, · · · ,
(
l2DF (l)

)(l))
describing the length-scale parameters.

Φ
(l)
rbf =

√√√√ (σ2)(l)

N
(l)
RF

[
cos

(
F (l)Ω(l)

)
, sin

(
F (l)Ω(l)

)]
, (9)

F (l+1) = Φ
(l)
rbfW

(l) (10)

This leads to the proposed dgp-ae model’s topology given in Figure 1. The re-
sulting approximate dgp-ae model is effectively a Bayesian dnn where the priors
for the spectral frequencies Ω(l) are controlled by covariance parameters θ(l), and
the priors for the weights W (l) are standard normal.

In our framework, the choice of the covariance function induces different basis
functions. For example, a possible approximation of the arc-cosine kernel [6] yields
Rectified Linear Units (relu) basis functions [8] resulting in faster computations
compared to the approximation of the rbf covariance, given that derivatives of
relu basis functions are cheap to evaluate.

3.3 Stochastic Variational Inference for dgp-aes

Let Θ be the collection of all covariance parameters θ(l) at all layers; similarly,
define Ω and W to be the collection of the spectral frequencies Ω(l) and weight
matrices W (l) at all layers, respectively. We are going to apply stochastic varia-
tional inference techniques to infer W and optimize all covariance parameters Θ;
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θ(0) θ(1)

Φ(0)X F (1) = Z Φ(1) F (2) X

Ω(0) W (0) Ω(1) W (1)

Fig. 1: Architecture of a 2-layer dgp autoencoder. Gaussian processes are ap-
proximated by hidden layers composed of two inner layers, the first layer Φ(l)

performing random feature expansion followed by a linear transformation result-

ing in F (l). Covariance parameters are θ(l) =
(

(σ2)(l), Λ(l)
)

, with prior over the

weights p
(
Ω

(l)
·j

)
= N

(
0,
(
Λ(l)

)−1
)

and p
(
W

(l)
·i

)
= N(0, I). Z is the latent vari-

ables representation.

we are going to consider the case where the spectral frequencies Ω are fixed, but
these can also be learned [8]. The marginal likelihood p(X|Ω,Θ) can be bounded
using standard variational inference techniques, following [21] and [22], Defining
L = log [p(X|Ω,Θ)], we obtain

L ≥ Eq(W) (log [p (X|W,Ω,Θ)])−DKL [q(W)‖p (W)] , (11)

Here the distribution q(W) denotes an approximation to the intractable posterior
p(W|X,Ω,Θ), whereas the prior on W is the product of standard normal priors
resulting from the approximation of the gps at each layer p(W) =

∏NL−1
l=0 p(W (l)).

We are going to assume an approximate Gaussian distribution that factorizes
across layers and weights

q(W) =
∏
ijl

q
(
W

(l)
ij

)
=
∏
ijl

N
(
m

(l)
ij , (s

2)
(l)
ij

)
. (12)

We are interested in finding an optimal approximate distribution q(W), so we are

going to introduce the variational parameters m
(l)
ij , (s

2)
(l)
ij to be the mean and the

variance of each of the approximating factors. Therefore, we are going to optimize
the lower bound above with respect to all variational parameters and covariance
parameters Θ.

Because of the chosen Gaussian form of q(W) and given that the prior p(W)
is also Gaussian, the DKL term in the lower bound to L can be computed ana-
lytically. The remaining term in the lower bound, instead, needs to be estimated.
Assuming a likelihood that factorizes across observations, it is possible to perform
a doubly-stochastic approximation of the expectation in the lower bound so as
to enable scalable stochastic gradient-based optimization. The doubly-stochastic
approximation amounts in replacing the sum over n input points with a sum over
a mini-batch of m points selected randomly from the entire dataset:

Eq(W) (log [p (X|W,Ω,Θ)]) ≈ n

m

∑
k∈Im

Eq(W)(log[p(xk|W,Ω,Θ)]), (13)
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Then, each element of the sum can itself be estimated unbiasedly using Monte
Carlo sampling and averaging, with W̃r ∼ q(W):

Eq(W) (log [p (X|W,Ω,Θ)]) ≈ n

m

∑
k∈Im

1

NMC

NMC∑
r=1

log[p(xk|W̃r,Ω,Θ)], (14)

Because of the unbiasedness property of the last expression, computing its
derivative with respect to the variational parameters and Θ yields a so-called
stochastic gradient that can be used for stochastic gradient-based optimization.
The appeal of this optimization strategy is that it is characterized by theoretical
guarantees to reach local optima of the objective function [40]. Derivatives can be
conveniently computed using automatic differentiation tools; we implemented our
model in TensorFlow [1] that has this feature built-in. In order to take derivatives
with respect to the variational parameters we employ the so-called reparameteri-
zation trick [21] (

W̃ (l)
r

)
ij

= s
(l)
ij ε

(l)
rij +m

(l)
ij , (15)

to fix the randomness when updating the variational parameters, and ε
(l)
rij are

resampled after each iteration of the optimization.

3.4 Predictions with dgp-aes

The predictive distribution for the proposed dgp-ae model requires solving the
following integral

p(x∗|X,Ω,Θ) =

∫
p(x∗|W,Ω,Θ)p(W|X,Ω,Θ)dW, (16)

which is intractable due to fact that the posterior distribution over W is unavail-
able. Stochastic variational inference yields an approximation q(W) to the pos-
terior p(W|X,Ω,Θ), so we can use it to approximate the predictive distribution
above:

p(x∗|X,Ω,Θ) ≈
∫
p(x∗|W,Ω,Θ)q(W)dW ≈ 1

NMC

NMC∑
r=1

p(x∗|W̃r,Ω,Θ), (17)

where we carried out a Monte Carlo approximation by drawing NMC samples

W̃r ∼ q(W). The overall complexity of each iteration is thusO
(
mD

(l−1)
F N

(l)
RFNMC

)
to construct the random features at layer l and O

(
mN

(l)
RFD

(l)
F NMC

)
to compute

the value of the latent functions at layer l, where m is the batch size and D
(l)
F is

the dimensionality of F (l). Hence, by carrying out updates using mini-batches, the
complexity of each iteration is independent of the dataset size.

For a given test set X∗ containing multiple test samples, it is possible to use the
predictive distribution as a scoring function to identify novelties. In particular, we
can rank the predictive probabilities p(x∗|X,Ω,Θ) for all test points to identify the
ones that have the lowest probability under the given dgp-ae model. In practice,
for numerical stability, our implementation uses log-sum operations to compute
log[p(x∗|X,Ω,Θ)], and we use this as the scoring function.
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3.5 Likelihood functions

One of the key features of the proposed model is the possibility to model data
containing a mix of types of features. In order to do this, all we need to do is to
specify a suitable likelihood for the observations given the latent variables at the
last layer, that is p(x|f (NL)). Imagine that the vector x contains continuous and
categorical features that we model using Gaussian and multinomial likelihoods;
extensions to other combinations of features and distributions is straightforward.
Consider a single continuous feature of x, say x[G]; the likelihood function for this
feature is:

p(x[G]|f (NL)) = N (x[G]|f
(NL)
[G] , σ2

[G]). (18)

For any given categorical feature, instead, assuming a one-hot encoding, say x[C],
we can use a multinomial likelihood with probabilities given by the softmax trans-
formation of the corresponding latent variables:

p((x[C])j |f (NL)) =
exp[(f

(NL)
[C] )j ]∑

i exp[(f
(NL)
[C] )i]

. (19)

It is now possible to combine any number of these into the following likelihood
function:

p(x|f (NL)) =
∏
k

p(x[k]|f (NL)) (20)

Any extra parameters in the likelihood function, such as the variances in the
Gaussian likelihoods, can be included in the set of all model parameters Θ and
learned jointly with the rest of parameters. For count data, it is possible to use the
Binomial or Poisson likelihood, whereas for positive continuous variables we can
use Exponential or Gamma. It is also possible to jointly model multiple continuous
features and use a full covariance matrix for multivariate Gaussian likelihoods,
multivariate Student-T, and the like. The nice feature of the proposed dgp-ae
model is that the training procedure is the same regardless of the choice of the
likelihood function, as long as the assumption of factorization across data points
holds.

4 Experiments

We evaluate the performance of our model by monitoring the convergence of the
mean log-likelihood (mll) and by measuring the area under the Precision-Recall
curve, namely the mean average precision (map). These metrics are taken on real-
world datasets described in section 4.2. In addition, we compare our model against
state-of-the-art neural networks suitable for outlier detection and highlighted in
section 4.1. To demonstrate the value of our proposal as a competitive novelty
detection method, we include top performance novelty detection methods from
other domains, namely Isolation Forest [31] and Robust Kernel Density Estimation
(rkde) [28], which are recommended for outlier detection in [16].
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4.1 Selected methods

In order to retrieve a continuous score for the outliers and be able to compare the
convergence of the likelihood for the selected models, our comparison focuses on
probabilistic neural networks. Our dgp-ae is benchmarked against the Variational
Autoencoder (vae) [21] and the Neural Autoregressive Distribution Estimator
(nade) [43]. We also include standard dnn autoencoders with sigmoid activation
functions and dropout regularization to give a wider context to the reader. We
initially intended to include Real nvp [13] and Wasserstein gan [2], but we found
these networks and their implementations tightly tailored to images. The one-class
classification with gps recently developed [27] is actually a supervised learning task
where the authors regress on the labels and use heuristics to score novelties. Since
this work is neither probabilistic nor a neural network, we did not include it.
Parameter selection for the following methods was achieved by grid-search and
maximize the average map over testing datasets labelled for novelty detection and
described in section 4.2. We append the depth of the networks as a suffix to the
name, e.g. vae-.

dgp-ae-g, dgp-ae-gs: We train the proposed dgp-ae model for 100,000 itera-
tions using 100 random features at each hidden layer. Due to the network topology,
we use a number of multivariate gps equal to the number of input features when
using a single-layer configuration, but use a multivariate gp of dimension 3 for the
latent variables representation when using more than one layer. In the remainder
of the paper, the term layer describes a hidden layer composed of two inner layers
Φ(i) and F (i+1). As observed in [15,35], deep architectures require to feed forward
the input to the hidden layers in order to implement the modeling of meaningful
functions. In the experiments involving more than 2 layers, we follow this advice
by feed-forwarding the input to the encoding layers and feed-forward the latent
variables to the decoding layers. The weights are optimized using a batch size of
200 and a learning rate of 0.01. The parameters q(Ω) and Θ are fixed for 1000
and 7000 iterations respectively. NMC is set to 1 during the training, while we use
NMC = 100 at test time to score samples with higher accuracy. dgp-ae-g uses
a Gaussian likelihood for continuous and one-hot encoded categorical variables.
dgp-ae-gs is a modified dgp-ae-g where categorical features are modelled by a
softmax likelihood as previously described. These networks use an rbf covariance
function, except when the arc suffix is used, e.g. dgp-ae-g--arc.

vae-dgp-1: This network performs inducing points approximation to train
a dgp model with variational inference. The network uses 2 hidden layers of di-
mensionality max(d

2 , 5) and max(d
3 , 4), and is trained for 1000 iterations over all

training samples. All layers use a rbf kernel with 40 inducing points. The MLP
in the recognition model has two layers of dimensionality 300 and 150.

vae-2, vae-: The variational autoencoder is a generative model which com-
presses the representation of the training data into a layer of latent variables,
optimized with stochastic gradient descent. The sum of the reconstruction error
and the latent loss, i.e. the negative of the Kullback-Leibler divergence between
the approximate posterior over the latent variables and the prior, gives the loss

1 https://github.com/SheffieldML/PyDeepGP
2 https://github.com/tensorflow/models/blob/master/research/autoencoder/

autoencoder_models

https://github.com/SheffieldML/PyDeepGP
https://github.com/tensorflow/models/blob/master/research/autoencoder/autoencoder_models
https://github.com/tensorflow/models/blob/master/research/autoencoder/autoencoder_models
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term optimized during the training. The networks were trained for 4000 iterations
using 50 hidden units and a batch size of 1000 samples. A learning rate of 0.001
was selected to optimize the weights. vae- is a shallow network using one layer for
latent variables representation, while vae- uses a two-layer architecture with a
first layer for encoding and a second one for decoding, each containing 100 hidden
units. We use the reconstruction error to score novelties.

nade-3: This neural network is an autoencoder suitable for density estimation.
The network uses mixtures of Gaussians to model p(x). The network yields an
autoregressive model, which implies that the joint distribution is modelled such
that the probability for a given feature depends on the previous features fed to
the network, i.e. p(x) = p(xod |xo<d), where xod is the feature of index d of x. We
train a deep and orderless nade for 5000 iterations using batches of 200 samples,
a learning rate of 0.005 and a weight decay of 0.02. Training the network for
more iterations increases the risk of the training to fail due to runtime errors.
The network has a 2 layer-topology with 100 hidden units and a relu activation
function. The number of components for the mixture of Gaussians was set to
20, and we use Bernoulli distributions instead of Gaussians to model datasets
exclusively composed of categorical data. 15% of the training data was used for
validation to select the final weights.

ae-, ae-: These two neural networks are feedforward autoencoders using sig-
moid activation functions in the hidden layers and a dropout rate of 0.5 to provide
regularization. The first network is a single layer autoencoder with a number of
hidden units equal to the number of features, while the second one has a 5-layer
topology with 80% of the number of input features on the second and fourth layer,
and 60% on the third layer. The networks are trained for 100,000 iterations with
a batch size of 200 samples and a learning rate of 0.01. The reconstruction error
is used to detect outliers.

Isolation Forest4 is a random forest algorithm performing recursive random
splits over the feature domain until each sample is isolated from the rest of the
dataset. As a result, outliers are separated after few splits and are located in nodes
close to the root of the trees. The average path length required to reach the node
containing the specified point is used for scoring. A contamination rate of 5% was
used for this experiment.

rkde
5 is a probabilistic method which assigns a kernel function to each training

sample, then sums the local contribution of each function to give an estimate
of the density. The experiment uses the cross-validation bandwidth (lkcv) as a
smoothing parameter on the shape of the density, and the Huber loss function to
provide a robust estimation of the maximum likelihood.

4.2 Datasets

Our evaluation is based on 11 datasets, including 7 datasets made publicly avail-
able by the uci [3], while the 4 other datasets are proprietary datasets containing

3 https://github.com/MarcCote/nade
4 http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

IsolationForest.html
5 http://web.eecs.umich.edu/~cscott/code/rkde_code.zip

https://github.com/MarcCote/nade
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://web.eecs.umich.edu/~cscott/code/rkde_code.zip
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production data from the company Amadeus. This company provides online plat-
forms to connect the travel industry and manages almost half of the flight book-
ings worldwide. Their business is targeted by fraud attempts reported as outliers
in the corresponding datasets. The proprietary datasets are given thereafter; pnr
describes the history of changes applied to booking records, transactions depicts
user sessions performed on a Web application and targets the detection of bots and
malicious users, shared-access was extracted from a backend application dedi-
cated to shared rights management between customers, e.g. seat map display or
cruise distribution, and payment-sub reports the booking records along with the
user behavior through the booking process, e.g. searches and actions performed.
Table 1 shows the datasets characteristics.

Table 1: uci and proprietary datasets benchmarked - (# categ. dims) is the number
of binary features after one-hot encoding of the categorical features.

Dataset Nominal
class

Anomaly
class

Numeric
dims

Categ.
dims

Samples Anomalies

mammography -1 1 6 0 (0) 11,183 260 (2.32%)
magic-gamma-sub g h 10 0 (0) 12,332 408 (3.20%)1

wine-quality 4, 5, 6, 7, 8 3, 9 11 0 (0) 4,898 25 (0.51%)
Mushroom-sub e p 0 22 (107) 4,368 139 (3.20%)1

car unacc, acc, good vgood 0 6 (21) 1,728 65 (3.76%)
german-sub 1 2 7 13 (54) 723 23 (3.18%)1

pnr 0 1, 2, 3, 4, 5 82 0 (0) 20,000 121 (0.61%)
transactions 0 1 41 1 (9) 10,000 21 (0.21%)
shared-access 0 1 49 0 (0) 18,722 37 (0.20%)
payment-sub 0 1 37 0 (0) 73,848 2769 (3.75%)
airline 1 0 8 0 (0) 3,188,179 203,501 (6.00%)

1 Anomalies are sampled from the corresponding class, using the average percentage of outliers depicted in [16].

4.3 Results

This section shows the outlier detection capabilities of the methods and monitors
the mll to exhibit convergence. We also study the impact of depth and dimen-
sionality on dgp-aes, and plot the latent representations learnt by the network.

4.3.1 Method comparison

Our experiment performs a 5-fold Monte Carlo cross-validation, using 80% of the
original dataset for the training and 20% for the testing. Training and testing
datasets are normalized, and we use the characteristics of the training dataset to
normalize the testing data. Both datasets contain the same proportion of anoma-
lies. Since class distribution is by nature heavily imbalanced for novelty detection
problems, we use the map as a performance metric instead of the average roc
auc. Indeed, the precision metric strongly penalizes false positives, even if they
only represent a small proportion of the negative class, while false positives have
very little impact on the roc [11]. The detailed map are reported in Table 2. Bold
results are similar to the best map achieved on the dataset with nonsignificant dif-
ferences. We used a pairwise Friedman test [19] with a threshold of 0.05 to reject
the null hypothesis. The experiments are performed on an Ubuntu 14.04 LTS pow-
ered by an Intel Xeon E5-4627 v4 CPU and 256GB RAM. This amount of memory
is not sufficient to train rkde on the airline dataset, resulting in missing data in
Table 2.

http://www.openml.org/d/310
https://archive.ics.uci.edu/ml/machine-learning-databases/magic/magic04.data
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv
https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data
https://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data
https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/german.data
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Table 2: Mean area under the precision-recall curve (map) per dataset and algo-
rithm (5 runs). Bold results imply that we cannot reject the null hypothesis of
a given map to be identical to the best result for the dataset. The performance
of rkde on the airline dataset is missing due to the lack of scalability of the
algorithm.

dgp-ae
g-

dgp-ae
g-

dgp-ae
gs-

dgp-ae
gs-

vae-dgp- ae- ae- vae- vae- nade- rkde IForest

mammography 0.222 0.183 0.222 0.183 0.221 0.118 0.075 0.119 0.148 0.193 0.231 0.244
magic-gamma-sub 0.260 0.340 0.260 0.340 0.235 0.253 0.125 0.230 0.305 0.398 0.402 0.290
wine-quality 0.224 0.203 0.224 0.203 0.075 0.106 0.042 0.064 0.124 0.102 0.051 0.059
mushroom-sub 0.811 0.677 0.940 0.892 0.636 0.725 0.331 0.758 0.479 0.596 0.839 0.546
car 0.050 0.061 0.043 0.067 0.045 0.044 0.032 0.071 0.050 0.030 0.034 0.041
german-sub 0.066 0.077 0.106 0.098 0.113 0.065 0.103 0.104 0.062 0.118 0.109 0.079
pnr 0.190 0.172 0.190 0.172 0.201 0.059 0.107 0.100 0.106 0.006 0.146 0.124
transactions 0.756 0.752 0.810 0.835 0.509 0.563 0.510 0.532 0.760 0.373 0.585 0.564
shared-access 0.692 0.738 0.692 0.738 0.668 0.546 0.766 0.471 0.527 0.239 0.783 0.746
payment-sub 0.173 0.173 0.168 0.168 0.137 0.157 0.129 0.175 0.143 0.101 0.180 0.142
airline 0.081 0.079 0.081 0.079 0.060 0.063 0.059 0.068 0.074 0.064 - 0.069

average1 0.344 0.338 0.366 0.370 0.284 0.264 0.222 0.262 0.270 0.216 0.336 0.284

1 airline was excluded from the average due to a missing value.

Looking at the average performance, our dgps autoencoders achieve the best
results for novelty detection. dgps performed well on all datasets, including high
dimensional cases, and outperform the other methods on wine-quality, airline
and pnr. By fitting a softmax likelihood instead of a Gaussian on one-hot en-
coded features, dgp-ae-gs- achieves better performance than dgp-ae-g- on 3
datasets containing categorical variables out of 4, e.g. mushroom-sub, german-
sub and transactions, while showing similar results on the car dataset. This
representation allows dgps to reach the best performance on half of the datasets
and to outperform state-of-the-art algorithms for novelty detection, such as rkde
and IForest. Despite the low dimensionality representation of the latent variables,
dgp-ae-g- achieves performance comparable to dgp-ae-g-, which suggests good
dimensionality reduction abilities. The use of a softmax likelihood in dgp-ae-gs-
resulted in better novelty detection capabilities than dgp-ae-g- on the 4 datasets
containing categorical features. vae-dgp- achieves good results but is outper-
formed on most small datasets.

vae- also shows good outlier detection capabilities and handles binary features
better than vae-. However, the multilayer architecture outperforms its shallow
counterpart on large datasets containing more than 10,000 samples. Both algo-
rithms perform better than nade- which fails on high dimensional datasets such
as mushroom-sub, pnr or transactions. We performed additional tests with an
increased number of units for nade- to cope for the large dimensionality, but we
obtained similar results.

While ae- shows unexpected detection capabilities for a very simple model,
ae- reaches the lowest performance. Compressing the data to a feature space
40% smaller than the input space along with dropout layers may cause loss of
information resulting in an inaccurate model.

4.3.2 Convergence monitoring

To assess the accuracy and the scalability of the selected neural networks, we
measure the map and mean log-likelihood (mll) on test data during the training
phase to monitor their convergence. The evolution of the two metrics for the dnns
is reported in Figure 2.
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Fig. 2: Evolution of the map and mll over time for the selected networks. The
metrics are computed on a 3-fold cross-validation on testing data. For both metrics,
the higher values, the better the results.

While the likelihood is the objective function of most networks, the monitoring
of this metric reveals occasional decreases of the mll for all methods during the
training process. If minor increases are part of the gradient optimization, the others
indicate convergence issues for complex datasets. This is observed for vae-dgp-
and vae- on mammography, or dgp-ae-g--arc and vae- on mushroom-sub.

Our dgps show the best likelihood on most datasets, in particular when using
the arc kernel, with the exception of pnr and mushroom-sub where the rbf
kernel is much more efficient. These results demonstrate the efficiency of regu-
larization for dgps and their excellent ability to generalize while fitting complex
models.

On the opposite, nade- barely reaches the likelihood of ae- and ae- at con-
vergence. In addition, the network requires an extensive tuning of its parameters
and has a computationally expensive prediction step. We tweaked the parameters
to increase the model complexity, e.g. number of components and units, but it did
not improve the optimized likelihood.

vae-dgp- does not reach a competitive likelihood, even with deeper architec-
tures, and shows a computationally expensive prediction step.

Looking at the overall results of these networks, we observe that the model,
depicted here by the likelihood, is refined during the entire training process, while
the average precision quickly stabilizes. This behavior implies that the ordering
of data points according to their outlier score converges much faster, even though
small changes can still occur.

Additional convergence experiments have been performed on dgps and are
reported on Figure 3. The left part of the figure shows the ability of dgp-ae-g
to generalize while increasing the number of layers. On the right, we compare the
dimensionality reduction capabilities of dgp-ae-g- while increasing the number
of gps on the latent variables layer.

The left part of the plot reports the convergence of dgp-ae-g for configurations
ranging from one to ten layers. The plot highlights the correlation between a
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Fig. 3: Evolution of the map and mll over time on testing data based on a 3-
fold cross-validation process. The left plot reports the metrics for dgp-ae-g with
an increasing number of layers. For networks with more than 2 layers, we feed
forward the input to the encoding layers, and feed forward the latent variables to
the decoding layers. We use 3 gps per layer and a length-scale of 1. The right plot
shows the impact of an increasing number of gp nodes on a dgp-ae-g-.

higher test likelihood and a higher average precision. Single-layer models show
a good convergence of the mll on most datasets, though are outperformed by
deeper models, especially 4-layer networks, on magic-gamma-sub, payment-sub
and airline. Deep architectures result in models of higher capacity at the cost
of needing larger datasets to be able to model complex representations, with a
resulting slower convergence behavior. Using moderately deep networks can thus
show better results on datasets where a single layer is not sufficient to capture
the complexity of the data. Interestingly, the bound on the model evidence makes
it possible to carry out model selection to decide on the best architecture for the
model at hand [8].

In the right panel of Figure 3, we increase the dimensionality of the latent
representation fixing the architecture to a dgp-ae-g-. Both the test likelihood
and the average precision show that a univariate gp is not sufficient to model
accurately the input data. The limitations of this configuration is observed on
mammography, payment-sub and airline where more complex representations
achieve better performance. Increasing the number of gps results in a higher num-
ber of weights for the model, thus in a slower convergence. While configurations
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using 5 GPs already perform a significant dimensionality reduction, they achieve
good performance and are suitable for efficient novelty detection.

4.3.3 Latent representation

In this section we illustrate the capabilities of the proposed dgp-ae model to
construct meaningful latent probabilistic representations of the data. We select a
two-layer dgp-ae architecture with a two-dimensional latent representation Z :=
F (1). Since the mapping of the dgp-ae model is probabilistic, each input point is
mapped into a cloud of latent variables. In order to obtain a generative model, we
could then train a density estimation algorithm on the latent variables to construct
a density q(z) used together with the probabilistic decoder part of the dgp-ae to
generate new observations.

Fig. 4: Left: normalized old faithful dataset. Right: latent representation of the
dataset for a 2-layer dgp-ae (100,000 iterations, 300 Monte Carlo samples).

In Figure 4, we draw 300 Monte Carlo samples from the approximate posterior
over the weights W to construct a latent representation of the old faithful
dataset. We use a gmm with two components to cluster the input data, and color
the latent representation based on the resulting labels. The point highlighted on
the left panel of the plot by a cross is mapped into the green points on the right.

We now extend our experiment to labelled datasets of higher dimensional-
ity, using the given labels for the sole purpose of assigning a color to the points
in the latent space. Figure 5 shows the two-dimensional representation of four
datasets,breast cancer (569 samples, 30 features), iris (150x4), wine (178x13)
and digits (1797x64). For comparison, we also report the results of two manifold
learning algorithms, namely t-sne [33] and Probabilistic pca [42]. The plot shows
that our algorithm yields meaningful low-dimensional representations, comparable
with state-of-the-art dimensionality reduction methods.

5 Conclusions

In this paper, we introduced a novel deep probabilistic model for novelty detection.
The proposed dgp-ae model is an autoencoder where the encoding and the decod-
ing mappings are governed by dgps. We make the inference of the model tractable
and scalable by approximating the dgps using random feature expansions and by
inferring the resulting model through stochastic variational inference that could
exploit distributed and GPU computing. The proposed dgp-ae is able to flexibly

http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Fig. 5: Dimensionality reduction performed on 4 classification datasets. dgp-ae-g-
 was trained for 100,000 iterations, and used 20 Monte Carlo iterations to sample
the latent variables.

model data with mixed-types feature, which is actively investigated in the recent
literature [44]. Furthermore, the model is easy to implement using automatic dif-
ferentiation tools, and is characterized by robust training given that, unlike most
gp-based models [9], it only involves tensor products and no matrix factorizations.

Through a series of experiments, we demonstrated that dgp-aes achieve com-
petitive results against state-of-the-art novelty detection methods and dnn-based
novelty detection methods. Crucially, dgp-aes achieve these performance with a
practical learning method, making deep probabilistic modeling as an attractive
model for general novelty detection tasks. The encoded latent representation is
probabilistic and it yields uncertainty that can be used to turn the proposed au-
toencoder into a generative model; we leave this investigation for future work, as
well as the possibility to make use of dgps to model the mappings in variational
autoencoders.
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ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

2. M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875v2, 2017.

3. K. Bache and M. Lichman. UCI machine learning repository, 2013.
4. J. Bradshaw, Alexander, and Z. Ghahramani. Adversarial Examples, Uncertainty, and

Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks. arXiv preprint
arXiv:1707.02476, July 2017.

5. T. D. Bui, D. Hernández-Lobato, J. M. Hernández-Lobato, Y. Li, and R. E. Turner.
Deep Gaussian Processes for Regression using Approximate Expectation Propagation. In
M. Balcan and K. Q. Weinberger, editors, Proceedings of the 33nd International Confer-
ence on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 1472–1481. JMLR.org,
2016.

6. Y. Cho and L. K. Saul. Kernel methods for deep learning. In Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 342–350. Curran Associates, Inc., 2009.

7. R. Collobert and J. Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Confer-
ence on Machine Learning, ICML ’08, pages 160–167, New York, NY, USA, 2008. ACM.

8. K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random feature expansions for
deep Gaussian processes. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 884–893, International Convention Centre, Sydney, Australia,
Aug. 2017. PMLR.
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