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Abstract—Software Defined Radio platforms are theoretically
capable of operating more than one wireless standard simul-
taneously. The significant challenges arise when the operating
standards use overlapping frequency bands. Co-channel inter-
ference (CCI) is one of such challenges which have been in
focus of the cellular communication community, but not in
the Industrial, Scientific and Medical (ISM) radio bands where
multiple heterogeneous wireless standards operate without a
centralized coordination. Recognizing Successive Interference
Cancellation (SIC) as one of the proven mechanisms to mitigate
CCI, we propose methods to improve Packet Error Rate (PER)
of wideband OFDM-based systems in the presence of multiple co-
channel narrowband interferers. Our methods achieve improve-
ments in PER statistics at lower received power level compared to
conventional methods. Reduction in PER of the dominant OFDM
signal makes more packets available for regeneration and hence
cancellation during SIC procedure which aides the decoding of
weaker signal. We also propose a simple yet efficient method to
detect the presence and positioning of multiple narrowband inter-
ferers. Extensive Monte-Carlo simulations show that our methods
elevate a receiver sensitivity gain up to 6 dB and are capable of
detecting multiple narrowband interferers simultaneously. Our
methods require modifications in the physical layer of the receiver
only and hence can be integrated into existing infrastructure.

I. INTRODUCTION

Software defined radios (SDR) have proven their capabil-
ity of quickly prototyping wireless standards. Some notable
examples include gr-IEEE 802.11 [1] for IEEE 802.11g/p,
gr-IEEE 802.15.4 for IEEE 802.15.4 [2] and Openairinter-
face for 4G and 5G[3]. However, application of SDR for
reception of the signals conforming heterogeneous wireless
standards operating in overlapped frequency bands using the
same Radio Frequency (RF) front-end still pose significant
challenges from the signal processing perspective [4]. One of
such challenges is co-channel interference (CCI), well known
and tackled in cellular networks using centralized control over
transmit power and transmit time scheduling [5]. This is not
the case for Industrial, Scientific and Medical (ISM) bands
where heterogeneous wireless standards operate without any
centralized control. We denote such networks as unmanaged
networks. A common example of such network is the 2.4
GHz ISM band crowded by IEEE 802.11g (WiFi), IEEE
802.15.1 (Bluetooth), and IEEE 802.15.4 (ZigBee). All of
them suffer significant degradation of throughput even though
they possess Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) ([6],[7],[8]). Major causes include
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Figure 1: A principle of the Successive Interference Cancellation

hidden node [9] and differences in channel sensing/response
time [10]; an extent of degradation depends on received power
levels (RXP) and degree of time/frequency overlap of the
signals. In this study, we focus on interference between WiFi
and ZigBee in 2.4 GHz band and restrict our comparisons
to single antenna systems. Nonetheless, our discussion is
applicable to other ISM bands standards and multi-antenna
systems without loss of generality. Successive Interference
Canceling (SIC) [11] is a proven technique to efficiently
mitigate CCI. While SIC primarily found more attention in
cellular domain due to centralized co-ordination [5], significant
challenges are faced in unmanaged networks. Despite that,
several attempts have been made in the past to establish co-
existence between WiFi and ZigBee using SIC ([6],[7],[9]).
Hidden beneath the disparity of operations of WiFi and ZigBee
there lies a favorable condition for SIC which is the operating
power level (total power in the entire band) difference of
5−20 dB between WiFi and ZigBee [10]. This fact is exploited
in all the aforementioned state of the art. From the principle of
SIC in Fig. 1, it can be observed that efficiency of SIC, in terms
of retrieving the weaker signal, depends on how perfectly the
stronger signal is regenerated after decoding [5][12]. This, in
turn, depends on three factors: RXP of the stronger signal
compared to the weaker signal, accuracy of channel estimates
of the stronger signal and decoded data of the stronger signal.
Methods which facilitate the second and third factors, we term
them as SIC assisting methods. Some of these methods for
unmanaged networks were reported in the past targeting robust
channel estimation and better methods of data recovery under
interference.

In [6], a decision-directed channel estimation along with
soft Viterbi decoder for WiFi is used to assist SIC delivering
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a throughput gain for both WiFi and ZigBee. MAC layer
enhancements, which benefit from known WiFi preambles are
proposed in [7] to assist SIC and increase the throughput
of WiFi. However, this method is limited to WiFi-to-WiFi
interference and does not address cross-standard interference.
In [9], authors propose a data-dependent model of ZigBee
to assist SIC along with modifications to the MAC layer to
increase the throughput of ZigBee. In [10] and [14], authors
propose to send fake preambles and jamming signals to make
ZigBee more visible to WiFi and force WiFi to back-off
during channel contention. However anti-jamming capabilities
of WiFi can make such solutions infeasible [15].

In most of the past works, WiFi is recognized as the culprit
for interference and ZigBee as the victim, which is true in
majority of the situations, however, in an event of a collision
(due to the mismatch in channel sensing and access time), PER
of WiFi significantly increases which we discuss in section
II. Hence, despite the fact that WiFi is a stronger signal, the
performance of SIC in terms of retrieving ZigBee packets
degrades because a lesser number of correct WiFi packets are
available for regeneration during SIC.

In addition to SIC assisting methods, immediate detection
and positioning of interferer (center frequency) is an essential
step to be performed before SIC starts. Unfortunately, inter-
ference detection and positioning have not been researched
widely at the physical layer (PHY) in ISM bands for unman-
aged networks. In [16], authors proposed a method to detect
ZigBee interference on WiFi by analyzing packet error rate
(PER) at the MAC layer. A similar approach was taken by
authors of [17] where ZigBee interference to WiFi networks
was detected by PER analysis. In [23], authors proposed to
detect interference by monitoring soft bit errors in OFDM.
However, PER and soft bit error could even occur due to severe
fading. Hence, none of the mentioned methods guarantee
immediate discovery of the interference. In our work, we
have focused on reducing the PER of stronger WiFi signal
in an event of collision with multiple narrowband interferers,
thereby increasing the number of correct packets of stronger
signal during SIC eventually leading towards increased effi-
ciency of SIC.
Our major contributions in this paper are summarized as

follows:

• We develop a method to estimate localized noise vari-
ances in OFDM-based systems under multiple narrow
band interferers and use them to scale the soft bits, i.e.,
log-likelihood ratios (LLRs) of OFDM subcarriers under
interference. A key advantage of our approach is that
confidences of LLRs belonging to interfered subcarriers
are scaled proportionately giving significant performance
gain in terms of PER of WiFi after Viterbi decoding.

• We develop a simple yet effective method to detect
the appearance and presence of multiple narrowband
interferers. Our method is independent of the individual
power levels of interferers and can simultaneously detect
multiple low-level interferences.

The remainder of this paper is organized as follows: In
Section II we provide details of WiFi and ZigBee interference
in the frequency domain. Section III discusses details of our
proposed methods. Section IV presents the experimental set-up
and concludes with the discussion on results of simulations.

II. WIFI ZIGBEE INTERFERENCE: ANALYSIS IN
FREQUENCY DOMAIN

WiFi is a wideband system with an operating bandwidth
of 20 MHz and uses OFDM for PHY in 2.4 GHz band. The
entire bandwidth is divided into 64 overlapping, yet orthogonal
subcarriers, each 312.5 KHz wide. In contrast, ZigBee oper-
ating in 2.4 GHz is a narrowband system with a bandwidth
of 2 MHz with and uses O-QPSK (Offset-Quadrature Phase
Shift Keying) and DSSS (Direct Sequence Spread Spectrum)
for its PHY. Fig. 2 shows within every orthogonal chan-
nel (20 MHz each) of WiFi, i.e., 2.412, 2.437, 2.462 GHz
and ZigBee channels (2 MHz each) completely overlap. A
magnified view in the frequency domain shown in Fig. 2
reveals an overlap between individual WiFi subcarriers and
ZigBee channels. As the bandwidth of each WiFi subcarrier is
312.5 kHz, approximately 7 subcarriers of WiFi are overlapped
with each ZigBee channel. We refer to this set of 7 subcarriers
as interfered subcarriers Sinterf (plotted in red) and rest of them
as non-interfered subcarriers Snon-interf (plotted in green). In
an event of CCI, noise variance on Sinterf gets higher than
Snon-interf leading to a significant increase of WiFi PER. To get
more insight, we performed simulations for a fixed WiFi RXP
of −85 dBm under interference from single ZigBee channel
RXP varying from −100 dBm to −85 dBm. The PER of WiFi
lies in the interval 5−90%, while the PER is negligibly small
in the absence of interference. This indicates the extent of
degradation of the subcarriers corresponding to Sinterf due to
single low power ZigBee channel. Hence, the reliability of
LLRs corresponding to Sinterf needs to be scaled in proportion
to the noisiness caused by the interference.

In Section III, we propose the method to estimate noise
variance over Sinterf and Snon-interf locally and apply it to scale
the corresponding information.



III. PROPOSED METHODS

A. Local Noise Variance Estimation and LLR scaling

A typical WiFi frame consisting of OFDM data symbols
is preceded by preambles known as Short Training Sequence
(STS) and Long Training Sequence (LTS) [18]. LTS consists
of two identical OFDM symbols which are used for channel
estimation. After N (64 for WiFi), point FFT a received WiFi
sample in the frequency domain can be written as:

Yij = XijHij + nij , 1 ≤ i ≤ N, (1)

where Yij , Xij are complex samples representing received and
sent symbols on the i-th subcarrier of the j-th OFDM symbol,
respectively. Also, in Hij is channel transfer function of the
i-th subcarrier for the j-th OFDM symbol. Term nij contains
components from both thermal noise, which is Gaussian and
interference, which is not necessarily Gaussian. However, for
this work we model both noise sources as Gaussian with zero
mean and variance σ2 = E {|nij |2}. The same LTS is used to
compute σ̂2 which is the estimate of actual variance σ2. The
conventional way [19] to obtain σ̂2 is to perform an average
over noise variances of all used subcarriers Usub (52 for WiFi
[18]) in the LTS as follows:

σ̂2 =
1

2Usub

Usub∑
i=1

|Yi,1 − Yi,2|2, (2)

where Yi,1, Yi,2 are the complex samples corresponding to i-th
subcarrier of the first and second LTS symbols respectively.
σ̂2 is used as noise variance for all Usub of the WiFi OFDM
data symbols following the LTS. In a soft decision Viterbi
decoder σ̂2 appears as a scaling factor for LLR Λ(yeqij |s(bk))
for every bit bk. Λ(yeqij |s(bk)) is obtained from i-th equalized
subcarrier of j-th OFDM data symbol yeq

ij by following a
maxlog approximation of maximum likelihood approach over
a known subset of alphabets QM as mentioned in [22]:

Λ(yeqij |s(bk)) ≈ ln

 max
s∈QM (bk=0)

exp

(
−|y

eq
ij−s|2
σ̂2

)
max

s∈QM (bk=1)
exp

(
−|y

eq
ij−s|2
σ̂2

)
 , (3)

(3) can be further simplified as:

Λ(yeqij |s(bk)) =
max

s∈QM (bk=0)

(
−
∣∣yeq
ij − s

∣∣2)
σ̂2

−

max
s∈QM (bk=1)

(
−
∣∣yeq
ij − s

∣∣2)
σ̂2

(4)

Expression (4) shows that depending on the extent of noise
component σ̂2 on the equalized subcarrier yeq

ij , Λ(yeqij |s) gets
scaled up or down. Expression (4), in case of AWGN, leads
to scaling of Λ’s corresponding to all yeqij by the same σ̂2

since σ̂2 does not vary significantly over the subcarriers. This
is not the case in the presence of narrowband interference
where σ̂2 is higher over Sinterf compared to Snon-interf. Fig. 3
illustrates the difference of noise variances over interfered and

non-interfered subcarriers for the case of 4 interferers. In such
case, σ̂2 being the average noise variance over entire Usub does
not provide local noise variance (LNV)information across the
subcarriers. Hence, in the presence of narrowband interferers,
local estimation of σ̂2 over Sinterf and Snon-interf is required
in order to justify the scaling of Λ(yeqij |s) as in (4). In our
proposed method we separately perform LNV estimation on
Sinterf and Snon-interf and then use them to scale Λ(yeqij |s).

Consider a generalized case of K interferers. Sk is the set of
subcarriers affected by the k-th interferer, k = 1, . . . ,K and
S0 is the set of subcarriers unaffected by interference such that
S0∪S1∪S2∪ ....∪SK = {1, . . . , Usub}. For k = 0, 1, . . . ,K,
the LNV estimate is defined as follows:

σ̂2
Sk

=
1

2|Sk|
∑
i∈Sk

|Yi,1 − Yi,2|2, (5)

and we further define index vector as[
ISk

]
i
=

{
1, i ∈ Sk
0, i /∈ Sk

i = 1, 2, . . . , Usub. (6)

Using (5) and (6), the vector of noise variances over Usub is
defined as

σ̂2 =

K∑
k=0

ISk
σ̂2
Sk
, (7)

Finally using (5), (6) and (7), we can generalize (4) to obtain
the scaled LLRs as

Λ(yeqij |s(bk)) =
max

s∈QM (bk=0)

(
−
∣∣yeq
ij − s

∣∣2)
σ̂i

2 −

max
s∈QM (bk=1)

(
−
∣∣yeq
ij − s

∣∣2)
σ̂i

2 ,

(8)

where σ̂i
2 is the i-th element of the vector σ̂2 and i =

1, 2, . . . , Usub. In Section IV, we scale the LLRs using (8)
and examine the PER of WiFi under simultaneous interference
from multiple narrowband ZigBee channels.

B. Interference detection with local noise variances

For K number of interferers, the vector of noise variances
σ̂2 observes sharp and distinguish rise in magnitude over
the regions where noise is higher, i.e., where the narrowband
interferers are present compared to the regions unaffected by
narrowband interferers. Fig. 3 illustrates the same for the
case of 4 ZigBee channels. For a given WiFi channel, the
overlapping ZigBee channels center frequencies are known
a priori as shown in Fig. 2 and the elevated portions in
Fig. 3 give a coarse estimate of the same. We combine this
knowledge along with an edge detector in order to pinpoint
the interferers as soon as they appear. Our proposed method of
interference detection does not add any additional processing
complexity since it is a byproduct of our previous method.
The key advantage of our approach is that peaks could be
obtained even at the very low level of interference. However
our method is effective only when there is an overlap between
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Figure 3: Noise variance per subcarrier for 4 ZigBee interferer

TABLE I: Simulation Parameters

Channel Model WiFi: 11 tap frequency selective Rayleigh,
ZigBee: 1 tap flat fading Rayleigh

Noise Power −100 dBm
WiFi PSDU 100 bytes
WiFi Modulation
and Coding Scheme
(MCS)

MCS-0(1/2 BPSK), MCS-2(1/2 QPSK),
MCS-4(1/2 16QAM), MCS-6(2/3 64QAM)

ZigBee PSDU 120 bytes
Sampling Rate WiFi 20 MHz, ZigBee oversampled to 20 MHz
WiFi Simulator WLAN toolbox, MATLAB Release 2017b

ZigBee Simulator LRWPAN Class, Communication Systems
Toolbox, MATLAB Release 2017b

LTS of WiFi and an ongoing ZigBee transmission as it uses
LTS (duration 0.8 µs) to calculate σ̂2. This is a fair assumption
as typical packet lengths of WiFi (194 µs−542 µs) are shorter
than that of ZigBee (352 µs− 4256 µs) [10]. In order to detect
the appearance of ZigBee interference during an ongoing WiFi
transmission, pilot subcarriers embedded under every OFDM
data symbols of WiFi could be used however estimation
accuracy could be affected.

IV. EXPERIMENTAL SETUP AND RESULTS

We perform baseband Monte Carlo simulations using stan-
dard compliant 802.11g and 802.15.4 MATLAB packages
available in release 2017b of MATLAB to validate our pro-
posed methods. Occasionally, interference between WiFi and
ZigBee can lead to WiFi frames undetected, i.e, loss of WiFi
frame synchronization [13], but in this work, we assume
perfect synchronization of WiFi frames. Additionally, we
simulate the worst case scenario ,i.e., there is no CSMA/CA
creating 100 % chance of collision. Simulation parameters are
mentioned in Table I

A. Local noise variance estimation under multiple interferers
and LLR scaling

We simulate interference between single WiFi channel and
up to 4 ZigBee channels. RXP of ZigBee channels are fixed
to −85 dBm which is the minimum RXP required(in 2.4 GHz
band) to achieve 1% PER [20], while WiFi RXP was varied to
achieve statistical reliability (in our case, until 300 frames were
erroneous). Due to lack of space, we present results for MCS
0, 2, 4, 6. Nonetheless, results follow similar performance
curve for other interference RXP and MCS too. We chose WiFi

receiver sensitivity as our performance metric for comparison
which is the minimum required RXP in order to obtain a
PER of 10% [18] without any interference. We compared our
method to scale the LLRs as in (8) against the conventional
method as in (4). As a reference, we also plot PER of WiFi
without interference using the conventional method as in (4)
in order to show the extent of PER degradation when multiple
interferers appear.

Based on the plots we obtained, as shown in Section IV-A,
we observe that with our modifications, 10% PER mark is
reached at a lower RXP compared to conventional method for
MCS 0, 2, 4, 6. We term the difference in RXP observed
between our method and conventional method as Receiver
Sensitivity Gain which is summarized in Table II.

TABLE II: Receiver Sensitivity Gain(dB)

#
of Interferers

WiFi MCS
0 2 4 6

1 5.4 6.1 5.2 6.5
2 5.8 6.4 5 5.8
4 4 4.7 4.2 5

From Table II we observe that RSG monotonically decreases
as the number of interferers increase. Because, as the number
of ZigBee channels increase, more WiFi subcarriers get af-
fected which decreases the difference between noise variance
estimates calculated using (2) and (5). Additionally, ZigBee
power does not decay steeply outside 2 MHz band leading
to the addition of noise in more than 7 subcarriers. We also
observe that the RSG is consistent throughout the MCS for a
given number of interferer. This is due to the fixed payload
size of WiFi(100 bytes) which we used for simulations leading
to an equal number of LLRs get affected in all the MCS.
A direct impact of RSG is that for a given WiFi RXP our
method can achieve lesser PER compared to conventional
method. This will result in larger number of packets available
for regeneration of stronger signal during SIC and hence
increasing the performance of SIC.

B. Interference Detection

To test our method of interference detection, we calculate
the ratio of the local noise variance (LNV) of the interfered
region to that of the region without interference for varying
RXP of a single ZigBee channel. We term this ratio as Noise
Level Ratio (NLR). In the geometrical representation, the level
of NLR defines the height of lobes relative to the noise floor
as shown in Fig. 3. In Fig. 5, NLR is plotted in log scale while
the interference power varies from −100 dBm to −80 dBm.
We observe that even at low interference RXP (−100 dBm),
the NLR is 6.5 dB which is sufficient to detect the presence
of interference.

V. CONCLUSION

Presence of CCI significantly degrades the receiver’s ca-
pability to recover a signal. To address this problem, we
first introduced a method of fast yet efficient detection of



-90 -80 -70 -60 -50
10 -4

10 -3

10 -2

10 -1

10 0
P

E
R

-90 -80 -70 -60 -50

WiFi Received Power Level

10 -4

10 -3

10 -2

10 -1

10 0

-90 -80 -70 -60 -50
10 -4

10 -3

10 -2

10 -1

10 0

Conventional Method MCS0

Proposed Method MCS0

Conventional Method MCS2

Proposed Method MCS2

Conventional Method MCS4

Proposed Method MCS4

Conventional Method MCS6

Proposed Method MCS6

No Interference MCS0

No Interference MCS2

No Interference MCS4

No Interference MCS6

PER Under 1 Zigbee

Channel

Interference

PER Under 2 Zigbee

Channels

Interference

PER Under 4 Zigbee

Channels 

Interference

Figure 4: WiFi PER under 1, 2 & 4 ZigBee Interferences

-100 -98 -96 -94 -92 -90 -88 -86 -84 -82 -80

ZigBee Interference dB

10 0

10 1

10 2

10 3

N
o

is
e

 L
e

v
e

l 
R

a
ti
o

 d
B Noise Level Ratio

6.5 dB

Figure 5: Noise Level Ratio

the presence of multiple narrowband interferers. Secondly, we
provided a method to reduce the PER of stronger OFDM
signal suffering from multiple narrowband interferers. Our
methods thus elevate the robustness of the OFDM-based
systems towards narrowband interference as well as aid the
performance of SIC during the recovery of weaker narrowband
interferers. Although the experimental tests were performed
for unmanaged networks, the proposed methods can find
potential application in cellular networks too. In future, we
extend the system to multi-antenna systems, which will allow
increasing the robustness against interference even more by
using spatial diversity techniques.
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