
2018-ENST-0033

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « INFORMATIQUE et RESEAUX »

présentée et soutenue publiquement par

Francesco PACE
le 18 Juin 2018

Mechanisms for Efficient and Responsive Distributed
Applications in Compute Clusters

Directeur de thèse : Pietro MICHIARDI

Jury
Prof. Guillaume URVOY-KELLER, Université Nice Sophia Antipolis, I3S, Sophia Antipolis – France
Rapporteur
Prof. Fabrice HUET, Université Côte d’Azur, CNRS, I3S, Sophia Antipolis – France Rapporteur
Dr. Marko VUKOLIC, IBM Research, Zurich – Switzerland Examinateur
Prof. Christian BONNET, EURECOM, Sophia Antipolis – France Examinateur
Prof. Melek ÖNEN, EURECOM, Sophia Antipolis – France Examinateur
Prof. Damiano CARRA, University of Verona, Verona - Italy Invite

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

Mechanisms for Efficient and Responsive
Distributed Applications in Compute

Clusters

Francesco PACE

Department of Data Science
Eurecom

This dissertation is submitted for the degree of
Doctor of Philosophy

Telecom Paris Tech July 2018

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this
dissertation are original and have not been submitted in whole or in part for consideration for any other
degree or qualification in this, or any other university. This dissertation is my own work and contains
nothing which is the outcome of work done in collaboration with others, except as specified in the text
and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices,
bibliography, footnotes, tables and equations and has fewer than 150 figures.

Portions of the contents that appear in this dissertation have been published before in:

• Pace F., Venzano D., Carra D. and Michiardi P. [2017], Flexible scheduling of distributed an-
alytic applications, in Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM
International Symposium on, IEEE, pp. 100–109. [Pace et al., 2017]

• Pace F., Milios D., Carra D., Venzano D. and Michiardi P. [2018], Data-Driven Resource Allo-
cation for Distributed Applications in Compute Clusters, in submission at Symposium of Cloud
Computing (SoCC) 2018, ACM.

• Pace F., Milanesio M., Venzano D., Carra D. and Michiardi P. [2016], Experimental performance
evaluation of cloud-based analytics-as-a-service, in Cloud Computing (CLOUD), 2016 IEEE
9th International Conference on, IEEE, pp. 196–203. [Pace, Milanesio, Venzano, Carra and
Michiardi, 2016]

• Vernik G., Factor M., Kolodner E. K, Michiardi P., Ofer E. and Pace F. [2018], Stocator: Providing
High Performance and Fault Tolerance for Apache Spark over Object Storage, in Cluster, Cloud
and Grid Computing (CCGRID), 2018 18th IEEE/ACM International Symposium on, IEEE.
[Vernik et al., 2017]

Francesco PACE
July 2018

Acknowledgements

In the past years, many great people have been part of my life and inspired and helped my work. Without
their support this thesis would not have been possible. I owe all of them a debt of gratitude and I would
like to use the following lines to express my thankfulness.

First and foremost, I would like to express my gratitude to my advisor Prof. Pietro MICHIARDI for
the continuous support during my Ph.D studies and related research, for his motivation and immense
patient. His guidance helped me during the research and writing of this thesis. His advice on both
research as well as on my career have been priceless. For me Prof. MICHIARDI was not just a mentor,
he has been a good friend and helped me growing as a person; I hope to work again with him in the
future. Special thanks also go to Prof. Damiano CARRA for his insightful comments and questions that
helped me writing this thesis.

I would also like to thank my committee members, Prof. Guillaume URVOY-KELLER, Prof. Fabrice
HUET, Dr. Marko VUKOLIC, Prof. Christian BONNET and Prof. Melek ÖNEN for serving their role
even at hardship.

I also want thank the great Data Science team: thank you Raja APPUSWAMY, Rosa CANDELA,
Kurt CUTAJAR, Remi DOMINGUES, Maurizio FILIPPONE, Sébastien MARMIN, Dimitrios MILIOS,
Graziano MITA, Duc-Trung NGUYEN, Paolo PAPOTTI, Gia Lac TRAN and Daniele VENZANO
for the amazing experience of the past years. I know that from time to time it was not easy to work
with me so thank you all for being there for me when I was struggling or when I was too lazy to work.
Special thanks goes to Marco MILANESIO, Daniele VENZANO and Dimitrios MILIOS for helping me
developing my ideas and make sure that they see the light of the day.

Last but not the least, I would like to thank all my family: my parents and siblings for supporting me
throughout this journey and in my life in general. It has not been easy!

Abstract

This dissertation addresses the problem of improving the responsiveness of distributed applications
in compute clusters. We begin defining a user-defined analytic application, which is an high-level
compositions of frameworks, their components and the logic necessary to carry out work. The key idea
in our application definition is to distinguish classes of components, including core and elastic types:
the first being required for an application to make progress, the latter contributing to reduced execution
times. We show that the problem of scheduling such applications poses new challenges, which existing
approaches address inefficiently. Thus, we present the design and evaluation of a novel, flexible heuristic
to schedule analytic applications, that aims at high system responsiveness, by allocating resources
efficiently.

However, even with an almost-optimal resource allocation, the clusters are largely under-utilized
because resource allocation is based on reservation mechanisms which ignore actual resource utilization.
Indeed, it is common to reserve resources for peak demand, which may occur only for a small portion of
the application life time. As a consequence, cluster resources often go under-utilized. Our approach
monitors resource utilization and employs a data-driven approach to resource demand forecasting,
featuring quantification of uncertainty in the predictions. Using demand forecast and its confidence, our
mechanism modulates cluster resources assigned to running applications, and reduces the turnaround
time by more than one order of magnitude while keeping application failures under control.

To further improve the efficiency and responsiveness of distributed applications we study their
performance in current cloud providers architectures. Thanks to virtualization, compute and storage
clusters are more flexible, they can be easily provisioned in different sizes, and destroyed when not
needed. For this reason, cloud providers architectures have a complete disaggregation between Compute
and Storage which leads to the loss of data-locality, which is the notion of moving computation closer to
data due to the high cost of moving data to computation. Thus, we present an intuitive notion of data
locality, that we use as a proxy to rank different service compositions in terms of expected performance.
Through an empirical analysis, we dissect the performance achieved by analytic workloads and unveil
problems due to the impedance mismatch that arise in some configurations.

In order to solve such mismatch, we introduce Stocator, whose novel algorithm achieves both high
performance and fault tolerance by taking advantage of object storage semantics. This greatly decreases
the number of operations on object storage as well as enabling a much simpler approach to dealing
with the eventually consistent semantics typical of object storage. Performance testing shows orders of
magnitude improvements that reduce costs both for the client and the storage service provider.

Table of contents

List of figures xiii

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Contributions . 5

2 Background and Related Work 7
2.1 Scheduling . 8

2.1.1 Computer Cluster Scheduling . 8
2.1.2 The problem of a reservation centric resource allocation 11
2.1.3 Related Work on Scheduling for Distributed Applications 11

2.2 Time-Series Analysis . 17
2.2.1 Autoregressive Integrated Moving Average (ARIMA) 18
2.2.2 Gaussian Process Regression . 20

2.3 Compute and Storage Disaggregation . 22
2.3.1 Analytics services components . 22
2.3.2 Cloud Object Storage . 24
2.3.3 Related Work on Data Locality and Cloud Object Stores Performance 25

3 A Flexible Scheduling Heuristic 29
3.1 Definitions and Problem statement . 30

3.1.1 Definitions . 30
3.1.2 Problem Statement . 31

3.2 A Flexible Scheduling Algorithm . 34
3.2.1 Design guidelines . 34
3.2.2 Algorithm Details . 35
3.2.3 Preemptive policies . 37

3.3 Numerical evaluation . 37

x Table of contents

3.3.1 Methodology . 37
3.3.2 Comparison with the baseline . 38
3.3.3 Comparison with a malleable scheduler . 41
3.3.4 Comparison between different definitions of size 42
3.3.5 Preemption . 45
3.3.6 Additional considerations . 45

3.4 Implementation: The Zoe system . 46
3.5 Experiments with Zoe . 48
3.6 Summary . 50

4 Data-Driven Resource Allocation 51
4.1 Problem Statement . 52
4.2 System Design . 53

4.2.1 Utilization Forecasting Module . 54
4.2.2 Resource Shaper Module . 57
4.2.3 System Scalability . 60

4.3 Numerical Evaluation . 60
4.3.1 Methodology . 60
4.3.2 Results . 61

4.4 System Implementation . 64
4.5 Experimental Evaluation . 65
4.6 Summary . 67

5 Experimental Evaluation of Disaggregation between Compute and Storage 69
5.1 Problem Statement . 70
5.2 Methodology . 71

5.2.1 Experimental Platform . 71
5.2.2 Deployment scenarios . 72
5.2.3 Compute-to-Data path . 73
5.2.4 Benchmark and Workloads . 75
5.2.5 Performance metrics . 75

5.3 Results . 76
5.3.1 Analytics Application Benchmark . 76
5.3.2 Summary of the results . 81

5.4 Summary . 82

6 Stocator: High Performance Connector for Object Stores 83
6.1 Apache Spark . 84
6.2 Motivation . 86
6.3 Stocator Logic . 87

Table of contents xi

6.3.1 Basic Stocator protocol . 88
6.3.2 Alternatives for reading an input dataset . 88
6.3.3 Streaming of output . 89
6.3.4 Optimizing the read path . 89
6.3.5 Examples . 91

6.4 Methodology . 92
6.4.1 Experimental Platform . 92
6.4.2 Deployment scenarios . 92
6.4.3 Benchmark and Workloads . 93
6.4.4 Performance metrics . 94

6.5 Experimental Evaluation . 94
6.5.1 Reduction in run time . 94
6.5.2 Reduction in the number of REST calls . 98

6.6 Summary . 100

7 Conclusions and Perspectives 101

References 103

Appendix A French Résumé 111
A.1 Introduction . 111
A.2 Une heuristique de planification flexible . 114

A.2.1 Définitions et énoncé du problème . 116
A.2.2 Un algorithme de planification flexible . 120
A.2.3 Résumé . 121

A.3 Allocation de ressources basée sur les données . 121
A.3.1 Énoncé du problème . 122
A.3.2 Conception du système . 123
A.3.3 Résumé . 124

A.4 Évaluation expérimentale de la désagrégation entre calcul et Espace de rangement . . . 125
A.4.1 Énoncé du problème . 126
A.4.2 Scénarios de déploiement . 126
A.4.3 chemin Compute-to-Data . 127
A.4.4 Résumé . 128

A.5 Stocator: connecteur haute performance pour les magasins d’objets for Object Stores . 130
A.5.1 Motivation . 131
A.5.2 Résumé . 133

A.6 Conclusions et Perspectives . 133

List of figures

1.1 Boxplot showing Resource Utilization from Google Cluster [Reiss et al., 2012; Wilkes,
2011]. 2

2.1 Time-Series Example. 18
2.2 Logical components in an analytics cluster. 23

3.1 Illustrative examples of request scheduling: (top) rigid, (middle) malleable, (bottom)
flexible approaches. 33

3.2 Workload Definition: CDFs of different metrics. 39
3.3 Comparison of turnaround and queue time distributions, and application slowdown dis-

tributions for FIFO and SJF policies. White boxes (right box of every pair) corresponds
to our flexible scheduler, gray boxes correspond to the baseline. B-E stands for batch
elastic and B-R stands for batch rigid applications. 40

3.4 Comparison of queues size for FIFO and SJF between our flexible scheduler and the
baseline. The white boxes (right box of every group) correspond to our flexible algorithm,
gray boxes to the baseline. 40

3.5 Comparison of resource allocation distributions for FIFO and SJF policies, between our
flexible scheduler and the baseline. White boxes (right box of every pair) correspond to
our approach, dashed boxes to the baseline. 41

3.6 Comparison of turnaround and queue time distributions, and application slowdown
distributions for the SJF policy with different definitions of size. White boxes (right
box of every pair) corresponds to our flexible scheduler, gray boxes correspond to the
baseline. B-E stands for batch elastic and B-R stands for batch rigid applications. . . . 42

3.7 Comparison of queues size for the SJF policy with different definitions of size. White
boxes (right box of every pair) corresponds to our flexible scheduler, gray boxes corre-
spond to the baseline. 43

3.8 Comparison of resource allocation distributions for the SJF policy with different defini-
tions of size. White boxes (right box of every pair) corresponds to our flexible scheduler,
gray boxes correspond to the baseline. 44

xiv List of figures

3.9 On the left, comparison of queuing time distributions between scheduling with and
without preemption. White boxes (left box of every pair) correspond to a non-preemptive
system, gray boxes to our preemptive algorithm. On the right, turnaround ratio distri-
butions between scheduling with and without preemption. B-E stands for batch elastic
applications, B-R stands for batch rigid applications and Int is for interactive applications. 45

3.10 Comparison of turnaround time distributions using the FIFO discipline. White boxes
(right box of every pair) correspond to the second generation of Zoe that implements
our algorithm. B-E stands for batch elastic and B-R stands for batch rigid applications. 49

4.1 System overview: shaded boxes represent existing components, white boxes indicate
new components presented in this work. 53

4.2 Boxplot showing error distribution of predicted utilization for a collection of time
series in our academic cluster with different history points and, in case of Gaussian
Process (GP), different kernels. The red triangle is the mean. 56

4.3 Boxplots comparing baseline vs optimistic vs pessimistic approaches over different
metrics, using an oracle in place of the prediction module. The red triangle is the mean. 62

4.4 Heat maps showing the effect of K1 and K2, which compose β , on different metrics
when using Autoregressive Integrated Moving Average (ARIMA) and GP. Bright cells
are better. 63

4.5 Boxplots comparing baseline vs pessimistic dynamic approach over memory slack and
turnaround time distributions using GP-based resource shaping. The red triangle is the
mean. 66

5.1 Compute-to-Data path for different scenarios during read operations. 73
5.2 Compute-to-Data path for different scenarios during write operations. 74
5.3 Resource utilization with the TPC-DS workload in different scenarios. The ticks on the

X axis “W", “D" and “S" stand, respectively for worker, datanode and Swift machines.
The resource utilization reported is a global average across all instances of each layer.
The network utilization between the GC-V and GC scenarios is similar because volumes’
network is opaque to the Operating System and, therefore, counted in the disk utilization. 79

5.4 DFSIO and TPC-DS CDFs for task runtimes in all scenarios. 80

6.1 Hadoop Storage Connectors . 85
6.2 A Spark program that executes a single task that produces a single output object. . . . 87
6.3 A Spark program where three tasks each write an object part. 91
6.4 Benchmarks REST calls comparison . 95
6.5 Object Storage bytes read/written comparison . 99

A.1 Exemples d’ordonnancement des demandes: (haut) rigide, (moyen) malléable, (bas)
flexible approches. 119

List of figures xv

A.2 Vue d’ensemble du système: les boîtes ombrées représentent les composants existants,
les boîtes blanches indiquent les nouvelles composants présentés dans ce travail. 123

A.3 Programme Spark qui exécute une seule tâche produisant un seul objet. 132

List of tables

3.1 Comparison of average turnaround, CPU and Memory allocation for FIFO and SJF
policies, between our flexible and a malleable scheduler. 42

3.2 Definition of size used in the evaluation . 43

5.1 Expected scenarios’ performance ranking. 75
5.2 Workloads’ details. 76
5.3 Analytics applications benchmark results in ascending order. 77

6.1 Breakdown of REST operations by type for the Spark program that creates an output
consisting of a single object. 87

6.2 Possible operations performed by the Spark application showed in fig. 6.3 90
6.3 Workload speedups when using Stocator . 96
6.4 Ratio of REST calls compared to Stocator . 96
6.5 Financial cost for REST calls compared to Stocator for IBM, AWS, Google and Azure

infrastructure . 97

A.1 Ventilation des opérations REST par type pour le programme Spark qui crée un seul objet.132

Nomenclature

Acronyms / Abbreviations

AaaS Analytics-as-a-Service

ARIMA Autoregressive Integrated Moving Average

AWS Amazon Web Services

ETL Extract, Transform and Load

FCS Feedback Control Scheduling

FIFO First-In-First-Out

GC Garbage Collector

GP Gaussian Process

HDFS Hadoop Distributed File System

HMRCC Hadoop Map Reduce Client Core

HPC High-Performance Computing

JVM Java Virtual Machine

ML Machine Learning

MSE Mean Squared Error

OOM Out Of Memory

OSD Object Storage Daemon

OS Operating System

QOS Quality of Service

RPC Remote Procedure Call

xx Nomenclature

SJF Shortest Job First

SLA Service Level Agreement

SLO Service Level Objective

VM Virtual Machine

Chapter 1

Introduction

The last decade has witnessed the proliferation of numerous distributed frameworks to address a variety
of large-scale data analytics and processing tasks. First, MapReduce [Dean and Ghemawat, 2008] has
been introduced to facilitate the processing of bulk data. Subsequently, more flexible tools, such as
Dryad [Isard et al., 2007], Spark [Zaharia et al., 2012], Flink1 and Naiad [Murray et al., 2013], to name a
few, have been conceived to address the limitations and rigidity of the MapReduce programming model.
Similarly, specialized libraries such as MLLib [Meng et al., 2016] and systems like TensorFlow [Abadi
et al., 2016] have seen the light to cope with large-scale machine learning problems. In addition to a
fast growing ecosystem, individual frameworks are driven by a fast-pace development model, with new
releases every few months, introducing substantial performance improvements. Since each framework
addresses specific needs, a wide choice of tools and combinations thereof are available to users that now
can address the various stages of their data analytics projects.

This context has driven a lot of research [Delimitrou and Kozyrakis, 2013, 2014; Delimitrou et al.,
2015; Ghit and Epema, 2016; Hindman et al., 2011; Isard et al., 2009; Kuzmanovska et al., 2016;
Ousterhout et al., 2013; Schwarzkopf et al., 2013; Vavilapalli et al., 2013; Verma et al., 2015] in the area
of resource allocation and scheduling, from both the academia and the industry. These efforts materialize
in cluster management systems that offer simple mechanisms for users to request the deployment of
the framework they need. The general underlying idea is that of sharing cluster resources among a
heterogeneous set of frameworks, as opposed to static partitioning, which has been dismissed for it
entails low resource allocation [Hindman et al., 2011; Schwarzkopf et al., 2013; Verma et al., 2015].
Existing systems divide the resources at different levels. Some of them, e.g. Mesos and YARN, target
low-level orchestration of distributed computing frameworks: to this aim, they require non-trivial
modifications of such frameworks to operate correctly. Others, e.g. Kubernetes2 and Docker Swarm3,
focus on provisioning and deployment of containers, and are thus oblivious to the characteristics of the
frameworks running in such containers.

1https://flink.apache.org/
2http://kubernetes.io/
3https://docs.docker.com/swarm/

2 Introduction

CPU Mem
0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 (%
)

Google Resource Utilization
Non-Production Production

Fig. 1.1 Boxplot showing Resource Utilization from Google Cluster [Reiss et al., 2012; Wilkes, 2011].

Despite such efforts, data-center resources go often under utilized, as shown in recent traces from
large-scale production deployments [Reiss et al., 2012; Wilkes, 2011]: Figure 1.1 illustrates resource
utilization in a operational cluster at Google, for a mixed workload of production services and batch
applications; in most cases (∼ 80%) resource utilization is less than 40% or 80% of the allocated
resources depending on different application types4.

Current approaches that address efficiency requirements fall in two broad categories. The first
category involves methodologies that aim at steering tenants’ behavior through the design of incentive
mechanisms; tenants are endowed with the task of optimizing their cost to operate their applications,
whereas providers operate on prices to steer the allocation of idle resources. Such approaches are largely
adopted by public cloud providers [Babaioff et al., 2017]. The second category concerns approaches
that operate at the system level, and propose mechanisms that allocate resources based on tenants’
reservations56 [Ghodsi et al., 2011; Hindman et al., 2011; Rasley et al., 2016; Schwarzkopf et al., 2013;
Verma et al., 2015].

The ultimate goal of the above line of research is to render the concept of resource reservation
obsolete, and either let tenants reason in terms of value and cost [Babaioff et al., 2017], or let the system
determine how to avoid wasting precious and costly resources, especially when the latter are scarce and
entail application queuing in the scheduler.

A major scheduling constraint that research in the area of resource allocation and scheduling has to
face is about data-locality, which refers to the ability to move the computation close to where the actual

4In the analysis we saw that some applications were using more resources than requested and this was confirmed by Google
staff. Their system allows the user to go above the reservation when resources are available. Since not all the systems can do
this (e.g.; Docker), we decided to remove that portion of the data.

5http://www.docker.com/
6https://aws.amazon.com/emr/

3

data resides, instead of moving large data to computation. This minimizes network congestion and
increases the overall throughput of the system. Whereas before it was possible to put the task anywhere,
now it needs to go on one of the data replicas.

However nowadays thanks to virtualization, compute and storage clusters are more flexible, they can
be easily provisioned in different sizes, and destroyed when not needed7. Increasingly, such storage and
processing systems are exposed to users as services, deployed on either public or private cloud computing
environments, rather than on bare-metal machines in private clusters. Indeed, many companies offer
Analytics-as-a-Service (AaaS) clusters to run a variety of applications: Amazon Web Services (AWS)
with Elastic MapReduce8, DataBricks Cloud9, Cloudera Cloud10 and Google Cloud Hadoop11 are
noteworthy examples.

In cloud computing environments, the architecture of analytics clusters is the result of the composi-
tion of several services, consisting of three (logically separated) layers: the Compute layer refers to all
cluster nodes that run the data processing application (e.g., a Spark application); the Data layer refers to
any combination of storage services (e.g., HDFS12 or Swift13); and the Storage layer that physically
stores the data, including ephemeral disks, object and elastic block stores.

In addition, it is likely for the Data or Storage layers and the Compute layer to be on different racks
or even data-centers: as a consequence, the traditional wisdom of data locality may be challenged. For
example, consider Amazon S314: data resides on a set of machines dedicated just to storage, breaking
data locality completely.

Currently, users of AaaS have abundant information about pricing and about the durability of
resources. It is possible to reason about cost-based service dimensioning, and to select appropriate
storage services depending on data availability and durability objectives. As a consequence, it is
today possible to build data ingestion, storage and processing pipelines, by composing – in various
combinations – the three layers defined above.

The questions that we address in this thesis is: what happens to the performance, and to the
completion time in particular, of analytics applications with different type of Compute and Data layer
configurations?

During our quest to answer this question, we discover the existence of some impedance mismatch
between large-scale frameworks and a data storage solution, called cloud object storage, that is currently
widely used among providers; Amazon S3, Azure Blob storage15, and IBM Cloud Object Storage16, are
highly scalable distributed cloud storage systems offering high capacity and cost effective storage. Large-

7https://aws.amazon.com/application-hosting/benefits/
8https://aws.amazon.com/emr/
9Solution hosted on AWS: https://databricks.com/product/databricks-cloud

10Solution hosted on AWS: http://www.cloudera.com/content/cloudera/en/solutions/partner/Amazon-Web-Services.html
11https://cloud.google.com/hadoop/
12https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
13http://docs.openstack.org/developer/swift/development_saio.html
14https://aws.amazon.com/s3/
15https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
16https://www.ibm.com/cloud-computing/products/storage/object-storage/cloud/

4 Introduction

scale computing frameworks were originally designed to work on data stored in Hadoop Distributed File
System (HDFS)17 where the storage and processing are co-located in the same server cluster. Moving
data from object storage to HDFS in order to process it and then moving the results back to object
storage for long term storage is inefficient.

Until now Hadoop connectors to object storage, e.g., S3a18 and the Hadoop Swift Connector19, have
been based on file semantics, a natural assumption given that their model of operation is based on the
way that Hadoop interacts with its original storage system, HDFS. However, treating object storage like
a file system constitutes an impedance mismatch, which can lead to poor performance and incorrect
execution. In particular, operations that are atomic for files may not be atomic for objects and operations
that are inexpensive for files may not be inexpensive for objects, and vice versa. For example, to rename
a directory in a file system requires a single atomic operation, whereas in object storage it requires copy
and delete operations for each of the objects in the tree under the “virtual directory”20.

We are not the first to recognize the poor performance of the object storage connectors. Others have
tried to improve performance, by sacrificing speculative execution, and then writing objects directly to
their final names, e.g., the DirectOutputCommitter21 for Amazon S3, or by renaming Hadoop output
objects to their final names when tasks complete (task commit) instead of waiting until the entire job
completes (job commit)22. However, due to the impedance mismatch these attempts led to subtle failures.

Current connectors can also lead to failures and incorrect execution because the list operation on
object storage containers/buckets is eventually consistent. EMRFS23 from Amazon and S3mper24 from
Netflix overcome eventual consistency by storing file metadata in DynamoDB25, an additional strongly
consistent storage system separate from the object store. A similar feature called S3Guard26 is being
developed by the Hadoop open source community for the S3a connector. Solutions like these, which
require multiple storage systems, are complex and can introduce issues of consistency between the
stores. They also add cost since users must pay for the additional strongly consistent storage.

The goal of this dissertation is to improve systems responsiveness in private and public cloud
providers, applying novel scheduling techniques and leveraging existing machine learning approaches to
steer the behavior of scheduling decisions. Using such approach improves resource utilization by ∼50%
and average turnaround time, which is the time that an application reside inside the system, by more
than two orders of magnitude.

17https://hortonworks.com/apache/hdfs/
18https://aws.amazon.com/sdk-for-java/
19https://github.com/openstack/sahara-extra/tree/master/hadoop-swiftfs
20Object stores emulate directories through hierarchical naming.
21https://github.com/apache/spark/pull/12229
22https://issues.apache.org/jira/browse/MAPREDUCE-6336
23https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
24http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html
25https://aws.amazon.com/dynamodb/
26http://www.slideshare.net/hortonworks/s3guard-whats-in-your-consistency-model

1.1 Contributions 5

1.1 Contributions

We start by giving, in Chapter 2 some background and related work required to understand the technical
details of this thesis. We briefly introduce the notion of scheduling and how it evolved in the last
70 years, then we focus our attention toward compute clusters, the different types of existing cluster
scheduler architectures, related work for scheduling and resource allocation of distributed applications
and we highlight a common problem, which revolves around the way that users are able to express
their resources constraints. To address this issue, we leverage methodologies developed in the field of
time-series analysis and Machine Learning (ML). We define a time-series and its characteristics in the
context of this thesis. Then we focus on time-series forecasting and its methodology. In particular we
introduce two techniques that are widely adopted to forecast future values. Finally, we give an overview
of the disaggregation between compute and storage, highlighting the different analytic components and
focusing one storage technology that is currently wide spread: cloud object for storage.

The endeavor of Chapter 3 is to fill the gap that exists in current approaches, and raise the level of
abstraction at which scheduling works. We introduce a general and flexible definition of applications,
how they are composed, and how to execute them. For example, a user application addressing the training
of a statistical model involves: a user-defined program implementing a learning algorithm, a framework
(e.g., Spark) to execute such a program together with information about its resource requirements, the
location for input and output data and possibly parameters exposed as application arguments. Users
should be able to express, in a simple way, how such an application must be packaged and executed,
submit it, and expect results as soon as possible. We show that scheduling such applications represents
a departure from what has been studied in the scheduling literature, and we present the design of a
new algorithm to address the problem. A key insight of our approach is to exploit the properties of the
frameworks used by an application, and distinguish their components according to classes, core and
elastic: the first being required for an application to produce work, the latter contributing to reduced
execution times.

In Chapter 4 we present a system that dynamically allocates resources according to historical
observations of its utilization. More specifically, we leverage a machine learning algorithm in order
to adjust allocation to the expected utilization. We present our design of a data-driven scheduling
mechanism that improves cluster utilization, thus decreasing the average turnaround time, while pre-
venting application failures due to resource contention. Our approach monitors resource utilization
and relies on sophisticated online resource demand forecasting to modulate allocated resources such
as they approximate utilization patterns well. Our experiments, that we conduct on a system simulator
as well as a prototype implementation using real-life data-center traces, indicate substantial gains over
existing alternatives: our approach contributes to more efficient and responsive clusters, while carefully
controlling the number of application failures due to the approximate nature of our control approach.

In Chapter 5 we take an experimental approach, and propose a measurement methodology and
campaign, whose objective is to analyze the performance corresponding to an intuitive notion of distance
between where computation happens and data reside. In doing so, we define an extensive set of

6 Introduction

application workloads that challenge the systems under study in different ways. Ultimately, our goal
is to overcome the limitations of prior works that only provide a boolean vision of data locality: our
results indicate that – in general – the intuitive distance metric we present in this thesis is a good proxy
to reason about performance ranking. However, impedance mismatch between different services and
application workloads must be taken into account to formulate plausible explanations for outliers in
terms of performance.

In Chapter 6, we introduce Stocator, whose novel algorithms achieve both high performance and
fault tolerance by taking advantage of object storage semantics. This greatly decreases the number
of operations on object storage as well as enabling a much simpler approach to dealing with the
eventually consistent semantics typical of object storage. We have implemented our connector for both
the OpenStack Swift API27 and the Amazon S3 API, and have shared it in open source28. We have
compared its performance with the S3a and Hadoop Swift connectors over a range of workloads and
found that it executes far less operations on the object store, in some cases as little as one thirtieth of the
operations. Since the price for an object storage service typically includes charges based on the number
of operations executed, this reduction in the number of operations lowers costs in addition to reducing
the load on client software. It also reduces costs and load for the object storage provider since it can
serve more clients with the same amount of processing power. Stocator also substantially increases
performance for Spark workloads running over object storage, especially for write intensive workloads,
where it is as much as 18 times faster. Stocator is in production in the IBM Cloud and has enabled the
SETI project to perform computationally intensive Spark workloads on multi-terabyte binary signal
files29.

A summary of technical contributions for this dissertation can be found in Chapter 7.

27https://developer.openstack.org/api-ref/object-storage/
28https://github.com/SparkTC/stocator
29https://medium.com/ibm-watson-data-lab/simulating-e-t-e34f4fa7a4f0

Chapter 2

Background and Related Work

In this Chapter we give the necessary background information for Chapters 3 to 6. It is divided in three
sections: scheduling, time-series analysis and compute-storage disaggregation.

Our objective is to improve the efficiency and performance of distributed applications in compute
cluster. This is partially achieved by improving the allocation of scarce resources to increase both the
responsiveness and utilization of the system which is imperative for both the providers and their users. In
section 2.1 we briefly introduce what scheduling is and how it evolved in the last 70-year, then we focus
our attention toward compute clusters, the different types of existing cluster scheduler architectures,
related work and we highlight (in section 2.1.2) a common issue, which revolves around the way that
users are able to express their resources constraints.

To tackle such issue, we leverage methodologies developed in the field of time-series analysis and
Machine Learning (ML). In section 2.2 we provide the definition of time-series and its characteristics
in the context of this thesis. Then we focus on time-series forecasting and its methodology. In
particular we briefly introduce two techniques that are widely adopted to forecast future values: (i)
Autoregressive Integrated Moving Average (ARIMA) (section 2.2.1) and (ii) Gaussian Process (GP)
regression (section 2.2.2).

To further improve the efficiency and responsiveness of distributed applications we study their
performance in current cloud providers architectures. Thanks to virtualization, compute and storage
clusters are more flexible, they can be easily provisioned in different sizes, and destroyed when not
needed. We are seeing a trend in which (i) providers tend to disaggregate storage and compute cluster
and (ii) new technologies (e.g., IBM Storlets [Rabinovici-Cohen et al., 2014]) are being developed to
ship part of the code toward the storage, reducing the data transmitted to the compute [Moatti et al.,
2017]. This disaggregation leads to the loss of data-locality, which is the notion of moving computation
closer to data due to the high cost of moving data to computation. In section 2.3 we give an overview of
the disaggregation between compute and storage, highlighting the different analytic components and
focusing one storage technology that is currently wide spread: cloud object for storage (section 2.3.2).
Finally we provide some related work for data locality and performances of cloud object stores.

8 Background and Related Work

2.1 Scheduling

Scheduling is concerned with allocation of resources to activities with the objective of optimizing one
or more performance measures. Depending on the situation, resources and activities can take on many
different forms. Resources may be cashiers at a supermarket, machines in an assembly plant, CPU,
memory and I/O devices in a computer system, runways at an airport, mechanics in an automobile repair
shop, etc. Activities may be various customers, operations in a manufacturing process, execution of a
computer program, landings and take-offs at an airport, car repairs in an automobile repair shop, and so
on. There are also many different performance measures to optimize through a scheduling algorithm.
One objective may be the minimization of the makespan, also known as turnaround, which is the total
time that elapses from the beginning to the end of the activity, while another objective may be the
minimization of the number of late jobs.

The study of scheduling starts in 1950s; researchers in industrial engineering, operations research,
and management faced the problem of managing various activities occurring in a workshop. Good
scheduling algorithms are able to lower the production cost in a manufacturing process, enabling
companies to stay competitive. At the end of 1960s, computer scientists encountered scheduling
problems in the development of operating systems; in those days, computational resources (such as
CPU, memory and I/O devices) were scarce. Efficient utilization of such scarce resources can reduce the
cost of executing computer programs leading to a economic reason for the study of scheduling.

In the 1950s, the scheduling problems were relatively simple; a number of efficient algorithms have
been developed to provide optimal solutions. However, as time went by, the problems became more
sophisticated, and researchers were unable to develop efficient algorithms for them. With the advent of
complexity theory, researchers started to realize that many of these problems may be inherently difficult
to solve. In fact, by the 1970s, researchers found that many scheduling problems are NP-hard in their
complexity. In the 1980s, several different directions were pursued both in academia and industry; one
was the development and analysis of approximation algorithms while another was the increasing focus
on stochastic scheduling problems. After the 1980s, research in scheduling theory took off quickly.

2.1.1 Computer Cluster Scheduling

A computer cluster is a set of loosely or tightly connected computers that work together so that they
can be viewed as a single system. Clusters are usually deployed to improve performance and availability
over that of a single computer and emerged as a result of convergence of a number of computing
trends including the availability of low-cost microprocessors, high-speed networks, and software for
high-performance distributed computing.

Large-scale clusters are expensive, thus scheduling is an important topic to improve utilization and
efficiency, which are the key indicators for good resource management. Cluster schedulers have evolved
significantly in the last few years; their architecture has moved from monolithic designs to much more
flexible, disaggregated and distributed designs. Next we highlight the most common architectures used
to schedule work inside such clusters.

2.1 Scheduling 9

Monolithic schedulers Many cluster schedulers - such as most High-Performance Computing (HPC)
schedulers, various early Hadoop [Shvachko et al., 2010] schedulers, Borg [Verma et al., 2015] and the
Kubernetes [Burns et al., 2016] scheduler – are monolithic. A single scheduler process runs on one
machine and assigns tasks to machines. The entire workload is handled by the same scheduler, and all
tasks run through the same scheduling logic. This simple approach led to increasingly sophisticated
schedulers being developed. For example, the Paragon [Delimitrou and Kozyrakis, 2013] and Quasar
[Delimitrou and Kozyrakis, 2014] schedulers, which use a machine learning approach to avoid negative
interference between jobs competing for resources.

However nowadays, most clusters run different types of applications (as opposed to just Hadoop
MapReduce [Dean and Ghemawat, 2008] jobs in the early days). Thus, maintaining a single scheduler
implementation that handles heterogeneous workloads can be tricky, for several reasons:

1. A scheduler might want to treat long-running service jobs and batch analytics jobs differently.

2. Different applications have different needs; thus supporting them all is not an easy tasks. By
adding features to the scheduler, we also increasing the complexity of its logic and implementation.

3. The order in which the scheduler processes tasks becomes an issue: queuing effects (e.g., head-of-
line blocking) and backlog can become an issue unless the scheduler is carefully designed.

Two-Leveling scheduling Two-level scheduling architectures address some of the previous problems
by separating the concerns of resource allocation, that is the assignment of available resources, and
task placement, that is where to place the task based on the requirements specified in the task definition.
This allows the task placement logic to be tailored towards specific applications, but also maintains the
ability to share the cluster between them. The Mesos [Hindman et al., 2011] cluster manager pioneered
this approach, and YARN [Vavilapalli et al., 2013] supports a limited version of it. In Mesos, resources
are directly offered to application-level schedulers, while YARN allows the application-level schedulers
to request resources instead. The general idea is: workload-specific schedulers interact with a resource
manager that creates dynamic partitions of the cluster resources for each workload. This is a very flexible
approach that allows custom, workload-specific scheduling policies.

Yet, the separation of concerns in two-level architectures has a drawback: the application-level
schedulers lose omniscience, i.e., they cannot see all the possible placement options any more. Instead,
they merely see those options that correspond to resources offered (Mesos) or allocated (YARN) by
the resource manager. This has one big disadvantage: application-specific schedulers care about
many different aspects of the underlying resources, but their only means of choosing resources is the
offer/request interface with the resource manager; this interface can easily become quite complex.

Shared-State scheduling Shared-state architectures move to a semi-distributed model, in which
several replicas of cluster state are independently updated by application-level schedulers. After the
change is applied locally, the scheduler issues an optimistically concurrent transaction to update the

10 Background and Related Work

shared cluster state. In some cases, this transaction may fail: another scheduler may have made a
conflicting change in the meantime. The base principle of these schedulers is that these fails occur rarely,
and when they do the scheduling decision is rolled-back and repeated.

The most prominent examples of this type of scheduling are Omega [Schwarzkopf et al., 2013], and
Apollo [Boutin et al., 2014]. All of these materialize the shared cluster state in a single location: the cell
state in Omega and the resource monitor in Apollo. Apollo differs from Omega as its shared-state is
read-only, and the scheduling transactions are submitted directly to the cluster machines. The machines
themselves check for conflicts and accept or reject the changes. This allows Apollo to make progress
even if the shared-state is temporarily unavailable.

Shared-state architectures have some drawbacks too: unlike a centralized scheduler, they must work
with stale information, and they may experience degraded scheduler performance under high contention
[Schwarzkopf et al., 2013].

Fully-Distributed scheduling Fully-distributed architectures take the disaggregation even further:
there is no coordination between schedulers, and they use many independent schedulers to service the
incoming workload. Each of these schedulers works only with its local view of the cluster which in most
cases is partial and out-of-date. Jobs can typically be submitted to any scheduler, and each scheduler
may place tasks anywhere in the cluster. Unlike with two-level schedulers, there are no partitions that
each scheduler is responsible for.

Sparrow [Ousterhout et al., 2013] was one of the first distributed scheduler, although the underlying
concept first appeared in 1996. The key foundation of Sparrow is based on an hypothesis that the tasks
we run on clusters are becoming ever shorter in duration, supported by an argument that fine-grained
tasks have many benefits. Consequently, the authors assume that tasks are becoming more numerous,
meaning that a higher decision throughput must be supported by the scheduler. Since a single scheduler
may not be able to keep up with this throughput (assumed to be a million tasks per second), Sparrow
spreads the load across many schedulers.

Some of the drawbacks include: (i) they cannot support or afford complex or application-specific
scheduling policies because of their rapid decision design which is based on minimal information and
(ii) have difficulty enforcing global invariants since there is no central control.

Hybrid scheduling Hybrid architectures are a recent design that seeks to address the drawbacks of
fully distributed architectures by combining them with monolithic or shared-state designs. For example,
in Tarcil [Delimitrou et al., 2015] and Hawk [Delgado et al., 2015], there are two scheduling paths: a
distributed one for part of the workload (e.g., very short tasks, or low-priority batch workloads), and a
centralized one for the rest. The behavior of each constituent part of a hybrid scheduler is identical to
the part’s architecture described above. However, to the best of our knowledge, no hybrid scheduler
have been deployed in production.

2.1 Scheduling 11

2.1.2 The problem of a reservation centric resource allocation

Users gain access to computing resources by specifying the amount required to run their application, in
the form of a reservation request. Upon receiving a request, the cluster scheduler decides which appli-
cation to serve based on the scheduling policy the provider implements (e.g.; First-In-First-Out (FIFO),
Shortest Job First (SJF)). Cluster schedulers operate according to several variants of objective functions,
the most common being the (i) average turnaround time (also called make span or completion time)
and (ii) cluster utilization [Leung, 2004; Schwarzkopf et al., 2013]. The first metric accounts for the
average time requests spend in the system (queuing and execution times). The second metric considers
the utilization of the available resources. Optimizing for such objectives translates into high system
responsiveness, which is desirable from both tenant and provider perspective.

Cluster schedulers use a resource management mechanism that is in charge of resource provisioning
and management. Given a resource request, the resource manager determines its admission in the
cluster based on its reservation information.1 An admitted request triggers a resource allocation
procedure, which eventually [Schwarzkopf et al., 2013] concludes with reserved resources being
exclusively allocated to the request.

In most system implementations, the concept of reservation and allocation coincide, although neither
is representative of the true resource utilization a request might induce on the system. In fact, resource
utilization is generally not constant throughout a request lifetime, and fluctuates according to application
behavior [Yan et al., 2016].

The main consequence for current cloud environments is that reservation requests are engineered
to cope with peak resource demands of an application. This is a key factor that induces poor system
utilization, and ultimately, efficiency. This condition is exacerbated by coarse-grained reservation
specifications, which is a common practice in public cloud providers: instance flavors exhibit discrete
gaps in terms of resource units. In fact, picking the right configuration for cloud applications (and in
particular for the “big data” applications) is a daunting task [Alipourfard et al., 2017], which requires
sophisticated optimization mechanisms going beyond human tuning abilities.

Thus, mechanisms to reduce resource slack, which is defined as the difference between resource
allocation and utilization, are truly needed, for they can prevent clusters from denying admission for
new requests which would queue up, while spare capacity goes unused.

2.1.3 Related Work on Scheduling for Distributed Applications

While we cannot do justice to the richness of the scheduling literature, in this section we organize related
work in two groups. The first group covers works that studied different scheduling approaches with
a heterogeneous set of applications without dealing with the problem of reservation centric resource
allocation; while the second group studied different ways to deal with it and focus on ways to dynamically
adjust resource allocation.

1In our prose, we neglect several important technical details that are however irrelevant to our point, such as quota
management, security aspects, and concurrency control, to name a few.

12 Background and Related Work

Scheduling Heterogeneous Set of Applications

Many systems have been designed to cope with the problem of sharing cluster resources across a
heterogeneous set of applications, some of which can be tweaked to achieve the goals we set in this
thesis. For example, Yarn [Vavilapalli et al., 2013] and Mesos [Hindman et al., 2011] have been
among the first to enable multiple frameworks to coexist in the same cluster: usage of these “two-level”
schedulers yields a big improvement as compared with monolithic approaches to resource scheduling.
Originally designed for analytic frameworks, such systems deal with the scheduling of low-level
processing tasks.

Apache Mesos is a two-level scheduler that splits the resource management and placement functions
between a central resource manager (that makes resource offers to application frameworks) and multiple
frameworks such as Hadoop and Spark using an offer-based mechanism. Each framework has then an
individual scheduler that handles its assigned resources.

Yarn, in contrast with Mesos, takes a request-based approach and considers application specific
constraints to allocate resources from a fixed set of machines to each application.

Recently, more general approaches address the problem of cluster-wide resource management:
Omega [Schwarzkopf et al., 2013] reason at the “container” level, and are optimized to achieve efficient
placement and allocation of cluster resources, when absorbing a very heterogeneous workload. This latter
includes a majority of long-running services, which power Web-scale, latency-sensitive applications.

Omega, follows a shared-state approach, where multiple concurrent schedulers can view the whole
cluster state, with conflicts being resolved through a transactional mechanism. Omega schedulers use
optimistic concurrency control to manipulate a shared representation of desired and observed cell state
stored in a central persistent store. Kubernetes exploits Docker containers to map applications onto
multiple host nodes and it is the open source version of Omega and Borg. Contrary to Mesos, Borg
centralizes the resource management using a request-based mechanism, using priorities and admission
quotas for scaling purposes. It offers a “one-size-fits-all” Remote Procedure Call (RPC) interface, state
machine semantics, and a scheduler policy. Similarly to our flexible system, they work in coarse-grained
mode but, they do not schedule applications but rather deployments. For this reason, only when all the
resources are allocated, the user is able to launch her application.

Cluster management systems like HCloud [Delimitrou and Kozyrakis, 2016] or Quasar [Delimitrou
and Kozyrakis, 2014] combine the ideas of previous works to provide a complete control over the cluster.
Hcloud [Delimitrou and Kozyrakis, 2016] is a hybrid provisioning system that uses both reserved and
on-demand resources. HCloud determines which jobs should be mapped to reserved versus on-demand
resources based on overall load, and resource unpredictability. It also determines the optimal instance
size an application needs to satisfy its constraints.

Quasar’s [Delimitrou and Kozyrakis, 2014] main goal is to increase resource utilization. First,
opposite to resource reservations, users express performance constraints for each workload, letting
Quasar determine the right amount of resources to meet these constraints at any point. Then, it uses
classification techniques to quickly determine the impact of the amount of resources on performance

2.1 Scheduling 13

for each workload and dataset. Finally, it uses this last result to jointly perform resource allocation and
assignment.

Tarcil [Delimitrou et al., 2015] is a distributed scheduler that leverages information on the type
of resources applications. It uses an analytically derived sampling framework that adjusts the sample
size based on load, and provides statistical guarantees on the quality of allocated resources. It also
implements admission control when sampling is unlikely to find suitable resources.

To identify the specific resources that are appropriate for incoming tasks, Paragon [Delimitrou and
Kozyrakis, 2013] uses classification to determine the impact of platform heterogeneity and workload
interference on an unknown, incoming workload. It assumes that the cluster manager has full control
over all resources, which is often not the case in public clouds.

Condor [Tannenbaum et al., 2001] divides the nodes into two groups: the Submit nodes that
are responsible for managing a queue of jobs and for all the aspects of the job’s life cycle; and the
Execution nodes that are responsible for the job execution and have their own policies for scheduling.
A central manager serves as global rendez-vous point and it has global scheduling and matchmaking
responsibilities.

Additionally, container orchestration frameworks, such as Docker Swarm2, also provide efficient
and scalable solutions to the problem of scheduling (that is, placing and provisioning) containers in a
cluster.

Our work (presented in chapter 3) relies on many of the above systems, and can use them as a
back-end to support scheduling of high-level applications rather than provisioning low-level containers.
Existing auxiliary deployment tools such as Aurora3 and Docker Compose4, do not address scheduling
problems.

Additionally, many works address the problem at a lower level and focus on task scheduling. Such
schedulers are designed to support a specific “data-flow” programming model, but many of their design
choices can also be used at a higher level. For example, Tyrex [Ghit and Epema, 2016] and HFSP
[Dell’Amico et al., 2014; Pastorelli et al., 2013] are a sample of size-based schedulers, which is a family
of policies known to drastically improve turnaround times, as we also have verified with our experiments.

In particular, Tyrex [Ghit and Epema, 2016] is a size-based resource allocation for MapReduce
frameworks. Tyrex partitions the resources of a MapReduce framework, allowing any job running in any
partition to read data stored on any machine, imposes runtime limits in the partitions and successively
executes parts of jobs in a work-conserving way in these partitions until they can run to completion.

Similarly, Quincy [Isard et al., 2009] and DRF [Ghodsi et al., 2011] study max-min fair, task-level
resource allocation, specifically working on multi-dimensional resources. Although our system currently
consider a one-dimensional packing problem, due to the characteristics of the back-end we use, which
does not yet support CPU-level partitioning, ideas presented in [Ghodsi et al., 2011] can be extended to
our context, considering alternative back-ends supporting multi-resource partitioning.

2https://docs.docker.com/swarm/
3http://aurora.apache.org/
4https://docs.docker.com/compose/

14 Background and Related Work

Recently, schedulers supporting complex directed acyclic graphs representing low-level, parallel
computations have also appeared: Graphene [Grandl et al., 2016], for example, addresses the problem
of complex dependencies and heterogeneous demands among the various stages of the computational
graph.

The work in [Rasley et al., 2016] indicate substantial improvements in terms of resource utilization
(and not only allocation) thanks to worker queues, that independently schedule tasks. Bistro [Goder
et al., 2015] employs a novel hierarchical model of data and computational resources, which enable
efficient scheduling of data-parallel workloads. Firmament [Gog et al., 2016] is a centralized scheduler
that has been shown to scale to over ten thousand machines at sub-second task placement latency, using
a min-cost max-flow optimization approach.

Issues related to scheduling scalability, due to the sheer number of low-level tasks that are typically
required by analytic jobs, have been addressed through a distributed design, such as in Sparrow [Ouster-
hout et al., 2013] and in Condor [Tannenbaum et al., 2001]. Although working at the application-level
as we do in this thesis imposes a low toll on the scheduler, distributed designs are interesting also from
the failure tolerance point of view.

Dynamic resource allocation

Dynamic resource allocation has been approached in many different ways in the literature [Anantha-
narayanan et al., 2012; Babaioff et al., 2017; Curino et al., 2014; Delgado et al., 2016, 2015; Ghodsi
et al., 2011; Grandl et al., 2014; Hassan and Zwaenepoel, 2017; Kuzmanovska et al., 2014, 2016; Lo
et al., 2015; Padala et al., 2007; Rasley et al., 2016; Shahrad et al., 2017; Verma et al., 2015; Yang et al.,
2017].

The authors in [Kuzmanovska et al., 2014, 2016] present a solution called KOALA-F that is based
on a feedback control loop which requires every framework running inside the cluster to periodically
send information to the scheduler. Every framework must be enhanced so that it can talk directly to
KOALA-F, in order to transmit information about their metrics in form of color: red, yellow and green.
KOALA-F will allocate or deallocate resources to that specific framework based on that color. Red
means that the framework is struggling due to lack of resources, yellow is the good state, while green
means that there are more resources than needed. In contrast, our work (presented in chapter 4) does not
require such instrumentation; we are completely agnostic to the application that is running and we use
general metrics in order to dynamically reallocate the resources of the running applications. In addition,
we operate on the application rather than on the framework level.

The authors in [Curino et al., 2014] introduce a type of scheduler that is reservation-based. They
propose a reservation definition language (RDL) that allows users to declaratively reserve access to
cluster resources. They formalize the planning of current and future cluster resources as a Mixed-Integer
Linear Programming (MILP) problem and they integrate their work in YARN [Vavilapalli et al., 2013]. In
our dynamic scheduler, we avoid delegating this task to users by asking them to specify such information;
most of the time the users have no knowledge of how their applications will behave.

2.1 Scheduling 15

The authors in [Padala et al., 2007] develop a feedback control loop for Virtual Machines (VMs),
using a simple regression model to forecast the future allocation. They show that it is possible to reduce
the gap in the CPU resource slack. However, unlike our work (see chapter 4), they do not address
Memory resources and the consequences that under-provisioning has on applications, as we do in
dynamic scheduler.

The authors in [Boutin et al., 2014] adopt a distributed scheduling architecture, whereby each
scheduler aims at minimizing task completion time by careful placement strategies that use estimates of
task runtime and their resource utilization. Contrary to our work, they use over-provisioning of resources
and they tackle conflicts in an optimistic-manner. Our approach cooperates with an existing scheduler,
instead of replacing it, and does not use task runtime to adjust cluster resources allocated to applications.

Some other works [Babaioff et al., 2017; Shahrad et al., 2017] propose to address the problem with
economics principles. In particular, in [Shahrad et al., 2017] the authors build a pricing model that
enables infrastructure providers to incentivize their tenants to use graceful degradation, a self-adaptation
technique originally designed for constructing robust services that survive resource shortages. The
authors in [Babaioff et al., 2017], present a framework for scheduling and pricing cloud resources, aimed
at increasing the efficiency of cloud resources usage by allocating resources according to economic
principles. However, they achieve that by allocating more capacity than what is physically available, i.e.,
over-provisioning, which is a solution prone to uncontrolled failures5 when utilization exceeds available
resources.

Finally, works such as [Ananthanarayanan et al., 2012; Delgado et al., 2016, 2015; Ghodsi et al.,
2011; Grandl et al., 2014; Karanasos et al., 2015; Lo et al., 2015; Mao et al., 2016; Rasley et al., 2016],
focus either on resource placement or on meeting Service Level Objective (SLO) requirements. In the
first case they relate to a packing problem and try to optimize it; Karanasos et al Karanasos et al. [2015]
suggest to dynamically re-balance the load across hosts if the packing performed at a certain time leads
to uneven loaded hosts. In the second case they leverage the elasticity of some frameworks and they
increase resources for applications that are falling behind on their SLO. Our work is orthogonal to such
methods and can leverage them to improve the system performance.

The authors in Zhang et al. [2016] propose task scheduling and data placement techniques that rely
on historical resource utilization. Specifically, they process the history of CPU utilizations using the Fast
Fourier Transform (FFT). Leveraging the k-Means algorithm, they cluster patterns in three categories:
periodic, constant and unpredictable. They exploit the patterns of periodic and constant categories to
improve the quality of task scheduling.

Albeit all these works are valid and propose their own vision of the problem, they share one element:
although some of them address a multi-dimensional packing problem for provisioning resources to
applications, when it comes to reclaiming resources granted to applications they mostly focus on “time

5The Operating System (OS) kills processes due to Out Of Memory (OOM) following its own algorithm.

16 Background and Related Work

sharable” resources, like the CPU, rather than “finite” resources like Memory.6 As a consequence, such
methods are limited to improve system efficiency from the perspective of CPU utilization.

An example of prior work that modulates “finite” resources is Borg [Verma et al., 2015]. Borg
features a resource reclamation system that seizes unused resources and offers them to other applications.
The authors study the impact of wrong memory reallocation on running tasks, which causes resource
contention: the OS enters a special state to kill processes that are OOM. The authors present different
levels of “rigidity” for their reclamation system (baseline, medium and aggressive) and show both the
benefit and the number of OOMs events for each of them. They conclude by accepting the trade-off
obtained by the medium setting. Instead, we present a dynamic allocation system that relies on online
resource forecasting, with accurate quantification of uncertainty. In addition, we seek to gain control
over the OS and minimize application failures events while maximizing the resource utilization.

6On the one hand, a resource is considered “time sharable” when the OS is able to use time sharing for scheduling it, and
thus it does not impose limits on its availability. On the other hand, “finite” resources are those that cannot be sliced in time
and thus cannot be effectively shared by multiple processes.

2.2 Time-Series Analysis 17

2.2 Time-Series Analysis

In this section we introduce time-series analysis and some methodologies that can be used in order to
forecast values. These methodologies are used in chapter 4 to improve both cluster resource utilization
and system responsiveness.

A time-series (fig. 2.1) is a sequential set of data points, measured typically over successive times.
It is mathematically defined as a set of vectors x(t), t = 0,1,2, ... where t represents the time elapsed
[Adhikari and Agrawal, 2013; Brockwell and Davis, 2016]. The variable x(t) is treated as a random
variable. The measurements taken during an event in a time series are arranged in a proper chronological
order.

A time-series containing records of a single variable is termed as univariate. But if records of more
than one variable are considered, it is termed as multivariate. A time series can be continuous or discrete.
In a continuous time series observations are measured at every instance of time, whereas a discrete time
series contains observations measured at discrete points of time; in this thesis we use the latter. Usually
in a discrete time series the consecutive observations are recorded at equally spaced time intervals.

A time-series in general is supposed to be affected by four main components, which can be separated
from the observed data. These components are: Trend, Cyclical, Seasonal and Irregular components.

Trend The general tendency of a time series to increase, decrease or stagnate over a long period of
time is termed as Secular Trend or simply Trend. Thus, it can be said that trend is a long term movement
in a time series.

Cyclical The cyclical variation in a time series describes the medium-term changes in the series,
caused by circumstances, which repeat in cycles. The duration of a cycle extends over longer period of
time.

Seasonal Seasonal variations in a time series are fluctuations within a time-frame during the season.

Irregular Irregular or random variations in a time series are caused by unpredictable influences, which
are not regular and also do not repeat in a particular pattern.

In our context, time-series are obtained by measuring at discrete points of time resource utilization
(CPU, Memory, I/O) of a scheduled job. Since the life-span of a job inside the system may vary from
several minutes to several days, not all the time-series will show all four characteristics. For example,
seasonality is usually not present. We will see that some methodologies to forecast time-series values
can deal with unexpected and missing characteristics, while other cannot.

In time series forecasting, past observations are collected and analyzed to develop a suitable
mathematical model which captures the underlying data generating process for the series. The future
events are then predicted using the model. This approach is particularly useful when there is not much

18 Background and Related Work

Jan
2018

Feb

0508 15 22 29

Date

100

200

300

400

500

600

700
Re

so
ur

ce
 U

til
iza

tio
n

Fig. 2.1 Time-Series Example.

knowledge about the statistical pattern followed by the successive observations or when there is a lack
of a satisfactory explanatory model.

The procedure of fitting a time-series to a proper model is termed as Time Series Analysis [Brockwell
and Davis, 2016]. In practice a suitable model is fitted to a given time series and the corresponding
parameters are estimated using the known data values. It comprises methods that attempt to understand
the nature of the series and is often useful for future forecasting and simulation. One such method is
based on regression analysis.

The goal of regression is to estimate relationships between the variables; many techniques for
carrying it out have been developed. We can divide them in two distinct groups; parametric and non-
parametric models. The first assume that the regression function is defined in terms of a finite number of
unknown parameters (estimated from the observed data), while the second allow the regression function
to lie in a specified set of functions which my have an infinite dimension space.

In our context, we analyzed two techniques to forecast time-series values: a parametric (ARIMA)
and a non-parametric (GP regression). We will see that using a non-parametric approach have some
benefits over a parametric.

2.2.1 Autoregressive Integrated Moving Average (ARIMA)

ARIMA is often considered as the “go-to method” for time series forecasting: it is a generalization of
the Autoregressive Moving Average (ARMA) model to cope with non-stationary time series data, which

2.2 Time-Series Analysis 19

appear frequently in real-life applications such as the one we consider in this dissertation. Considering
observation yt at time t, the ARMA(p′,q) model is described as follows:

yt −α1yt−1− ...−αp′yt−p′ = εt +θ1εt−1 + ...+θ1εt−q (2.1)

where α are the parameters of the autoregressive part of the model, the θ are the parameters of the
moving average part and the ε are error terms. In particular, p′ and q are integers greater than or equal
to zero and refers to the order of the autoregressive and moving average parts of the model respectively.

The underlying idea of ARIMA is that current values of a time series can be obtained by a linear
combination of its past values, using finite differencing to produce stationary data. Formally, the
ARIMA(p,d,q) model using lag polynomials is given below:

(1−
p

∑
i=1

φiLi)(1−L)dyt = δ +(1+
q

∑
I=1

θiLi)εt (2.2)

where p = p′−d, δ is a constant and L is defined as the lag or back-shift operator. d is an integer
greater than or equal to zero and refer to the order of the integrated parts of the model and controls the
level of differencing. Generally d = 1 is enough in most cases. An in-depth discussion about ARIMA
can be found in [Brockwell and Davis, 2002].

Note that the ARIMA model is only effective for short-term forecasting. The forecasting power of
an ARIMA model decreases as the forecasting horizon increases because the ARIMA forecast converges
to the mean of the observations as the forecast horizon grows [Sumway and Stoffer, 2006]. In our case,
the predictions that we make are short-term, thus we will not be affected by this limitation of ARIMA.

One important limitation of ARIMA is that we must know beforehand the characteristics of a
time-series in order to correctly steer the model parameters p, d and q. Some implementation of ARIMA
(e.g., in the R programming language), are able to infer these parameters automatically with a given
time-series. However in our context, this is not always possible because the characteristics of our
time-series may change in time as we will see in Chapter 4. Model selection, that is, searching through
combinations of order parameters to pick the set that optimizes model fit criteria, is carried out using
the Akaike information criteria, a method that is widely available in most ARIMA implementations.
Note that parameter optimization is an operation that needs to be performed multiple times during a
forecasting period, to adapt to variations in the time series characteristics.

Finally, most ARIMA implementations output confidence intervals associated with the selected
model parameters [Brockwell and Davis, 2002]. We note that confidence intervals should not be confused
with prediction intervals: the former are associated to the probability of the true model parameters to
be within the confidence interval, whereas the latter are associated to the likely range of future values
output by the model. As discussed in the literature [Brockwell and Davis, 2002], confidence intervals
for the mean are generally much narrower than prediction intervals. This has a direct consequence in
the context of this dissertation, which revolves around the idea of using predictive confidence to steer

20 Background and Related Work

system behavior: for this reason, in the next section, we present a Bayesian approach to time series
modeling that features a principled approach to compute predictive confidence.

2.2.2 Gaussian Process Regression

In this section we review a non-parametric approach to regression. A non-parametric method does not
make particular assumptions regarding the form of the function of interest. In practice, it allows us to fit
any time-series without the need of having prior knowledge about the characteristics of the time-series
itself. One additional benefit of GP regression is that the predicted output is not just a value, but a
distribution which quantifies the uncertainty of the prediction.

In the GP literature, time series are treated as state space models, which are generalizations of
auto-regressive models [Frigola-Alcalde, 2015; McHutchon, 2015]. Considering state xt and observation
yt at time t, a state space model is described as follows:

xt+1 = f (xt)+ εt

yt = g(xt)+ vt
(2.3)

where f (xt) is the state transition function and εt is the process noise, which follows a normal distribution.
The state xt may not be observed directly; an observation yt is given as a function of the state g(xt),
which is additionally corrupted by observation noise vt .

According to Equation (2.3), a time series is modeled as a non-linear Markovian dynamical system.
The Markov property implies that the current state xt is conditionally independent from past states
{xτ : τ < t−1}, given the previous state xt−1. The same is not true for the observations however. Thus,
given a collection of noisy observations {yτ : τ ≤ t}, the goal for time series prediction is to infer
the future state xt+1. This requires learning the functions f and g, which involves placing a GP prior
over f and g. However, the posterior over a non-linear dynamical system is not Gaussian, thus several
approximation methods have been proposed in the literature [Frigola et al., 2007; Svensson et al., 2016;
Turner et al., 2010].

In the context of recording resource utilization, we can make some simplifying assumptions. It is
reasonable to assume that an observation yt matches the state xt . Of course, we have to acknowledge that
resource utilization constantly fluctuates; these fluctuations however can be sufficiently explained by the
noise term εt , which now accounts for both the process and the observation noise. We shall additionally
make the dependency on past states explicit; for a history window of size h, we consider the following
state-space model:

yt = f (yt−1, . . . ,yt−h)+ εt (2.4)

To make predictions, we shall learn the transition function f by means of standard GP regression. From
Equation (2.4), the transition function depends on the history explicitly. In this way, we avoid the
additional costs of approximating the true posterior of a non-linear dynamical system.

2.2 Time-Series Analysis 21

A GP model transfers information across points that are considered similar, as this is reflected in the
choice of kernel k(x,x′), which determines the prior covariance between inputs x and x′. If we assume
that the inputs X solely consist of the recorded times, then similarity is only a matter of temporal locality,
which is not optimal practice if the aim is to predict sudden changes of behavior throughout the course
of a time series.

Hence, we resort to the definition of a kernel that relies on the observation history. It is implicitly
assumed that if two sequences of observations are similar, then they must have been caused by the
same “hidden” background processes; it is reasonable then to extrapolate and predict that the future
observations will be similar as well. Such a history-dependent kernel can be easily constructed by
transforming the data in an appropriate way. Consider a history window of size h, the training instances
will be utilization patterns expressed as vectors of the form:

x̃t = [xt ,yt−h, . . . ,yt−1]
⊤ (2.5)

where xt is the t-th recorded time. Therefore, the history-dependent kernel is implemented by applying a
typical exponential kernel on the transformed inputs:

kh(x,x′) = k(x̃, x̃′) (2.6)

Two different inputs x and x′ will be similar if they have a similar history pattern, or equivalently, if the
h preceded inputs have similar outputs. Note that we have kept the recorded times xt along with the
history, thus we do not completely ignore locality in the original input space.

22 Background and Related Work

2.3 Compute and Storage Disaggregation

To further improve the efficiency and responsiveness of distributed applications we study their perfor-
mance in current cloud providers architectures. We are seeing a trend in which (i) providers tend to
disaggregate storage and compute clusters7 and (ii) new technologies (e.g., IBM Storlets [Rabinovici-
Cohen et al., 2014]) are being developed to ship part of the code toward the storage, reducing the data
transmitted to the compute [Moatti et al., 2017]. Private and public cloud providers are now able to give
the user the possibility to deploy different types of frameworks that interact with the same object storage.

Indeed, thanks to virtualization, compute and storage clusters are more flexible, they can be eas-
ily provisioned in different sizes, and destroyed when not needed8. Increasingly, such storage and
processing systems are exposed to users as services, deployed on either public or private cloud com-
puting environments, rather than on bare-metal machines in private clusters. Many companies offer
Analytics-as-a-Service (AaaS) clusters to run a variety of applications: Amazon Web Services (AWS)
with Elastic MapReduce9, DataBricks Cloud10, Cloudera Cloud11 and Google Cloud Hadoop12 are
noteworthy examples.

In cloud computing environments, the architecture of analytics clusters is the result of the composi-
tion of several services, consisting of three (logically separated) layers: the Compute layer refers to all
cluster nodes that run the data processing application (e.g., a Spark application); the Data layer refers to
any combination of storage services (e.g., HDFS [Shvachko et al., 2010] or OpenStack Swift [Arnold,
2014]); and the Storage layer that physically stores the data, including ephemeral disks, object and
elastic block stores. Additionally, it is likely for the Data or Storage layers and the Compute layer to
be on different racks or even data-centers: as a consequence, the traditional wisdom of “moving the
computation to the data” (i.e., data locality) may be challenged. For example, consider Amazon S313:
data resides on a set of machines dedicated just to storage, breaking data locality.

In the remaining of this sections we first take a closer look at the different components that can build
an analytics service, then we briefly introduce one technology that is widely used for storage solution
among the analytics services providers; the cloud object storage (e.g., Amazon S3, Openstack Swift).

2.3.1 Analytics services components

Analytics services consist of three main logical components, as illustrated in fig. 2.2:

1. The Compute layer runs parallel processing frameworks that execute analytics applications (or
jobs), e.g., Apache Spark. An example of compute layer service is Amazon Elastic MapReduce.

7https://databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html
8https://aws.amazon.com/application-hosting/benefits/
9https://aws.amazon.com/emr/

10Solution hosted on AWS: https://databricks.com/product/databricks-cloud
11Solution hosted on AWS: http://www.cloudera.com/content/cloudera/en/solutions/partner/Amazon-Web-Services.html
12https://cloud.google.com/hadoop/
13https://aws.amazon.com/s3/

2.3 Compute and Storage Disaggregation 23

Fig. 2.2 Logical components in an analytics cluster.

2. The Data layer exposes logical storage services from the underlying physical storage system to
the Compute layer. Examples of data layers include Hadoop HDFS and Amazon S3.

3. The Storage layer handles read/write operations and has direct access to the data. Disks exposed to
the data layer can be a series of individual, ephemeral devices as well as more complex distributed
file systems.

The distinction between Data and Storage layers is a consequence of virtualization. Indeed, a VM
hosting the Data layer (e.g., the HDFS’ DataNode) might use a virtual disk which resides on a different
host. For example, many public cloud providers expose virtual disks provisioned by an underlying
distributed file system to improve, among others, VMs’ migration time. In general, the Compute layer
requires a compatible Data layer to access the Storage layer. Large-scale computing frameworks do not
support all the distributed file systems. For example, when deploying a VM on AWS with EBS14, Spark
cannot be used because the distributed file system used by Amazon to deploy their EBS system is opaque
to the virtual machines and thus to Spark. Therefore there is the need of introducing a compatible Data
layer (e.g., HDFS).

Another important concept are ephemeral disks; they are a temporary storage that can be imple-
mented, by the cloud infrastructure administrators, in different ways. One solution could be to have such
ephemeral disk directly connected to a portion of a single physical disk that reside on the same host
that runs the VM/container. A second solution could be to connect the ephemeral disk to a different

14https://aws.amazon.com/ebs/

24 Background and Related Work

distributed file system, much like the configuration with volumes that we described in the previous
paragraph.

2.3.2 Cloud Object Storage

Object storage is one of three types of cloud storage that are currently wide spread, the other two are:
File and Block storage. Applications developed in the cloud often take advantage of object storage’s
scalability and metadata characteristics.

An object encapsulates data and metadata describing the object and its data. Additionally, the entire
object is created at once and cannot be updated in place, although the entire value of an object can be
replaced. This simple object semantics enables the implementation of highly scalable, distributed and
durable storage that can provide very large capacities at low cost. Object storage is typically accessed
through RESTful HTTP, which is a good fit for cloud applications. It is ideal for storing unstructured
data, e.g., video, images, backups and documents such as web pages and blogs. Examples of object
storage systems include Amazon S3, Azure Blob storage15, OpenStack Swift and IBM Cloud Object
Storage16.

Object storage has a shallow hierarchy. A storage account may contain one or more buckets or
containers (hereafter we use the term container), where each container may contain many objects.
Typically there is no hierarchy in a container, e.g., no containers within a container, although there is
support for hierarchical naming. This is different than file systems where there is both hierarchy in the
implementation as well as in naming.

Common operations on object storage include:

• PUT Object which creates an object, with the name, data and metadata provided with the operation

• GET object which returns the data and metadata of an object

• HEAD Object which returns just the metadata of an object

• DELETE Object which deletes an object

• GET Container which lists the objects in a container

• HEAD Container which returns the metadata of a container

Object creation is atomic, so that two simultaneous PUTs on the same name will create an object
with the data of one PUT, but not some combination of the two. Object storage does not have an atomic
rename operation; rename can be emulated non-atomically through COPY and DELETE.

In order to enable a highly distributed implementation the consistency semantics for object storage
often includes some degree of eventual consistency [Vogels, 2009]. Eventual consistency guarantees
that if no new updates are made to a given data item, then eventually all accesses to that item will return

15https://azure.microsoft.com/en-us/services/storage/blobs/
16https://www.ibm.com/cloud-computing/products/storage/object-storage/cloud/

2.3 Compute and Storage Disaggregation 25

the same value. There are various degrees of eventual consistency. For example, AWS guarantees read
after write consistency for its S3 object storage system, i.e., that a newly created object will be instantly
visible. Note that this does not necessarily include read after update, i.e., that a new value for an existing
object name will be instantly visible, or read after delete, i.e., that a delete will make an object instantly
invisible. An important aspect typical to most object stores concerns the listing of the objects in a
container; the creation and deletion of an object may be eventually consistent with respect to the listing
of its container. In particular, a container listing may not include a recently created object and may not
exclude a recently deleted object.

2.3.3 Related Work on Data Locality and Cloud Object Stores Performance

The performance implications of data locality, a consequence of disaggregated compute and storage, have
been investigated in several studies. We can identify two major trends: one (e.g., [Ananthanarayanan
et al., 2011; Nightingale et al., 2012; Ousterhout et al., 2015]) arguing that data locality is not relevant,
while the other (e.g., [Guo et al., 2012; Ranganathan and Foster, 2002; Roman et al., 2015; Venzano and
Michiardi, 2013; Wang et al., 2009; Xie et al., 2010]) highlighting the opposite. All these works, albeit
valid, base their conclusion on limited information and define data locality as a boolean feature (present
or not). We move on from this dichotomy by investigating applications’ performance in a variety of
service compositions, leading to various degrees of data locality.

Considering the methodology, we can divide the recent research efforts to understand the impacts of
data locality into three main categories: (a) analysis on limited/public configurations, (b) analysis on
limited workloads and (c) theoretical or trace-driven analysis.

Limited/Public Configurations Examples of works that use limited/public deployments can be found
in [Ananthanarayanan et al., 2011; Guo et al., 2012; Nightingale et al., 2012; Ousterhout et al., 2015; Xie
et al., 2010]. For example, Ousterhout et al. in [Ousterhout et al., 2015] use an ideal scenario in terms
of data locality (Compute and Data layer on the same VM), with limited knowledge of the underlying
Storage layer. With the help of an analysis performed on network, disk block time and percentages of
resource utilization, such work state that the runtime of analytics applications is generally CPU-bound
rather than I/O intensive; thus, data locality may be considered irrelevant. A recent work [Trivedi et al.,
2016] shows that this is not always true; moving from a 1Gbps to a 10Gbps network can have a huge
impact on the application runtime.

Limited Workloads The studies presented in [Roman et al., 2015; Xie et al., 2010], and [Rupprecht
et al., 2014] use a limited set of workloads to investigate data locality. For example, Xie et al. in [Xie
et al., 2010] use two workloads: a WordCount and a Grep-like applications to demonstrate that data
placement plays an important role in analytics applications. While this consideration is valid, with our
approach, we recognize the importance of workload heterogeneity in studying system performance.

26 Background and Related Work

Theoretical or Trace-driven Analysis Some authors base their works on theoretical or trace-driven
analysis [Ananthanarayanan et al., 2011; Guo et al., 2012; Ranganathan and Foster, 2002; Wang
et al., 2009]. The work from Ananthanarayanan et al. in [Ananthanarayanan et al., 2011] is based on
Facebook’s traces. The authors state that, since network technology evolves quickly, data locality is
an aspect that will soon be neglected; they also use micro benchmarks to study a single aspect of an
analytics cluster. Instead, we show that in some cases the network might indeed not be a bottleneck,
while in others it may contribute to harm application performance. In addition, using a micro-benchmark
approach alone to measure I/O performance, can lead to inaccurate results, since analytics frameworks
like Spark or Hadoop are more complex than a set of read/write operations.

Other Limitations Works like [Lin et al., 2012; Yang and Sun, 2011; Zhang et al., 2006] do not
fall directly into one of these categories, as they model different aspects of a MapReduce application.
Nonetheless, they leave data locality as an abstract concept and they always consider configurations
when Compute, Data and Storage are on the same host. For example, Yang et al. in [Yang and Sun,
2011] model the relationship between number of mapper and reducers, while Lin et al. in [Lin et al.,
2012] model an entire analytics application that uses Hadoop and an analytics framework. Zhang et al.
in [Zhang et al., 2006] create a model to improve the data locality when Compute, Data and Storage
layers are on the same machine. We go further and study data locality when there is a clear separation of
Compute and Data layer.

Albeit valid, all the previous works address a specific storage type, that is file storage. Object storage
has not been the focus since it is not native to the ecosystems of analytics frameworks. Our work and
works from [Rupprecht et al., 2014, 2017] show the existence of an impedance mismatch between the
analytics frameworks and object storage that imposes a toll on performance. Moreover, we show that
it is possible to improve performance by eliminating the impedance mismatch between the compute
and storage layer, which can highly affect the run times of such applications, in particular, when using
object storage (e.g., Openstack Swift [Arnold, 2014]). There has also been some work from industry and
open source to improve this impedance mismatch. Databricks introduced the DirectOutputCommitter17

for Amazon S3, but it failed to preserve the fault tolerance and speculation properties of the temporary
file/rename paradigm. At the same time Hadoop developed version 2 of the FileOutputCommitter18,
which renames files when tasks complete instead of waiting for the completion (commit) of the entire
job. However, this solution does not solve the entire problem.

Current connectors from the Hadoop community for the OpenStack Swift and Amazon S3 APIs 19,
can also lead to failures and incorrect executions due to eventual consistency. Some work has been done

17https://github.com/apache/spark/pull/12229
18https://issues.apache.org/jira/browse/MAPREDUCE-6336
19https://aws.amazon.com/sdk-for-java/

2.3 Compute and Storage Disaggregation 27

to address this problem. EMRFS2021 from Amazon and S3mper2223 from Netflix overcome eventual
consistency by storing file metadata in DynamoDB [Sivasubramanian, 2012], an additional storage
system separate from the object storage that is strongly consistent. A similar feature called S3Guard2425

is being developed by the Hadoop open source community for the S3a connector. Solutions such as
these that require multiple storage systems are complex and can introduce issues of consistency between
the stores. They also add cost since users must pay for the additional strongly consistent storage. Our
solution does not require any extra storage system.

Recently Databricks introduced a new commit protocol called DBIO26 that removes the impedance
mismatch and guarantees fault tolerance. This new transactional commit protocol provides strong
guarantees in the face of various types of failures. Moreover, by enforcing correctness, it is able to
provide safe task speculation, atomic file overwrite and consistency for Spark output. DBIO achieves
similar objectives to the solution that we present in Chapter 6, but the solution is proprietary, whereas
we fully describe our work, put it in open source, and thoroughly analyze its performance.

20https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
21http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html
22http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html
23https://github.com/Netflix/s3mper
24https://issues.apache.org/jira/browse/HADOOP-13345
25http://www.slideshare.net/hortonworks/s3guard-whats-in-your-consistency-model
26https://databricks.com/blog/2017/05/31/transactional-writes-cloud-storage.html

Chapter 3

A Flexible Scheduling Heuristic

The last decade has witnessed the proliferation of numerous distributed frameworks to address a variety
of large-scale data analytics and processing tasks. First, MapReduce [Dean and Ghemawat, 2008] has
been introduced to facilitate the processing of bulk data. Subsequently, more flexible tools, such as
Dryad [Isard et al., 2007], Spark [Zaharia et al., 2012], Flink1 and Naiad [Murray et al., 2013], to name
a few, have been conceived to address the limitations and rigidity of the MapReduce programming
model. Similarly, specialized libraries such as MLLib [Meng et al., 2016] and systems like TensorFlow
[Abadi et al., 2016] have seen the light to cope with large-scale machine learning problems. In addition
to a fast growing ecosystem, individual frameworks are driven by a fast-pace development model,
with new releases every few months, introducing substantial performance improvements. Since each
framework addresses specific needs, a wide choice of tools and combinations thereof are available
to users that now can address the various stages of their data analytics projects. To the best of our
knowledge, no existing tool currently addresses the problem of scheduling analytic applications as a
whole, leveraging the intrinsic properties of the frameworks such applications use, but without requiring
substantial modification of such frameworks.

The endeavor of this chapter is to fill the gap that exists in current approaches, and raise the level of
abstraction at which scheduling works. We introduce a general and flexible definition of applications,
how they are composed, and how to execute them. For example, a user application addressing the training
of a statistical model involves: a user-defined program implementing a learning algorithm, a framework
(e.g., Spark) to execute such a program together with information about its resource requirements, the
location for input and output data and possibly parameters exposed as application arguments. Users
should be able to express, in a simple way, how such an application must be packaged and executed,
submit it, and expect results as soon as possible. We show that scheduling such applications represents
a departure from what has been studied in the scheduling literature, and we present the design of a
new algorithm to address the problem. A key insight of our approach is to exploit the properties of the
frameworks used by an application, and distinguish their components according to classes, core and

1https://flink.apache.org/

30 A Flexible Scheduling Heuristic

elastic: the first being required for an application to produce work, the latter contributing to reduced
execution times.

Our heuristic focuses cluster resources to few applications, and uses the class of application compo-
nents to pack them efficiently. Our scheduler aims at high cluster allocation and a responsive system. It
can easily accommodate a variety of scheduling policies, beyond the traditional “first-come-first-served”
or “processor sharing” strategies, that are currently used by most existing approaches. We study the
performance of our scheduler using realistic, large-scale workload traces from Google2 [Reiss et al.,
2012, 2011; Wilkes, 2011], and show it consistently outperforms the existing baseline approach which
ignores component classes: application turnaround times are more than halved, and queuing times
are drastically reduced. This induces fewer applications waiting to be served, and increases resource
allocation up to 20% more than the baseline. Finally, we build a full-fledged system, called Zoe,
that schedules analytic applications according to our original algorithm and that can use sophisticated
policies to determine application priorities. Our system exposes a simple and extensible configuration
language that allows application definition. We validate our system with real-life experiments, and
report conspicuous improvements when compared to a baseline scheduler, when using a representative
workload: median turnaround times are reduced by up to 37% and median resource allocation is 20%
higher.

This chapter is organized as follows. We start by clarifying what analytic applications are, give
examples and formulate our problem statement in Section 3.1. We then describe the details of our
flexible scheduling heuristic, in Section 3.2, which we evaluate using simulations in Section 3.3. Finally,
the system implementation is described in Section 3.4, and its evaluation is presented in Section 3.5.

3.1 Definitions and Problem statement

3.1.1 Definitions

We define a data analytics framework as a set of one or more software components (executable
binaries) to accomplish some data processing tasks. Distributed frameworks are generally composed by
a controller, a master and a number of worker components. Examples of distributed frameworks are
Apache Spark3, Google TensorFlow4 and MPI5. Another example of a simple data analytics framework
we consider is an interactive Notebook [Ragan-Kelley et al., 2014].

Distributed frameworks require a scheduler to orchestrate their work: they execute jobs, each of
which consists of one or more tasks that run in parallel the same program. Such schedulers operate at
the task level: they assign tasks to workers, and they are highly specialized to take into account the
peculiarities of each framework.

2https://github.com/google/cluster-data
3http://spark.apache.org/
4https://www.tensorflow.org/
5https://www.open-mpi.org/

3.1 Definitions and Problem statement 31

Framework schedulers such as Mesos [Hindman et al., 2011] and Yarn [Vavilapalli et al., 2013]
introduce an additional scheduling component to share cluster resources among concurrent frameworks:
sharing policies are based on simple variations of Processor Sharing. Similarly, cluster management
systems such as Docker Swarm6 and Kubernetes7 use a scheduler that assigns resources to generic
frameworks. The problem to solve is the efficient allocation of resources by placing framework
components and their tasks on cluster machines that satisfy a set of constraints.

We are now ready to define analytics applications, which are the elements we schedule in this
chapter. Our main objective is to raise the level of abstraction by manipulating an abstract entity
encompassing one or more analytics frameworks, their components and the necessary logic for them
to cooperate toward producing useful work by running user-defined jobs. What sets apart our work
from the state of the art is that our scheduler takes into account the notion of component classes, which
allows modeling the specificity of each framework. We have found two distinct component classes to
be sufficient to model existing analytic frameworks: thus, framework components either belong to a
core or to an elastic class. Core components are compulsory for a framework to produce useful work;
elastic components, instead, optionally contribute to a job, e.g. by decreasing its runtime. Consider,
for example, Spark. To produce work, it needs some core components: a controller (the spark client
running the DAG scheduler), a master (in a standalone deployment), and one worker (running executors).
We treat additional workers as elastic components. An alternative example is an application using
TensorFlow, which only works with core components: one or more parameter servers and a number
of workers. These two frameworks have substantially different runtime behavior: Spark is an elastic
framework that can dynamically integrate workers to dispatch tasks. TensorFlow is rigid, and uses only
core components to make progress.

To summarize, the nature of an application is that of raising the level of abstraction and an
application is considered as being a collection of frameworks and their heterogeneous components as a
single entity to schedule and allocate in a cluster of computers.

3.1.2 Problem Statement

We now treat the applications defined above as abstract entities that we call requests: they include one or
more components, which belong to a given class, either core or elastic. In the literature, the classical
problem of scheduling generic requests to be served by a distributed system has been extensively studied
[Dutot et al., 2004; Pruhs et al., 2004; Sgall, 2015]. Requests composed solely by core components are
usually referred to as rigid, while requests composed solely by elastic components are referred to as
moldable (if the assigned resources are decided when the request is served and they do not change for
the whole execution) or malleable (if the resources can vary during the execution8). A key difference

6https://docs.docker.com/swarm/
7http://kubernetes.io/
8An example of malleable framework is Spark[Zaharia et al., 2010]. Worker can be added or removed without destroying

the application execution.

32 A Flexible Scheduling Heuristic

with respect to previous work is that we consider heterogeneous requests, composed by both core and
elastic components.

For simplicity of exposition, we assume system resources that can be measured in units, and that
there are R available units overall to satisfy the requests. Each request i specifies the amount of units
for its core and elastic components, labeled Ci and Ei respectively. Ideally, with enough available
resources, a request is allocated all of its components: in this case, we define the service (or execution)
time as Ti. The amount of work to satisfy a request is the area of the square Wi = Ti× (Ci +Ei). More
generally, a request is allocated at least Ci + xi(t) resources, where 0 ≤ xi(t) ≤ Ei. Then, the service
time is T ′i = Wi

Ci+xi(t)
. This simple model allows updating the service time T ′i when a scheduling decision

modifies xi(t), by measuring the amount of work accomplished so far, and by computing the remaining
amount of work to be done. While more complex models to describe T ′i can be conceived, for example
taking into account the multi-dimensional nature of system resources or different scalability models,
our simple approximation doesn’t affect the nature of the scheduling problem we are studying. In
what follows we assume that each request can fully utilize the specified number of core and elastic
components, if they are granted resources.

Essentially, the problem of scheduling the execution of an incoming workload of requests amounts to:
i) sorting requests to decide in which order to serve them; ii) allocating distributed resources to requests
selected for service. The sorting phase can be solved using naive approaches, e.g. FIFO ordering, or
more sophisticated policies, that use request size information. Even more generally, requests can be
placed into “pools” and be assigned priorities, to mimic the hierarchical organization of the users, for
example. The allocation phase is more tricky: in the abstract, it is a “packing” problem that determines
how to shape requests being served. Even assuming service times to be known a-priori (e.g., Ti is
given as an input), it is well known that the on-line scheduling problem is NP-hard [Pruhs et al., 2004].
Therefore, we need to find a suitable heuristic to approximate a solution to the scheduling optimization
problem. In our case, this amounts to minimizing the application turnaround times, which is the interval
of time between request i submission and its completion. In the context we consider, optimizing the
average turnaround time represents a meaningful performance metric, as it caters system responsiveness.

Our scheduling problem does not directly take care of data locality constraints. As we saw in [Pace
et al., 2017], recently cloud providers tend to disaggregate compute and storage layer at different levels:
a compute and data node can reside on the same host, on different hosts or even on different data centers.
Next, we motivate our problem with a simple illustrative example.

Illustrative example We consider a system with 10 available resource units, and four requests waiting
to be served, as shown in Figure 3.1. Each request needs 3 units for the core components, and different
units for the elastic components. For each request, Ti = 10. In this example we focus on the allocation
phase only and we use the FIFO policy to sort the pending requests.

Given these requests, a traditional, rigid approach to scheduling – which does not make the distinction
between component classes – assigns all required resources to each request. Since all requests need at
least 5 units (Ci +Ei ≥ 5), and since any pair of requests have an aggregated need that exceeds 10 units,

3.1 Definitions and Problem statement 33

(s)

10

resources

15

5

10

5

10

5

resources

10

28.4323.57

C = 3

E = 4

T = 10

C = 3

E = 3

T = 10

C = 3

E = 5

T = 10

C = 3

E = 2

T = 10

30 40

time
(s)

10 20

40

time
(s)

10

resources

15 22.5 32.5

40

time

approach

DB

A B C D

A C D

B

A C

B D

approach

Malleable

approach

C

Our flexible

A

Baseline, rigid

Fig. 3.1 Illustrative examples of request scheduling: (top) rigid, (middle) malleable, (bottom) flexible
approaches.

the scheduler serves one request at a time (Figure 3.1, top): the average turnaround time is 25s. Note
that, in this case, backfilling is not possible, i.e., even by changing the order in which requests are served
the situation does not change.

Another scheduling approach comes from the literature of malleable job scheduling. The scheduler
assigns all resources to the first request in the waiting line, then assigns the remaining resources (if
any) to the next request, and so on, until no more free resources are available. This heuristic has been
shown to be close to optimal [Dutot et al., 2004]. Figure 3.1, middle, illustrates the idea: request B
can be served along with request A. When request A has completed, the scheduler first assigns more
resources to request B, and then tries to serve the next request. Similarly, when request B has completed,
the scheduler first assigns more resources to request C, then attempts at serving request D. However,

34 A Flexible Scheduling Heuristic

since request D needs at least Ci = 3 units, the scheduler is blocked (note that request C uses 8 units), so
request D needs to wait, and some system resources remain unused. The average turnaround time is 20s.

We advocate the need for a new approach to scheduling, which distinguishes component classes.
The idea is to exploit the flexibility of elastic components and use system resources more efficiently.
Intuitively, a solution to the problems of existing heuristics is to reclaim some resources assigned to
elastic components of a running request and assign them to a pending request. This is shown in the
bottom of Figure 3.1: the scheduler reclaims just one unit from request C so that it can provide 3 units
to request D, which are sufficient for starting its core components and produce useful work. With this
approach, the average turnaround is 19.25s.

While the above solution seems simple, it poses many challenges: how many units assigned to
elastic components can be sacrificed for serving the next request? How many requests should be served
concurrently? Should the scheduler focus on core components alone, to make sure many requests are
served concurrently? How can scheduling take into account the priorities assigned by the sorting phase?

The last point introduces an additional challenge, related to preemptive scheduling policies. If a high
priority request arrives, since it is not possible to interrupt core components – for this would kill the
request – how can we select and preempt elastic components to accommodate the new request?

Given heterogeneous, composite requests, which are neither rigid, nor malleable (but both), available
scheduling heuristics in the literature fall short in addressing the sorting and allocation problems: a
new approach is thus truly desirable.

3.2 A Flexible Scheduling Algorithm

3.2.1 Design guidelines

We characterize a request by its arrival time, its priority (to decide the order in which the requests should
be served), the resources it asks for (core and elastic) and the execution time (in isolation, i.e., when all
required resources are granted to the application). Given an incoming workload, our goal is to optimize
the sum of the turnaround times τi, that is:

min∑
i

τi⇒min∑
i
(queuingi + executioni)

The actual execution time depends on the amount of resources assigned over time to the request. Now,
recall that the scheduling problem can be broken into sorting and allocation phases. Sorting determines
when a request is served, thus it has an impact on its queuing time. The allocation phase contributes both
to queuing and actual execution times. Depending on allocation granularity [Schwarzkopf et al., 2013],
a request might need to wait for a number of resources to be available before occupying them, thus
increasing – albeit indirectly – the queuing time. The execution time is directly related to the allocation
algorithm and to the workload characteristics.

3.2 A Flexible Scheduling Algorithm 35

We decouple request sorting from allocation:9 our scheduler maintains the request ordering, as
imposed by an external component, and only focuses on resource allocation. Sorting can be simply
based on arrival times (which amounts to implement a FIFO queuing discipline), or can use additional
information, such as request size (thus implementing a variety of size-based disciplines).

Overall, we optimize request turnaround times through careful resource allocation, and design
an algorithm that strives at allocating all available cluster resources, by serving the least number of
requests at a time. Intuitively, by “focusing” resources to few requests, we expect their execution times
to be small. Consequently, queued requests also enjoy smaller wait times, because resources are freed
more quickly.

3.2.2 Algorithm Details

Although we support preemptive scheduling policies, to simplify exposition, we first consider the case
with no preemption: resources assigned to a request can only increase, and a new request can be placed,
at most, at the head of the waiting line, depending on the sorting component. We stress that the output
of our scheduling algorithm is a virtual assignment, i.e., the mechanism to physically allocate resources
according to the computed assignment (core and elastic components for running applications) is separate
from the scheduling logic, and considered as an implementation detail.

Our resource allocation procedure is called REBALANCE, and it is triggered by two events: request
arrivals and departures – see Algorithm 1. When a new request arrives (procedure ONREQUESTAR-
RIVAL), the resource assignment is done only if such a request is placed at the head of the waiting line
and there are unused resources that are sufficient for running its core components. When a request is
completed (procedure ONREQUESTDEPARTURE), the released resources are always reassigned.

The scheduler maintains two ordered sets: the requests waiting to be served (L), and the requests in
service (S). Each request req needs req.C core components and req.E elastic components; depending on
the allocation, request req is granted 0≤ req.G≤ req.E elastic components. The core of the procedure
REBALANCE (lines 18-21) operates as follows: each request req in the serving set S has always at
least req.C resources assigned. Excess resources are assigned to the requests in S following the request
order. The scheduler assigns as many elastic components as possible to the first request, then to the
second, and so on, in cascade.

Following the design guidelines, the set S should only contain the requests that are strictly necessary
to use all the available resources. This is accomplished by the first part of the procedure REBALANCE

(lines 8-13): a request is added to S if the current requests in S are not able to saturate the total
resources (total, line 8). Note that we add a request to S only if there is room to allocate all of its core
components.

9This approach is similar to the one used in the SLURM scheduler [Yoo et al., 2003], where the order of the pending jobs is
given by an external, pluggable, component, and the scheduler processes the jobs following that order.

36 A Flexible Scheduling Heuristic

Algorithm 1: Resource assignment procedures (no preemption)
1 procedure ONREQUESTARRIVAL(req)
2 INSERT(req, L)
3 if req == L .head and req.C ≤ avail then
4 REBALANCE()

5 procedure ONREQUESTDEPARTURE()
6 REBALANCE()

7 procedure REBALANCE()
8 while ∑

j∈S
(req j.C+ req j.E)< total and (L not /0) do

9 req←L .head
10 if req.C+ ∑

j∈S
req j.C < total then

11 INSERT(POP(L), S)
12 else
13 break

14 avail← total− ∑
j∈S

req j.C

15 forall req ∈S do
16 req.G← 0

17 req←S .head
18 while avail > 0 and (req not NULL) do
19 req.G←min(req.E,avail)
20 avail← (avail− req.G)
21 req← req.next

Algorithm 2: Resource assignment procedures (with preemption)
1 procedure ONREQUESTARRIVAL(req)
2 if req.P > S .tail.P then
3 if req.C ≤ ∑

j∈S
req j.E then

4 INSERT(req, S)
5 REBALANCE()
6 else
7 INSERT(req, W)

8 else
9 INSERT(req, L)

10 if req == L .head and req.C ≤ avail then
11 REBALANCE()

12 procedure ONREQUESTDEPARTURE()
13 while W .head.C+ ∑

j∈S
req j.C < total and (W not /0) do

14 INSERT(POP(W), S)

15 REBALANCE()

3.3 Numerical evaluation 37

3.2.3 Preemptive policies

We now consider preemptive policies: request arrivals can trigger (partial) preemption of running
requests, e.g. if new requests have higher priority than that of the last request in service. In this case,
the tuple describing a request also stores its priority, req.P. It is important to note that, in this work,
the preemption mechanism only operates on elastic components of running applications, whereas core
components (that are vital for an application) cannot be preempted.

Algorithm 2 shows the modifications to the procedures ONREQUESTARRIVAL and ONREQUEST-
DEPARTURE to support preemption. When a new request arrives, if its priority is higher than the
requests in service, we check if its core components can be allocated using the resources occupied by
the elastic components of currently running requests. If so, we insert the request into the set S and call
REBALANCE (defined in Algorithm 1). Otherwise, we insert the request into an auxiliary waiting line W ,
which is given priority when resources become available. Indeed, procedure ONREQUESTDEPARTURE

indicates that we first consider the waiting requests in W , and we add to the set S as many of them as
possible, considering solely the core components. In other words, requests in W have higher priority than
those in L . Finally, the call of REBALANCE assigns the remaining resources to the elastic components
of high priority requests.

3.3 Numerical evaluation

3.3.1 Methodology

We evaluate our algorithm using an event-based, trace-driven discrete simulator developed to study
the scheduler Omega [Schwarzkopf et al., 2013], which we extended10 in order to make it work with
applications, instead of low-level jobs and to use the concept of component classes. Our scheduler
implementation supports a variety of policies, from the basic FIFO (First In, First Out), to the size-based
disciplines in the family of SMART policies [Wierman et al., 2005]. In case of size-based policies,
we assume application size information to be provided by an external component (such as a job size
estimator), which is not part of the design of our solution: recent studies have highlighted that a size
based scheduler may tolerate estimation errors with minimal impact on the scheduling performance
[Dell’Amico et al., 2016].

Our implementation first obtains a “virtual assignment” with Algorithm 1, then fulfills it by allo-
cating resources accordingly, which happens instantaneously. Additionally, we have implemented a
baseline, consisting of a rigid scheduler that does not distinguish component classes, which is repre-
sentative of current cluster management systems. In our simulations, we consider two-dimensional
resources, including definitions of CPU and RAM requirements. We would like to stress that the “virtual
assignment” can take into consideration other constraints as well (e.g., GPU).

Our scheduler currently accepts application workloads of two kinds. The first is batch applica-
tions, that take from a few seconds to a few days to complete: these are delay-tolerant applications, with

10https://github.com/DistributedSystemsGroup/cluster-scheduler-simulator

38 A Flexible Scheduling Heuristic

a very simple life-cycle. Core components must first start to produce useful work, by executing user-
defined jobs that are “passed” to the application; elastic components may contribute to the application
progress. Once the user programs are concluded, the application finishes, releasing resources occupied
by its frameworks and components. The second is interactive applications, which involve a “human in
the loop”: these are latency-sensitive applications, with a life-cycle triggered by human activity. In this
case, core components must start as soon as possible, to allow user interaction with the application (e.g.,
a Notebook).

For our performance evaluation, we use publicly available traces11 [Reiss et al., 2012, 2011; Wilkes,
2011], and generate a workload by sampling the empirical distributions we compute from such traces.
First, we focus on batch applications alone, and simulate both rigid (e.g. TensorFlow) and elastic (e.g.
Spark) variants: the label B-R represents rigid applications with only core components; the label B-E
stands for elastic applications, with both core and elastic components. Then, we evaluate the benefit of
preemption by complementing the above workload with (simulated) interactive applications.

Figure 3.2 shows the characteristics of the workload, and in particular the CDFs of the main metrics.
The application inter-arrival times exhibit a bi-modal distribution with fast-paced bursts, as well as
longer intervals between application submissions. The application runtime ranges from a few dozen
seconds to several weeks (of simulated time). Looking more in details within jobs, it is possible to see
that resource requirements take up to 6 cores (fig. 3.2 central left) and range from few MB to a few
dozens GB of memory (fig. 3.2 central right). Finally, application components can be divided into core
components and elastic components: batch applications consist of few to tens of components, up to
thousands of components, while interactive applications are smaller, and use up to hundreds of elastic
components.

The workload used in our simulations consists of 80,000 applications, with 80% batch and 20%
interactive applications. Batch applications include 80% elastic and 20% rigid components. We simulate
a cluster with 100 machines, each with 32 cores and 128GB of memory. All results shown here include
10 simulation runs, for a total of roughly 3 months of simulation time for each run.

Finally, the metrics we use to analyze the results include: application turnaround and queuing
time, the latter being an important factor contributing to the turnaround time. Additionally, we measure
the queue sizes and the number of running applications, along with the resource allocation, measured
as the percentage of CPU and memory the scheduler allocates to each application.

3.3.2 Comparison with the baseline

We now perform a comparative analysis between our flexible scheduler and the baseline. In this series of
experiments we omit interactive applications, and thus disable preemption. In order to show the benefits
of our scheduler, we present results for a size-agnostic policy – FIFO – and for a size-aware policy –
Shortest Job First (SJF).

11https://github.com/google/cluster-data

3.3 Numerical evaluation 39

10-3 10-2 10-1 100 101 102 103 104 105

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Inter-Arrival Time

10-1 100 101 102 103 104 105 106

Runtime (s)

0.0

0.2

0.4

0.6

0.8

1.0

Estimated Runtime

0 2 4 6 8 10
CPU

0.0

0.2

0.4

0.6

0.8

1.0

Components CPU

101 102 103 104 105 106 107 108

Memory (KB)

0.0

0.2

0.4

0.6

0.8

1.0

Components memory

100 101 102 103

Num Services

0.0

0.2

0.4

0.6

0.8

1.0

Core components

100 101 102 103 104 105

Num Services

0.0

0.2

0.4

0.6

0.8

1.0

Elastic components

Fig. 3.2 Workload Definition: CDFs of different metrics.

Figure 3.3 (left) illustrates the most important percentiles (in a box-plot) of the distribution of
turnaround times. The benefits of our approach are noticeable, irrespectively of the scheduling discipline:
the median turnaround is halved when compared to the baseline, indicating superior system responsive-
ness. Additionally, we observe the benefits of a size-based policy in further decreasing turnaround times.
We note that our approach is beneficial for both rigid and elastic batch applications: Figure 3.3 (center)
shows a box-plot of application queuing times, which contribute to their turnaround. With our approach,

40 A Flexible Scheduling Heuristic

F
if
o-

B
-R

S
J
F
-B

-R

F
if
o-

B
-E

S
J
F
-B

-E
104

105

106

107

T
im

e
(s

)

Application Turnaround

F
if
o-

B
-R

S
J
F
-B

-R

F
if
o-

B
-E

S
J
F
-B

-E

0
100

101

102

103

104

105

106

107

T
im

e
(s

)

Application Queue

F
if
o-

B
-E

S
J
F
-B

-E

1.2

1.3

1.4

1.5

1.6

1.7

R
at

io

Application Slowdown

Fig. 3.3 Comparison of turnaround and queue time distributions, and application slowdown distributions
for FIFO and SJF policies. White boxes (right box of every pair) corresponds to our flexible scheduler,
gray boxes correspond to the baseline. B-E stands for batch elastic and B-R stands for batch rigid
applications.

Fifo SJF
101

102

103

104

A
p
p
li
ca

ti
on

s
in

 q
u
eu

e

Pending Queue

Fifo SJF
20

40

60

80

100

120

140

160

180

A
p
p
li
ca

ti
on

s
ru

n
n
in

g

Running Applications

Fig. 3.4 Comparison of queues size for FIFO and SJF between our flexible scheduler and the baseline.
The white boxes (right box of every group) correspond to our flexible algorithm, gray boxes to the
baseline.

both kinds of applications spend less time waiting in a queue to be served. By differentiating classes
of components, applications can execute as soon as enough resources to produce work are available.
Finally, Figure 3.3 (right) focuses on application runtime: we report the slowdown computed as the
ratio between the nominal application runtime (i.e., the time required for an application to complete in
an empty system, with all application components allocated their requested resources) and the effective
application runtime obtained with the simulation. Values above one indicate that applications run slower
in a system absorbing a given workload when compared to applications running in an empty system.
Overall, these results show that our scheduling approach does not impose a high toll on application
runtime, while globally contributing to improved turnaround times.

Next, we support the general results discussed above with additional details. Figure 3.4 shows the
box-plots of the distribution of queue sizes, for both the pending and the running queues. Our approach
induces a smaller number of applications waiting to be served, as well as a larger number of applications
running in the system, compared to the baseline and across different policies. Indeed, our flexible

3.3 Numerical evaluation 41

Fifo SJF
0.0

0.2

0.4

0.6

0.8

1.0
%

 C
P

U
Cluster CPU allocation

Fifo SJF
0.0

0.2

0.4

0.6

0.8

1.0

%
 m

em
o
ry

Cluster Memory allocation

Fig. 3.5 Comparison of resource allocation distributions for FIFO and SJF policies, between our flexible
scheduler and the baseline. White boxes (right box of every pair) correspond to our approach, dashed
boxes to the baseline.

scheduler achieves a better packing of applications, which means they can start sooner. Additionally, the
benefits of a size-based discipline are clear: the number of applications waiting is almost one order of
magnitude smaller compared to a FIFO policy, while the number of running applications is similar.

Figure 3.5 shows metrics from the cluster perspective: our approach (for both disciplines) induces a
far better resource allocation compared to the baseline, achieving more than 20% gains in both CPU and
RAM allocation.12

3.3.3 Comparison with a malleable scheduler

The illustrative example depicted in Figure 3.1 shows that a rigid scheduler may not be able to exploit
all the resources, therefore the results presented in the previous section are simple to understand and
explain. One may wonder if a completely malleable scheduler may be able to actually use most of the
resources, without requiring a more complicated scheduler. It is worth mentioning that currently no
solution supports a malleable scheduler as we presented it in section 3.1.2. In other words, we have
implemented a malleable scheduler in order to compare its performance with our flexible scheduler. The
malleable scheduler uses a first-fit approach, adding as much elastic components as possible. If the
remaining resources are not sufficient to schedule at least the rigid components of the next application,
the scheduler waits for free resources before scheduling that application.

As we noted with the illustrative example (Figure 3.1), the average turnaround time with a malleable
approach is similar to the one obtained by our flexible approach: the key advantage of our approach is in
exploiting more efficiently the resources. This is confirmed by the experiments with our simulator.

In Table 3.1 we compare average turnaround and the average cluster allocation when using the
malleable scheduler and our flexible scheduler, in case of FIFO and SJF. Our flexible scheduler is able
to improve the turnaround time by 10% and 16% for FIFO and SJF respectively since it is using more

12Allocation is different from utilization: the simulator does not account for real application execution, so we cannot report
utilization figures.

42 A Flexible Scheduling Heuristic

S
J
F
2D

-B
-R

S
J
F
3D

-B
-R

S
J
F
2D

-B
-E

S
J
F
3D

-B
-E

104

105

106

T
im

e
(s

)

Application Turnaround

S
J
F
2D

-B
-R

S
J
F
3D

-B
-R

S
J
F
2D

-B
-E

S
J
F
3D

-B
-E

0
100

101

102

103

104

105

106

T
im

e
(s

)

Application Queue

S
J
F
2D

-B
-E

S
J
F
3D

-B
-E

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

R
at

io

Application Slowdown

Fig. 3.6 Comparison of turnaround and queue time distributions, and application slowdown distributions
for the SJF policy with different definitions of size. White boxes (right box of every pair) corresponds
to our flexible scheduler, gray boxes correspond to the baseline. B-E stands for batch elastic and B-R
stands for batch rigid applications.

Table 3.1 Comparison of average turnaround, CPU and Memory allocation for FIFO and SJF policies,
between our flexible and a malleable scheduler.

Policy Schedulers Turnaround CPU Memory

FIFO Malleable 3.72x105s 75% 74%
FIFO Flexible 3.36x105s 77% 76%
SJF Malleable 6.14x104s 74% 72%
SFJ Flexible 5.13x104s 80% 78%

efficiently the available resources. This is confirmed by the CPU and memory allocation: our scheduler
consistently uses more CPU and memory than the malleable scheduler.

3.3.4 Comparison between different definitions of size

When dealing with monolithic applications, the definition of job size is simple: it may be computed as
the time necessary to complete the job when it runs in isolation, i.e., without any interference caused by
other jobs. This is actually the definition we have used in the previous section when using a size-based
scheduler.

The above definition, nevertheless, may not capture the complexity of a distributed application. For
instance, let us consider two applications with the same runtime, but different number of parallel tasks
to perform: do they have the same size? Intuitively, the application with fewer tasks should be smaller
than the application with a larger number of tasks.

This example suggests that it is possible to define the size of an application in different ways. In
general, we may consider the total amount of work that the application needs to do. Therefore, similarly
to [Schwiegelshohn and Yahyapour, 1998], a possible definition of size may be the product of the
runtime and the number of components. Another option, if we consider all resources required by an

3.3 Numerical evaluation 43

S
J
F
2D

S
J
F
3D

0

50

100

150

200

250
A

p
p
li
ca

ti
o
n
s

in
 q

u
eu

e
Pending Queue

S
J
F
2D

S
J
F
3D

0

50

100

150

200

A
p
p
li
ca

ti
on

s
ru

n
n
in

g

Running Applications

Fig. 3.7 Comparison of queues size for the SJF policy with different definitions of size. White boxes
(right box of every pair) corresponds to our flexible scheduler, gray boxes correspond to the baseline.

Table 3.2 Definition of size used in the evaluation

Name Definition

SJF runTime
SJF-2D runTime∗#components
SJF-3D runTime∗∑components

i=1 CPUi ∗RAMi

application, is to compute the size as the product of the runtime, the number of CPUs and the memory
of all the components. Table 3.2 summarizes the different definitions of job size for the SJF policy.
Although in this section we focus on the SJF policy, we found that the same definitions can be applied
to other policies as well.13. The definitions of job size that we take into consideration incrementally
add information. We start by the classic definition that consider only the runtime of the application.
Next, since that definition is one dimensional, we try to move to a two-dimensional definition by adding
also the number of components that the application is using. Finally, since every component might
request different resources, we add this information as well and turn the definition from a two to a three
dimension.

Note that no definition is better than the other: it depends on the metric used to evaluate the system
performance. If the focus is to minimize the turnaround time, then the basic definition of size (as
runtime) may be sufficient. The following example shows why. Consider two applications, A1 and A2,
whose requests arrive at the same moment. The core components of the two applications need C1 = 10
units and C2 = 6 units respectively, while they both have no elastic components. The run times are
T1 = 2 and T2 = 3 seconds respectively. The system has 10 available resource units, therefore the two
applications can not be scheduled in parallel. If we use the runtime as job size, we schedule application
A1 first then A2, with an average turnaround time equal to 3.5 seconds. If we use as size the product of

13More information and experiments can be found in [Pace, Venzano, Carra and Michiardi, 2016]

44 A Flexible Scheduling Heuristic

S
J
F
2D

S
J
F
3D

0.0

0.2

0.4

0.6

0.8

1.0
%

 C
P

U
Cluster CPU allocation

S
J
F
2D

S
J
F
3D

0.0

0.2

0.4

0.6

0.8

1.0

%
 m

em
o
ry

Cluster Memory allocation

Fig. 3.8 Comparison of resource allocation distributions for the SJF policy with different definitions of
size. White boxes (right box of every pair) corresponds to our flexible scheduler, gray boxes correspond
to the baseline.

the runtime and the number of components, then we schedule the application A2 and then A1, with an
average turnaround time equal to 4 seconds.

In the following, we compare the results obtained with different definition of size. We are not
interested in the absolute values of the performance metrics: instead, given a definition of size, we
compare the baseline scheduler with our flexible scheduler, in order to show the improvements we are
able to obtain. The experimental settings are the same used in Section 3.3.2

Figure 3.6 shows the application turnaround, queuing time and slowdown. Focusing on the applica-
tion turnaround, we notice that our flexible scheduler consistently improves over the baseline scheduler
in case of batch elastic applications. For the batch rigid applications instead, while the “-3D” variant
shows an improvement over the baseline scheduler, the two schedulers obtain similar results with the
“-2D” variant. This is reflected on the application queue, which is similar for the two schedulers with
the “-2D” variant. Nevertheless, the overall mix of the applications is able to exploit the resources more
efficiently. In fact, as shown in Figure 3.7, right hand side, there are more application running, and,
as shown in Figure 3.8 these applications use almost fully the CPU and the memory. In addition, by
comparing the results from fig. 3.6 to fig. 3.3, we notice that different and more fine grained definitions
of application size lead to an improvement in the average turnaround time when considering our flexible
approach; average turnaround time of SJF-3D < SJF-2D < SJF. Instead, for the baseline approach this
is not always true; the SJF-3D performs worst compared to SFJ-2D.

In conclusion, with these experiments we show that more information embedded in the definition
of application size might translate in tangible benefits in terms of turnaround times, provided that the
scheduling algorithm, like ours, can use such information. This is not always true when considering
a baseline approach because the constraints imposed by it, like scheduling all components or nothing,
void the benefits of a fine grained size definition.

3.3 Numerical evaluation 45

B-R B-E Int
0

100

101

102

103

104

105
T

im
e

(s
)

Application Queue

B-R B-E Int
0.9

1.0

1.1

1.2

1.3

1.4

1.5

W
it

h
ou

t/
W

it
h
 p

re
em

p
ti

o
n

Turnaround Ratio

Fig. 3.9 On the left, comparison of queuing time distributions between scheduling with and without
preemption. White boxes (left box of every pair) correspond to a non-preemptive system, gray boxes
to our preemptive algorithm. On the right, turnaround ratio distributions between scheduling with and
without preemption. B-E stands for batch elastic applications, B-R stands for batch rigid applications
and Int is for interactive applications.

3.3.5 Preemption

We turn now our attention to the full workload we defined in Section 3.3.1, including interactive
applications. Preemption is used when a high-priority, interactive application requires resources: this
applies both to manually set priorities (e.g., in a FIFO policy) and to size-based priorities. In this
section we focus on sized-based policies: in particular, we report results for the SRPT policy, which is a
preemptive policy, and we use the runtime as definition of size.

Figure 3.9 shows the most relevant percentiles of the distribution of application queuing times,
grouped by application type (both cases of batch and interactive applications), with and without our
preemption mechanism. Globally, preemption does not subvert the perceived system responsiveness.
However, interactive applications under preemptive scheduling enjoy roughly two orders of magnitude
less queuing times. Users do not wait for few dozens minutes but only few seconds, for their interactive
application to start. As a consequence, elastic batch applications pay with more variability (but stable
for the median case) in queuing times.

Since our simulator does not account for real work done by applications, the preemption mechanism
does not have any effect on the work that has been done by preempted components. In practice, our
current preemption mechanism would instead suppress work done by elastic services, if preempted.
Studying new preemption primitives, e.g. by suspending Linux containers, is part of our research agenda:
this is the main reason why our current prototype implementation lacks support for preemption.

3.3.6 Additional considerations

In the previous sections we have shown the results for a size-agnostic policy, namely FIFO, and a size-
aware policy, SFJ. Additionally, when presenting the results in case of preemption, we have considered
the SPRT policy. SJF and SRPT are two examples of SMART policies [Wierman et al., 2005], which

46 A Flexible Scheduling Heuristic

are a set of policies whose aim is to minimize the average turnaround time. Another example of a smart
policy is Higher-Response-Ration Next (HRRN): HRRN aims at avoiding the starvation of long running
applications – starvation that may appear when using SJF or SRPT – by using the concept of virtual size.

We have tested our scheduler with all the policies mentioned above (SJF, SRPT, HRRN), in all
the different scenarios: comparison with the rigid, as well as malleable schedule, when no interactive
applications are present; comparison with the different definitions of size; comparison when preemption
is enabled, comparison with different workloads. We do not report here all the set of results since they
yield the same information of the results presented in the previous sections – the interested reader can
find them in our Technical Report [Pace, Venzano, Carra and Michiardi, 2016]. In summary, our flexible
scheduler is able to reduce the turnaround time, while improving resources allocation, in all the different
policies.

3.4 Implementation: The Zoe system

Next, we describe Zoe14, the system we have built to materialize the concepts developed earlier.
Zoe allows defining analytics applications and schedule them in a cluster of machines. It is designed

to run on top of an existing low-level cluster management system, which is used as a back-end to
provision resources to applications. Raising the level of abstraction to manipulate analytics application
is beneficial for users and ultimately to the system design itself: application scheduling decisions can be
taken with a small amount of state information, and do not happen at the same (extremely fast) pace as
low-level task scheduling. Next we overview Zoe’s design, and provide relevant details for the subject
of this chapter.

Zoe applications In Zoe, the concepts introduced in Section 3.1 take the form of simple JSON
description files that follow a high-level configuration language (CL) to specify applications, frameworks
and components with their classes (core or elastic), resource reservations and constraints. The CL is
simple and extensible: it aims at conciseness and, with framework templates, can be used by “casual”
and “power” users [Verma et al., 2015].

The key aspect that determines the application type (batch, interactive, or any new type) is the
way application life-cycle is managed. This is determined by a flexible attribute, reminiscent of a
“command line”, which allows passing runtime configuration options, user-defined arguments and
environment variables, as well as setup and cleanup procedures. For application design, the “command
line” attribute requires minimal knowledge of the frameworks that constitute an application. As an
example of the simplicity and effectiveness of the Zoe CL, building a batch application for the distributed
version of TensorFlow only requires tens of lines of CL. In this case, the most important attribute is
the “command line”, which is required to run a TensorFlow program, i.e., python $TF_PROGRAM

14Zoe, https://zoe-analytics.eu/, was conceived in August 2015, named after the biggest container boat in the world, which,
has touched sea (https://www.marinetraffic.com/en/ais/details/ships/209870000) in the same period of time. In this chapter, we
omit several implementation details that stem from our continuous effort to extend Zoe.

3.4 Implementation: The Zoe system 47

$PS_HOSTS $WK_HOSTS program-args. Environment variables are appropriately handled by Zoe,
including information unknown at scheduling time (e.g., host names).

A note on application failures is required. Any failure of an elastic component is practically harmless,
whereas core component failures imply application failure. An area of future work is to exploit failure
tolerance mechanisms available from some back-ends (e.g., Kubernetes) to steer application-level failure
tolerance modes.

Zoe back-ends The main design idea of our system is to hide the complexities of low-level resource
provisioning from application scheduling and exploit an existing cluster management system, for which
many alternatives exists. Currently, Zoe builds on top of Docker Swarm, and uses it to achieve a series
of objectives we list below:

• Orchestration: Zoe interacts with all the machines in a cluster using the Docker orchestration API
(known as Swarm), which governs the behavior of the Docker engine deployed in each machine.
Thus, Zoe manages to distribute the necessary binaries for the components of an application that
is scheduled for execution, their configuration, life-cycle, and provisioning.

• Dependency management: Zoe applications materialize as a series of Docker images, which
contain all dependencies and external libraries required for an application to run. Zoe applications
can be built from community-provided or custom Docker images of existing frameworks.

• Resource isolation: framework components specified in an application run in Linux containers,
which are managed by a Docker engine. We also use the Docker engine to achieve memory
allocation, whereas CPU partitioning is left to the machine OS. This means, we have a one
dimensional packing problem.

• Resource matching: application descriptions include resource constraints. When an application
is scheduled for execution, Zoe instructs the back-end to adhere to component constraints when
provisioning the relevant Docker images with framework binaries, as determined by the virtual
assignment obtained by Algorithm 1.

• Naming and networking: the services for application components to cooperate in producing useful
work, and to interact with the outside world are an important aspect to consider when choosing an
appropriate back-end for Zoe. We use Docker networking, but we also have developed our own
service discovery mechanism to allow a more flexible application configuration and deployment.

Zoe architecture Although Zoe is separated in several modules, it does not require any cluster-wide
installation, because it uses its back-end to interact with the cluster.

The Zoe master polls a high-fidelity view of the cluster state through its back-end, whenever the
scheduler is triggered, and stores it into a state store, backed by a PostgreSQL database. The state store
also holds applications state, which is modeled as a simple state-machine. Because Zoe handles high-
level objects (applications), the strain on the system is minimal: the rate of scheduling decisions scales

48 A Flexible Scheduling Heuristic

well even with heavy workloads. The virtual assignment procedure avoids application interference by
construction because it considers requests in sequence, according to their priority. The virtual assignment
is imposed on the back-end, using its API.

The Zoe client API handles REST calls that mutate the system state, or that can be used to monitor
the system behavior. Command-line and web interfaces allow users and administrators to interact with
the system and the cluster.

The Zoe scheduler implements the algorithm described in section 3.2. When an application is
submitted, the Zoe master creates an entry in the application state store, and adds it to a pending
queue. Our system allows plugging several scheduling policies to manage the pending queue, ranging
from simple to sophisticated size-based policies. Such policies determine which application is granted
“access” to cluster resources: to this end, the scheduler uses the cluster state store to simulate possible
deployments before accepting an application. Framework components underlying an application are
scheduled according to their type. The scheduler strives at making sure the application selected for
execution can make progress as soon as resources are allocated to it. The Zoe monitoring module uses
the Docker event stream to update the state of each application component running in the system.

Currently, the Zoe system supports a naive preemption mechanism: entire applications can be
killed upon a command. The finer strategy described in Section 3.2 and Section 3.3 is currently under
development.

Finally, although Zoe supports many data sources and sinks, we report experiments using a HDFS
cluster to store input data to applications, and CEPH volumes to store application-specific logs.

3.5 Experiments with Zoe

Our goal now is to perform a comparative analysis of two generations of Zoe: the first, implementing
a rigid scheduler, as for the baseline, the second with the flexible scheduler we present here. In our
experiments, we replay the exact same workload trace for both generations. Each trace takes about 3
hours from the first submission to the last. During our experiments, no other user was allowed to submit
jobs to Zoe.

Workload We use two representative batch application templates, including: 1) an elastic application
using the Spark framework; 2) a rigid application using the TensorFlow framework. Following the
statistical distribution of our historical traces, we set our workload to include 80% of elastic and 20%
of rigid applications, for a total of 100 applications. Application inter-arrival times follow a Gaussian
distribution with parameters µ = 60 sec, and σ = 40 sec, which is compatible with our historical data.
More specifically, using the elastic application templates, we run two use cases. First, an application to
induce a random-forest regression model to predict flight delays, using publicly available data from the
US DoT.15 Second, a music recommender system based on alternating least squares algorithm, using

15http://stat-computing.org/dataexpo/2009/the-data.html

3.5 Experiments with Zoe 49

B-E B-R
0

1000

2000

3000

4000

5000

6000

7000
T

im
e

(s
)

Application Turnaround

Base ZOE
50

60

70

80

90

100

P
er

ce
n
ta

ge
 (

%
)

Memory Allocated

Fig. 3.10 Comparison of turnaround time distributions using the FIFO discipline. White boxes (right box
of every pair) correspond to the second generation of Zoe that implements our algorithm. B-E stands for
batch elastic and B-R stands for batch rigid applications.

publicly available data from Last.fm16. Both applications have two different requirements (flavors)
in term of memory for each elastic component. The random-forest regression model has 3 core
components and 32 elastic components of 16GB or 8GB RAM each (depending on the flavor); every
elastic component uses 1 CPU. The music recommender system has 3 core components and then 24
elastic components of 16GB RAM or 8GB each (depending on the flavor); every elastic component uses
6 CPU. Instead, using the rigid application template, we train a deep Gaussian Process model [Cutajar
et al., 2016], and use both a single-node and a distributed TensorFlow program, requiring 1 and 10
workers (and 5 parameter servers) each with 16GB of RAM.

Experimental setup We run our experiment on a platform with ten servers, each with two 16-core
Intel E5-2630 CPU running at 2.40GHz (total of 32 cores with hyper-threading enabled), 128GB of
memory, 1Gbps Ethernet network fabric and ten 1TB hard drives. No GPU-enabled machines are
available in our platform, at the moment. The servers use Ubuntu 14.04, Docker 1.11 and the standalone
Swarm manager. Docker images for the applications are preloaded on each machine to prevent container
startup delays and network congestion.

Summary of results Using the FIFO scheduling policy, we compare the two generations of Zoe
according to the distributions of application turnaround times, as shown in Figure 3.10 (left). The
behavior of the two systems indicate a clear advantage for our approach: the median turnaround times
are 37% and 22% lower, for elastic and rigid applications respectively. Note also that the tails of the
distributions are in favor of our approach.

Overall, the new generation of Zoe that implements the flexible scheduler is more efficient, with a
20% improvement, in allocating and packing applications, as illustrated in Figure 3.10 (right), where we
show the ratio of the distribution of allocated over available resources.

16http://www-etud.iro.umontreal.ca/~bergstrj/audioscrobbler_data.html

50 A Flexible Scheduling Heuristic

Finally, we present results concerning a low-level metric that measures the application ramp-up time,
i.e., the time it takes for applications scheduled for running, to receive their allocations and start producing
work. Zoe achieves a container startup time, including placement decisions, of 0.90s±0.25ms. Full-
fledged applications, made by several containers, only take few seconds to start, which is a compelling
property, especially when compared to existing solutions such as Amazon EMR.

3.6 Summary

Efficient resource management of computer clusters has been a long-lasting area of research, with peaks
of attention happening in conjunction to improvements in computing machinery, e.g. lately with cloud
computing and big data. A new breed of cluster management systems, aiming at becoming “data-center
operating systems”, are currently been confronted with problems of efficiency and performance at scale.

Despite recent advances, there exists a gap between the goal of low-level resource management,
and that of manipulating high-level, heterogeneous, distributed (analytic) applications running in such
cluster environments. In this chapter we presented a first possible step to fill this gap, in the form
of a new application scheduler that interacts with a cluster management back-end, to schedule and
allocate resources to applications defined with a simple language and semantics. In addition to careful
engineering, required to design and implement our system we call Zoe, our research identified a more
fundamental problem, that calls for a novel scheduling heuristic capable of manipulating composite
applications, while contributing to system responsiveness.

We validated our algorithm to address our scheduling problem along two lines. We used a numerical
approach to simulate large-scale deployments and workloads. We showed our scheduling algorithm to
be highly effective in reducing turnaround times, in particular by reducing applications queuing times.
Consequently, cluster resources were better allocated. In addition, we reported an overview of the
evaluation of Zoe, that indicates superior performance and efficiency related to our flexible scheduling
heuristic.

Next we are going to focus on the development of a method to redeem untapped resources from idle
but running applications.

Chapter 4

Data-Driven Resource Allocation

Despite recent efforts in the research area of resource allocation and scheduling, data-center resources
go often under utilized, as shown in recent traces from large-scale production clusters [Reiss et al., 2012;
Wilkes, 2011]: Figure 1.1 illustrates resource utilization in a operational cluster at Google, for a mixed
workload of production services and batch applications; in most cases (∼ 80%) resource utilization is
less than 40% or 80% of the allocated resources depending on different application types1.

Current approaches that address efficiency requirements fall in two broad categories. The first
involves methodologies that steer tenants’ behavior through the design of incentive mechanisms; tenants
are endowed with the task of optimizing their cost to operate their applications, whereas providers
operate on prices to regulate the allocation of idle resources. Such approaches are largely adopted by
public cloud providers [Babaioff et al., 2017]. The second category concerns approaches that operate
at the system level, and propose mechanisms that allocate resources based on tenants’ reservations23

[Ghodsi et al., 2011; Hindman et al., 2011; Rasley et al., 2016; Schwarzkopf et al., 2013; Verma et al.,
2015]. The ultimate goal of this line of research is to render the concept of resource reservation obsolete,
and either let tenants reason in terms of value and cost [Babaioff et al., 2017], or let the system determine
how to avoid wasting precious and costly resources, especially when the latter are scarce and entail
application queuing in the scheduler.

In this chapter, we discuss a methodology that essentially lies in the second category. We present
a system that dynamically allocates resources according to historical observations of its utilization.
More specifically, we leverage machine learning algorithms in order to adjust allocation to the expected
utilization. We present our design of a data-driven scheduling mechanism that improves cluster utiliza-
tion, thus decreasing the average turnaround time, while preventing application failures due to resource
contention. Our approach monitors resource utilization and relies on sophisticated online resource
demand forecasting to modulate allocated resources such as they approximate utilization patterns well.

1In the analysis we saw that some applications were using more resources than requested and this was confirmed by Google
staff. Their system allows the user to go above the reservation when resources are available. Since not all the systems can do
this (e.g.; Docker), we decided to remove that portion of the data.

2http://www.docker.com/
3https://aws.amazon.com/emr/

52 Data-Driven Resource Allocation

Our experiments, that we conduct on a system simulator as well as a prototype implementation using
real-life data-center traces, indicate substantial gains over existing alternatives: our approach contributes
to more efficient and responsive clusters, while carefully controlling the number of application failures
due to the approximate nature of our control approach.

The remainder of this chapter is organized as follows. In section 4.2 we present our system design,
and we validate our ideas using a simulation campaign in section 4.3. Finally, we present our prototype
implementation in section 4.4 and its evaluation in section 4.5.

4.1 Problem Statement

In this thesis, we study the problem of cluster efficiency by reducing the resource slack induced by
reservation-centric application schedulers, which match allocation to reservation. To do so, we introduce
a new mechanism that predicts the resource utilization and adjusts the resource allocation accordingly.
The main challenge to face is that prediction errors may have problematic consequences, since sudden
spikes could wreak havoc the system [Verma et al., 2015]. When dealing with finite resources such
as RAM, in fact, not providing the correct amount of resources leads to application failures. Careful
engineering would suggest to introduce a buffer that will act as “safe-guard” to prediction errors. This
results in a trade-off, since on the one hand the safe-guard buffer should be small to minimize slack,
while on the other hand it should be sufficiently large to prevent application failures.

Previous works (a detailed description is provided in Section 2.1.3) usually consider shareable
resources, such as CPU, where the effect of wrong resource dimensioning does not translate into
application failures. Other approaches consider resource over-provisioning, where the slack is not
continuously optimized, and where the application failures can be unpredictable and are taken care by
the Operating System (OS).

In our approach, we leverage on three key ideas: prediction confidence, application elasticity and
controlled failures. In the prediction process, most of the tools provide additional information about
the confidence of the prediction. We use such information to dynamically adapt the safe-guard buffer
that should prevent application failures. In addition, the frameworks, on which the applications are
based, are composed by several elements that are characterized by either a core or elastic nature [Pace,
Venzano, Carra and Michiardi, 2016]. Core components are compulsory for a framework to produce
useful work (e.g, Apache Spark requires a controller, a master, and one worker); elastic components,
instead, optionally contribute to a job, e.g. by decreasing its runtime. An application that features
only core components is called rigid, whereas applications with a mix of core and elastic components
are called elastic. If the resource demand is higher than the available resources, we intervene (when
possible) on elastic components to avoid application failures. As a last step, should the previous two
mechanisms not be sufficient to provide enough resources, we explicitly decide which application should
fail so that to minimize the amount of wasted work.

4.2 System Design 53

Cluster
State

Application
Scheduler

Backend
[e.g. Docker]

Resource
Monitor

Resource
Shaper

Utilization
Forecasting

Application Request
(Reservation)

Allocation

Allocation

Allocation Utilization

Prediction

New
Allocation

Allocation Confidence

Fig. 4.1 System overview: shaded boxes represent existing components, white boxes indicate new
components presented in this work.

4.2 System Design

The goal of our system is to increase cluster utilization and reduce average application turnaround times
by adjusting allocation to track resource utilization by anticipating its dynamics, while reducing the
number of “self-inflicted” application failures due to approximation errors.

Figure 4.1 illustrates the architecture we assume in our work. The backend module is an instance of
a cluster management system, such as Docker4 or Kubernetes5, or alternative schedulers [Thinakaran
et al., 2017]. Additionally, we assume the presence of an application scheduler such as [Pace, Venzano,
Carra and Michiardi, 2016], which reads the compute cluster state from a dedicated database component.
Finally, the monitoring component populates the cluster state database with measurements taken from
the backend. In this Section, we focus on the two additional components we present in this paper: the
utilization forecasting module, and the resource shaper module.

A bird’s view on the operation of our system is as follows. Application execution requests take
the form of resource reservations, which are submitted to the application scheduler. The application
scheduler admits the request based on reservation information alone, and instructs the back-end to
provision the necessary resources. The resource monitor collects information about both allocated
and used resources, which are fed to the system state and the forecasting component respectively.
The resource shaper module gauges resource allocation to match predicted utilization patterns, and is
responsible for the preemption of running applications in case of sudden peaks in resource demand.
The modified resource allocation is reflected in the system state, which in turn triggers new scheduling
decisions. Next, we describe in detail the components that materialize our ideas.

4https://docs.docker.com/swarm/
5http://kubernetes.io/

54 Data-Driven Resource Allocation

Resource monitor This module collects information about resource allocation and utilization from
every component of every running application. This happens at regular time intervals: higher frequencies
provide more accurate views, but generate more data. Our goal is to minimize intrusiveness by
being application agnostic: for this reason we do not instrument applications (as done for example in
[Kuzmanovska et al., 2016]), but take standard metrics (CPU, memory, etc) as they are seen by the OS.

Utilization forecasting The goal of this module is to anticipate the resource utilization of every
application component. We study both parametric and non-parametric modeling approaches to predict
resource utilization, with emphasis on the quantification of the uncertainty associated to these predictions.
A more detailed exposition of the methodology we employ can be found in Section 4.2.1.

Resource shaper This module uses utilization forecasts to adjust the resources allocated to every
component of running applications. We anticipate prediction errors, thus we compensate using a “safe-
guard” buffer of size β to artificially increase (that is, to force over estimation) predicted peak resource
utilization. A more detailed exposition of β can be found in Section 4.2.1.

Additionally, the resource shaper is in charge of application preemption. Preemption policies can
either be optimistic [Schwarzkopf et al., 2013; Verma et al., 2015] or strict (pessimistic). We advocate for
a strict policy, to avoid delegating application preemption to the OS, which manages resource shortage
(such as Out Of Memory (OOM)) in an application agnostic and “unpredictable” way. A detailed
exposition of the preemption policy can be found in Section 4.2.2.

4.2.1 Utilization Forecasting Module

The forecasting module is responsible for making predictions about future resource utilization, for each
application component. For a given application, we forecast both CPU and memory utilization using
monitoring data, which is available in the form of a time series that reflects resource usage across time6.
We seek to discover patterns of resource usage that allow reasoning about our expectations on the future
state of the system utilization.

We advocate for the need to quantify the level of uncertainty associated with each prediction:
predictive errors may have serious impact on “finite” resources (i.e. memory), as they can cause
application failures. Although errors are unavoidable to a certain extent, predictive confidence can be
used to adjust the degree of adaptiveness to the anticipated workload: intuitively, a prediction with
low confidence implies that the resource shaper should be conservative regarding changes in resource
allocation.

In this work we compare the traditional parametric Autoregressive Integrated Moving Average
(ARIMA) model to an alternative non-parametric model that offers a principled quantification of
uncertainty, which we introduced in Section 2.2. On the one hand, we use state-of-the-art ARIMA
implementations that automatically tune hyper parameters and that provide a method to compute

6Other types of resource can be considered as well.

4.2 System Design 55

confidence levels associated to predicted values [Box et al., 2008]. On the other hand, we model
resource utilization using Gaussian Process (GP) regression [Rasmussen and Williams, 2006], which
is a Bayesian non-parametric regression method with many attractive features. Bayesian approaches
control model complexity and thus avoid problems such as over-fitting [MacKay, 2003]. Moreover,
GPs offer a sensible framework for tuning their hyper parameters, through evidence maximization, that
does not require cross-validation approaches which are typically more expensive and unpractical in the
context of our work. Finally, the output of a GP regression model is a predictive distribution, rather than
a single prediction, which allows reasoning about uncertainty in a principled way.

How Online Forecasting Works

From a practical perspective, the forecast component operates in an online manner. As long as new data
is available, the predictive model will be trained and subsequently queried about the future workload.
Depending on the modeling methodology, our approach is as follows.

Using the ARIMA model The online training and prediction process that uses ARIMA operates by
appending the new resource utilization data to the collection of observations gathered so far. ARIMA
hyper-parameters are optimized using well-known methods78, which are known to be computationally
expensive. Alternatively, works like [Hyndman et al., 2007] propose a stepwise algorithm (instead of
using grid-search) that improves performance.

The k-step ahead forecast error is a linear combination of the future errors entering the system after
time t:

et(k) = yt+k− ŷt(k)

where ŷt(k) is the estimated value. Since E[et(k)|yt] = 0, the forecast ŷt(k) is unbiased with Mean
Squared Error (MSE):

MSE[yt(k)] = Var[et(k)]

Given these results, if the process is normal, the 100(1−α) forecast interval is:

[yt(k)±Nα/2

√
Var[et(k)]]

where Nα/2 is the multiplicative factor to obtain the percentile.

Using the GP model The online training and prediction process that uses GP regression operates as
follows:

1. New resource utilization data is appended to the collection of observations X,y. The rows of X
are patterns as defined in Equation (2.5).

7http://pyramid-arima.readthedocs.io/en/latest/_submodules/arima.html
8https://www.rdocumentation.org/packages/forecast/versions/8.3/topics/auto.arima

56 Data-Driven Resource Allocation

GP-Exp GP-RBF
0.0

2.5

5.0

7.5

10.0

12.5

15.0
Pe

rc
en

ta
ge

 (%
)

Prediction errors
h=10 h=20 h=40

ARIMA

Fig. 4.2 Boxplot showing error distribution of predicted utilization for a collection of time series in our
academic cluster with different history points and, in case of GP, different kernels. The red triangle is
the mean.

2. Using a history-dependent kernel kh(x,x′), Equations (4.1) and (4.2) are used to make predictions
based on observations X,y.

Under the assumption of a zero-mean prior and a Gaussian likelihood, that is, for any input-output
pair we have y∼ N(f (x),σ2), the posterior is also a GP whose mean and covariance can be calculated
analytically as follows:

E[f (x) | X] = kh(x,X)(kh(X,X)+σ2)−1y (4.1)

Var[f (x) | X] = kh(x,x′)

− kh(x,X)(kh(X,X)+σ2)−1kh(X,x)
(4.2)

The predicted value at a new point will be the expectation under the posterior distribution, and the
posterior variance quantifies the uncertainty about the prediction.

The regression step can be computationally expensive. Equations (4.1) and (4.2) involve a matrix
inversion (for k(X,X)+σ2), which is an operation of cubic complexity. Moreover, the set of observations
X,y will grow indefinitely during the lifetime of the system. While there is a plethora of methodologies
on sparse GPs in the literature [Chalupka et al., 2013; Quiñonero Candela and Rasmussen, 2005;
Rahimi and Recht, 2007; Snelson and Ghahramani, 2005], that can be used to reduce the complexity
of regression, in this work we adopt the simple solution of restricting the dataset X,y to the N latest
observations, thus keeping the model tractable. Note that N is the number of patterns used; it should not
be confused with h, which is the size of each pattern.

4.2 System Design 57

Numerical results We have applied our modeling approaches on a dataset consisting of approximately
6000 time series that monitor the memory usage of applications in our academic cluster. Figure 4.2
summarizes the empirical distribution function for the predictive errors observed across the entire dataset,
using ARIMA and GP.

In case of GP we forecast the future value using different number of past observations h= [10,20,40],
with N = h. As seen in Figure 4.2, increasing the value of h results in smaller prediction errors. Also for
the implementation of the history-dependent kernel as described in Equation (2.6), we have experimented
both with the exponential and the squared-exponential (also known as RBF in the literature) functions.
Figure 4.2 implies that the exponential implementation (GP-Exp) outperforms the RBF (GP-RBF) choice
in terms of prediction error. Results for the GP are in line with our expectations, as the time series in
question are typically not smooth. For the experiments of Section 4.3 and Section 4.5, we consider the
exponential implementation of the history-dependent kernel only.

With ARIMA we observe that setting p = h (so the autoregressive order equal to the history size)
is overridden by hyper-parameter optimization, which yields p≤ 3. Hence, the results for ARIMA do
not depend on h. From Figure 4.2, it appears that ARIMA performs slightly better compared to GP for
the median test error. Also the variance of the predictive error is smaller than with the GP model, an
indication of a possible “over-confidence” in the model predictions. Our experimental results discussed
in Section Section 4.3 corroborate this intuition: over-confidence leads to higher application failure rates,
and an overall lower system efficiency, when compared to the GP model we present in this work.

4.2.2 Resource Shaper Module

We now delve into the details of the resource shaper module, which we use to adjust resource allocated to
an application and its components as a function of predicted utilization. When resource are underutilized,
the resource shaper “redeems” the excess capacity such that the application scheduler can dequeue idle
applications. On the contrary, upon a utilization spike, the resource shaper needs to redeem resources
from running applications and dedicate them to those experiencing a peak demand, for otherwise
such applications are doomed to fail. Thus, the goal of the preemption policy we associate to the
resource shaper is to decide how to redistribute resources, by operating on running applications and
their components. Such a policy can optionally account for application priorities, as dictated by the
application scheduler. Note that, irrespectively of the chosen preemption policy, a failed application
is resubmitted to the application scheduler, making sure it enters the scheduling queue in a position
commensurate to its original priority.

Recent works (for example [Verma et al., 2015]) advocate for an optimistic preemption policy, which
is reminiscent of optimistic concurrency control [Schwarzkopf et al., 2013]: resources are redeemed
without taking explicit actions to manage the consequences of resource redistribution. Either explicit
(and often manually set) priorities determine the fate of running applications, or the task is left to the OS.

58 Data-Driven Resource Allocation

Algorithm 3: Overview of the pessimistic preemption policy implemented by the resource
shaper module.

Data: H ← Hosts, A ← Running Applications

1 cpusFree← Array(H)
2 memFree← Array(H)
3 foreach host ∈H do
4 cpusFree[host]← host.totalCpus
5 memFree[host]← host.totalMem

6 J ← SORT(schedulingPolicy, A)
7 foreach req ∈J do
8 cpus← cpusFree
9 mem← memFree

10 remove← False
11 foreach c ∈ req.CoreCpts do
12 cpus[c.host]← cpus[c.host]− c. f utureCpus−β
13 if cpus[c.host]< 0 then
14 remove← True
15 break
16 mem[c.host]← mem[c.host]− c. f utureMem−β
17 if mem[c.host]< 0 then
18 remove← True
19 break

20 if remove then
21 INSERT(req, K)
22 else
23 cpusFree← cpus
24 memFree← mem
25 E← SORT(timeAlive, req.ElasticCpts)
26 foreach e ∈ E do
27 cpus← cpusFree[e.host]− e. f utureCpus−β
28 mem← memFree[e.host]− e. f utureMem−β
29 if cpus≤ 0 or mem≤ 0 then
30 INSERT(e, KE)
31 else
32 cpusFree[r.host]← cpus
33 memFree[r.host]← mem

34 foreach req ∈K do
35 foreach c ∈ (req.CoreCpts∪ req.ElasticCpts) do
36 PREEMPCOMPONENT(c)

37 foreach e ∈KE do
38 PREEMPCOMPONENT(e)

39 foreach req ∈J \K do
40 foreach c ∈ (req.CoreCpts∪ req.ElasticCpts) do
41 RESIZECOMPONENT(c)

4.2 System Design 59

Here, we present an alternative preemption policy, which we call pessimistic. Our goal is to control
which application should be partially or fully preempted9, while minimizing the amount of work that is
wasted.

Algorithm 3 presents the details of our pessimistic preemption policy implemented by the resource
shaper, which is triggered at regular time intervals, as determined by the output produced by the
forecasting module. Given the current cluster state, and the resource utilization forecasts, the algorithm
computes a new resource allocation for each running application, which is then imposed on the cluster
by operating directly on application components through low-level preemption primitives.

The algorithm starts by initializing (lines 1-5) the variables that holds the information about the
allocated resources. Then it sorts (line 6) running applications according to the application scheduler
policy (e.g.; First-In-First-Out (FIFO), that is, arrival times), and it computes (lines 7-33) an allocation
by trying to maximize the resource allocation while minimizing the number of running applications. In
particular, it first allocates the core (lines 8-19) components and then all elastic components10 that fit in
the host (lines 23-33). The algorithm continues until all running applications are processed.

Resource allocation is determined, and we can turn our attention to preemption. Core components
that no longer fit a host entail full application preemption (lines 34-36). Also elastic components can be
preempted (lines 37-38), inducing only a partial application preemption. In addition, in case of elastics
components, we can experience partial or entire loss of the work done by the preempted component. For
this reason, our algorithm allocates the core components of an application, then moves to the elastic
components by giving priority to the ones that have been living in the cluster for a longer time (line
25). Components recently scheduled are the best candidates for preemption, because they have likely
produced less useful work. Finally, the algorithm resizes (lines 39-41) the components according to the
computed allocations. Our algorithm currently supports CPU and Memory, but it can be extended to
other types of resource as well.

Safe-guard buffer We are now ready to define the “safe-guard” buffer. The buffer size β is a function
of the uncertainty quantified by the forecasting module:

β = K1RAi +K2VAi (4.3)

where RAi is the initial resource request for application Ai, and VAi is the estimated variance of the
prediction, as these are given by the forecasting module (ARIMA or GP). Equation (4.3) involves a
constant term K1RAi and a dynamic term K2VAi . The constant term can be though of as a minimum
resource allocation that is granted to application Ai. The dynamic term uses the confidence (expressed
as variance VAi) given by the predictor to adjust β accordingly: it thus changes during an application

9We consider preemption primitives such as a kill operation, which inevitably waste work. Component or application
suspension [Pastorelli et al., 2014] and migration are outside the scope of this work. Alternatively, it would be interesting to
consider techniques such as [Gu et al., 2017], which would allow a graceful management of memory pressure.

10In case the application scheduler does not support the distinction between core and elastic, all components are treated as
core.

60 Data-Driven Resource Allocation

lifetime. In Section 4.3, we study how different values of K1 and K2 affect the performance of our
method.

4.2.3 System Scalability

Scalability is a crucial aspect of systems that manage computer clusters. We comment on two sources of
scalability bottlenecks in our solution: the algorithmic complexity (i) of the forecast module and (ii) of
the algorithm to address resource conflicts.

Utilization forecasting Module The regression step of the predictor can be computationally expensive;
the matrix inversion in eqs. (4.1) and (4.2) has cubic complexity on the set of observations recorded.
Although we have already reduced the complexity by considering the N most recent patterns, it is still
necessary to keep as many predictive models as the running components in the system. However, the
execution of predictive models can be trivially distributed on every host of the cluster, since the models
are independent and no coordination is required.

Resource Shaper Module From algorithm 3, we can see that its runtime complexity is O(A×C)

where A and C are the cardinality of the application set and their components, respectively. Instead of
having a single instance of the algorithm running in a central component, it is tempting to distribute
the algorithm on a per-host basis, which contributes to reduced input sizes to the problem. However,
a distributed approach lacks a global view on the system, and is thus prone to be sub-optimal when
compared to a centralized algorithm. Local decisions can have global effects, e.g., preemption of a core
component on a certain host entails preemptions of all related core components on other hosts. For
that reason, we focus on the centralized variant. A competitive analysis of the distributed algorithm is
subject of future research.

4.3 Numerical Evaluation

4.3.1 Methodology

We evaluate our algorithm using an event-based, trace-driven discrete simulator which was developed to
study the scheduler Omega [Schwarzkopf et al., 2013], and was later extended in [Pace, Venzano, Carra
and Michiardi, 2016] to study application schedulers. We have made additional extensions11 to support
the concepts of this work.

In this work, we are mainly interested in memory resources, which are much harder to manipulate
than computational (CPU) ones. We use publicly available traces 12 [Reiss et al., 2012, 2011; Wilkes,
2011], and generate a workload by sampling from the empirical distributions computed from such traces.
Our workload is composed by 150.000 batch applications, both rigid (e.g. TensorFlow) and elastic (e.g.

11https://github.com/DistributedSystemsGroup/cluster-scheduler-simulator
12https://github.com/google/cluster-data

4.3 Numerical Evaluation 61

Apache Spark) variants. Applications are assigned a number of components ranging from a few to tens
of thousands. The resource requirements (in terms of memory) of application components follow that
of the input traces, ranging from a few MB of memory to a few dozens of GB, and up to 6 CPU cores.
Application runtime is generated according to the input traces, and ranges from a few dozens of seconds
to several weeks (of simulated time). Inter-arrival times are drawn from the empirical distributions of
the input traces, and exhibit a bi-modal distribution with fast-paced bursts, and longer intervals between
application submissions.

We simulate a cluster consisting of 250 homogeneous machines, each with 32 cores and 128GB of
memory. All results shown here include 10 simulation runs, for a total of roughly 3 months of simulation
time for each run.

The metrics we use to analyze the results include: (i) application turnaround, which allows
reasoning about the scheduling objective function, (ii) resource slack, measured as the difference of
percentage of CPU and memory the scheduler allocates to each application compared to the percentage
actually used by the application and (iii) application failures, which give us information about the
aggressiveness of our approach. Note that we omit results that use size-based scheduling disciplines
instead of simple FIFO. Clearly, both turnaround and slack metrics would improve, due to well known
properties of size-based policies. The use of more sophisticated policies does not qualitatively change
our observations on the merits of our dynamic allocation approach.

4.3.2 Results

Next, we present experimental results that demonstrate the advantage of our resource shaping mechanism,
compared to a baseline approach which matches allocation to reservation. Two alternatives for time
series prediction are examined. We first consider an ideal setup with an oracle having perfect information
about future workload: this allows to determine an upper bound of the performance gains achieved by
our approach. Then, we compare the two models developed in Sections 2.2 and 4.2.1 (ARIMA and GP),
to investigate the impact of prediction errors on system performance.

Baseline It constitutes a reservation centric approach (similar to Mesos and Yarn, as originally
implemented in the Omega simulator [Schwarzkopf et al., 2013]) that achieves the performance reported
in Figure 4.3. This approach relies entirely on the resource requested by the application (when submitted)
in order to allocate resources in the cluster and does not modify them at runtime. We show the difference
in resource allocation compared to utilization, called slack, of CPU and memory. This result reiterates on
the low efficiency of reservation centric approaches: the median resource slack is large (40% for the CPU
and 90% for the Memory). Untapped resources could be used to decrease queuing and consequently
turnaround times.

Oracle-based resource shaping We gloss over prediction errors induced by a real statistical model
and consider an ideal scenario from the forecasting point of view. Ultimately, our goal is to discern

62 Data-Driven Resource Allocation

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0
P

er
ce

n
ta

ge
 (

%
)

Resource Slack

102

103

104

105

106

107

T
im

e
(s

)

Turnaround

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

ge
 (

%
)

Resources Slack
Baseline Dynamic Optimistic Dynamic Pessimistic

Fig. 4.3 Boxplots comparing baseline vs optimistic vs pessimistic approaches over different metrics,
using an oracle in place of the prediction module. The red triangle is the mean.

virtues and drawbacks of different preemption policies. Results are summarized in Figure 4.3: the
plots correspond to resources slack and application turnaround, whereas each box correspond to the
baseline and our resource shaping approach, with an optimistic (as originally implemented in the Omega
simulator [Schwarzkopf et al., 2013]) and our pessimistic preemption policy. Note that our simulator
implements the concept of work lost when an application component crashes or gets killed.

Overall our results indicate that resource shaping brings substantial benefits in terms of all metrics
we consider, in the absence of prediction errors. Cluster efficiency improves because resource slack,
computed as the difference between allocated and used resources, drastically shrinks as shown in
Figure 4.3 (left) compared to the baseline. Similarly, turnaround times are notably smaller as shown in
Figure 4.3 (right) in comparison to the baseline. Indeed, the system can ingest new applications more
quickly, because resources are better used.

Figure 4.3 can now be used to compare optimistic versus pessimistic eviction policies, in absence
of prediction errors. While both approaches improve over the baseline, the pessimistic policy we
introduce in this work is consistently superior to the optimistic policy in all respects. As shown in
Figure 4.3 (left), the pessimistic policy induces our resource shaping mechanism to follow very closely
application resource utilization: in this case, resource slack becomes negligibly small. This result
explains why turnaround times, Figure 4.3 (right), are almost two orders of magnitude smaller with
the pessimistic policy: by freeing up resources, the application scheduler is amened to trigger new
executions, thus queuing times shirk. Furthermore, we compute the number of application failures: in
case of the optimistic policy we record 37.67% application failures, whereas with the pessimistic policy
no application fails. Indeed, with the optimistic policy, when two applications compete for resources
and there are none left, the system will let one of the two fail. Instead, the pessimistic policy avoids
failures through partial preemption, by freeing elastic resources first.

ARIMA-based resource shaping Next, we study the system behavior when using ARIMA to predict
future resource utilization. As anticipated in Section 4.2, statistical models are prone to prediction

4.3 Numerical Evaluation 63

0 5 10 15 20 40 70 100
K1 (%)

0

1

2

3

K2

0.95 7.5 6.69 4.99 3.88 2.09 1.23 1.0

0.95 7.53 6.69 5.05 3.98 2.09 1.24 1.0

0.95 7.48 6.67 5.0 3.98 2.07 1.24 1.0

0.95 7.61 6.63 5.04 3.98 2.09 1.23 1.0

Turnaround

1

2

3

4

5

6

7

Ra
tio

0 5 10 15 20 40 70 100
K1 (%)

0

1

2

3

K2

71.0 25.8 29.0 34.0 39.5 54.3 66.0 71.0

71.0 25.7 29.0 34.0 39.4 54.2 66.0 71.0

70.7 25.6 28.9 34.1 39.4 54.1 66.0 71.0

70.8 25.5 28.9 34.1 39.4 54.0 66.0 71.0

Memory Slack

30

40

50

60

70

%

0 5 10 15 20 40 70 100
K1 (%)

0

1

2

3

K2

84.1 26.2 13.0 7.4 4.63 0.94 0.14 0.0

84.1326.2 13.0 7.4 4.64 0.93 0.16 0.0

84.0826.2 13.0 7.43 4.65 0.97 0.15 0.0

84.1 26.1 13.0 7.47 4.6 0.96 0.15 0.0

Crashes

0
10
20
30
40
50
60
70
80

%

(a) ARIMA

0 5 10 15 20 40 70 100
K1 (%)

0

1

2

3

K2

0.95 6.13 5.76 4.62 3.76 2.07 1.24 1.0

0.94 6.76 6.18 4.85 3.85 2.06 1.23 1.0

0.92 8.64 6.88 4.97 3.92 2.05 1.23 1.0

0.93 10.6 7.02 4.98 3.85 2.02 1.22 1.0

Turnaround

2

4

6

8

10

Ra
tio

0 5 10 15 20 40 70 100
K1 (%)

0

1

2

3

K2

71 30 31 35 39 54 67 71

71 26 30 35 40 55 67 71

69 24 29 35 40 55 67 71

68 22 29 35 41 55 67 71

Memory Slack

30

40

50

60

70

%

0 5 10 15 20 40 70 100
K1 (%)

0

1

2

3

K2

86.4 40.2 25.1 17.0 12.0 3.3 0.29 0.0

82.9 28.0 14.6 8.6 5.37 0.82 0.03 0.0

73.9 13.9 5.8 2.99 1.62 0.16 0.02 0.0

58.9 5.1 1.98 0.95 0.49 0.08 0.02 0.0

Crashes

0
10
20
30
40
50
60
70
80

%

(b) GP

Fig. 4.4 Heat maps showing the effect of K1 and K2, which compose β , on different metrics when using
ARIMA and GP. Bright cells are better.

errors, which we address using the buffer β . A key feature of our approach is that β is a function of
the uncertainty produced by the model. In practice, when the predictor outputs a future (peak) resource
utilization, we adjust the value by adding the buffer β . In Figure 4.4a we demonstrate the effect of
the buffer parameters (β = f (K1,K2)) on the turnaround ratio over the baseline, the memory slack and
application failures (we show average results). In all cases, bright cells are better.

On the x-axis, K1 controls the static component of Equation (4.3), which gauges the minimum
amount of resources systematically granted to applications. The value of K1 is expressed as a percentage
of the requested resources; when K1 = 100% our approach degenerates to the baseline. On the y-axis,
K2 controls the dynamic component of Equation (4.3), which integrates prediction uncertainty. We let
K2 vary in the range [0,1,2,3] which define different bands around the mean of the predictive Gaussian
distribution, according to the three-sigma rule.

Let’s first slice Figure 4.4a by row, and focus on the K2 = 0 case: here we omit uncertainty
information and only consider the effects of a static, minimum resource allocation. Even with just
K1 = 5%, our approach achieves 7.5x average improvements in terms of application turnaround, while
resource slack is only 30% in average. However, the number of crashed application is high: roughly
26% of applications experience a failure in average, and the situation improves only for large values
of K1. In the limit, when K1 = 100%, our method degenerates to the baseline: here no application fail,
but turnaround times and slack exhibit no improvements. In our system, when an application crashes it
is resubmitted and, after a certain amount of failures, the system is not shaping its allocation anymore.

64 Data-Driven Resource Allocation

Also, even if applications crash they can still benefit from being able to start sooner than a baseline
system because other applications were able to complete their work sooner.

We note that the absence of a static term (i.e. K1 = 0%) results in turnaround that is very close to
the baseline regardless of K2, due to the high number of applications failures which also lead to an
high memory slack. This is a consequence of the occasional high confidence of the predictor in cases
where a sudden change in the usage behavior occurs. It is necessary to maintain a static component to
accommodate unexpected variations, which are very difficult to capture with statistical methods.

Finally, we focus on K1 = 5%: the minimum resource allocation is small, and we absorb prediction
errors and fluctuations using uncertainty information. However, as K2 increases, all metrics remain
similar: the uncertainty produced by the ARIMA model is not sufficiently accurate to compensate
forecasting errors.

GP-based resource shaping. Next, we study the system behavior when using GP regression to
predict future resource utilization. Similarly to the ARIMA-based resource shaping, in Figure 4.4b we
demonstrate the effect of the buffer parameters. However, we can see that while GP gives slightly worst
results when not considering the uncertainty of the forecasting values (K2 = 0) compared to ARIMA, as
K2 increases, all metrics improve: average turnaround ratios increase up to 10.6x improvement, average
slack is reduced to a 22% in average, while application failures quickly decrease.

In our setup, the best performance is achieved when the system is most flexible regarding the size of
the buffer, i.e., a high value for its dynamic and a small value for its static components.

In summary the results show that, for the best configuration of parameters with a real predictor and
not an oracle, tunraround time and resource slack is more than halved in the median case, both in terms
of CPU and memory resources. By using the uncertainty provided by the forecasting model based on the
GP, we are able to improve these metrics further, achieving 10.6x improvement compared to the baseline
for the turnaround time.

4.4 System Implementation

We materialize the ideas presented in this paper with a full-fledged, python-based, implementation of our
mechanism, following the system design presented in Section 4.2, and depicted in Figure 4.1. For this
work, we build the resource shaper to interact with the application scheduler presented in Section 3.4
[Pace, Venzano, Carra and Michiardi, 2016]. In our implementation, the resource shaper modulates both
CPU and memory resources.

In our cluster, we use Docker as the back-end and we have investigated how to resize its containers
(corresponding to application components). There are two values that Docker uses to check for Memory
limits: a hard and a soft limit. When the hard limit is surpassed, the container is killed by the OS.
Instead, when the soft limit is reached, the OS tries to release some resources first. In our work we
use the soft limit value since the application scheduler we use takes decisions based on such value. In
particular, we rely on the OS low level mechanisms to notify the processes running in the container to

4.5 Experimental Evaluation 65

free some of their resources. This practice is compatible with frameworks such as the Java Garbage
Collector (GC) that attempts to release allocated but unused memory space. Note that our technique is
compatible with approaches such as [Hassan and Zwaenepoel, 2017], which trade performance for a
smaller memory footprint.

The monitoring component feeds the utilization forecast module with data at regular time intervals.
Frequent updates ultimately result in better system efficiency, as the predictor operates on a high-fidelity
view of resource utilization in the cluster. However, this might impose a high toll in terms of monitoring
scalability. On the other hand, infrequent updates improve scalability at the expense of lower system
efficiency and responsiveness. In our implementation, we collect resource utilization information every
minute, which is in line with what done in [Verma et al., 2015].

Next, we provide additional details of our prototype.

Forecasting module It implements the two models we discuss in Section 4.2.1. For the ARIMA
model we use the well-known StatsModel [Seabold and Perktold, 2010] library, which features an
efficient implementation of the ARIMA model and its automatic parameter tuning through the Pyramid
wrapper13. For the GP model we use the well-known library GPy14. Both models consider a small
history of the ten past observations for training, to keep computational complexity under control.

Resource shaping module It materializes the ideas presented in Section 4.2.2. The ultimate goal
of the resource shaper is that of issuing commands to preempt (kill, in our implementation) an entire
application, or individual components thereof, and to resize the resource allocation, as computed by the
by Algorithm 3. It is important to point out that the resource shaper adapts resource allocations only
after enough historical data points are available for the forecasting module: we call this a grace period,
and set it to 10 minutes in our experiments.

The resource shaper uses the mechanisms exposed by Docker (as discussed above) to adjust applica-
tion resources, and to eventually preempt components or entire applications. This module computes a
new resource allocation for all running application in the system, based on the predicted value and vari-
ance obtained from the forecasting module. The buffer β is set to compensate for prediction uncertainty,
using the parameters that we obtain through simulations, that is K1 = 5% and K2 = 3.

4.5 Experimental Evaluation

We have deployed the mechanism presented in this paper in our cluster, which we operate using 15. Our
goal is to perform a comparative analysis between dynamic resource shaping and a baseline, as done in
Section 4.3. The baseline system supports the concept of distributed applications [Pace, Venzano, Carra
and Michiardi, 2016], but follows a reservation centric approach, in which allocation matches reservation

13https://github.com/tgsmith61591/pyramid
14https://sheffieldml.github.io/GPy/
15http://zoe-analytics.eu/

66 Data-Driven Resource Allocation

0

20

40

60

80

100

P
er

ce
n
ta

ge
 (

%
)

Memory Slack

0

5000

10000

15000

20000

25000

30000

T
im

e
(s

)

Turnaround

CPU Memory
0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
n
ta

ge
 (

%
)

Resources Slack
Baseline Dynamic Pessimistic

Fig. 4.5 Boxplots comparing baseline vs pessimistic dynamic approach over memory slack and
turnaround time distributions using GP-based resource shaping. The red triangle is the mean.

for the entire application lifetime. In our experiments, we consider exactly the same workload trace on
both systems which takes approximately 24 hours from the first submission to the completion of the last
application.

Workload We use two representative application templates including: 1) an elastic application using
the Apache Spark framework; 2) a rigid application using the TensorFlow framework. Similarly to the
traces used in Section 4.3, we set our workload to include 60% of elastic and 40% of rigid applications,
for a total of 100 applications. Application inter-arrival times follow a Gaussian distribution with
parameters µ = 120 sec, and σ = 40 sec, which is compatible with what we observe in our cluster.
Regarding the elastic application templates, we consider three use cases. First we consider an application
that induces a random-forest regression model to predict flight delays, using publicly available data from
the US DoT16. Second we consider a music recommender system based on the alternating least squares
algorithm, using publicly available data from Last.fm17. Third we consider an Extract, Transform and
Load (ETL) application. All applications have 3 different flavors: while they all have 3 core components,
the number of elastic components varies depending on the flavor. In terms of RAM, all flavors have
different reservation values that span from 8GB to 32GB. Instead, using the rigid application template,
we train a deep GP model [Cutajar et al., 2017], and use a single TensorFlow instance, with 1 worker
and 8-16-32GB of RAM depending on the flavor.

Experimental setup We run our experiment on a isolated platform (which we use as testbed for non-
production systems) with ten servers, each with a 8-core CPU running at 2.40GHz, 64GB of memory,
1Gbps Ethernet network fabric and two 1TB hard drives each. The servers use Ubuntu 14.04 and Docker
17.09.0. Docker images for the applications are preloaded on each machine to prevent startup delays and
network congestion.

16http://stat-computing.org/dataexpo/2009/the-data.html
17http://www-etud.iro.umontreal.ca/bergstrj/audioscrobbler_data.html

4.6 Summary 67

Summary of results Using the FIFO scheduling policy, and the GP-based utilization forecasting
module, we compare the two systems, baseline and dynamic. Overall, the dynamic system is largely
more efficient and responsive. We measure substantial improvements in terms of resource allocation:
indeed our system can afford to ingest more applications, that would otherwise wait to be served.
Figure 4.5 (left) illustrates resource slack, which is roughly 40% lower with our resource shaping
mechanism. As a consequence, applications spend less time in the scheduler queue and have short
turnaround times, as shown in Figure 4.5 (right). The median turnaround times are ∼ 50% shorter. Note
also that the tails of the distributions are in favor of our approach. Finally, we report that no application,
nor component failed when using our resource shaping mechanism, configured with the pessimistic
preemption policy.

4.6 Summary

The emergence of “the data-center as a computer” paradigm has led to unprecedented advances in
cluster management frameworks, that aim at exposing distributed, cluster resources to a variety of
business-critical and scientific applications. However, the current resource reservation model hinders an
efficient use of cluster resources. Resource utilization dynamics induce over-provisioning, which is one
of the main culprit of poor efficiency. The problem of underutilization has been addressed by several
approaches. For example, the design of economic incentives to steer system operation has led to the
development of complex resource markets, e.g. AWS Spot instances, which call for the design failure
tolerant applications, due to the ephemeral nature of the resources they are offered.

In this chapter, we presented a mechanism that cooperates with a scheduler to dynamically adjust
resources allocated to an application, so that they closely match those they actually use throughout their
lifecycle. Our design featured: a method to build a statistical model to forecast resource utilization, and
a preemption policy that reallocates system resources while minimizing failures.

We have validated our mechanism numerically and with a real experimental campaign. Our simula-
tions shed lights on the key role played by our ability to model and use prediction uncertainty, and by the
use of strict preemption vs. optimistic concurrency control. We implemented a system prototype of our
dynamic allocation mechanism and deployed it in a test environment, where we executed a real workload.
Results indicate notably improved system efficiency, which translates in better responsiveness.

Chapter 5

Experimental Evaluation of
Disaggregation between Compute and
Storage

Nowadays thanks to virtualization, compute and storage clusters are more flexible, they can be easily
provisioned in different sizes, and destroyed when not needed1. Increasingly, such storage and pro-
cessing systems are exposed to users as services, deployed on either public or private cloud computing
environments, rather than on bare-metal machines in private clusters. Indeed, many companies offer
Analytics-as-a-Service (AaaS) clusters to run a variety of applications: Amazon Web Services (AWS)
with Elastic MapReduce2, DataBricks Cloud3, Cloudera Cloud4 and Google Cloud Hadoop5 are note-
worthy examples.

In cloud computing environments, the architecture of analytics clusters is the result of the composi-
tion of several services, consisting of three (logically separated) layers: the Compute layer refers to all
cluster nodes that run the data processing application (e.g., a Spark application); the Data layer refers
to any combination of storage services (e.g., HDFS6 or Swift7); and the Storage layer that physically
stores the data, including ephemeral disks, object and elastic block stores.

In addition, it is likely for the Data or Storage layers and the Compute layer to be on different racks
or even data-centers: as a consequence, the traditional wisdom of data locality may be challenged. For
example, consider Amazon S38: data resides on a set of machines dedicated just to storage, breaking
data locality completely.

1https://aws.amazon.com/application-hosting/benefits/
2https://aws.amazon.com/emr/
3Solution hosted on AWS: https://databricks.com/product/databricks-cloud
4Solution hosted on AWS: http://www.cloudera.com/content/cloudera/en/solutions/partner/Amazon-Web-Services.html
5https://cloud.google.com/hadoop/
6https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
7http://docs.openstack.org/developer/swift/development_saio.html
8https://aws.amazon.com/s3/

70 Experimental Evaluation of Disaggregation between Compute and Storage

Currently, users of AaaS have abundant information about pricing and about the durability of
resources. It is possible to reason about cost-based service dimensioning, and to select appropriate
storage services depending on data availability and durability objectives. As a consequence, it is
today possible to build data ingestion, storage and processing pipelines, by composing – in various
combinations – the three layers defined above.

The questions that we address in this chapter then is: what happens to the performance, and to the
completion time in particular, of analytics applications with different type of Compute and Data layer
configurations?

We take an experimental approach, and propose a measurement methodology and campaign, whose
objective is to analyze the performance corresponding to an intuitive notion of distance between where
computation happens and data reside. In doing so, we define an extensive set of application workloads
that challenge the systems under study in different ways. Ultimately, our goal is to overcome the
limitations of prior works that only provide a boolean vision of data locality: our results indicate
that – in general – the intuitive distance metric we present in this work is a good proxy to reason
about performance ranking. However, impedance mismatch between different services and application
workloads must be taken into account to formulate plausible explanations for outliers in terms of
performance.

In particular we show that data locality cannot be studied as a feature that can be either present or
not, as it happens nowadays, but that there exist different degrees of data locality, whose importance
varies depending on the configuration of the data analytics framework and on the specific workload.
Furthermore we point out some design problems of a specific storage service architecture (Swift) making
this solution non-optimal for running a data analytics framework; and we show the impact of caching
hot data at the Data layer level with respect to application runtime.

This chapter is divided into different parts: Section 5.1 explain our research question, Section 5.2
describes the methodology and Section 5.3 is dedicated to the results.

5.1 Problem Statement

We empirically evaluate the performance of analytics applications composed using a variety of Compute,
Data and Storage layer configurations. Our goal is to understand how application run time varies across
configurations, for a wide range of application workloads.

Performance modeling of complex, distributed systems is a daunting task: application runtime
is affected by several factors, including data locality (which is the foundation of parallel processing
frameworks such as Hadoop and Spark), impedance mismatch between the various services involved in
analytic applications, interference between competing tenants, application workloads, and many more.

As such, we take an experimental approach, and analyze application performance through the lenses
of the data locality principle, which we revisit to accommodate the breath of storage configurations
currently available in most public and private clouds. In our study, we emphasize problems that arise as
a consequence of service composition, and suggests ways to mitigate them.

5.2 Methodology 71

5.2 Methodology

We use a private cloud computing platform to overcome the limitations of experiments performed on
public cloud infrastructures and we run 4 different types of analytics applications: read intensive, write
intensive, business intelligence and machine learning. In this section we: (i) provide the specifics of our
platform, (ii) illustrate the different placements of Compute, Data and Storage layers that we use in our
experiments, (iii) introduce an intuitive notion of distance between where computation happens and data
reside, that we call the Compute-to-Data path, (iv) present our workloads and (v) explain the metrics
used.

5.2.1 Experimental Platform

Our platform is composed by 25 server-grade machines equipped with: (i) two sockets with an Intel
Xeon at 2.40GHz, with hyper threading enabled (32 Cores), (ii) 128 GB RAM and (iii) ten 7200 RPM 1
TB disks. The platform is distributed across three racks. All the switches in the network topology can be
considered “non-blocking”: all machines can communicate at 1Gbps with each other.

We operate our platform using OpenStack9, which can automatically provision virtual analytic clus-
ters composed by Virtual Machines (VMs) connected directly to each other (i.e., no traffic encapsulation
and no virtual routing).

Our platform provides volumes (similar to Amazon EBS10) and ephemeral disks Storage layers.
Volumes are provisioned through the Openstack’s Cinder11 module on top of Ceph [Weil et al., 2006]
that is a distributed file system featuring high performance, reliability and scalability. Ceph’s blocks are
distributed over 8 disks spread across 5 physical machines. Similarly to a traditional RAID 0 approach,
when performing read and write operations, Ceph divides the data in smaller chunks (8 MB) and store
them across storage servers, called Object Storage Daemons (OSDs). Instead, ephemeral disks are
connected to a portion of a single physical disk that reside on the same host that runs the virtual machine
using it.

Our private cloud uses the OpenStack Sahara project to automatically provision Compute layers:
in this work, we use Apache Spark12. Spark can read from several Data layers; the two widespread
solutions that we take into consideration are HDFS and Swift (which is similar to Amazon S313). HDFS
is a Java-based distributed file system providing scalable and reliable data storage, designed to store a
small number of large files. Swift is a highly available, distributed, eventually consistent object store
designed as a generic service to reliably store very large numbers heterogeneous files. In our platform,
Swift is deployed on a single physical machine using the Swift-All-in-One (SAIO14) configuration, on
the basis of the capacity planning suggested in [Arnold, 2014]; no other processes share Swift’s hardware.

9http://openstack.org
10https://aws.amazon.com/ebs/
11http://docs.openstack.org/developer/cinder/
12http://spark.apache.org/
13https://aws.amazon.com/s3/
14http://docs.openstack.org/developer/swift/development_saio.html

72 Experimental Evaluation of Disaggregation between Compute and Storage

More generally, Swift can be deployed on several machines, to increase, e.g., capacity and reliability,
at the cost of increased network traffic. It is worth noting that we disabled the Swift authentication
mechanism in order to avoid additional overhead in the communication process, and to focus only on
the data path.

In this work, we gloss over the intricacies due to multi-tenancy and interference: hence, we statically
allocate a portion of the platform to run our experiments. The Compute layer is virtualized on 5 VMs
and uses Spark 1.5.2 as the computing framework: 4 workers, spread across 4 different hosts, and 1
master. The Data layer is also virtualized in 5 VMs spread across 5 different hosts. All the VMs are
equipped with (i) 4 cores, (ii) 32 GB of RAM and (iii) 80 GB of disk.

To gain statistical confidence in our results, all the experiments we report in this article were repeated
five times.

5.2.2 Deployment scenarios

We define a deployment scenario as a configuration of Compute, Data and Storage layers and study 4
scenarios that we think representative of common configurations:

Guest Collocation (GC) The Compute and Data layers are hosted on the same VM, the Storage layer
is an ephemeral, local disk. This is a popular configuration in public clouds: when a GC cluster is
decommissioned, all data is lost.

Guest Collocation with Volumes (GC-V) Same configuration as for GC, but the Storage layer uses
volumes provisioned using the Ceph distributed file system. This is also a popular configuration in
public clouds: it enables elasticity at the Compute layer, without sacrificing data durability at the Data
and Storage layers.

Swift (SWI) The Compute and Data layers run on distinct hosts. The Data layer is the Swift object
store, which ensures data durability. Similarly to the GC-V configuration, this scenario enables Compute
layer elasticity, and it is a popular configuration for its simple REST-based interface to interact with data.

No Collocation (NC) The Compute and Data layers run on different hosts; the Data layer uses HDFS
mounted on a Storage layer that uses ephemeral, local disk. This is a scenario enabling data durability:
the Compute layer can be decommissioned, while the Data and Storage layer keep running.

As we discuss in section 5.2.3, each scenario presents a different degree of data locality. In addition,
we note a first example of impedance mismatch, which we further elaborate in the remainder of this
work. Indeed, both the Data and Storage layers might implement their own data replication mechanism.
This is evident in the GC-V scenario: when HDFS is mounted on volumes, HDFS and Ceph replication
mechanisms are redundant. To better understand the performance implications of the GC-V scenario,
we thus distinguish two cases: GC-Vb, with both HDFS and Ceph replication and GC-Vs, with only

5.2 Methodology 73

Fig. 5.1 Compute-to-Data path for different scenarios during read operations.

Ceph replication, which correspond to the degrees of freedom exposed to users for configuring their
services. Note that if HDFS replication is disabled, Spark (the Compute layer) has no other means to
retrieve the data if a datanode crashes, resulting in a failure of the application; also Spark’s scheduler
has less flexibility in scheduling tasks, because data blocks are present in only one datanode. In contrast,
by enabling HDFS replication, the application will write extra data.

5.2.3 Compute-to-Data path

We now introduce an intuitive notion of distance between where computation happens and data reside.
As illustrative examples, consider the following cases: compute and data reside on the same VM, on
different VMs running in the same physical host, on different VMs on different physical hosts in the
same rack, and so on. It is intuitive to treat these cases as increasing in terms of distance, which is thus
loosely coupled with the amount of network links data need to traverse for being processed. Also, recall
that read and write operations issued by the Compute layer, work on a given split of the input or output
data, which is organized as a sequence of records. We use the following intuitive and rough definition of
distance:

Definition The Compute-to-Data path is the number of logical links a successful (read or write)
operation must cross, for a given data record.

In this Section we use the Compute-to-Data path as a proxy to reason about performance ranking,
that takes into account the logical distance between the three layers composing an analytic service and
the additional cost of the replication system(s). Indeed, we can expect a performance degradation each
time an operation traverses a network link: the intuitive ranking holds even if we do not explicitly model
network latency or topology.

Figure 5.1 shows graphically how we derive the Compute-to-Data path for each scenario during a
read request. Note that it is important to be careful and take into account the architecture details of each
layer: for example, Swift has a single point of access called the Swift-Proxy, which mediates between
the Compute layer and Swift’s storage nodes. To calculate the Compute-to-Data path we count all the

74 Experimental Evaluation of Disaggregation between Compute and Storage

Fig. 5.2 Compute-to-Data path for different scenarios during write operations.

logical links, between the Compute layer and the physical data, that each individual record request has
to traverse. Considering the SWI scenario, we have one link from Compute layer to Swift-proxy, then
one more between Swift-proxy and Swift’ storage nodes, finally the record request’s ACKs traverse the
same links to reach the Compute layer, for a total of 4 links. Similar consideration can be made for the
remaining scenarios: the GC traverses 0 link while the GC-V and the NC 2 links.

For write requests, data replication has to be taken into account. HDFS, Swift and Ceph have
different replication systems: HDFS uses chain-replication, whereas Swift and Ceph use asynchronous
replication, with different quorums. Assuming a replication factor of 3, the Swift-proxy requires 2/3
of storage nodes to acknowledge a write operation, whereas Ceph requires all OSDs to acknowledge
success. Figure 5.2 illustrates how to derive the Compute-to-Data path for each scenario during a write
request. Taking GC-Vb as example: a single datanode record write operation traverse 4 links, since we
have HDFS replication active with a factor of 3, we will have 12 links; we also have to count the links
between datanodes and the final ACK, for a total of 15 links.

The Compute-to-Data path for read and write operations, and for different scenarios is summarized
in table 5.1. In the Table, we organize and rank scenarios based on their distance: intuitively, we expect
application performance to follow the same ranking we produce using the Compute-to-Data path. Our

5.2 Methodology 75

Table 5.1 Expected scenarios’ performance ranking.

(a) Read

Rank Scenario #links

1 GC 0

2 GC-V 2
2 NC 2

3 SWI 4

(b) Write

Rank Scenario #links

1 GC 3

2 GC-Vs 4
2 NC 4
2 SWI 4

3 GC-Vb 15

measurement results indicate that the Compute-to-Data path is a good proxy to rank scenarios based on
their expected relative performance, albeit intuition is not sufficient alone to explain what we support
with data.

5.2.4 Benchmark and Workloads

To study the performance of analytics applications we use four workloads (described in details in
table 5.2), that are currently used in popular benchmark tools suites and cover different kinds of
applications. We use WordCount and DFSIO from Intel Hi-Bench15 [Huang et al., 2010] test suites; the
first is the “Hello World” application for parallel computing, which is a read-intensive workload, while
the second is a write intensive application: they both perform read and write operations on plain-text
files. TPC-DS is a transaction processing performance Council’s decision-support benchmark test16

[Nambiar and Poess, 2006], by DataBricks’ Spark-Sql-Perf library17, that executes 5 complex queries18

from files stored using the Parquet Format19. Decision-Tree is a machine learning algorithm taken from
Spark’s MLlib library20 [Meng et al., 2016] that reads CSV files and builds a statistical model of the
underlying data distribution; this is the only workload that uses caching for the input data: due to its
iterative nature, this is the current best-practice to achieve low training times.

5.2.5 Performance metrics

To investigate the impact that different configurations have on application performance, we use 4 metrics.
The first is the job runtime: this is the amount of time required by the application to terminate its
execution. To delve into the reasons behind each workload’s behavior in each scenario, we define extra

15https://github.com/intel-hadoop/HiBench
16http://www.tpc.org/tpcds/
17https://github.com/databricks/spark-sql-perf
18In Databricks’ library they are called simple-queries.
19https://parquet.apache.org/
20http://spark.apache.org/docs/latest/mllib-guide.html

76 Experimental Evaluation of Disaggregation between Compute and Storage

Table 5.2 Workloads’ details.

Workload #Jobs #Mapper #Reducer Input Size Output Size

WordCount 1 158 158 20 GB 225.6 MB
DFSIO 1 160 0 0 B 20 GB

TPC-DS 217 16160 16821 13 GB 17.9 KB
Decision-Tree 153 4549 4825 3 GB 8 MB

metrics collected for each analytics application during its execution. These metrics are the percentages
of CPU, Network and Disk used by the application itself, computed by standard tools such as iostat21.

To compute the above metrics, we monitor each component of the clusters deployed for a specific
scenario: Spark master, Spark worker, HDFS namenode, HDFS datanode and Swift22

5.3 Results

In the following we analyze the performance of each workload and its behavior on each scenario, and
summarize our findings, discussing the implications for both end-users and providers of cloud services.
Furthermore, we discuss about possible directions to mitigate the performance degradation that some
Data and Storage layers incur.

5.3.1 Analytics Application Benchmark

Application performance is easier to understand when results are grouped by workload type. For this
reason, in what follows we first delve into the details of each application we use in our experiments. The
template we use in our analysis is as follows: first, we discuss whether the ranking produced by our
intuitive Compute-to-Data path matches that of real workloads, then provide experimental evidence to
explain outliers23.

WordCount

In general, we remark that the expected rank produced in table 5.1 is representative of application
performance: from table 5.3a we see that the GC and GC-V scenarios have roughly the same performance,
whereas the NC and SWI scenarios are slower.

The NC scenario constitutes an interesting out-lier: application runtime is roughly 25% slower
compared to higher rank scenarios. This is caused by a low CPU utilization that is a direct effect of an
inefficient use of network resources: indeed, all read/write operations are synchronous, thus the CPU is
blocked until the operation is completed. Note that, although the NC and GC-V cases have the same

21http://linux.die.net/man/1/iostat
22We monitor the Swift-All-in-One deployment as a single component.
23Not all figures will be shown due to space constraint.

5.3 Results 77

Table 5.3 Analytics applications benchmark results in ascending order.

(a) WordCount

Rank Scenario Run Time (s)

1 GC-Vb 121.29±2.20
1 GC 125.23±2.15
1 GC-Vs 125.28±1.89

2 NC 157.85±2.94

3 SWI 279.55±4.07

(b) TPC-DS

Rank Scenario Run Time (s)

1 GC-Vb 454.48±6.89
1 GC 460.21±3.95
1 GC-Vs 469.66±9.31

2 NC 571.01±3.98

3 SWI 2773.96±16.89

Rank Scenario Run Time (s)

1 GC 305.86±14.68
1 NC 308.83±13.38
1 GC-Vs 330.99±13.15

2 GC-Vb 848.48±60.74

3 SWI 1114.56±28.22

(c) DFSIO

Rank Scenario Run Time (s)

1 GC-Vb 997.50±16.47

2 NC 1067.35±33.48
2 GC 1076.68±39.74
2 SWI 1101.37±21.74
2 GC-Vs 1133.56±37.13

(d) Decision Tree

Compute-to-Data path, their data access mechanism is different. In the NC scenario, when a Compute
instance requests a record from a datanode, the record is read over a single disk and network link, which
performs poorly overall. Furthermore, aside from being a slow configuration, the NC scenario is also
the most expensive one.

Instead, the GC-V scenario achieves very good performance, even if the network cards we use in our
platform (1 Gbps interfaces) are not on par with what is currently deployed in public clouds such as
AWS (10 Gbps interfaces). This is the result of parallel data transfers, which use network resources more
efficiently: fragments of data records are read or written by several disks and transfered over multiple
network links. As such, the expected performance degradation caused by a large Compute-to-Data path
is practically nullified. Additionally, we remark that application performance can reap the benefits of
having both Data and Storage layer replication enabled (GC-Vb): indeed, Spark’s scheduler has more
flexibility in choosing the designated executor for a specific task since there are multiple copies of the
same data block.

As expected, the SWI configuration achieves the worst performance: as we discuss later, this is
due to both poor architectural choices (Swift was not originally designed to serve parallel processing
frameworks) and to problems that arise between Spark and Swift.

78 Experimental Evaluation of Disaggregation between Compute and Storage

TPC-DS

Table 5.3b indicates that there is a good match between the expected ranking obtained using the
Compute-to-Data path (TPC-DS is a read intensive workload) and application runtimes. Similarly to the
WordCount workload, the NC scenario suffers from inefficient use of network resources. Figure 5.4,
which shows the CDF of the task runtime for each workload, supports this claim: tasks are slower in the
NC configuration, compared to the GC and GC-V scenarios.

To better understand the causes of the increased tasks runtime, in the SWI scenario, we study
resource utilization. Figure 5.3 shows the resource utilization across different scenarios. In SWI, the
network may be considered the source of slowdown (as shown by the median at almost 100%): in fact,
in Swift all requests to read or write data records pass through the same physical channel (at the proxy),
stressing the network and its chances to become a bottleneck. To tackle this issue, AaaS providers adopt
two approaches: faster network links (e.g., 10 Gbps) and deployment of several proxies to balance the
traffic. These solutions partially mitigate the problem. Using faster network links may work, but does
not scale with the number of concurrent tenants. Using several proxies and a load balancer introduces
other problems: (i) additional delays due to an extra communication step; (ii) a single storage node
will have to handle more requests coming from different proxies, thus moving the pressure from the
link Compute-to-Proxy to the link Proxy-to-Storage nodes. Inevitably, additional proxies bring Swift
architecture closer to that of HDFS-like system, but at an higher cost in terms of required hardware and
consequently, requiring a difficult capacity planning. Additional factors that contribute to performance
slowdown include the extra time required by Swift to parse HTTP requests and to dispatch them to the
different storage nodes. Finally, from fig. 5.3 we can also see how the CPU utilization in the Compute
layer of the SWI scenario is lower compared to the other scenarios; similarly to WordCount, this is
because the Compute layer has to wait more time to process the data.

Clearly, a narrow measurement campaign that focuses on a single scenario (e.g., the GC configura-
tion) might lead to inaccurate conclusions: even if the workload may be considered CPU-bound – thus
suggesting data locality to be irrelevant – different configurations with different levels of data locality
have a non-negligible impact on application runtimes.

DFSIO

Table 5.3c shows the measured runtime of DFSIO, which is a write intensive workload, for several
configurations. As expected, the intuitive ranking we derive using the Compute-to-Data path only
partially matches with experimental results: impedance mismatch between layers is the main culprit for
performance degradation.

First, we focus on the SWI scenario: to better understand our experimental results we run a micro
benchmark that, using the python-swift24 client, emulates the DFSIO workload: writing the same amount
of data as for the DFSIO workload takes only 300 seconds. A detailed log inspection indicates that Swift
– because it stores immutable objects with immutable identifiers – does not work well in conjunction with

24https://github.com/openstack/python-swiftclient

5.3 Results 79

C
PU

D
is

k

N
et

0

20

40

60

80

100 GC

C
PU

D
is

k

N
et

0

20

40

60

80

100 GC-V

C
PU

 W

C
PU

 D

D
is

k
W

D
is

k
D

N
et

 W

N
et

 D

0

20

40

60

80

100 NC

C
PU

 W

C
PU

 S

D
is

k
W

D
is

k
S

N
et

 W

N
et

 S

0

20

40

60

80

100 SWI

Fig. 5.3 Resource utilization with the TPC-DS workload in different scenarios. The ticks on the X axis
“W", “D" and “S" stand, respectively for worker, datanode and Swift machines. The resource utilization
reported is a global average across all instances of each layer. The network utilization between the GC-V
and GC scenarios is similar because volumes’ network is opaque to the Operating System and, therefore,
counted in the disk utilization.

current parallel processing frameworks such as Spark. Indeed, Spark tasks always output temporary files
that are renamed once the processing is complete25. Since in Swift a rename operation is implemented
as a copy operation, the DFSIO workload in the SWI configuration involves writing much more data
than required, hence the poor performance. In particular the data are written 2 extra times, the first from
tasks themselves and a second time from the Spark master when the job is completed. From the logs we
can see that the job wrote 20 GB in 600 seconds (s) while the application ran in 1114s; in the 600s spent
by the job, every task performed a rename operation writing the output one extra time; the difference
between the job and the application runtime (514s) corresponds to the time spent by the Spark’s master
to rename all the files written by the tasks, that is, to write the output a third time. Figure 5.4 shows the
distribution of task runtimes for the DFSIO workload: for the SWI scenario, tasks are much slower than
in other scenarios, which corroborates our claims26.

Next, we focus on the GC-V scenarios. In this case, the impedance mismatch between Data and
Storage layers is to blame for poor workload performance. Table 5.3c indicates that by disabling HDFS

25This is reminiscent of the failure tolerance mechanisms in Spark, that assumes tasks can fail at any time.
26We are aware of a work from IBM (https://github.com/SparkTC/stocator) that aims to address the file renaming problem.

80 Experimental Evaluation of Disaggregation between Compute and Storage

10-2 10-1 100 101

Seconds

0.0

0.2

0.4

0.6

0.8

1.0

TPC-DS

101 102

Seconds

0.0

0.2

0.4

0.6

0.8

1.0

DFSIO

Fig. 5.4 DFSIO and TPC-DS CDFs for task runtimes in all scenarios.

replication mechanism (scenario GC-Vs), performance drastically improves when compared to a naive
deployment with both replication mechanisms (HDFS and Ceph) enabled. Although this is not possible
to study in a public cloud, we also run experiments in which we disable Ceph replication and only
use HDFS replication: in this case, the application runtime falls to roughly 250 seconds, that it is
20% faster to complete with respect to the GC scenario. In summary, write-intensive applications can
be significantly affected by impedance mismatch between services: replication and failure tolerance
mechanisms implemented in different layers must be tuned to achieve better performance.

Decision-Tree

The decision tree algorithm taken from Spark’s MLlib is at the heart of our machine learning use
case: it is an iterative algorithm that builds a statistical model using millions of training data points.
Table 5.3d indicates that application runtimes are essentially independent from system configurations.
This is the results of using Spark caching mechanism. When using caching at the application level, the
interaction between Compute and Data/Storage layers is limited to reading the input data; the bulk of
the computation, and hence the application runtime, happens during the iterations of the decision tree
algorithm, in which the Data and Storage layers do not intervene. Finally, the output of the algorithm is
a statistical model, which is very small for this workload.

Finally, we note that the GC-Vb scenario performs better than others: indeed, (i) Ceph reads from
multiple disks and (ii) Spark’s internal scheduler has more flexibility in placing tasks because of the
increased data redundancy at the HDFS layer. In general, the most used resource is CPU, while network
and disk I/O are barely used.

5.3 Results 81

5.3.2 Summary of the results

Choosing the right composition of analytic services is a difficult problem, involving cost considerations,
data durability requirements, and ultimately, expected application performance. Our experimental
findings pave the way to informed decisions about AaaS deployments. In the following, we summarize
our results and their implications.

Service composition A configuration that aims at achieving data durability in spite of the ephemeral
nature of VMs and the services they execute, must be designed with care. For reasons ranging from ease
of integration to familiarity with well-established APIs, it is tempting to compose services as done in the
NC (no collocation) scenario we study in this work. Our results show that this is a bad choice for a wide
range of workloads, in which precious CPU cycles are lost to wait for data to travel over the network.

Volumes Using volumes provisioned on top of a distributed file system like Ceph perform surprisingly
well. This is unexpected as, similarly to the NC scenario, the network is heavily involved during
application execution. However, our results indicate that even with a modest bisection bandwidth, the
Compute layer can make quick progress toward the end of an application, thanks to the efficiency of
striping.

However, as cautionary note, our results indicate a potential impedance mismatch between Data and
Storage layers, due to the interaction of multiple replication mechanisms. As such, end-users should
be aware of the situation, and appropriately configure the Data layer, such that data replication is only
performed by the Storage layer, because this is of great benefit to application performance.

Additionally, our results indicate that cloud computing providers could differentiate their volume
offering: general purpose volumes would work as usual, whereas analytics volumes should disable data
replication. In this case, end-users would be in complete control of replication: our results show that –
especially for write intensive workloads – this produces superior performance.

Swift The performance of Swift is disappointing. This is due to another instance of impedance
mismatch, between the Compute and Data layer. Swift inability to rename files without actually creating
a new copy, causes severe performance penalties, making Swift a sub-optimal solution.

In addition, we note that the Swift architecture was designed for applications that are very different
from parallel computing frameworks: our results indicate that the Swift proxy may represent a bottleneck,
since it is involved in the data path. Certainly, using a proxy server as coordinator enables cluster
managers to easily add control flows to Swift, but this degrades performance. One solutions that is
currently adopted by several companies using Swift, at a production level, is to add several proxies
and balance the traffic load between them: but because the workload may change unpredictably, a well
thought capacity plan is not easy to obtain. As previously underlined, more proxies will make the Swift’s
architecture somehow similar to HDFS, but at higher costs. Recent work from IBM[Rabinovici-Cohen
et al., 2014] shows that some control flow and data transformations can be done much closer to the

82 Experimental Evaluation of Disaggregation between Compute and Storage

storage nodes. As a consequence, it is tempting to suggest the design of a new Swift proxy that could
behave similarly to the HDFS NameNode: such alternative proxy would only act as a metadata storage,
and would not be involved in the actual data path.

Caching Finally, our results show that caching plays an important role in determining application
performance. On the one hand, caching “breaks” the Compute-to-Data path that can be inferred
from read/write operations on data records, which makes application performance more difficult to
predict. On the other hand, by collapsing the Compute-to-Data path, it mitigates the problems of several
configurations we studied, which is helpful for end-users because it gives more flexibility in choosing
Data and Storage layers.

However, the design of inter-application caching mechanism for parallel processing frameworks
is still in its infancy: Tachyon [Li et al., 2013] and HDFS2 are good examples of recent approaches to
tackle this problem.

5.4 Summary

We investigated the impact of different Compute, Data and Storage layer configurations on the perfor-
mance of a data analytic framework. We took an experimental approach, and proposed a measurement
campaign, whose objective was to analyze workload performance in light of an intuitive notion of
distance between where computation happens and data reside. First, we discussed how to approximately
rank different service compositions, in terms of expected performance. Then we performed an extensive
measurement campaign on a private cloud computing environment. Results indicated that, in general,
our intuitive distance metric is a good proxy to reason about performance ranking. Finally we presented
experimental evidence of the impedance mismatch that affect two important storage layers – object and
elastic block stores – and deduced mechanism to mitigate negative effects on performance.

Chapter 6

Stocator: High Performance Connector
for Object Stores

In this chapter we present Stocator1, a high performance storage connector, that enables Hadoop-based
analytics engines to work directly on data stored in object storage systems. Here we focus on Spark
however, our work can be extended to work with the other parts of the Hadoop ecosystem.

Until now Hadoop connectors to object storage, e.g., S3a2 and the Hadoop Swift Connector3, have
been based on file semantics, a natural assumption given that their model of operation is based on the
way that Hadoop interacts with its original storage system, Hadoop Distributed File System (HDFS).
However, treating object storage like a file system constitutes an impedance mismatch, which can lead
to poor performance and incorrect execution. In particular, operations that are atomic for files may not
be atomic for objects and operations that are inexpensive for files may not be inexpensive for objects,
and vice versa. For example, to rename a directory in a file system requires a single atomic operation,
whereas in object storage it requires copy and delete operations for each of the objects in the tree under
the “virtual directory”4.

We are not the first to recognize the poor performance of the object storage connectors. Others have
tried to improve performance, by sacrificing speculative execution, and then writing objects directly to
their final names, e.g., the DirectOutputCommitter5 for Amazon S3, or by renaming Hadoop output
objects to their final names when tasks complete (task commit) instead of waiting until the entire job
completes (job commit)6. However, due to the impedance mismatch these attempts led to subtle failures.

Current connectors can also lead to failures and incorrect execution because the list operation on
object storage containers/buckets is eventually consistent. EMRFS7 from Amazon and S3mper8 from

1https://github.com/CODAIT/stocator
2https://aws.amazon.com/sdk-for-java/
3https://github.com/openstack/sahara-extra/tree/master/hadoop-swiftfs
4Object stores emulate directories through hierarchical naming.
5https://github.com/apache/spark/pull/12229
6https://issues.apache.org/jira/browse/MAPREDUCE-6336
7https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
8http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html

84 Stocator: High Performance Connector for Object Stores

Netflix overcome eventual consistency by storing file metadata in DynamoDB9, an additional strongly
consistent storage system separate from the object store. A similar feature called S3Guard10 is being
developed by the Hadoop open source community for the S3a connector. Solutions like these, which
require multiple storage systems, are complex and can introduce issues of consistency between the
stores. They also add cost since users must pay for the additional strongly consistent storage.

The novel algorithms of Stocator achieve both high performance and fault tolerance by taking
advantage of object storage semantics. This greatly decreases the number of operations on object storage
as well as enabling a much simpler approach to dealing with the eventually consistent semantics typical
of object storage. We have implemented our connector for both the OpenStack Swift API11 and the
Amazon S3 API, and have shared it in open source12. We have compared its performance with the S3a
and Hadoop Swift connectors over a range of workloads and found that it executes far less operations on
the object store, in some cases as little as one thirtieth of the operations. Since the price for an object
storage service typically includes charges based on the number of operations executed, this reduction in
the number of operations lowers costs in addition to reducing the load on client software. It also reduces
costs and load for the object storage provider since it can serve more clients with the same amount
of processing power. Stocator also substantially increases performance for Spark workloads running
over object storage, especially for write intensive workloads, where it is as much as 18 times faster.
Stocator is in production in the IBM Cloud and has enabled the SETI project to perform computationally
intensive Spark workloads on multi-terabyte binary signal files13.

The remainder of this chapter is structured as follows. In Section 6.1 we present background on
Apache Spark and we motivate our work. In Section 6.3 we describe how Stocator works. In section 6.4
we present the methodology for our performance evaluation, including our experimental set up and
a description of our workloads. Finally, in section 6.5 we present a detailed evaluation of Stocator,
comparing its performance with existing Hadoop object storage connectors, from the point of view of
run time, number of operations and resource utilization.

6.1 Apache Spark

Spark can read from several Data layers; the two widespread solutions that we take into consideration
are HDFS and Swift. The first is a Java-based file system providing scalable and reliable data storage,
designed to store a medium number of large files to support data processing. The second is a highly
available, distributed, eventually consistent object store designed as a more generic storage solution to
reliably store very large numbers of different sizes’ files.

We describe Apache Spark’s execution model and how it interacts with storage, pointing out some
of the problems that arise when it works on data in object storage.

9https://aws.amazon.com/dynamodb/
10http://www.slideshare.net/hortonworks/s3guard-whats-in-your-consistency-model
11https://developer.openstack.org/api-ref/object-storage/
12https://github.com/SparkTC/stocator
13https://medium.com/ibm-watson-data-lab/simulating-e-t-e34f4fa7a4f0

6.1 Apache Spark 85

Fig. 6.1 Hadoop Storage Connectors

Spark execution model The execution of a Spark application is orchestrated by the driver. The driver
divides the application into jobs and jobs into stages. One stage does not begin execution until the
previous stage has completed. Stages consists of tasks, where each task is totally independent of the
other tasks in that stage, so that the tasks can be executed in parallel. The output of one stage is typically
passed as the input to the next stage, so that a task reads its input from the output of the previous stage
and/or from storage. Similarly, a task writes its output to the next stage and/or to storage. The driver
creates worker processes called executors to which it assigns the execution of the tasks.

The execution of a task may fail. To overcome a failure the driver starts a new execution of the
same task. The execution of a task may also be slow and the driver may not be able to tell whether the
execution has failed or is just slow. Spark has an important feature to deal with slow execution called
speculation, where it speculatively executes multiple executions of the same task in parallel. Speculation
can cut down on the total elapsed time for a Spark application/job. Thus, a task may be executed
multiple times due to a failure or speculation and each such attempt to execute a task is assigned a
unique identifier, containing a job identifier, a task identifier and an execution attempt number.

Spark and its underlying storage Spark interacts with its storage system through Hadoop, primarily
through a component called the Hadoop Map Reduce Client Core (HMRCC) as shown in the diagram
on the left side in fig. 6.1. HMRCC interacts with its underlying storage through the Hadoop File
System Interface. A connector that implements the interface must be implemented for each underlying
storage system. For example, the Hadoop distribution includes a connector for HDFS, as well as an S3a
connector for the Amazon S3 API and a Swift connector for the OpenStack Swift API.

A task writes output to storage through the Hadoop FileOutputCommitter. Since each task execution
attempt needs to write an output file of the same name, Hadoop employs a rename strategy, where each
execution attempt writes its own task temporary file. At task commit, the output committer renames the
task temporary file to a job temporary file. Task commit is done by the executors, so it occurs in parallel.
And then when all of the tasks of a job complete, the driver calls the output committer to do job commit,
which renames the job temporary files to their final names. Job commit occurs in the driver after all of

86 Stocator: High Performance Connector for Object Stores

the tasks have committed and does not benefit from parallelism. This two stage strategy of task commit
and then job commit ensures fault tolerance, i.e., that the output contains just a single complete output
file for each task despite multiple executions due to failures and speculation.

Hadoop also writes a zero length object with the name _SUCCESS when a job completes successfully,
so the case of incomplete results can easily by identified by the absence of a _SUCCESS object. This
enables a new version of the file output committer algorithm (called version 2), where the task temporary
files are renamed to their final names at task commit and job commit is largely reduced to the writing
of the _SUCCESS object. However, as of Hadoop 2.7.3, this algorithm is not yet the default output
committer.

Hadoop is highly distributed and thus it keeps its state in its storage system, e.g., HDFS or object
storage. In particular, the output committer determines what temporary objects need to be renamed
through “directory” listings, i.e., it lists the “directory” of the output dataset to find the “directory” and
files holding task temporary and job temporary output. In object stores this is done through container
listing operations. However, due to eventual consistency a container listing may not contain an object
that was just successfully created, or it may still contain an object that was just successfully deleted.
This can lead to situations where some of the legitimate output objects do not get renamed by the output
committer, so that the output of the Spark/Hadoop job will be incomplete.

This situation occurs when speculation is enabled, and thus, despite the benefits of speculation,
Spark users are encouraged to run with it disabled. Furthermore, in order to avoid the dangers of eventual
consistency entirely, Spark users are often encouraged to copy their input data to HDFS, run their Spark
job over the data in HDFS, and then when it is complete, copy the output from HDFS back to object
storage. Note, however, that this adds considerable overhead. Existing solutions to this problem require
a consistent storage system in addition to object storage141516.

Netflix and Amazon have implemented solutions to eventual consistency through S3mper and EMR,
respectively. These solutions employ a second consistent storage system, Amazon dynamo, in addition
to object storage. The Hadoop open source community is working on a similar solution called S3Guard
for its S3a storage connector.

6.2 Motivation

To motivate the need for Stocator we describe the sequence of interactions between Spark and its storage
system for a program that executes a single task that produces a single output object as shown in fig. 6.2.

At the beginning of a job, the Spark driver and executor recursively create the directories for the
task temporary, job temporary and final output. Then, the task outputs the task temporary file. At task
commit the executor lists the task temporary directory, and renames the file it finds to its job temporary

14http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html
15https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
16https://issues.apache.org/jira/browse/HADOOP-13345

6.3 Stocator Logic 87

val data = Array(1)
val distData = sc.parallelize(data)
val finalData = distData.coalesce(1)
finalData.saveAsTextFile("hdfs://res/data.txt")

Fig. 6.2 A Spark program that executes a single task that produces a single output object.

Table 6.1 Breakdown of REST operations by type for the Spark program that creates an output consisting
of a single object.

HEAD
Object

PUT
Object

COPY
Object

DELETE
Object

GET
Cont.

Total

Hadoop-Swift 25 7 3 8 5 48
S3a 71 5 2 4 35 117

Stocator 4 3 − − 1 8

name. At job commit the driver recursively lists the job temporary directories and renames the file it
finds to its final names. Finally, the driver writes the _SUCCESS object.

When this same Spark program runs with the Hadoop Swift or S3a connectors, these file operations
are translated to equivalent operations on objects in the object store. These connectors use PUT to
create zero byte objects representing the directories, after first using HEAD to check if objects for
the directories already exist. When listing the contents of a directory, these connectors descend the
“directory tree” listing each directory. To rename objects these connectors use PUT or COPY to copy the
object to its new name and then use DELETE on the object at the old name. All of the zero byte directory
objects also need to be deleted. Overall the Hadoop Swift connector executes 48 REST operations and
the S3a connector executes 117 operations. Table 6.1 shows the breakdown according to operation type.

In the next section we describe Stocator, which leverages object storage semantics to replace the
temporary file/rename paradigm and takes advantage of hierarchal naming to avoid the creation of
“directory” objects. For the Spark program in fig. 6.2 Stocator executes just 8 REST operations: 3 PUT
object, 4 HEAD object and 1 GET container.

6.3 Stocator Logic

The right side of fig. 6.1 shows how Stocator fits underneath HMRCC; it implements the Hadoop
Filesystem Interface just like the other storage connectors. Below we describe the basic Stocator
protocol; and then how it streams data, deals with eventual consistency, and reduces operations on the
read path. Finally we provide several examples of the protocol in action.

88 Stocator: High Performance Connector for Object Stores

6.3.1 Basic Stocator protocol

The overall strategy used by Stocator to avoid rename is to write output objects directly to their final
name and then to determine which objects actually belong to the output at the time that the output is
read by its consumer, e.g., the next Spark job in a sequence of jobs. Stocator does this in a way that
preserves the fault tolerance model of Spark/Hadoop and enables speculation. Below we describe the
components of this strategy.

As described in section 6.1 the driver orchestrates the execution of a Spark application. In particular,
the driver is responsible for creating a “directory” to hold an application’s output dataset. Stocator uses
this “directory” as a marker to indicate that it wrote the output. In particular, Stocator writes a zero byte
object with the name of the dataset and object metadata that indicates that the object was written by
Stocator. All of the dataset’s parts are stored hierarchically under this name.

Then when a Spark task asks to create a temporary object for its part through HMRCC, Stocator
recognizes the pattern of the name and writes the object directly to its final name so it will not need
to be renamed. If Spark executes a task multiple times due to failures, slow execution or speculative
execution, each execution attempt is assigned a number. The Stocator object naming scheme includes
this attempt number so that individual attempts can be distinguished.

Finally, when all tasks have completed successfully, Spark writes a _SUCCESS object through
HMRCC; the presence of a _SUCCESS object means that there was a correct execution for each task
and that there is an object for each part in the output. Notice that by avoiding rename, Stocator also
avoids the need for list operations during task and job commit that may lead to incorrect results due to
eventual consistency.

6.3.2 Alternatives for reading an input dataset

Stocator delays the determination of which parts belong to an output dataset until it reads the dataset as
input. We consider two options.

The first option is simpler to implement since it can be done entirely in the implementation of
Stocator. It depends on the assumption that Spark exhibits fail-stop behavior, i.e., that a Spark server
executes correctly until it halts. After determining that the dataset was produced by Stocator through
reading the metadata from the object written with the dataset’s name, and checking that the _SUCCESS
object exists, Stocator lists the object parts belonging to the dataset through a GET container operation.
If there are objects in the list representing multiple execution attempts for same task, Stocator will
choose the largest. Given the fail-stop assumption, the fact that all successful execution attempts write
the same output, and that it is certain that at least one attempt succeeded (otherwise there would not be a
_SUCCESS object), this is the correct choice.

At the completion of a Spark job, the second option includes the creation of a manifest inside the
_SUCCESS object that contains a list of all the successful task execution attempts completed by the job.
Now after determining that the dataset was produced by Stocator through reading the metadata from
the object written with the dataset’s name, and checking that the _SUCCESS object exists, Stocator

6.3 Stocator Logic 89

reads the manifest of successful task execution attempts from the _SUCCESS object. Stocator uses the
manifest to reconstruct the list of constituent object parts of the dataset. In particular, the construction of
the object part names follows the same pattern used when the parts were written.

The benefit of the second option is that it solves the remaining eventual consistency issue by
constructing the object names from the manifest rather than issuing a REST command to list the object
parts, which may not return a correct result in the presence of eventual consistency. However, given that
our primary target for Stocator is IBM Cloud Object Storage and that its container listing is immediately
consistent with respect to the writing and deleting of objects, we have not had the need to implement
this option.

6.3.3 Streaming of output

When Stocator outputs data it streams the data to the object store as the data is produced using chunked
transfer encoding. Normally the total length of the object is one of the parameters of a PUT operation
and thus needs to be known before starting the operation. Since Spark produces the data for an object on
the fly and the final length of the data is not known until all of its data is produced, this would mean
that Spark would need to store the entire object data prior to starting the PUT. To avoid running out
of memory, a storage connector for Spark can store the object in the Spark server’s local file system
as the connector produces the object’s content, and then read the object back from the file to do the
PUT operation on the object store. Indeed this is what the default Hadoop Swift and S3a connectors
do. Instead Stocator leverages HTTP chunked transfer encoding, which is supported by the Swift API.
In chunked transfer encoding the object data is sent in chunks, the sender needs to know the length of
each chunk, but it does not need to know the final length of the object content before starting the PUT
operation. S3a has an optional feature, not activated by default, called fast upload, where it leverages
the multi-part upload feature of the S3 API. This achieves a similar effect to chunked transfer encoding
except that it uses more memory since the minimum part size for multi-part upload is larger than for
chunked transfer.

6.3.4 Optimizing the read path

We describe several optimizations that Stocator uses to reduce the number of operations on the read path.
The first optimization can remove a HEAD operation that occurs just before a GET operation for the

same object. In particular, the storage connector often reads the metadata of an object just before its data.
Typically this is to check that the object exists and to obtain the size of the object. In file systems this is
performed by two different operations. Accordingly a naive implementation for object storage would
read object metadata through a HEAD operation, and then read the data of the object itself through a
GET operation. However, object store GET operations also return the metadata of an object together
with its data. In many of these cases Stocator is able to remove the HEAD operation, which can greatly
reduce the overall number of operations invoked on the underlying object storage system.

90 Stocator: High Performance Connector for Object Stores

Table
6.2

Possible
operations

perform
ed

by
the

Spark
application

show
ed

in
fig.6.3

H
adoop

M
ap

R
educe

C
lientC

ore
Stocator

1
PU

T
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_0/part-00000

PU
T

/res/data.txt/part-00000_attem
pt_201512062056_0000_m

_000000_0

2
PU

T
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_0/part-00001

PU
T

/res/data.txt/part-00001_attem
pt_201512062056_0000_m

_000000_0

3
PU

T
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_0/part-00002

PU
T

/res/data.txt/part-00002_attem
pt_201512062056_0000_m

_000000_0

4
PU

T
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_1/part-00002

PU
T

/res/data.txt/part-00002_attem
pt_201512062056_0000_m

_000000_1

5
PU

T
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_2/part-00002

PU
T

/res/data.txt/part-00002_attem
pt_201512062056_0000_m

_000000_2

6
D

E
L

E
T

E
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_0/part-00002

D
E

L
E

T
E

/res/data.txt/part-00002_attem
pt_201512062056_0000_m

_000000_0

7
D

E
L

E
T

E
/res/data.txt/_tem

porary/0/_tem
porary/attem

pt_201512062056_0000_m
_000000_2/part-00002

D
E

L
E

T
E

/res/data.txt/part-00002_attem
pt_201512062056_0000_m

_000000_2

8
Task

com
m

its
and

job
com

m
itgenerate

2
pairs

ofC
O

PY
and

D
E

L
E

T
E

foreach
successfulattem

pt
N

o
operations

are
perform

ed
here

9
PU

T
/res/data.txt/_SU

C
C

E
SS

PU
T

/res/data.txt/_SU
C

C
E

SS

6.3 Stocator Logic 91

val data = Array(1, 2, 3)
val distData = sc.parallelize(data)
distData.saveAsTextFile("swift2d://res.sl/data.txt")

Fig. 6.3 A Spark program where three tasks each write an object part.

A second optimization is caching the results of HEAD operations. A basic assumption of Spark is
that the input is immutable. Thus, if a HEAD is called on the same input object multiple times, it should
return the same result. Stocator uses a small cache to reduce these calls.

6.3.5 Examples

We show here some examples of Stocator at work. For simplicity we focus on Stocator’s interaction
with HMRCC to eliminate the rename paradigm and so we do not show all of the requests that HMRCC
makes on Stocator, e.g., to create/delete “directories” and check their status.

Figure 6.3 shows a simple Spark program that will be executed by three tasks, each task writing its
part to the output dataset called data.txt in a container called res. The swift2d: prefix in the URI for
the output dataset indicates that Stocator is to be used as the storage connector. Table 6.2 shows the
operations that can be executed by our example in different situations.

Lines 1-3 and 8-9 are executed when each task runs exactly once and the program completes
successfully. We show the requests that HMRCC generates; for each task it issues one request to create
a temporary object and two requests to “rename” it (copy to a new name and delete the object at the
former name). We see that Stocator intercepts the pattern for the temporary name that it receives from
HMRCC, and creates the final names for the objects directly. At the end of the run Spark creates the
_SUCCESS object.

Lines 1-5, instead, shows an execution where Spark decides to execute Task 2 three times, i.e., three
attempts. This could be because the first and second attempts failed or due to speculation because they
were slow. Notice that Stocator includes the attempt number as part of the name of the objects that it
creates.

By adding lines 6-9 to the previous, we show what happens when Spark is able to clean up the results
from the duplicate attempts to execute Task 2. In particular, Spark aborts attempts 0 and 2, and commits
attempt 1. When Spark aborts attempts 0 and 2, HMRCC deletes their corresponding temporary objects.
Stocator recognizes the pattern for the temporary objects and deletes the corresponding objects that it
created.

If Spark is not able to clean up the results from the duplicate attempts to execute Task 2, we have
lines 1-5 and 8-9. In particular, we see that Stocator created five object parts, one each for Tasks 0 and 1,
and three for Task 2 due to its extra attempts. We assume as in the previous situation that it is attempt
1 for Task 2 that succeeded. Stocator recognizes this through the manifest stored in the _SUCCESS
object.

92 Stocator: High Performance Connector for Object Stores

6.4 Methodology

We describe the experimental platform, deployment scenarios, workloads and performance metrics that
we use to evaluate Stocator.

6.4.1 Experimental Platform

Our experimental infrastructure includes a Spark cluster, an IBM Cloud Object Storage (formerly
Cleversafe) cluster, Keystone, and Graphite/Grafana. The Spark cluster consists of three bare metal
servers. Each server has a dual Intel Xeon E52690 processor with 12 hyper-threaded 2.60 GHz cores
(so 48 hyper-threaded cores per server), 256 GB memory, a 10 Gbps NIC and a 1 TB SATA disk. That
means that the total parallelism of the Spark cluster is 144. We run 12 executors on each server; each
executor gets 4 cores and 16 GB of memory. We use Spark submit to run the workloads and the driver
runs on one of the Spark servers (always the same server). We use the standalone Spark cluster manager.

Our IBM Cloud Object Storage (COS)17 cluster also runs on bare metal. It consists of two Accessers,
front end servers that receive the REST commands and then orchestrate their execution across twelve
Slicestors, which hold the storage. Each Accesser has two 10 Gbps NICs bonded to yield 20 Gbps. Each
Slicestor has twelve 1 TB SATA disks for data. The Information Dispersal Algorithm (IDA) or erasure
code is (12, 8, 10), which means that the erasure code splits the data into 12 parts, 8 parts are needed
to read the data, and at least 10 parts need to be written for a write to complete. IBM COS exposes
multiple object APIs; we use the Swift and S3 APIs.

We employ HAProxy for load balancing. It is installed on each of the Spark servers and configured
in round-robin so that connections opened by a Spark server with the object storage alternate between
Accessers. Each of the three Spark servers has a 10 Gbps NIC thus, the maximum network bandwidth
between the Spark cluster and the COS cluster is 30 Gbps.

Keystone and Graphite/Grafana run on virtual machines. Keystone provides authentication/autho-
rization for the Swift API. We collect monitoring data on Graphite and view it through Grafana to check
that there are no unexpected bottlenecks during the performance runs. In particular we use the Spark
monitoring interface and the collectd daemon to collect monitoring data from the Spark servers, and we
use the Device API of IBM COS to collect monitoring data from the Accessers and the Slicestors.

6.4.2 Deployment scenarios

In our experiments, we compare Stocator with the Hadoop Swift and S3a connectors. By using different
configurations of these two connectors, we define six scenarios: (i) Hadoop-Swift Base (H-S Base),
(ii) S3a Base (S3a Base), (iii) Stocator Base (Stocator), (iv) Hadoop-Swift Commit V2 (H-S Cv2),
(v) S3a Commit V2 (S3a Cv2) and (vi) S3a Commit V2 + Fast Upload (S3a Cv2+FU). These scenarios
are split into 3 groups according to the optional optimization features that are active. The first group,
with the suffix Base, uses connectors out of the box, meaning that no optional features are active. The

17https://www.ibm.com/cloud-computing/products/storage/object-storage/cloud/

6.4 Methodology 93

second group, with the suffix Commit V2, uses the version 2 of Hadoop FileOutputCommitter that
reduces the number of copy operations on the object storage. The last group, with the suffix Commit V2
+ Fast Upload, uses both version 2 of Hadoop FileOutputCommitter and an optimization feature of S3a
called S3AFastOutputStream that streams data to the object storage as it is produced (as described in
Section 6.3). We decided to compare Stocator to the Base scenarios, because the optional features are
experimental and not always stable.

All experiments run on Spark 2.0.1 with a patched18 version of Hadoop 2.7.3. This patch allows us
to use, for the S3a scenarios, Amazon SDK version 1.11.53 instead of version 1.7.4. The Hadoop-Swift
scenarios run with the default Hadoop-Swift connector that comes with Hadoop 2.7.3. Finally, the
Stocator scenario runs with stocator 1.0.8.19

6.4.3 Benchmark and Workloads

To study the performance of our solution we use several workloads from popular benchmark suites that
cover different kinds of applications. The workloads span from simple applications that target a single
and specific feature of the connectors (micro benchmarks), to complex applications composed by several
jobs (macro benchmarks).

The micro benchmarks include three applications: (i) Read-only, (ii) Write-only and (iii) Copy. The
Read-only application reads two different text datasets, one whose size is 46.5 GB and the second 465.6
GB, and counts the number of lines in them. For the Write-only application we use the popular Teragen
application, available in the Spark example suite, that only performs write operations, creating a dataset
of 46.5 GB. The last application that we use for our micro benchmark set is what we call the Copy
application; it copies the small dataset used by the Read-only application.

We also use three macro benchmarks. The first, Wordcount from Intel Hi-Bench [Huang et al., 2010]
test suite, is the “Hello World” application for parallel computing. It is a read-intensive workload, that
reads an input 46.5 GB text file, computes the number of times each word occurs in the file and then writes
a much smaller output file (1.3 MB) containing the word counts. The second macro benchmark, Terasort,
is a popular application used to understand the performance of large scale computing frameworks
like Spark and Hadoop. Its input dataset is the output of the Teragen application used in the micro
benchmarks. The third macro benchmark,TPC-DS, is the Transaction Processing Performance Council’s
decision-support benchmark test[Nambiar and Poess, 2006] implemented with DataBricks’ Spark-Sql-
Perf library20. It executes several complex queries on files stored in Parquet format21; the input dataset
size is 50 GB, which is compressed to 13.8 GB when converted to Parquet. The query set that we use
to perform our experiments is composed of the following 8 TPC-DS queries: q34, q43, q46, q59, q68,
q73, q79 and ss_max. These are the queries from the Impala subset that work with the Hadoop-Swift
connector. Stocator and S3a support all of the queries in the Impala subset.

18https://issues.apache.org/jira/browse/HADOOP-12269
19These were the latest official releases of these software components at the time of writing this chapter.
20https://github.com/databricks/spark-sql-perf
21https://parquet.apache.org/

94 Stocator: High Performance Connector for Object Stores

The inputs and outputs for the Read-only, Copy, Wordcount, Teragen and Terasort benchmarks are
divided into 128 MB objects. We also run Spark with a partition size of 128 MB.

6.4.4 Performance metrics

We evaluate the different connectors and scenarios by using metrics that target the various optimization
features. As a general metric we use the total runtime of the application; this provides a quick overview
of the performance of a specific scenario. To delve into the reason behind the performance we use two
additional metrics. The first is the number of REST calls – and their type; with this metric we are able to
understand the load on the object storage imposed by the connector. The second metric is the number of
bytes read from, written to and copied in the object storage; this also help us to understand the load on
the object storage imposed by the connectors.

6.5 Experimental Evaluation

We now present a comparative analysis between the different scenarios that we defined in section 6.4.2.
We first show the benefit of Stocator through the average run time of the different workloads. Then we
compare the number of REST operations issued by the Compute Layer toward the Object Storage and
the relative cost for these operations charged by cloud object store services. Finally we compare the
number of bytes transferred between the Compute Layer and the Object Storage.

6.5.1 Reduction in run time

For each workload we ran each scenario ten times. Table 6.3 shows the speedups that we obtain when
using Stocator with respect to the other connectors. We see a relationship between Stocator performance
and the workload; the more write operations performed, the greater the benefit obtained. On the one
hand the write-only workloads, like Teragen, run 18 time faster with Stocator compared to the other
out of the box connectors, 4 time faster when we enable FileOutputCommitter Version 2, and 1.5 times
faster when we also add the S3AFastOutputStream feature. On the other hand, workloads more skewed
toward read operations, like Wordcount, have lower speedups.

These results are possible thanks to the algorithm implemented in Stocator. Unlike the alternatives,
Stocator removes the rename – and thus copy – operations completely. In contrast, the other connectors,
even with FileOutputCommitter Version 2, must still rename each output object once, although the
overhead of the remaining renames is partially masked since they are carried out by the executors in
parallel.

Stocator performs slightly worse than S3a on two of the workloads that contain only read operations
(no writes), Read-only 50 GB and TPC-DS, and virtually the same for the larger 500 GB Read-only
workload. We have identified a small start-up cost that we have not yet removed from Stocator that
can explain the difference between the results for the 50 GB and 500 GB Read-only workload.22 As

22Since writing this chapter we have removed start-up costs and improved the performance of the read-path of Stocator.

6.5 Experimental Evaluation 95

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

Calls

R
e
a
d
-o

n
ly

 5
0

G
B

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

Calls

R
e
a
d
-o

n
ly

 5
0
0
G

B

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

Calls

T
e
ra

g
e
n

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

Calls

C
o
p
y

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

Calls

W
o
rd

co
u
n
t

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

Calls

T
e
ra

so
rt

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

H-S Base

S3a Base

Stocator

H-S Cv2

S3a Cv2
S3a Cv2+FU

0

5
0

0
0

1
0

0
0

0

1
5

0
0

0

2
0

0
0

0

2
5

0
0

0

3
0

0
0

0

3
5

0
0

0

4
0

0
0

0

4
5

0
0

0

Calls

T
P
C

-D
S

H
E
A

D
 c

o
n
ta

in
e
r

H
E
A

D
 o

b
je

ct
G

E
T
 c

o
n
ta

in
e
r

G
E
T
 o

b
je

ct
P
U

T
C

O
P
Y

D
E
LE

T
E

D
E
LE

T
E
 m

u
lt

ip
le

 +
 P

O
S
T

Fi
g.

6.
4

B
en

ch
m

ar
ks

R
E

ST
ca

lls
co

m
pa

ri
so

n

96 Stocator: High Performance Connector for Object Stores

Table
6.3

W
orkload

speedups
w

hen
using

Stocator

R
ead-O

nly
50G

B
R

ead-O
nly

500G
B

Teragen
C

opy
W

ordcount
Terasort

T
PC

-D
S

H
adoop-Sw

iftB
ase

x1.09
x1.55

x16
.09

x9
.12

x2.29
x8

.10
x0

.91
S3a

B
ase

x0.96
x1.00

x18
.03

x10
.33

x1.82
x8

.86
x0

.94
Stocator

x1
x1

x1
x1

x1
x1

x1
H

adoop-Sw
iftC

v2
x1

.07
x1.55

x4
.41

x2
.57

x1.57
x2

.64
x0

.92
S3a

C
v2

x1
.02

x1.00
x4

.37
x2

.72
x1.05

x2
.64

x0
.93

S3a
C

v2
+

FU
x1

.02
x1.00

x1
.46

x1
.27

x1.05
x1

.25
x0

.93

Table
6.4

R
atio

ofR
E

ST
calls

com
pared

to
Stocator

R
ead-O

nly
50G

B
R

ead-O
nly

500G
B

Teragen
C

opy
W

ordcount
Terasort

T
PC

-D
S

H
adoop-Sw

iftB
ase

x2.41
x2.92

x11
.51

x9
.18

x9.21
x8

.94
x2

.39
S3a

B
ase

x1.71
x1.96

x33
.74

x24
.93

x25.35
x24

.23
x2

.40
Stocator

x1
x1

x1
x1

x1
x1

x1
H

adoop-Sw
iftC

v2
x2

.41
x2.92

x7
.72

x6
.55

x6.92
x6

.29
x2

.39
S3a

C
v2

x1
.71

x1.96
x21

.15
x16

.18
x16.44

x15
.41

x2
.40

S3a
C

v2
+

FU
x1

.71
x1.96

x21
.15

x16
.18

x16.44
x15

.41
x2

.40

6.5 Experimental Evaluation 97

Ta
bl

e
6.

5
Fi

na
nc

ia
lc

os
tf

or
R

E
ST

ca
lls

co
m

pa
re

d
to

St
oc

at
or

fo
rI

B
M

,A
W

S,
G

oo
gl

e
an

d
A

zu
re

in
fr

as
tr

uc
tu

re

R
ea

d-
O

nl
y

50
G

B
R

ea
d-

O
nl

y
50

0G
B

Te
ra

ge
n

C
op

y
W

or
dc

ou
nt

Te
ra

so
rt

T
PC

-D
S

H
ad

oo
p-

Sw
if

tB
as

e
x9
.7

2
x1

3.
67

x8
.2

3
x8

.6
0

x8
.5

8
x8

.5
7

x2
.2

3
S3

a
B

as
e

x1
.6

3
x1
.9

4
x2

7.
82

x2
6.

74
x2

6.
84

x2
5.

88
x2

.2
5

St
oc

at
or

x1
x1

x1
1

x1
x1

x1
H

ad
oo

p-
Sw

if
tC

v2
x9

.7
2

x1
3.

67
x5

.2
4

x5
.8

6
x5
.8

5
x5

.8
1

x2
.2

3
S3

a
C

v2
x1

.6
3

x1
.9

4
x1

7.
59

x1
7.

29
x1

7.
36

x1
6.

40
x2

.2
5

S3
a

C
v2

+
FU

x1
.6

3
x1
.9

4
x1

7.
55

x1
7.

29
x1

7.
34

x1
6.

40
x2

.2
5

98 Stocator: High Performance Connector for Object Stores

expected the results for the read-only workloads for S3a and Hadoop-Swift connectors are virtually the
same with and without the FileOutputCommitter Version 2 and S3AFastOutputStream features; these
features optimize the write path and do not affect the read path.

6.5.2 Reduction in the number of REST calls

Next we look at the number of REST operations executed by Spark in order to understand the load
generated on the object storage infrastructure. Figure 6.4 shows that, in all the workloads, the scenario
that uses Stocator achieves the lowest number of REST calls and thus the lowest load on the object
storage.

When looking at Read-only with both 50 and 500 GB dataset, the scenario with Hadoop-Swift has
the highest number of REST calls and more than double compared to the scenario with Stocator. The
Hadoop-Swift connector does many more GET calls on containers to list their contents. Compared to
S3a, Stocator is optimized to reduce the number of HEAD calls on the objects. We see this consistently
for all of the workloads.

In write-intensive workloads, Teragen and Copy, we see that the scenarios that use S3a as the
connector have the highest number of REST calls while Stocator still has the lowest. Compared to
Hadoop-Swift and Stocator, S3a performs many more HEAD calls for the objects and GET for the
containers. Stocator also does not need to create temporary “directories” objects, thus uses far fewer
HEAD requests, and does not need to DELETE objects; this is possible because our algorithm is
conceived to avoid renaming objects after a task or job completes. Table 6.4 shows the number of REST
calls that is possible to save by using Stocator. We observe that, for write-intensive workloads, Stocator
issues 6 to 11 times less REST calls compared to Hadoop-Swift and 15 to 33 times less compared to
S3a, depending on the optimization features.

Having a low load on the Object Storage has advantages both for the data scientist and the storage
providers. On the one hand, cloud providers will be able to serve a bigger pool of consumers and give
them a better experience. On the other hand, since most public providers charge fees based on the
number of operations performed on the storage tier, reducing the operations results in a lower cost for the
data scientists. Table 6.5 shows the relative costs for the REST operations. For the workloads with write
(Teragen, Copy, Terasort and Wordcount) Stocator is 16 to 18 times less expensive than S3a run with
FileOutputCommitter version 2, and 5 to 6 times less expensive than Hadoop-Swift. To calculate the
cost ratio we used the pricing models of IBM23, AWS24, Google25 and Azure26; given that the models
are very similar we report the average price.

As an additional way of measuring the load on the object storage and confirming the fact that Stocator
does not perform COPY (or DELETE) operations we present the number of bytes read and written to the
object storage. From fig. 6.5 we see that Stocator does not write more data than needed on the storage. In

23http://www-03.ibm.com/software/products/en/object-storage-public/#othertab2
24https://aws.amazon.com/s3/pricing/
25https://cloud.google.com/storage/pricing
26https://azure.microsoft.com/en-us/pricing/details/storage/blobs/

6.5 Experimental Evaluation 99

H
-S

 B
as

e

S
3
a

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a

C
v2

S
3
a

C
v2

+
FU

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
B

y
te

s
W

ri
tt

e
n

1e11 Teragen

GET Bytes PUT Bytes COPY Bytes

H
-S

 B
as

e

S
3
a

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a

C
v2

S
3
a

C
v2

+
FU

0.0

0.5

1.0

1.5

2.0

2.5

B
y
te

s
W

ri
tt

e
n

1e11 Copy

GET Bytes PUT Bytes COPY Bytes

H
-S

 B
as

e

S
3
a

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a

C
v2

S
3
a

C
v2

+
FU

0.0

0.5

1.0

1.5

2.0

B
y
te

s
W

ri
tt

e
n

1e11 Terasort

GET Bytes PUT Bytes COPY Bytes

H
-S

 B
as

e

S
3
a

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a

C
v2

S
3
a

C
v2

+
FU

0

1

2

3

4

5

6
B

y
te

s
W

ri
tt

e
n

1e10 Wordcount

GET Bytes PUT Bytes COPY Bytes

Fig. 6.5 Object Storage bytes read/written comparison

contrast we confirm that Hadoop-Swift and S3a base write each object three times – one from the PUT
and two from the COPY – while Stocator only does it once. Only by enabling FileOutputCommitter
Version 2 in Hadoop, it is possible to reduce the COPY operations to one, but this is still one more
object copy compared to Stocator. We show only the workloads that have write operations since during
a read-only workload, the number of bytes read from the object storage are identical for all of the
connectors and scenarios (as we see from the Wordcount workload in fig. 6.5 where the number of bytes
written is very small). As expected the S3a scenario that uses the S3AFastOutputStream optimization
gains no benefit with respect to the number of bytes written to the object storage.

100 Stocator: High Performance Connector for Object Stores

6.6 Summary

We have presented a high performance object storage connector for Apache Spark called Stocator, which
has been made available to the open source community27. Stocator overcomes the impedance mismatch
of previous open source connectors with their storage, by leveraging object storage semantics rather
than trying to treat object storage as a file system. In particular Stocator eliminates the rename paradigm
without sacrificing fault tolerance or speculative execution. It also deals correctly with the eventually
consistent semantics of object stores without the need to use an additional consistent storage system.
Finally, Stocator leverages HTTP chunked transfer encoding to stream data as it is produced to object
storage, thereby avoiding the need to first write output to local storage.

We have compared Stocator’s performance with the Hadoop Swift and S3a connectors over a range
of workloads and found that it executes far less operations on object storage, in some cases as little as
one thirtieth. This reduces the load both for client software and the object storage service, as well as
reducing costs for the client. Stocator also substantially increases the performance of Spark workloads,
especially write intensive workloads, where it is as much as 18 times faster than alternatives.

27https://github.com/SparkTC/stocator

Chapter 7

Conclusions and Perspectives

In this thesis we have presented contributions towards the improving of data-center efficiency in term of
system responsiveness. Solutions have been offered to achieve different goals:

• Raise the level of Abstraction. We defined, for the first time, a high-level construct to repre-
sent analytic applications, focusing on their heterogeneity, and their end-to-end life-cycle. We
established a new scheduling problem, and proposed a flexible heuristic capable of handling
heterogeneous requests, as well as a variety of scheduling policies, with the ultimate objective of
improving system responsiveness under heavy loads. We evaluated our scheduling policy using
realistic, large-scale workload traces and show it consistently outperforms the baseline approach.
Finally, we built a full-fledge system which materializes the ideas of analytic applications and
their scheduling. Using our new heuristic, we were able to achieve substantial improvements in
terms of system responsiveness and cluster allocation.

• Cluster Utilization. We presented the system design for a dynamic resource allocation mecha-
nism, which can be generally applied to existing cluster management frameworks. We targeted a
specific family of analytic application schedulers, and materialized our ideas for such schedulers.
We introduced a novel application of state-of-the-art machine learning methodologies for accurate
forecasting of resource utilization, featuring a probabilistic treatment that allows quantification of
uncertainty. Confidence information was used to steer system parameters to safeguard against
unexpected resource demand peaks. We performed an extensive simulation campaign using
publicly available production traces from Google data-centers. We compared our approach to
that of Borg, and discuss about the trade-off that an optimistic vs. a pessimistic approach to
application preemption entails. Finally, we presented the design of a prototype implementation
of our system, that we use in an academic cluster serving students and researchers. Our results
indicated substantial improvements in terms of efficiency, which translate in a system capable of
ingesting a heavier workload with the same number of machines.

• Compute and Storage Disaggregation. We performed an extensive measurement campaign on a
private cloud computing environment involving the combination of several analytics services. For

102 Conclusions and Perspectives

each deployment scenario, we investigated the performance of a variety of application workloads,
including read/write intensive, business intelligence and machine learning applications. We
presented an intuitive notion of data locality that can be used as a proxy to rank different service
compositions, in terms of expected performance. We critically examined the validity of our
intuition as a function of application workloads, and identify and explain outliers. We showed
experimental evidence of the impedance mismatch between large-scale computing framework and
two important storage layers – object stores and elastic block stores – and deduced mechanism to
mitigate negative effects on performance.

• Object Storage and large-scale computing frameworks impedance mismatch. We presented
the design of a novel storage connector for Hadoop and Spark that leverages object storage
semantics to provide high performance and correct execution in the face of faults and speculation.
We proved that this solution works correctly despite the eventually consistent semantics of object
storage, yet without requiring additional strongly consistent storage.

With the work presented in this dissertation we reduced the gap between resource allocation and
utilization. More work can be done in order to study new techniques that can better model the resources
utilization inside a cluster; in this way we can lower even further the number of failures due to resources
contention and reduce the resources slack. In our prose and experiments we always considered just
CPU and Memory as main resources, however other type of resources can be taken into account, like
Network bandwidth and disk I/O. Additionally, our dynamic solution is in a prototype stage. Public
providers must guarantee some Service Level Objective (SLO) and Service Level Agreement (SLA)
to their user. More work must be done to understand the impact of our pessimistic approach on such
service level constraints. Finally, the machine learning methodology that we proposed, may fail with
interactive applications due to the their “human-in-the-loop” nature. It is challenging to predict when an
user is going to interact with an application that has been deemed idle by just looking at the resource
utilization. At the same time, it is not an easy task to understand when an interactive application is in an
idle state; some resources (e.g., Memory) can be kept busy even when applications are not producing
any work.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M. et al. [2016], Tensorflow: A system for large-scale machine learning., in ‘OSDI’, Vol. 16,
pp. 265–283.

Adhikari, R. and Agrawal, R. K. [2013], ‘An Introductory Study on Time Series Modeling and Forecast-
ing’, ArXiv e-prints .

Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M. and Zhang, M. [2017], Cherrypick:
Adaptively unearthing the best cloud configurations for big data analytics, in ‘NSDI’, pp. 469–482.

Ananthanarayanan, G., Douglas, C., Ramakrishnan, R., Rao, S. and Stoica, I. [2012], True elasticity
in multi-tenant data-intensive compute clusters, in ‘Proceedings of the Third ACM Symposium on
Cloud Computing’, ACM, p. 24.

Ananthanarayanan, G., Ghodsi, A., Shenker, S. and Stoica, I. [2011], Disk-locality in datacenter
computing considered irrelevant., in ‘HotOS’, Vol. 13, pp. 12–12.

Arnold, J. [2014], Openstack swift: Using, administering, and developing for swift object storage, "
O’Reilly Media, Inc.".

Babaioff, M., Mansour, Y., Nisan, N., Noti, G., Curino, C., Ganapathy, N., Menache, I., Reingold, O.,
Tennenholtz, M. and Timnat, E. [2017], Era: A framework for economic resource allocation for
the cloud, in ‘Proceedings of the 26th International Conference on World Wide Web Companion’,
International World Wide Web Conferences Steering Committee, pp. 635–642.

Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu, M. and Zhou, L. [2014], Apollo:
Scalable and coordinated scheduling for cloud-scale computing., in ‘OSDI’, Vol. 14, pp. 285–300.

Box, G., Jenkins, G. and Reinsel, G. [2008], Time Series Analysis, Forecasting and Control, Wiley
Series in Probability and Statistics, Wiley.

Brockwell, P. J. and Davis, . R. A. [2002], Introduction to Time Series and Forecasting, Second Edition,
Springer.

Brockwell, P. J. and Davis, R. A. [2016], Introduction to time series and forecasting, springer.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and Wilkes, J. [2016], ‘Borg, omega, and kubernetes’,
Queue 14(1), 10.

Chalupka, K., Williams, C. K. I. and Murray, I. [2013], ‘A framework for evaluating approximation
methods for gaussian process regression’, J. Mach. Learn. Res. 14(1), 333–350.
URL: http://dl.acm.org/citation.cfm?id=2502581.2502592

Curino, C., Difallah, D. E., Douglas, C., Krishnan, S., Ramakrishnan, R. and Rao, S. [2014], Reservation-
based scheduling: If you’re late don’t blame us!, in ‘Proceedings of the ACM Symposium on Cloud
Computing’, ACM, pp. 1–14.

104 References

Cutajar, K., Bonilla, E., Michiardi, P. and Filippone, M. [2017], Random feature expansions for deep
Gaussian processes, in ‘ICML 2017, 34th International Conference on Machine Learning, 6-11
August 2017, Sydney, Australia’, Sydney, AUSTRALIA.
URL: https://www.eurecom.fr/publication/5214

Cutajar, K., Bonilla, E. V., Michiardi, P. and Filippone, M. [2016], ‘Practical learning of deep gaussian
processes via random fourier features’, stat 1050, 14.

Dean, J. and Ghemawat, S. [2008], ‘Mapreduce: simplified data processing on large clusters’, Communi-
cations of the ACM 51(1), 107–113.

Delgado, P., Dinu, F., Didona, D. and Zwaenepoel, W. [2016], Eagle: A better hybrid data center
scheduler, Technical report, Tech. Rep.

Delgado, P., Dinu, F., Kermarrec, A.-M. and Zwaenepoel, W. [2015], Hawk: Hybrid datacenter schedul-
ing, in ‘USENIX Annual Technical Conference (USENIX ATC’15)’, pp. 499–510.

Delimitrou, C. and Kozyrakis, C. [2013], Paragon: Qos-aware scheduling for heterogeneous datacenters,
in ‘ACM SIGPLAN Notices’, Vol. 48, ACM, pp. 77–88.

Delimitrou, C. and Kozyrakis, C. [2014], ‘Quasar: resource-efficient and qos-aware cluster management’,
ACM SIGPLAN Notices 49(4), 127–144.

Delimitrou, C. and Kozyrakis, C. [2016], ‘Hcloud: Resource-efficient provisioning in shared cloud
systems’, ACM SIGOPS Operating Systems Review 50(2), 473–488.

Delimitrou, C., Sanchez, D. and Kozyrakis, C. [2015], Tarcil: reconciling scheduling speed and quality
in large shared clusters, in ‘Proceedings of the Sixth ACM Symposium on Cloud Computing’, ACM,
pp. 97–110.

Dell’Amico, M., Carra, D. and Michiardi, P. [2016], ‘Psbs: Practical size-based scheduling’, IEEE
Transactions on Computers 65(7), 2199–2212.

Dell’Amico, M., Carra, D., Pastorelli, M. and Michiardi, P. [2014], Revisiting size-based scheduling
with estimated job sizes, in ‘Modelling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2014 IEEE 22nd International Symposium on’, IEEE, pp. 411–420.

Dutot, P.-F. et al. [2004], ‘Scheduling parallel tasks: Approximation algorithms’, Handbook of schedul-
ing: Algorithms, models, and performance analysis pp. 26–1.

Frigola-Alcalde, R. [2015], Bayesian Time Series Learning with Gaussian Processes, PhD thesis,
University of Cambridge.

Frigola, R., Chen, Y. and Rasmussen, C. E. [2007], Variational Gaussian Process State-Space Models, in
‘Advances in Neural Information Processing Systems’, MIT Press.

Ghit, B. and Epema, D. [2016], Tyrex: Size-based resource allocation in mapreduce frameworks, in
‘Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM International Symposium on’,
IEEE, pp. 11–20.

Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S. and Stoica, I. [2011], Dominant
resource fairness: Fair allocation of multiple resource types., in ‘Nsdi’, Vol. 11, pp. 24–24.

Goder, A., Spiridonov, A. and Wang, Y. [2015], Bistro: Scheduling data-parallel jobs against live
production systems., in ‘USENIX Annual Technical Conference’, pp. 459–471.

References 105

Gog, I., Schwarzkopf, M., Gleave, A., Watson, R. N. and Hand, S. [2016], Firmament: Fast, centralized
cluster scheduling at scale, Usenix.

Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S. and Akella, A. [2014], Multi-resource packing
for cluster schedulers, in ‘ACM SIGCOMM Computer Communication Review’, Vol. 44, ACM,
pp. 455–466.

Grandl, R., Kandula, S., Rao, S., Akella, A. and Kulkarni, J. [2016], G: Packing and dependency-aware
scheduling for data-parallel clusters, in ‘Proceedings of OSDI’16: 12th USENIX Symposium on
Operating Systems Design and Implementation’, p. 81.

Gu, J., Lee, Y., Zhang, Y., Chowdhury, M. and Shin, K. G. [2017], Efficient memory disaggregation
with infiniswap, in ‘NSDI’, pp. 649–667.

Guo, Z., Fox, G. and Zhou, M. [2012], Investigation of data locality and fairness in mapreduce, in
‘Proceedings of third international workshop on MapReduce and its Applications Date’, ACM,
pp. 25–32.

Hassan, W. U. and Zwaenepoel, W. [2017], Don’t cry over spilled records: Memory elasticity of
data-parallel applications and its application to cluster scheduling, in ‘USENIX Annual Technical
Conference (USENIX ATC 17)’.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R. H., Shenker, S. and
Stoica, I. [2011], Mesos: A platform for fine-grained resource sharing in the data center., in ‘NSDI’,
Vol. 11, pp. 22–22.

Huang, S., Huang, J., Dai, J., Xie, T. and Huang, B. [2010], The hibench benchmark suite: Characteriza-
tion of the mapreduce-based data analysis, in ‘Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on’, IEEE, pp. 41–51.

Hyndman, R. J., Khandakar, Y. et al. [2007], Automatic time series for forecasting: the forecast package
for R, number 6/07, Monash University, Department of Econometrics and Business Statistics.

Isard, M., Budiu, M., Yu, Y., Birrell, A. and Fetterly, D. [2007], Dryad: distributed data-parallel
programs from sequential building blocks, in ‘ACM SIGOPS operating systems review’, Vol. 41,
ACM, pp. 59–72.

Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K. and Goldberg, A. [2009], Quincy: fair
scheduling for distributed computing clusters, in ‘Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles’, ACM, pp. 261–276.

Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K., Fumarola, G. M., Heddaya, S.,
Ramakrishnan, R. and Sakalanaga, S. [2015], Mercury: Hybrid centralized and distributed scheduling
in large shared clusters., in ‘USENIX Annual Technical Conference’, pp. 485–497.

Kuzmanovska, A., Mak, R. H. and Epema, D. [2014], Dynamically scheduling a component-based
framework in clusters, in ‘Workshop on Job Scheduling Strategies for Parallel Processing’, Springer,
pp. 129–146.

Kuzmanovska, A., Mak, R. H. and Epema, D. [2016], Koala-f: A resource manager for scheduling
frameworks in clusters, in ‘Cluster, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM
International Symposium on’, IEEE, pp. 80–89.

Leung, J. Y. [2004], Handbook of scheduling: algorithms, models, and performance analysis, CRC
Press.

106 References

Li, H., Ghodsi, A., Zaharia, M., Baldeschwieler, E., Shenker, S. and Stoica, I. [2013], ‘Tachyon: Memory
throughput i/o for cluster computing frameworks’, memory 18, 1.

Lin, X., Meng, Z., Xu, C. and Wang, M. [2012], A practical performance model for hadoop mapreduce,
in ‘Cluster Computing Workshops (CLUSTER WORKSHOPS), 2012 IEEE International Conference
on’, IEEE, pp. 231–239.

Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P. and Kozyrakis, C. [2015], Heracles: improving
resource efficiency at scale, in ‘ACM SIGARCH Computer Architecture News’, Vol. 43, ACM,
pp. 450–462.

MacKay, D. J. C. [2003], Information Theory, Inference & Learning Algorithms, Cambridge University
Press.

Mao, H., Alizadeh, M., Menache, I. and Kandula, S. [2016], Resource management with deep rein-
forcement learning, in ‘Proceedings of the 15th ACM Workshop on Hot Topics in Networks’, ACM,
pp. 50–56.

McHutchon, A. [2015], Nonlinear Modelling and Control using Gaussian Processes, PhD thesis,
University of Cambridge.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J., Tsai, D., Amde, M.,
Owen, S. et al. [2016], ‘Mllib: Machine learning in apache spark’, The Journal of Machine Learning
Research 17(1), 1235–1241.

Moatti, Y., Rom, E., Gracia-Tinedo, R., Naor, D., Chen, D., Sampe, J., Sanchez-Artigas, M., Garcıa-
Lopez, P., Gluszak, F., Deschdt, E. et al. [2017], Too big to eat: Boosting analytics data ingestion from
object stores with scoop, in ‘Data Engineering (ICDE), 2017 IEEE 33rd International Conference on’,
IEEE, pp. 309–320.

Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P. and Abadi, M. [2013], Naiad: a timely
dataflow system, in ‘Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles’, ACM, pp. 439–455.

Nambiar, R. O. and Poess, M. [2006], The making of tpc-ds, in ‘Proceedings of the 32nd international
conference on Very large data bases’, VLDB Endowment, pp. 1049–1058.

Nightingale, E. B., Elson, J., Fan, J., Hofmann, O. S., Howell, J. and Suzue, Y. [2012], Flat datacenter
storage., in ‘OSDI’, pp. 1–15.

Ousterhout, K., Rasti, R., Ratnasamy, S., Shenker, S., Chun, B.-G. and ICSI, V. [2015], Making sense of
performance in data analytics frameworks., in ‘NSDI’, Vol. 15, pp. 293–307.

Ousterhout, K., Wendell, P., Zaharia, M. and Stoica, I. [2013], Sparrow: distributed, low latency
scheduling, in ‘Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles’,
ACM, pp. 69–84.

Pace, F., Milanesio, M., Venzano, D., Carra, D. and Michiardi, P. [2016], Experimental performance
evaluation of cloud-based analytics-as-a-service, in ‘Cloud Computing (CLOUD), 2016 IEEE 9th
International Conference on’, IEEE, pp. 196–203.

Pace, F., Venzano, D., Carra, D. and Michiardi, P. [2016], ‘Flexible scheduling of distributed analytic
applications’, arXiv preprint arXiv:1611.09528 .

Pace, F., Venzano, D., Carra, D. and Michiardi, P. [2017], Flexible scheduling of distributed analytic
applications, in ‘Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM International
Symposium on’, IEEE, pp. 100–109.

References 107

Padala, P., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A. and Salem, K. [2007],
Adaptive control of virtualized resources in utility computing environments, in ‘ACM SIGOPS
Operating Systems Review’, Vol. 41, ACM, pp. 289–302.

Pastorelli, M., Barbuzzi, A., Carra, D., Dell’Amico, M. and Michiardi, P. [2013], Hfsp: size-based
scheduling for hadoop, in ‘Big Data, 2013 IEEE International Conference on’, IEEE, pp. 51–59.

Pastorelli, M., Dell’Amico, M. and Michiardi, P. [2014], Os-assisted task preemption for hadoop, in
‘Distributed Computing Systems Workshops (ICDCSW), 2014 IEEE 34th International Conference
on’, IEEE, pp. 94–99.

Pruhs, K. et al. [2004], ‘Online scheduling’, Handbook of scheduling: algorithms, models, and perfor-
mance analysis pp. 15–1.

Quiñonero Candela, J. and Rasmussen, C. E. [2005], ‘A unifying view of sparse approximate gaussian
process regression’, J. Mach. Learn. Res. 6, 1939–1959.

Rabinovici-Cohen, S., Henis, E., Marberg, J. and Nagin, K. [2014], ‘Storlet engine: performing
computations in cloud storage’, IBM Technical Report H-0320 (August 2014), Tech. Rep. .

Ragan-Kelley, M., Perez, F., Granger, B., Kluyver, T., Ivanov, P., Frederic, J. and Bussonnier, M.
[2014], The jupyter/ipython architecture: a unified view of computational research, from interactive
exploration to communication and publication., in ‘AGU Fall Meeting Abstracts’.

Rahimi, A. and Recht, B. [2007], Random features for large-scale kernel machines, in ‘NIPS’.

Ranganathan, K. and Foster, I. [2002], Decoupling computation and data scheduling in distributed
data-intensive applications, in ‘High Performance Distributed Computing, 2002. HPDC-11 2002.
Proceedings. 11th IEEE International Symposium on’, IEEE, pp. 352–358.

Rasley, J., Karanasos, K., Kandula, S., Fonseca, R., Vojnovic, M. and Rao, S. [2016], Efficient queue
management for cluster scheduling, in ‘Proceedings of the Eleventh European Conference on Com-
puter Systems’, ACM, p. 36.

Rasmussen, C. E. and Williams, C. K. I. [2006], Gaussian Processes for Machine Learning, MIT Press.

Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H. and Kozuch, M. A. [2012], Heterogeneity and
dynamicity of clouds at scale: Google trace analysis, in ‘Proceedings of the Third ACM Symposium
on Cloud Computing’, ACM, p. 7.

Reiss, C., Wilkes, J. and Hellerstein, J. L. [2011], Google cluster-usage traces: format + schema,
Technical report, Google Inc., Mountain View, CA, USA. Revised 2014-11-17 for version 2.1. Posted
at https://github.com/google/cluster-data.

Roman, R.-I., Nicolae, B., Costan, A. and Antoniu, G. [2015], Understanding spark performance
in hybrid and multi-site clouds, in ‘BDAC-15-6th International Workshop on Big Data Analytics:
Challenges and Opportunities (in conjunction with SC15)’.

Rupprecht, L., Zhang, R. and Hildebrand, D. [2014], ‘Big data analytics on object stores: A performance
study’, red 30, 35.

Rupprecht, L., Zhang, R., Owen, B., Pietzuch, P. and Hildebrand, D. [2017], Swiftanalytics: Optimiz-
ing object storage for big data analytics, in ‘Cloud Engineering (IC2E), 2017 IEEE International
Conference on’, IEEE, pp. 245–251.

108 References

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. and Wilkes, J. [2013], Omega: flexible, scalable
schedulers for large compute clusters, in ‘Proceedings of the 8th ACM European Conference on
Computer Systems’, ACM, pp. 351–364.

Schwiegelshohn, U. and Yahyapour, R. [1998], Analysis of first-come-first-serve parallel job scheduling,
in ‘SODA’, Vol. 98, Citeseer, pp. 629–638.

Seabold, S. and Perktold, J. [2010], Statsmodels: Econometric and statistical modeling with python, in
‘9th Python in Science Conference’.

Sgall, J. [2015], ‘Online preemptive scheduling on parallel machines.’.

Shahrad, M., Klein, C., Zheng, L., Chiang, M., Elmroth, E. and Wentzlaf, D. [2017], Incentivizing self-
capping to increase cloud utilization, in ‘ACM Symposium on Cloud Computing 2017 (SoCC’17)’,
Association for Computing Machinery (ACM).

Shvachko, K., Kuang, H., Radia, S. and Chansler, R. [2010], The hadoop distributed file system, in
‘Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium on’, Ieee, pp. 1–10.

Sivasubramanian, S. [2012], Amazon dynamodb: a seamlessly scalable non-relational database service,
in ‘Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data’,
ACM, pp. 729–730.

Snelson, E. and Ghahramani, Z. [2005], Sparse gaussian processes using pseudo-inputs, in ‘Proceedings
of the 18th International Conference on Neural Information Processing Systems’, NIPS, MIT Press,
Cambridge, MA, USA, pp. 1257–1264.
URL: http://dl.acm.org/citation.cfm?id=2976248.2976406

Sumway, R. H. and Stoffer, D. S. [2006], ‘Time series analysis and its applications with r examples’,
Time series analysis and its applications with R examples .

Svensson, A., Solin, A., Särkkä, S. and Schön, T. [2016], Computationally Efficient Bayesian Learning
of Gaussian Process State Space Models, in ‘Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics’, Vol. 51 of Proceedings of Machine Learning Research, PMLR,
pp. 213–221.

Tannenbaum, T., Wright, D., Miller, K. and Livny, M. [2001], Condor: a distributed job scheduler, in
‘Beowulf cluster computing with Linux’, MIT press, pp. 307–350.

Thinakaran, P., Gunasekaran, J. R., Sharma, B., Kandemir, M. T. and Das, C. R. [2017], Phoenix:
A constraint-aware scheduler for heterogeneous datacenters, in ‘Distributed Computing Systems
(ICDCS), 2017 IEEE 37th International Conference on’, IEEE, pp. 977–987.

Trivedi, A., Stuedi, P., Pfefferle, J., Stoica, R., Metzler, B., Koltsidas, I. and Ioannou, N. [2016], ‘On the
[ir] relevance of network performance for data processing’, Network 40, 60.

Turner, R., Deisenroth, M. and Rasmussen, C. [2010], State-Space Inference and Learning with Gaussian
Processes, in ‘Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics’, Vol. 9 of Proceedings of Machine Learning Research, PMLR, pp. 868–875.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J.,
Shah, H., Seth, S. et al. [2013], Apache hadoop yarn: Yet another resource negotiator, in ‘Proceedings
of the 4th annual Symposium on Cloud Computing’, ACM, p. 5.

Venzano, D. and Michiardi, P. [2013], A measurement study of data-intensive network traffic patterns in
a private cloud, in ‘Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing’, IEEE Computer Society, pp. 476–481.

References 109

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E. and Wilkes, J. [2015], Large-scale
cluster management at google with borg, in ‘Proceedings of the Tenth European Conference on
Computer Systems’, ACM, p. 18.

Vernik, G., Factor, M., Kolodner, E. K., Ofer, E., Michiardi, P. and Pace, F. [2017], Stocator: an
object store aware connector for apache spark, in ‘Proceedings of the 2017 Symposium on Cloud
Computing’, ACM, pp. 653–653.

Vogels, W. [2009], ‘Eventually consistent’, Communications of the ACM 52(1), 40–44.

Wang, G., Butt, A. R., Pandey, P. and Gupta, K. [2009], A simulation approach to evaluating design deci-
sions in mapreduce setups, in ‘Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, 2009. MASCOTS’09. IEEE International Symposium on’, IEEE, pp. 1–11.

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. and Maltzahn, C. [2006], Ceph: A scalable,
high-performance distributed file system, in ‘Proceedings of the 7th symposium on Operating systems
design and implementation’, USENIX Association, pp. 307–320.

Wierman, A., Harchol-Balter, M. and Osogami, T. [2005], Nearly insensitive bounds on smart scheduling,
in ‘ACM SIGMETRICS Performance Evaluation Review’, Vol. 33, ACM, pp. 205–216.

Wilkes, J. [2011], ‘More Google cluster data’, Google research blog. Posted at http://googleresearch.
blogspot.com/2011/11/more-google-cluster-data.html.

Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A. and Qin, X. [2010], Improving
mapreduce performance through data placement in heterogeneous hadoop clusters, in ‘Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium
on’, IEEE, pp. 1–9.

Yan, Y., Gao, Y., Chen, Y., Guo, Z., Chen, B. and Moscibroda, T. [2016], Tr-spark: Transient computing
for big data analytics, in ‘Proceedings of the Seventh ACM Symposium on Cloud Computing’, ACM,
pp. 484–496.

Yang, X. and Sun, J. [2011], An analytical performance model of mapreduce, in ‘Cloud Computing and
Intelligence Systems (CCIS), 2011 IEEE International Conference on’, IEEE, pp. 306–310.

Yang, Y., Kim, G.-W., Song, W. W., Lee, Y., Chung, A., Qian, Z., Cho, B. and Chun, B.-G. [2017], Pado:
A data processing engine for harnessing transient resources in datacenters, in ‘Proceedings of the
Twelfth European Conference on Computer Systems’, ACM, pp. 575–588.

Yoo, A. B., Jette, M. A. and Grondona, M. [2003], Slurm: Simple linux utility for resource management,
in ‘Workshop on Job Scheduling Strategies for Parallel Processing’, Springer, pp. 44–60.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker,
S. and Stoica, I. [2012], Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing, in ‘Proceedings of the 9th USENIX conference on Networked Systems Design
and Implementation’, USENIX Association, pp. 2–2.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica, I. [2010], ‘Spark: Cluster
computing with working sets.’, HotCloud 10(10-10), 95.

Zhang, C., Ding, C., Ogihara, M., Zhong, Y. and Wu, Y. [2006], A hierarchical model of data locality, in
‘ACM SIGPLAN Notices’, Vol. 41, ACM, pp. 16–29.

Zhang, Y., Prekas, G., Fumarola, G. M., Fontoura, M., Goiri, Í. and Bianchini, R. [2016], History-
based harvesting of spare cycles and storage in large-scale datacenters, in ‘Proceedings of the 12th
USENIX conference on Operating Systems Design and Implementation’, number EPFL-CONF-
224446, pp. 755–770.

Appendix A

French Résumé

A.1 Introduction

La dernière décennie a vu la prolifération de nombreux cadres distribués pour traiter une variété de
l’analyse de données à grande échelle et des tâches de traitement. Tout d’abord, MapReduce [Dean and
Ghemawat, 2008] été introduit pour faciliter le traitement des données en masse. Par la suite, des outils
plus flexibles, tels que Dryad [Isard et al., 2007], Spark [Zaharia et al., 2012], Flink1 et Naiad [Murray
et al., 2013],pour nommer peu, ont été conçus pour répondre aux limites et la rigidité du modèle de
programmation MapReduce. De même, des bibliothèques spécialisées telles que MLLib [Meng et al.,
2016] et des systèmes comme TensorFlow [Abadi et al., 2016] ont vu la lumière pour faire face à des
problèmes d’apprentissage machine à grande échelle. En plus d’un écosystème à croissance rapide, les
cadres individuels sont guidés par un modèle de développement rapide, avec de nouveaux libère tous
les quelques mois, introduisant des améliorations de performance substantielles. Depuis chaque cadre
répond à des besoins spécifiques, un large choix d’outils et de combinaisons est disponible pour les
utilisateurs qui peut aborder les différentes étapes de leurs projets d’analyse de données.

Ce contexte a suscité beaucoup de recherches [Delimitrou and Kozyrakis, 2013, 2014; Delimitrou
et al., 2015; Ghit and Epema, 2016; Hindman et al., 2011; Isard et al., 2009; Kuzmanovska et al., 2016;
Ousterhout et al., 2013; Schwarzkopf et al., 2013; Vavilapalli et al., 2013; Verma et al., 2015] dans la
zone de l’allocation des ressources et des horaires, à la fois du milieu universitaire et de l’industrie. Ces
efforts se matérialisent dans les systèmes de gestion de cluster qui offrent des mécanismes simples pour
les utilisateurs de demander le déploiement de le cadre dont ils ont besoin. L’idée générale sous-jacente
est celle du partage des ressources de cluster entre ensemble hétérogène de cadres, par opposition à
la partition statique, qui a été rejeté pour cela entraîne une faible allocation des ressources [Hindman
et al., 2011; Schwarzkopf et al., 2013; Verma et al., 2015]. Les systèmes existants divisent les ressources
à différents niveaux. Certains d’entre eux, par exemple Mesos et YARN, ciblent l’ orchestration de
bas niveau des frameworks informatiques distribués: dans ce but, ils nécessitent des modifications de

1https://flink.apache.org/

112 French Résumé

ces cadres pour fonctionner correctement. D’autres, par exemple Kubernetes2 et Docker Swarm3, se
concentrer sur l’approvisionnement et le déploiement des conteneurs, et sont donc inconscients des
caractéristiques des cadres fonctionnant dans de tels conteneurs.

Malgré ces efforts, les ressources des centres de données sont souvent sous-utilisées, comme le
montrent les traces récentes des déploiements de production à grande échelle [Reiss et al., 2012; Wilkes,
2011]: pour une charge de travail mixte les services de production et les applications par lots (voir la
Figure 1.1); dans la plupart des cas (∼80%) l’utilisation des ressources est inférieur à 40% ou 80% des
ressources allouées en fonction des différents types d’applications4.

Les approches actuelles qui répondent aux exigences d’efficacité relèvent de deux grandes catégories.
La première catégorie implique des méthodologies qui visent à diriger le comportement des locataires à
travers la conception de l’incitation mécanismes; les locataires ont pour tâche d’optimiser le coût de
fonctionnement de leurs applications, les fournisseurs opèrent sur les prix pour orienter l’allocation
des ressources inutilisées. De telles approches sont largement adoptées par les fournisseurs de cloud
public [Babaioff et al., 2017]. La deuxième catégorie concerne les approches qui fonctionnent au
niveau du système, et proposer des mécanismes qui allouent des ressources en fonction des réserves des
locataires56 [Ghodsi et al., 2011; Hindman et al., 2011; Rasley et al., 2016; Schwarzkopf et al., 2013;
Verma et al., 2015].

Le but ultime de la recherche ci-dessus est de rendre le concept de réservation de ressources obsolète,
et soit laisser les locataires raisonner en termes de valeur et de coût [Babaioff et al., 2017], ou laissez le
système déterminer comment éviter de gaspiller des ressources précieuses et coûteuses, surtout lorsque
celles-ci sont rares et entraîner la mise en file d’attente des applications dans le planificateur.

Une contrainte de planification majeure que la recherche dans le domaine de l’allocation des
ressources et de l’ordonnancement doit visage est sur la data-localité, qui se réfère à la capacité de
déplacer le calcul près de l’endroit où le réel les données résident au lieu de déplacer de grandes données
vers le calcul. Cela minimise la congestion du réseau et augmente le débit global du système. Alors
qu’avant il était possible de mettre la tâche n’importe où, Maintenant, il doit aller sur l’une des répliques
de données.

Cependant, de nos jours grâce à la virtualisation, les clusters de calcul et de stockage sont plus
flexibles, ils peuvent être facilement approvisionné en différentes tailles et détruit lorsqu’il n’est pas
nécessaire7. De plus en plus, un tel stockage et les systèmes de traitement sont exposés aux utilisateurs
en tant que services , déployés sur le cloud computing public ou privé environnements, plutôt que sur
des machines nues dans des clusters privés. En effet, de nombreuses entreprises proposent Clusters

2http://kubernetes.io/
3https://docs.docker.com/swarm/
4Dans l’analyse, nous avons vu que certaines applications utilisaient plus de ressources que demandé et cela a été confirmé

par Google. Personnel. Leur système permet à l’utilisateur d’aller au-dessus de la réservation lorsque les ressources sont
disponibles. Puisque tous les systèmes ne peuvent pas faire ceci (par exemple, Docker), nous avons décidé d’enlever cette
partie des données

5http://www.docker.com/
6https://aws.amazon.com/emr/
7https://aws.amazon.com/application-hosting/benefits/

A.1 Introduction 113

Analytics-as-a-Service (AaaS) pour exécuter une variété d’applications: Amazon Web Services (AWS)
avec Elastic MapReduce8, DataBricks Cloud9, Cloudera Cloud10 et Google Cloud Hadoop11 exemples
remarquables.

Dans les environnements de cloud computing, l’architecture des clusters d’analyse est le résultat
de la de plusieurs services, composé de trois couches (séparées logiquement): la couche Calcul fait
référence à les nœuds de cluster qui exécutent l’application de traitement de données (par exemple, une
application Spark); la couche de données se réfère à toute combinaison de services de stockage (par
exemple, HDFS12 ou Swift13); et la couche de stockage physiquement stocke les données, y compris les
disques éphémères, les magasins d’objets et de blocs élastiques.

En outre, il est probable que les couches de données ou de stockage et la couche de traitement
se trouvent sur des racks différents ou même des centres de données: en conséquence, la sagesse
traditionnelle de la localité de données peut être remise en question. Pour Par exemple, considérons
Amazon S314: les données résident sur un ensemble de machines dédiées uniquement au stockage, à la
rupture localité de données complètement.

Actuellement, les utilisateurs de AaaS ont des informations abondantes sur les prix et sur la durabilité
de Ressources. Il est possible de raisonner sur le dimensionnement des services basé sur les coûts
et de sélectionner services de stockage en fonction de la disponibilité des données et des objectifs
de durabilité. En conséquence, il est aujourd’hui possible de construire des pipelines d’ingestion de
données, de stockage et de traitement, en composant - dans divers combinaisons - les trois couches
définies ci-dessus.

Les questions que nous abordons dans cette thèse sont: qu’arrive-t-il à la performance, et au temps
de réalisation en particulier, des applications d’analyse avec différents types de couche de calcul et de
données configurations?

Au cours de notre quête pour répondre à cette question, nous découvrons l’existence d’un décalage
d’impédance entre les frameworks à grande échelle et une solution de stockage de données, appelée
stockage d’objets cloud, qui est actuellement largement utilisé parmi les fournisseurs; Amazon S3,
Azure Blob storage15, et IBM Cloud Object Storage16, sont des systèmes de stockage en nuage distribué
hautement évolutifs offrant une capacité élevée et un stockage rentable.

Jusqu’à présent, les connecteurs Hadoop pour le stockage des objets, par exemple, S3a17 et Hadoop
Swift Connector18, été basé sur la sémantique des fichiers, une hypothèse naturelle étant donné que leur
modèle de fonctionnement est basé sur le Hadoop interagit avec son système de stockage d’origine,

8https://aws.amazon.com/emr/
9Solution hébergée sur AWS: https://databricks.com/product/databricks-cloud

10Solution hébergée sur AWS: http://www.cloudera.com/content/cloudera/en/solutions/partner/Amazon-Web-Services.html
11https://cloud.google.com/hadoop/
12https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
13http://docs.openstack.org/developer/swift/development_saio.html
14https://aws.amazon.com/s3/
15https://azure.microsoft.com/en-us/pricing/details/storage/blobs/
16https://www.ibm.com/cloud-computing/products/storage/object-storage/cloud/
17https://aws.amazon.com/sdk-for-java/
18https://github.com/openstack/sahara-extra/tree/master/hadoop-swiftfs

114 French Résumé

Hadoop Distributed File System (HDFS). Cependant, traiter un stockage d’objets comme un système de
fichiers constitue une inadéquation d’impédance, ce qui peut conduire à une mauvaise performance et
une exécution incorrecte. En particulier, les opérations atomiques pour les fichiers ne peuvent pas être
atomique pour les objets et les opérations qui sont peu coûteux pour les fichiers peuvent ne pas être peu
coûteux pour les objets, et vice versa. Par exemple, renommer un répertoire dans un système de fichiers
nécessite une seule opération atomique, tandis que dans le stockage d’objets, il nécessite des opérations
de copie et de suppression pour chacun des objets de l’arbre sous le “répertoire virtuel”19.

Nous ne sommes pas les premiers à reconnaître les mauvaises performances des connecteurs de
stockage d’objets. D’autres ont essayé d’améliorer les performances, en sacrifiant l’exécution spéculative,
puis en écrivant des objets directement à leurs noms définitifs, par exemple, DirectOutputCommitter20

pour Amazon S3 ou en renommant la sortie Hadoop objets à leurs noms définitifs lorsque les tâches
sont terminées (validation de la tâche) au lieu d’attendre le travail entier termine (travail de validation)
21. Cependant, en raison de l’inadéquation de l’impédance, ces tentatives ont conduit à de subtils échecs

Les connecteurs actuels peuvent également entraîner des échecs et une exécution incorrecte, car
l’opération de liste sur les conteneurs de stockage d’objets / seaux sont finalement cohérents. EMRFS22

d’Amazon et S3mper23 de Netflix surmontent la cohérence éventuelle en stockant des métadonnées de
fichier dans DynamoDB24, un fort supplément système de stockage cohérent séparé du magasin d’objets.
Une fonctionnalité similaire appelée S3Guard25 est en cours développé par la communauté open source
Hadoop pour le connecteur S3a. Des solutions comme celles-ci, qui nécessitent plusieurs systèmes de
stockage, sont complexes et peuvent introduire des problèmes de cohérence entre magasins. Ils ajoutent
également des coûts puisque les utilisateurs doivent payer pour le stockage supplémentaire fortement
cohérent.

Le but de cette dissertation est d’améliorer la réactivité des systèmes dans les clouds privés et
publics fournisseurs de services, en appliquant de nouvelles techniques d’ordonnancement et en tirant
parti des orienter le comportement des décisions d’ordonnancement. L’utilisation d’une telle approche
améliore l’utilisation des ressources d’environ 50% et le délai d’exécution moyen, qui est le temps
qu’une application réside dans le système, par plus de deux ordres de grandeur

A.2 Une heuristique de planification flexible

L’effort du Chapter 3 est de combler le vide qui existe dans les approches actuelles et d’ élever
le niveau de abstraction à laquelle la programmation fonctionne. Nous introduisons une définition
générale et flexible des applications , comment ils sont composés et comment les exécuter. Par exemple,

19Les magasins d’objets émulent les répertoires via une dénomination hiérarchique.
20https://github.com/apache/spark/pull/12229
21https://issues.apache.org/jira/browse/MAPREDUCE-6336
22https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
23http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html
24https://aws.amazon.com/dynamodb/
25http://www.slideshare.net/hortonworks/s3guard-whats-in-your-consistency-model

A.2 Une heuristique de planification flexible 115

une application utilisateur traitant de la formation d’un modèle statistique implique: un programme
défini par l’utilisateur mettant en œuvre un algorithme d’apprentissage, un cadre (par exemple, Spark)
pour exécuter un tel programme avec des informations sur ses besoins en ressources, le emplacement
pour les données d’entrée et de sortie et éventuellement les paramètres exposés en tant qu’arguments
d’application. Utilisateurs devrait être en mesure d’exprimer, de manière simple, comment une telle
application doit être emballée et exécutée, soumettez-le et attendez-vous à des résultats dès que possible.
Nous montrons que la planification de telles applications représente un écart par rapport à ce qui a été
étudié dans la littérature sur les horaires, et nous présentons la conception d’un nouvel algorithme pour
résoudre le problème. Un aperçu clé de notre approche est d’exploiter les propriétés de la les frameworks
utilisés par une application, et distinguer leurs composants en fonction des classes, élastique: le premier
étant requis pour qu’une application produise du travail, ce dernier contribuant à les temps d’exécution.

Notre heuristique concentre les ressources de cluster sur quelques applications et utilise la classe de
composants d’application nents pour les emballer efficacement. Notre planificateur vise une allocation
de cluster élevée et un système réactif. Il peut facilement accommoder une variété de politiques
d’ordonnancement, au-delà du traditionnel «premier arrivé, premier servi» ou stratégies de «partage
de processeurs», qui sont actuellement utilisées par la plupart des approches existantes. Nous étudions
le performances de notre planificateur en utilisant des traces de charge de travail réalistes et à grande
échelle de Google26 [Reiss et al., 2012, 2011; Wilkes, 2011], et montrent qu’il surpasse constamment
l’approche de référence existante qui ignore les classes de composants: les délais d’exécution des
applications sont réduits de moitié et les files d’attente sont considérablement réduits. Cela induit
moins d’applications en attente d’être servies, et augmente les ressources allocation jusqu’à 20% de
plus que la base de référence. Enfin, nous construisons un système à part entière, appelé Zoé, qui
programme des applications analytiques selon notre algorithme original et qui peut utiliser sophistiqué
des stratégies pour déterminer les priorités d’application. Notre système expose une configuration simple
et extensible langage qui permet la définition de l’application. Nous validons notre système avec des
expériences réelles, et signaler des améliorations évidentes par rapport à un planificateur de base, lors de
l’utilisation d’un représentant charge de travail: les délais d’exécution médians sont réduits jusqu’à 37%
et l’allocation médiane des ressources est de 20% plus haute.

Le Chapter 3 est organisé comme suit. Nous commençons par clarifier ce que sont les applications
analytiques, donner exemples et formuler notre énoncé du problème dans la Section 3.1.Nous décrivons
ensuite les détails de notre l’heuristique d’ordonnancement flexible, à la Section 3.2, que nous évaluons
en utilisant des simulations à la Section 3.3. la mise en œuvre du système est décrite à la Section 3.4, et
son évaluation est présentée à la Section 3.5.

26https://github.com/google/cluster-data

116 French Résumé

A.2.1 Définitions et énoncé du problème

Définitions

Nous définissons un framework d’analyse de données sous la forme d’un ensemble d’un ou de plusieurs
composants logiciels (exécutable binaires) pour accomplir certaines tâches de traitement de données. Les
frameworks distribués sont généralement composés par un contrôleur, un maître et un certain nombre de
composants de travail. Exemples de frameworks distribués sont Apache Spark27, Google TensorFlow28

et MPI29. Un autre exemple d’analyse de données simple cadre que nous considérons est un Notebook
interactif [Ragan-Kelley et al., 2014].

Les frameworks distribués nécessitent un ordonnanceur pour orchestrer leur travail: ils exécutent
des jobs , chacun qui consiste en une ou plusieurs tâches exécutées en parallèle sur le même programme.
Ces planificateurs fonctionnent à le niveau de la tâche : ils assignent des tâches aux travailleurs, et ils
sont hautement spécialisés pour prendre en compte les particularités de chaque cadre.

Les ordonnanceurs de cadre tels que Mesos [Hindman et al., 2011] et Yarn [Vavilapalli et al., 2013]
introduire un composant de planification supplémentaire pour partager des ressources de cluster entre
des frameworks simultanés: Les règles de partage sont basées sur de simples variantes du partage de
processeurs. De même, la gestion des clusters systèmes tels que Docker Swarm30 et Kubernetes31

utilisent un planificateur qui affecte des ressources génériques cadres. Le problème à résoudre est l’
allocation efficace des ressources en plaçant le cadre les composants et leurs tâches sur les machines de
cluster qui satisfont un ensemble de contraintes.

Nous sommes maintenant prêts à définir des applications analytiques, qui sont les éléments que
nous programmons dans Chapter 3. Notre objectif principal est d’ élever le niveau d’abstraction en
manipulant une entité abstraite englobant un ou plusieurs cadres d’analyse, leurs composants et la
logique nécessaire pour eux coopérer pour produire un travail utile en exécutant des tâches définies
par l’ utilisateur . Ce qui distingue notre travail de l’état de la technique est que notre planificateur
prend en compte la notion de classes de composants, qui permet de modéliser la spécificité de chaque
framework. Nous avons trouvé deux classes de composants distincts à suffisant pour modéliser les cadres
analytiques existants: ainsi, les composants du cadre appartiennent soit à noyau ou à une classe élastique.
Les composants de base sont obligatoires pour un cadre de travail utile; Au contraire, les composants
élastiques contribuent à un travail, par exemple en réduisant son temps d’exécution. Considérer, par
exemple, Spark. Pour produire du travail, il faut des composants de base: un contrôleur (le client
spark) exécuter le planificateur DAG), un maître (dans un déploiement autonome) et un travailleur
(exécutants exécutant). Nous traitons les travailleurs supplémentaires comme des composants élastiques.
Un exemple alternatif est une application utilisant TensorFlow, qui ne fonctionne qu’avec les composants
de base: un ou plusieurs serveurs de paramètres et un nombre des travailleurs. Ces deux frameworks

27http://spark.apache.org/
28https://www.tensorflow.org/
29https://www.open-mpi.org/
30https://docs.docker.com/swarm/
31http://kubernetes.io/

A.2 Une heuristique de planification flexible 117

ont un comportement d’exécution sensiblement différent: Spark est un élastique cadre qui peut intégrer
dynamiquement les travailleurs pour répartir les tâches. TensorFlow est rigide et utilise uniquement
composants de base pour faire des progrès.

En résumé, la nature d’une application est celle d’élever le niveau d’abstraction et application est
considérée comme étant une collection de cadres et de leurs composants hétérogènes en tant que entité
unique à planifier et à allouer dans un groupe d’ordinateurs.

Déclaration de problème

Nous traitons maintenant les applications définies ci-dessus comme des entités abstraites que nous
appelons des demandes : elles comprennent une ou plus de composants , appartenant à une classe
donnée, soit noyau ou élastique. Dans la littérature, le classique le problème de la planification des
demandes génériques devant être desservies par un système distribué a été étudié de manière approfondie
[Dutot et al., 2004; Pruhs et al., 2004; Sgall, 2015]. Les demandes composées uniquement de composants
de base sont généralement appelé rigide , tandis que les demandes composées uniquement de composants
élastiques sont appelées malléable (si les ressources affectées sont décidées lorsque la demande est
signifiée et qu’elles ne changent pas pour l’exécution entière) ou malléable (si les ressources peuvent
varier pendant l’exécution 32). Une différence clé en ce qui concerne les travaux antérieurs est que nous
considérons des demandes hétérogènes , composées à la fois par le noyau et composants élastiques.

Pour simplifier l’exposition, nous supposons que les ressources système peuvent être mesurées en
unités, et que il y a R unités disponibles globalement pour satisfaire les demandes. Chaque requête i
spécifie le nombre d’unités pour ses composants de base et élastiques, étiquetésCi et Ei respectivement.
Idéalement, avec assez de disponible ressources, une requête est allouée à tous ses composants: dans ce
cas, nous définissons le service (ou l’exécution) temps comme Ti. La quantité de travail pour satisfaire
une requête est la surface du carré Wi = Ti× (Ci +Ei). Plus généralement, une requête est allouée à au
moins Ci + xi(t) ressources, où 0≤ xi(t)≤ Ei. Ensuite, le service le temps est T ′i =

Wi
Ci+xi(t)

. Ce modèle
simple permet de mettre à jour le temps de service T ′i lors d’une décision d’ordonnancement modifie
xi(t), en mesurant la quantité de travail accomplie jusqu’à présent, et en calculant le quantité de travail à
faire. Alors que des modèles plus complexes pour décrire T ′i peuvent être conçus, par exemple en tenant
compte de la nature multidimensionnelle des ressources système ou des différents modèles d’évolutivité,
notre simple approximation n’affecte pas la nature du problème d’ordonnancement que nous étudions.
Dans ce qui suit, nous supposons que chaque demande peut pleinement utiliser le nombre spécifié de
noyau et élastique composants, si des ressources leur sont accordées.

Essentiellement, le problème de la planification de l’exécution d’une charge de travail entrante est:
i) trier les demandes pour décider dans quel ordre les servir; ii) allouer des ressources distribuées aux
demandes sélectionné pour le service. La phase de tri peut être résolue en utilisant des approches naïves,
par exemple la commande FIFO, ou des stratégies plus sophistiquées, qui utilisent des informations de

32 Un exemple de cadre est malléable Spark [Zaharia et al., 2010]. Travailleur peut être ajouté ou retiré sans détruire
l’exécution de l’application.

118 French Résumé

taille de requête. Encore plus généralement, les demandes peuvent être placés dans des "pools" et se voir
assigner des priorités, pour imiter l’organisation hiérarchique des utilisateurs, pour Exemple. La phase
d’allocation est plus délicate: dans l’abstrait, c’est un problème de "packing" qui détermine comment
façonner les demandes traitées. Même en supposant que les temps de service soient connus a priori (par
exemple, Ti est donnée en entrée), il est bien connu que le problème d’ordonnancement en ligne est
NP-difficile [Pruhs et al., 2004]. Par conséquent, nous devons trouver une heuristique appropriée pour
approximer une solution à l’optimisation de l’ordonnancement problème. Dans notre cas, cela revient à
minimiser les délais d’exécution de l’application , qui est l’intervalle de temps entre la demande et la
soumission. Dans le contexte que nous considérons, optimiser le délai d’exécution moyen représente
une mesure de performance significative, car elle répond à la réactivité du système.

Notre problème d’ordonnancement ne prend pas directement en compte les contraintes de localisation
des données. Comme nous l’avons vu dans [Pace et al., 2017], les fournisseurs de cloud récemment ont
tendance à désagréger la couche de calcul et de stockage à différents niveaux: un nœud de calcul et de
données peut résider sur le même hôte, sur des hôtes différents ou même sur des centres de données
différents. Ensuite, nous motivons notre problème avec un exemple illustratif simple.

Exemple illustratif Nous considérons un système avec 10 unités de ressources disponibles, et quatre
demandes en attente être servi, comme le montre la Figure A.1. Chaque demande nécessite 3 unités
pour les composants de base, et différents unités pour les composants élastiques. Pour chaque requête,
Ti = 10. Dans cet exemple, nous nous concentrons sur l’allocation phase seulement et nous utilisons la
politique FIFO pour trier les demandes en attente.

Compte tenu de ces demandes, une approche traditionnelle et rigide de la planification - qui ne
fait pas la distinction entre les classes de composants - assigne toutes les ressources requises à chaque
requête. Puisque toutes les demandes ont besoin au moins 5 unités (Ci +Ei ≥ 5), et puisque toute
paire de demandes a un besoin cumulé supérieur à 10 unités, le planificateur sert une requête à la fois
(Figure A.1, en haut): le délai d’exécution moyen est de 25s. Remarque que, dans ce cas, le remblayage
n’est pas possible, c’est-à-dire même en changeant l’ordre dans lequel les demandes sont traitées la
situation ne change pas.

Une autre approche d’ordonnancement vient de la littérature de la planification des travaux malléable.
Le planificateur affecte toutes les ressources à la première demande dans la ligne d’attente, puis affecte
les ressources restantes (si any) à la demande suivante, et ainsi de suite, jusqu’à ce qu’il n’y ait plus de
ressources disponibles. Cette heuristique a été montré être proche de l’optimum [Dutot et al., 2004]. LA
Figure A.1,au milieu, illustre l’idée: demande B peut être servi avec la requête A. Lorsque la requête
A est terminée, le planificateur affecte d’abord ressources pour demander B, puis essaie de répondre
à la demande suivante. De même, lorsque la demande B est terminée, le planificateur affecte d’abord
plus de ressources pour demander C, puis tente de servir la requête D. Cependant, puisque la requête D
nécessite au moins Ci = 3 unités, le planificateur est bloqué (notez que la requête C utilise 8 unités),
donc la requête D doit attendre et certaines ressources système restent inutilisées. Le délai d’exécution
moyen est de 20 secondes.

A.2 Une heuristique de planification flexible 119

(s)

10

resources

15

5

10

5

10

5

resources

10

28.4323.57

C = 3

E = 4

T = 10

C = 3

E = 3

T = 10

C = 3

E = 5

T = 10

C = 3

E = 2

T = 10

30 40

time
(s)

10 20

40

time
(s)

10

resources

15 22.5 32.5

40

time

approach

DB

A B C D

A C D

B

A C

B D

approach

Malleable

approach

C

Our flexible

A

Baseline, rigid

Fig. A.1 Exemples d’ordonnancement des demandes: (haut) rigide, (moyen) malléable, (bas) flexible
approches.

Nous préconisons la nécessité d’une nouvelle approche de la planification, qui distingue les classes de
composants. L’idée est d’exploiter la flexibilité des composants élastiques et d’utiliser plus efficacement
les ressources du système. Intuitivement, une solution aux problèmes des heuristiques existantes consiste
à récupérer certaines ressources assignées à composants élastiques d’une requête en cours et les affecter
à une requête en attente. Ceci est montré dans le en bas de la Figure A.1: le planificateur récupère juste
une unité de la requête C pour qu’elle puisse fournir 3 unités pour demander D, qui sont suffisantes pour
démarrer ses composants de base et produire un travail utile. Avec ça approche, le redressement moyen
est de 19.25s.

Bien que la solution ci-dessus semble simple, elle pose de nombreux défis: combien d’unités
assignées à les composants élastiques peuvent être sacrifiés pour servir la prochaine requête? Combien

120 French Résumé

de demandes devraient être servies simultanément? Si le planificateur se concentre uniquement sur les
composants de base, assurez-vous que de nombreuses demandes sont servi simultanément? Comment la
planification peut-elle prendre en compte les priorités assignées par la phase de tri?

Le dernier point introduit un défi supplémentaire, lié aux politiques d’ ordonnancement préemptives .
Si un haut demande de priorité arrive, car il n’est pas possible d’interrompre les composants de base - car
cela tuerait le demande - comment pouvons-nous sélectionner et préempter les composants élastiques
pour répondre à la nouvelle demande?

Étant donné des demandes composites hétérogènes, qui ne sont ni rigides, ni malléables (mais
les deux), disponibles les heuristiques d’ordonnancement dans la littérature ne répondent pas aux
problèmes de tri et d’allocation: une nouvelle approche est donc vraiment souhaitable.

A.2.2 Un algorithme de planification flexible

Nous caractérisons une demande par son heure d’arrivée, sa priorité (pour décider de l’ordre dans lequel
les demandes doivent être servi), les ressources demandées (noyau et élastique) et le temps d’exécution
(en isolement, c’est-à-dire quand tout ressources requises sont accordées à l’application). Compte
tenu de la charge de travail entrante, notre objectif est d’optimiser la somme des temps d’exécution τi,
c’est-à-dire:

min∑
i

τi⇒min∑
i
(queuingi + executioni)

Le temps d’exécution réel dépend de la quantité de ressources affectées au fil du temps à la demande. À
présent, rappelons que le problème d’ordonnancement peut être divisé en phases de tri et d’allocation. Le
tri détermine lorsqu’une requête est traitée, cela a un impact sur son temps de mise en file d’attente. La
phase d’allocation contribue à la fois à la file d’attente et les temps d’exécution réels. Selon la granularité
de l’allocation [Schwarzkopf et al., 2013], une requête peut avoir besoin d’attendre qu’un certain nombre
de ressources soient disponibles avant de les occuper, augmenter - quoique indirectement - le temps
d’attente. Le temps d’exécution est directement lié à l’allocation algorithme et aux caractéristiques de la
charge de travail.

Nous découplons le tri des requêtes de l’allocation:33notre ordonnanceur maintient l’ordre de requête,
comme imposé par un composant externe, et se concentre uniquement sur l’allocation des ressources.
Le tri peut être simplement en fonction des heures d’arrivée (ce qui revient à implémenter une discipline
de file d’attente FIFO), ou peut utiliser des l’information, comme la taille de la demande (mettant ainsi
en œuvre une variété de disciplines fondées sur la taille).

Dans l’ensemble, nous optimisons les délais d’exécution des demandes grâce à une allocation
judicieuse des ressources et à la conception un algorithme qui s’efforce d’allouer toutes les ressources
de cluster disponibles, en servant le moins de demandes à la fois . Intuitivement, en concentrant les
ressources sur quelques requêtes, nous attendons leur temps d’exécution être petit. Par conséquent, les

33Cette approche est similaire à celle utilisée dans l’ordonnanceur SLURM [Yoo et al., 2003], où l’ordre des travaux en
attente est donné par un composant externe, connectable, et le planificateur traite les travaux suivant cet ordre.

A.3 Allocation de ressources basée sur les données 121

requêtes mises en file d’attente bénéficient également de temps d’attente réduits, car les ressources sont
libérées plus vite.

A.2.3 Résumé

La gestion efficace des ressources des grappes d’ordinateurs a été un domaine de recherche de longue
durée, avec des pics de l’attention se produit en conjonction avec des améliorations dans les machines
de calcul, par exemple récemment avec le nuage informatique et big data. Une nouvelle génération
de systèmes de gestion de clusters, visant à devenir “centre de données” systèmes d’exploitation, sont
actuellement confrontés à des problèmes d’efficacité et de performance à grande échelle.

Malgré les progrès récents, il existe un écart entre l’objectif de gestion des ressources de bas
niveau, et celle de la manipulation d’applications de haut niveau, hétérogènes, distribuées (analytiques)
fonctionnant environnements de cluster. Au Chapter 3 nous avons présenté une première étape possible
pour combler cette lacune, sous la forme d’un nouveau planificateur d’applications qui interagit avec un
backend de gestion de cluster, pour planifier et allouer des ressources à des applications définies avec
un langage et une sémantique simples. En plus de soigner l’ingénierie, nécessaire pour concevoir et
mettre en œuvre notre système que nous appelons Zoe, notre recherche a identifié un plus problème
fondamental, qui nécessite une nouvelle heuristique d’ordonnancement capable de manipuler composite
applications, tout en contribuant à la réactivité du système.

Nous avons validé notre algorithme pour résoudre notre problème d’ordonnancement selon deux
axes. Nous avons utilisé un numérique approche pour simuler des déploiements et des charges de
travail à grande échelle. Merci à plusieurs numériques différents expériences (voir la Section 3.3) nous
avons montré que notre algorithme de planification était très efficace pour réduire les délais d’exécution,
en particulier en réduisant les temps de mise en file d’attente des applications. Par conséquent, les
ressources du cluster étaient mieux répartis.

En outre, nous avons signalé (voir la Section 3.5) un aperçu de l’évaluation de Zoe, qui indique
performances et efficacité supérieures liées à notre heuristique d’ordonnancement flexible.

A.3 Allocation de ressources basée sur les données

Au Chapter 4, nous discutons d’une méthodologie qui se situe essentiellement dans la deuxième
catégorie. Nous présentons un système qui alloue dynamiquement des ressources en fonction des
observations historiques de son utilisation. Plus plus précisément, nous utilisons des algorithmes
d’apprentissage automatique pour ajuster l’allocation aux lisation. Nous présentons notre conception
d’un mécanisme d’ordonnancement piloté par les données qui améliore l’utilisation des clusters, ré-
duisant ainsi le délai d’exécution moyen, tout en empêchant les défaillances d’application dues aux
ressources contention. Notre approche surveille l’utilisation des ressources et s’appuie sur des ressources
en ligne sophistiquées la prévision de la demande pour moduler les ressources allouées, telles qu’elles
permettent une approximation des schémas d’utilisation. Nos expériences, que nous menons sur un

122 French Résumé

simulateur de système ainsi que d’un prototype de mise en œuvre en utilisant traces de centre de données
réelles, indiquent des gains substantiels par rapport aux alternatives existantes: notre approche contribue
à des clusters plus efficaces et réactifs, tout en contrôlant soigneusement le nombre de défaillances
d’applications en raison de la nature approximative de notre approche de contrôle.

Le reste du Chapter 4 Le reste du Dans la section 4.2 nous présentons la conception de notre
système, et nous validons nos idées en utilisant une campagne de simulation dans la section 4.3. Enfin,
nous présentons notre prototype mise en œuvre à la section 4.4 et son évaluation à la section 4.5.

A.3.1 Énoncé du problème

Dans cette thèse, nous étudions le problème de l’efficacité de la grappe en réduisant le relâchement
des ressources induit par ordonnanceurs d’application centrés sur la réservation, qui correspondent à
l’allocation à la réservation. Pour ce faire, nous présentons un nouveau mécanisme qui prédit l’utilisation
des ressources et ajuste l’allocation des ressources en conséquence. Le principal défi à relever est que
les erreurs de prédiction peuvent avoir des conséquences problématiques, puisque les pointes pourraient
faire des ravages dans le système [Verma et al., 2015].Lorsque vous traitez avec des ressources finies
telles En effet, la RAM, en ne fournissant pas la bonne quantité de ressources, conduit à des échecs
d’application. Prudent l’ingénierie suggérerait d’introduire un tampon qui servira de «garde-fou» aux
erreurs de prédiction. Ce il en résulte un compromis, puisque d’une part le tampon de sécurité doit
être petit pour minimiser le jeu, D’autre part, il devrait être suffisamment grand pour éviter les échecs
d’application.

Les travaux antérieurs (une description détaillée est fournie à la Section 2.1.3) sont généralement
considérés comme partageables ressources, telles que CPU, où l’effet du mauvais dimensionnement
des ressources ne se traduit pas en échecs d’application. D’autres approches considèrent le surappro-
visionnement en ressources, où le relâchement n’est pas continuellement optimisé, et où les échecs
d’application peuvent être imprévisibles et sont pris en charge par le Operating System (OS).

Dans notre approche, nous tirons parti de trois idées clés: la confiance de prédiction, l’élasticité
de l’application et échecs contrôlés. Dans le processus de prédiction, la plupart des outils fournissent
des informations supplémentaires sur la confiance de la prédiction. Nous utilisons ces informations
pour adapter dynamiquement le tampon de sécurité cela devrait empêcher les échecs de l’application.
En outre, les cadres, sur lesquels les applications sont basés, sont composés de plusieurs éléments qui
sont caractérisés par un noyau ou un caractère élastique [Pace, Venzano, Carra and Michiardi, 2016].
Les composants de base sont obligatoires pour un cadre de production par exemple, Apache Spark
nécessite un contrôleur, un maître et un ouvrier); composants élastiques, à la place, contribuer de manière
optionnelle à un travail, par exemple en réduisant son temps d’exécution. Une application qui comporte
seuls les composants de base sont appelés rigides, tandis que les applications avec un mélange de
composants de base et d’élastiques sont appelés élastiques. Si la demande en ressources est supérieure
aux ressources disponibles, nous intervenons possible) sur les composants élastiques pour éviter les
défaillances d’application. En dernier lieu, les deux précédents devraient-ils mécanismes ne suffisent

A.3 Allocation de ressources basée sur les données 123

Cluster
State

Application
Scheduler

Backend
[e.g. Docker]

Resource
Monitor

Resource
Shaper

Utilization
Forecasting

Application Request
(Reservation)

Allocation

Allocation

Allocation Utilization

Prediction

New
Allocation

Allocation Confidence

Fig. A.2 Vue d’ensemble du système: les boîtes ombrées représentent les composants existants, les
boîtes blanches indiquent les nouvelles composants présentés dans ce travail.

pas à fournir suffisamment de ressources, nous décidons explicitement quelle application échouer afin
de minimiser la quantité de travail gaspillé.

A.3.2 Conception du système

L’objectif de notre système est d’augmenter l’utilisation des clusters et de réduire les délais d’exécution
moyens en ajustant l’allocation pour suivre l’utilisation des ressources en anticipant sa dynamique, tout
en réduisant la nombre d’échecs d’application «auto-infligés» dus à des erreurs d’approximation.

La Figure A.2 illustre l’architecture que nous supposons dans notre travail. Le module backend est
une instance de un système de gestion de cluster, tel que Docker34 ou Kubernetes35, ou des ordonnanceurs
alternatifs [Thinakaran et al., 2017]. De plus, nous supposons la présence d’un planificateur d’application
tel que [Pace, Venzano, Carra and Michiardi, 2016], qui lit l’état de cluster de calcul à partir d’un
composant de base de données dédié. Enfin, le composant de surveillance remplit la base de données
d’état du cluster avec des mesures prises à partir de le backend. Dans cette section, nous nous concentrons
sur les deux composants supplémentaires que nous présentons dans cet article: module de prévision
d’utilisation , et le module de mise en forme de ressources .

La vue d’un oiseau sur le fonctionnement de notre système est la suivante. Les demandes d’exécution
d’application prennent la forme des réservations de ressources, qui sont soumises au planificateur
d’application. L’application le planificateur admet la requête sur la seule base des informations de
réservation et ordonne au back-end de fournir les ressources nécessaires. Le moniteur de ressources
recueille des informations sur les deux alloués et les ressources utilisées, qui sont respectivement
transmises à l’état du système et à la composante de prévision. Le module de mise en forme des
ressources évalue l’allocation des ressources pour correspondre aux modèles d’utilisation prévus, et

34https://docs.docker.com/swarm/
35http://kubernetes.io/

124 French Résumé

est responsable de la préemption des applications en cours en cas de pics soudains dans la demande de
ressources. L’allocation de ressource modifiée est reflétée dans l’état du système, ce qui déclenche à
son tour une nouvelle planification les décisions. Ensuite, nous décrivons en détail les composants qui
matérialisent nos idées.

Resource monitor Ce module recueille des informations sur l’allocation et l’utilisation des ressources
chaque composant de chaque application en cours d’exécution. Cela se produit à des intervalles de
temps réguliers: fréquences plus élevées fournir des vues plus précises, mais générer plus de données.
Notre objectif est de minimiser l’intrusion par étant agnostique d’application: pour cette raison, nous
n’instruisons pas d’applications (comme cela a été fait par exemple dans [Kuzmanovska et al., 2016]),
mais prenez des métriques standard (CPU, mémoire, etc.) telles qu’elles sont vues par le Operating
System (OS).

Utilization forecasting Le but de ce module est d’anticiper l’utilisation des ressources de chaque com-
posant d’application. Nous étudions les approches de modélisation paramétrique et non-paramétrique
pour prédire l’utilisation des ressources, en mettant l’accent sur la quantification de l’incertitude associée
à ces prédictions. Un exposé plus détaillé de la méthodologie que nous employons se trouve à la
Section 4.2.1.

Resource shaper Ce module utilise des prévisions d’utilisation pour ajuster les ressources allouées à
chaque composant des applications en cours d’exécution. Nous anticipons les erreurs de prédiction, donc
nous compensons en utilisant un garde tampon de taille β pour augmenter artificiellement (c’est-à-dire
pour forcer l’estimation) la ressource de pointe prédite utilisation. Un exposé plus détaillé de β peut être
trouvé à la Section 4.2.1.

De plus, le formateur de ressources est en charge de la préemption des applications. Les politiques
de préemption peuvent Soit être optimiste [Schwarzkopf et al., 2013; Verma et al., 2015] ou strict
(pessimiste). Nous défendons une politique stricte, pour éviter de déléguer la préemption des applications
à l’OS, qui gère la pénurie de ressources (comme Out Of Memory (OOM)) dans une application
agnostique et "imprévisible" façon. Un détaillé L’exposé de la politique de préemption peut être consulté
à la Section 4.2.2.

A.3.3 Résumé

L’émergence du paradigme «le centre de données en tant qu’ordinateur» a conduit à des avancées sans
précédent les cadres de gestion de cluster, qui visent à exposer des ressources de cluster distribuées
à une variété de applications critiques et scientifiques. Cependant, le modèle actuel de réservation
de ressources empêche un utilisation efficace des ressources du cluster. La dynamique d’utilisation
des ressources induit un surprovisionnement, ce qui du principal coupable de mauvaise efficacité.
Le problème de la sous-utilisation a été résolu par plusieurs approches. Par exemple, la conception

A.4 Évaluation expérimentale de la désagrégation entre calcul et Espace de rangement 125

d’incitations économiques pour orienter le fonctionnement du système a conduit à le développement de
marchés de ressources complexes, par exemple les instances AWS Spot, qui nécessitent l’échec de la
conception applications tolérantes, en raison de la nature éphémère des ressources qui leur sont offertes.

Dans le Chapter 4, nous avons présenté un mécanisme qui coopère avec un planificateur pour ajuster
dynamiquement ressources allouées à une application, de sorte qu’elles correspondent étroitement à
celles qu’elles utilisent cycle de la vie. Notre conception comportait: une méthode pour construire un
modèle statistique pour prévoir l’utilisation des ressources, et une politique de préemption qui réalloue
les ressources système tout en minimisant les pannes.

Nous avons validé numériquement notre mécanisme et avec une vraie campagne expérimentale.
Notre simula- tions éclairent le rôle clé joué par notre capacité à modéliser et utiliser l’incertitude de la
prévision, et par le utilisation de la préemption stricte par rapport au contrôle optimiste de la concurrence.
Nous avons mis en place un prototype de système de notre mécanisme d’allocation dynamique et déployé
dans un environnement de test, où nous avons exécuté une véritable charge de travail. Les résultats
indiquent notamment une amélioration de l’efficacité du système, qui se traduit par une meilleure
réactivité.

A.4 Évaluation expérimentale de la désagrégation entre calcul et Espace
de rangement

Le question que nous abordons au Chapter 5 est: qu’arrive-t-il à la performance, et à l’achèvement
temps en particulier, des applications d’analyse avec différents types de configurations de couche de
calcul et de données?

Nous adoptons une approche expérimentale, et proposons une méthodologie et une campagne de
mesure, dont L’objectif est d’analyser la performance correspondant à une notion intuitive de distance
entre le calcul arrive et les données résident. Ce faisant, nous définissons un ensemble complet de
charges de travail applicatives cela remet en question les systèmes étudiés de différentes manières. En fin
de compte, notre objectif est de surmonter limitations des travaux antérieurs qui fournissent seulement
une vision booléenne de la localité de données: nos résultats indiquent que - en général - la mesure
de distance intuitive que nous présentons dans ce travail est un bon indicateur de la raison à propos
du classement des performances. Cependant, l’inadéquation d’impédance entre différents services et
application les charges de travail doivent être prises en compte pour formuler des explications plausibles
pour les valeurs aberrantes en termes de performance.

En particulier, nous montrons que la localité de données ne peut pas être étudiée comme une
caractéristique qui peut être présente ou non, comme cela arrive de nos jours, mais qu’il existe différents
degrés de localité de données, dont l’importance varie en fonction de la configuration de l’infrastructure
d’analyse de données et de la charge de travail spécifique. En outre, nous soulignons certains problèmes
de conception d’une architecture de service de stockage spécifique (Swift) cette solution n’est pas

126 French Résumé

optimale pour l’exécution d’une structure d’analyse de données; et nous montrons l’impact de la mise
en cache données chaudes au niveau de la couche de données par rapport à l’exécution de l’application.

Le Chapter 5 est divisé en différentes parties: la Section 5.1 explique notre question de recherche,
la Section 5.2 décrit la méthodologie et la Section 5.3 est consacrée aux résultats.

A.4.1 Énoncé du problème

Nous évaluons empiriquement la performance des applications analytiques composées à l’aide de divers
calculs, Configurations de couche de données et de stockage. Notre objectif est de comprendre comment
le temps d’exécution de l’application varie configurations, pour un large éventail de charges de travail
d’application.

La modélisation des performances des systèmes distribués complexes est une tâche ardue: l’exécution
de l’application est affectée par plusieurs facteurs, y compris la localité de données (qui est la base
du traitement parallèle des cadres tels que Hadoop et Spark), l’inadéquation de l’impédance entre les
différents services impliqués applications analytiques, interférences entre locataires concurrents, charges
de travail applicatives et bien d’autres.

A ce titre, nous adoptons une approche expérimentale et analysons la performance des applications
à travers les lentilles du principe de localité de données, que nous revisitons pour accommoder les
configurations de souffle de stockage actuellement disponible dans la plupart des nuages publics et privés.
Dans notre étude, nous soulignons les problèmes qui se posent une conséquence de la composition du
service et suggère des moyens de les atténuer.

A.4.2 Scénarios de déploiement

Nous définissons un scénario de déploiement comme une configuration de couches de calcul, de données
et de stockage et étudions 4 scénarios que nous pensons représentatifs des configurations communes:

Guest Collocation (GC) Les couches de calcul et de données sont hébergées sur la même machine
virtuelle (VM), la couche de stockage est un disque local éphémère. Ceci est une configuration populaire
dans les nuages publics: quand le cluster GC est mis hors service, toutes les données sont perdues.

Guest Collocation with Volumes (GC-V) Même configuration que pour GC, mais la couche de
stockage utilise volumes provisionnés à l’aide du système de fichiers distribués Ceph. ceci est également
une configuration populaire dans nuague publics: il permet l’élasticité à la couche de calcul, sans
sacrifier la durabilité des données au niveau des données et couches de stockage.

Swift (SWI) Les couches de calcul et de données s’exécutent sur des hôtes distincts. La couche
de données est l’objet Swift magasin, ce qui assure la durabilité des données. De même que pour la
configuration GC-V, ce scénario permet de calculer élasticité de couche, et c’est une configuration
populaire pour son interface REST simple d’interagir avec des données.

A.4 Évaluation expérimentale de la désagrégation entre calcul et Espace de rangement 127

No Collocation (NC) Les couches de calcul et de données s’exécutent sur des hôtes différents; la
couche de données utilise HDFS monté sur une couche de stockage qui utilise un disque local éphémère.
Ceci est un scénario permettant la durabilité des données: la couche Compute peut être mise hors service,
tandis que la couche Data and Storage continue de s’exécuter.

Comme nous l’expliquons à la section 5.2.3, chaque scénario présente un degré de localisation
des données différent. En outre, nous notons un premier exemple de décalage d’impédance, que nous
développons plus loin dans le reste de cette travail. En effet, les couches Data et Storage peuvent
implémenter leur propre mécanisme de réplication de données. Cela est évident dans le scénario GC-V:
lorsque HDFS est monté sur des volumes, la réplication HDFS et Ceph les mécanismes sont redondants.
Pour mieux comprendre les implications de performance du scénario GC-V, on distingue ainsi deux cas:
GC-Vb, avec réplication HDFS et Ceph et GC-V, avec seulement Réplication Ceph, qui correspond aux
degrés de liberté exposés aux utilisateurs pour la configuration de leur prestations de service. Notez que
si la réplication HDFS est désactivée, Spark (la couche de calcul) n’a aucun autre moyen de récupérer les
données si un datanode tombe en panne, entraînant une défaillance de l’application; aussi le planificateur
de Spark a moins de flexibilité dans la planification des tâches, car les blocs de données sont présents
dans un seul noeud de données. En revanche, En activant la réplication HDFS, l’application écrira des
données supplémentaires.

A.4.3 chemin Compute-to-Data

Nous introduisons une notion intuitive de la distance entre le lieu de calcul et la donnée. Comme
exemples illustratifs, considérons les cas suivants: calcul et les données résident sur la même machine
virtuelle, sur différentes machines virtuelles s’exécutant dans le même hôte physique, sur différentes
machines virtuelles sur différents hôtes physiques dans le même rack, et ainsi de suite.

Il est intuitif de traiter ces cas comme augmentant en termes de distance, ce qui est donc faiblement
couplé avec la quantité de liens réseau que les données doivent parcourir pour être traitées. Aussi,
rappelez-vous que lire et écrire des opérations émises par la couche de calcul, travailler sur une division
donnée des données d’entrée ou de sortie, qui est organisé comme une séquence d’enregistrements.
Nous utilisons la définition intuitive et approximative de distance suivante:

Definition Le chemin Compute-to-Data est le nombre de liens logiques réussis (en lecture ou en
écriture) l’opération doit croiser, pour un enregistrement de données donné.

Nous utilisons le chemin Compute-to-Data comme un proxy pour raisonner sur le classement des
performances, qui prend encompte la distance logique entre les trois couches composant un service
analytique et le coût du (des) système (s) de réplication. En effet, on peut s’attendre à une dégradation
des performances chaque fois qu’un opération traverse un lien réseau: le classement intuitif est valable
même si nous ne modélisons pas explicitement le réseau latence ou topologie. Notez qu’il est important
d’être prudent et de prendre en compte les détails de l’architecture de chaque couche: par exemple,
Swift a un point d’accès unique appelé Swift-Proxy, qui sert de médiateur entre la couche de calcul et
les nœuds de stockage de Swift.

128 French Résumé

Pour calculer le chemin Compute-to-Data, nous comptons tous les liens logiques, entre la couche
Computeet les données physiques, que chaque demande d’enregistrement individuelle doit traverser.
Considérant le scénario SWI, nous avons un lien de la couche de calcul à Swift-proxy, puis un de plus
entre Swift-proxy et Swift ’ nœuds de stockage, les ACK de la requête d’enregistrement traversent les
mêmes liens pour atteindre la couche Compute, par exemple un total de 4 liens. Une considération
similaire peut être faite pour les scénarios restants: le GC traverse 0 lien tandis que les liens GC-V et
NC 2.

Pour les demandes d’écriture, la réplication de données doit être prise en compte. HDFS, Swift et
Ceph ont Différents systèmes de réplication: HDFS utilise la réplication en chaîne , tandis que Swift
et Ceph utilisent l’ asynchrone réplication , avec des quorums différents. En supposant un facteur de
réplication de 3, le proxy Swift nécessite 2/3 des nœuds de stockage pour accuser réception d’une
opération d’écriture, alors que Ceph nécessite tout le stockage d’objets Démons (OSD) pour reconnaître
le succès. Les Figures 5.1 and 5.2 illustrent comment calculer le chemin Compute-to-Data pour chaque
scénario lors d’une requête de lecture et d’écriture.

Le chemin Compute-to-Data pour les opérations de lecture et d’écriture et pour différents scénarios
est résumédans le table 5.1. Dans le tableau, nous organisons et classons les scénarios en fonction
de leur distance: intuitivement, nous attendonsperformances de l’application pour suivre le même
classement que nous produisons en utilisant le chemin Compute-to-Data . Notre Les résultats de mesure
indiquent que le chemin Compute-to-Data est un bon proxy pour classer les scénarios en fonction deleur
performance relative attendue, bien que l’intuition ne soit pas suffisante seule pour expliquer ce que
nous soutenons avec des données.

A.4.4 Résumé

Choisir la bonne composition des services analytiques est un problème difficile, impliquant des con-
sidérations de coût, les exigences de durabilité des données et, finalement, les performances attendues
des applications. Notre expérimental les résultats ouvrent la voie à des décisions éclairées sur les
déploiements AaaS. Dans la suite, nous résumons nos résultats et leurs implications.

Composition du service Une configuration qui vise à atteindre la durabilité des données malgré
l’éphémère La nature des machines virtuelles et les services qu’elles exécutent doivent être conçus avec
soin. Pour des raisons allant de la facilité de l’intégration à la familiarité avec des API bien établies, il
est tentant de composer des services comme dans le NC (pas de collocation) scénario que nous étudions
dans ce travail. Nos résultats montrent que c’est un mauvais choix pour un large gamme de charges de
travail, dans laquelle les cycles de CPU précieux sont perdus pour attendre que les données circulent sur
le réseau

Volumes L’utilisation de volumes provisionnés au-dessus d’un système de fichiers distribué tel que
Ceph est étonnamment performante bien. Ceci est inattendu car, de même que le scénario CN, le réseau

A.4 Évaluation expérimentale de la désagrégation entre calcul et Espace de rangement 129

est fortement impliqué l’exécution de l’application. Cependant, nos résultats indiquent que même avec
une bande passante de bissection modeste, le Couche de calcul peut faire des progrès rapides vers la fin
d’une application, grâce à l’efficacité de rayure.

Cependant, à titre de mise en garde, nos résultats indiquent une inadéquation potentielle de
l’impédance entre Les couches de stockage, en raison de l’interaction de plusieurs mécanismes de
réplication. En tant que tel, les utilisateurs finaux devraient soyez conscient de la situation et configurez
la couche de données de façon appropriée, de sorte que la réplication des données ne effectuée par la
couche de stockage, car cela est très bénéfique pour les performances de l’application.

De plus, nos résultats indiquent que les fournisseurs de cloud computing pourraient différencier leur
volume offre: les volumes à usage général fonctionneraient comme d’habitude, alors que les volumes
analytiques devraient désactiver les données réplication Dans ce cas, les utilisateurs finaux contrôleraient
totalement la réplication: nos résultats montrent que - en particulier pour les charges de travail intensives
en écriture - cela produit des performances supérieures.

Swift La performance de Swift est décevante. Ceci est dû à une autre instance d’impédance incompati-
bilité entre la couche Calcul et Données. Impossible de renommer rapidement les fichiers sans créer
réellement une nouvelle copie, entraîne de graves pénalités de performance, faisant de Swift une solution
sous-optimale.

En outre, nous notons que l’architecture Swift a été conçue pour des applications très différentes à
partir de cadres de calcul parallèles: nos résultats indiquent que le proxy Swift peut représenter un goulot
d’étranglement, car il est impliqué dans le chemin de données. Certes, l’utilisation d’un serveur proxy
comme coordinateur permet le cluster gestionnaires d’ajouter facilement des flux de contrôle à Swift,
mais cela dégrade les performances. Une solution qui est actuellement adopté par plusieurs sociétés
utilisant Swift, au niveau de la production, est d’ajouter plusieurs procurations et équilibrer la charge de
trafic entre eux: mais parce que la charge de travail peut changer de façon imprévisible, un puits plan de
capacité de pensée n’est pas facile à obtenir. Comme souligné précédemment, plus de proxies rendront
les Swift architecture en quelque sorte similaire à HDFS, mais à des coûts plus élevés. Travaux récents
d’IBM [Rabinovici-Cohen et al., 2014] montre que certains flux de contrôle et les transformations de
données peuvent être faites beaucoup plus près de la nœuds de stockage. En conséquence, il est tentant
de suggérer la conception d’un nouveau proxy Swift qui pourrait se comporter de la même façon que le
nom de domaine HDFS: un tel proxy alternatif n’agirait que comme un stockage de métadonnées, et ne
serait pas impliqué dans le chemin de données réel.

Caching Enfin, nos résultats montrent que la mise en cache joue un rôle important dans la détermina-
tion de l’application performance. D’une part, la mise en cache "interrompt" le chemin Compute-to-Data
qui peut être déduità partir des opérations de lecture / écriture sur les enregistrements de données, ce qui
rend la performance de l’application plus difficile à prédire. D’un autre côté, en réduisant le chemin
Compute-to-Data , il atténue les problèmes de plusieursconfigurations que nous avons étudiées, ce qui

130 French Résumé

est utile pour les utilisateurs finaux car il donne plus de flexibilité dans le choix Couches de données et
de stockage.

Cependant, la conception du mécanisme de mise en cache inter-application pour les frameworks de
traitement en parallèle est encore à ses balbutiements: Tachyon [Li et al., 2013] et HDFS2 sont de bons
exemples d’approches récentess’attaquer à ce problème.

A.5 Stocator: connecteur haute performance pour les magasins d’objets
for Object Stores

Dans le Chapter 6 nous présentons Stocator36, un connecteur de stockage haute performance, qui
permet à Hadoopmoteurs d’analyse pour travailler directement sur des données stockées dans des
systèmes de stockage d’objets. Ici, nous nous concentrons sur Spark Cependant, notre travail peut être
étendu pour travailler avec les autres parties de l’écosystème Hadoop.

Jusqu’à présent, les connecteurs Hadoop pour le stockage des objets, par exemple S3a37 et Hadoop
Swift Connector38, été basé sur la sémantique des fichiers, une hypothèse naturelle étant donné que leur
modèle de fonctionnement est basé sur le façon dont Hadoop interagit avec son système de stockage
d’origine, HDFS. Cependant, traiter le stockage d’objets comme un système de fichiers constitue une
incompatibilité d’impédance, ce qui peut conduire à une mauvaise performance et incorrecte exécution.
En particulier, les opérations atomiques pour les fichiers peuvent ne pas être atomiques pour les objets et
les opérations qui sont peu coûteux pour les fichiers peuvent ne pas être peu coûteux pour les objets,
et vice versa. Par exemple, renommer un répertoire dans un système de fichiers nécessite une seule
opération atomique, alors que dans le stockage d’objets, il nécessite une copie et supprimer les opérations
pour chacun des objets de l’arbre sous le “répertoire virtuel”39.

Nous ne sommes pas les premiers à reconnaître les mauvaises performances des connecteurs de
stockage d’objets. D’autres ont essayé d’améliorer les performances, en sacrifiant l’exécution spéculative,
puis en écrivant des objets directement à leurs noms définitifs, par exemple, DirectOutputCommitter40

pour Amazon S3 ou en renommant la sortie Hadoop objets à leurs noms définitifs lorsque les tâches sont
terminées (validation de la tâche) au lieu d’attendre le travail entier complète (engagement de travail) 41.
Cependant, en raison de l’inadéquation de l’impédance, ces tentatives ont conduit à de subtils échecs.

Les connecteurs actuels peuvent également entraîner des échecs et une exécution incorrecte, car
l’opération de liste sur les conteneurs de stockage d’objets / seaux sont finalement cohérents. EMRFS 42

d’Amazon et S3mper 43 de Netflix surmontent la cohérence éventuelle en stockant des métadonnées de

36https://github.com/CODAIT/stocator
37https://aws.amazon.com/sdk-for-java/
38https://github.com/openstack/sahara-extra/tree/master/hadoop-swiftfs
39Les Object stores émulent les répertoires via une dénomination hiérarchique.
40https://github.com/apache/spark/pull/12229
41https://issues.apache.org/jira/browse/MAPREDUCE-6336
42https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
43http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html

A.5 Stocator: connecteur haute performance pour les magasins d’objets for Object Stores 131

fichier dans DynamoDB44, un fort supplément système de stockage cohérent séparé du magasin d’objets.
Une fonctionnalité similaire appelée S3Guard45 est en cours développé par la communauté open source
Hadoop pour le connecteur S3a. Des solutions comme celles-ci, qui nécessitent plusieurs systèmes de
stockage, sont complexes et peuvent introduire des problèmes de cohérence entre magasins. Ils ajoutent
également des coûts puisque les utilisateurs doivent payer pour le stockage supplémentaire fortement
cohérent.

Les nouveaux algorithmes de Stocator atteignent à la fois la haute performance et la tolérance
aux pannes en prenant avantage de la sémantique de stockage d’objets. Cela réduit considérablement
le nombre d’opérations sur le stockage d’objets ainsi que de permettre une approche beaucoup plus
simple pour faire face à la sémantique finalement cohérente typique de stockage d’objets. Nous avons
implémenté notre connecteur pour l’OpenStack Swift API46 et le Amazon S3 API, et l’ont partagé en
open source47. Nous avons comparé ses performances avec le S3aet Hadoop Swift sur une gamme de
charges de travail et ont constaté qu’il exécute beaucoup moins d’opérations sur le magasin d’objets,
dans certains cas aussi peu que le trentième des opérations. Depuis le prix d’un objet service de stockage
comprend généralement des frais basés sur le nombre d’opérations exécutées, cette réduction le nombre
d’opérations réduit les coûts en plus de réduire la charge sur le logiciel client. Il réduit également coûts
et la charge pour le fournisseur de stockage d’objets, car il peut servir plus de clients avec le même
montant de la puissance de traitement. Stocator augmente également considérablement les performances
des charges de travail Spark sur le stockage d’objets, en particulier pour les charges de travail intensives
en écriture, où il est jusqu’à 18 fois plus rapide. Stocator est en production dans IBM Cloud et a permis
au projet SETI d’effectuer des calculs charges de travail Spark intensives sur des fichiers de signaux
binaires de plusieurs téraoctets48.

Le reste du Chapter 6 est structuré comme suit. Dans la Section 6.1 nous présentons le contexteA-
pache Spark et nous motiverons notre travail. Dans la Section 6.3 nous décrivons comment fonctionne
Stocator. Dans la section 6.4 nous présentons la méthodologie pour notre évaluation de performance,
y compris notre mise en place expérimentale et une description de nos charges de travail. Enfin, dans
la section 6.5 nous présentons une évaluation détaillée de Stocator,comparant ses performances avec
les connecteurs de stockage d’objets Hadoop existants, du point de vue de durée d’exécution, nombre
d’opérations et utilisation des ressources.

A.5.1 Motivation

Pour motiver le besoin de Stocator, nous décrivons la séquence d’interactions entre Spark et son stockage
système pour un programme qui exécute une seule tâche qui produit un seul objet de sortie comme
indiqué sur la fig. A.3.

44https://aws.amazon.com/dynamodb/
45http://www.slideshare.net/hortonworks/s3guard-whats-in-your-consistency-model
46https://developer.openstack.org/api-ref/object-storage/
47https://github.com/SparkTC/stocator
48https://medium.com/ibm-watson-data-lab/simulating-e-t-e34f4fa7a4f0

132 French Résumé

val data = Array(1)
val distData = sc.parallelize(data)
val finalData = distData.coalesce(1)
finalData.saveAsTextFile("hdfs://res/data.txt")

Fig. A.3 Programme Spark qui exécute une seule tâche produisant un seul objet.

Table A.1 Ventilation des opérations REST par type pour le programme Spark qui crée un seul objet.

HEAD
Object

PUT
Object

COPY
Object

DELETE
Object

GET
Cont.

Total

Hadoop-Swift 25 7 3 8 5 48
S3a 71 5 2 4 35 117

Stocator 4 3 − − 1 8

Au début d’un travail, le pilote Spark et l’exécuteur créent de manière récursive les répertoires pour
le tâche temporaire, travail temporaire et sortie finale. Ensuite, la tâche génère le fichier temporaire de
la tâche. À la tâche valider l’exécuteur répertorie le répertoire temporaire de la tâche et renomme le
fichier qu’il trouve dans son travail temporaire prénom. Au moment de la validation du travail, le pilote
répertorie de manière récursive les répertoires temporaires du travail et renomme le fichier trouve à ses
noms définitifs. Enfin, le pilote écrit l’objet _SUCCESS.

Lorsque ce même programme Spark fonctionne avec les connecteurs Hadoop Swift ou S3a, ces
opérations de fichiers sont traduits en opérations équivalentes sur les objets dans le magasin d’objets.
Ces connecteurs utilisent PUT pour créer des objets octets zéro représentant les répertoires, après avoir
d’abord utilisé HEAD pour vérifier si les objets pour les répertoires existent déjà. Lors de la liste du
contenu d’un répertoire, ces connecteurs descendent le "Arborescence" listant chaque répertoire. Pour
renommer des objets, ces connecteurs utilisent PUT ou COPY pour copier le objet à son nouveau
nom, puis utilisez DELETE sur l’objet à l’ancien nom. Tout le répertoire zéro octet les objets doivent
également être supprimés. Dans l’ensemble, le connecteur Hadoop Swift exécute 48 opérations REST
et le connecteur S3a exécute 117 opérations. Le Table A.1 montre la répartition en fonction du type
d’opération.

Stocator exploite la sémantique de stockage des objets pour remplacer le paradigme de renommer /
renommer les fichiers temporaires. avantage de la dénomination hiérarchique pour éviter la création
d’objets “répertoire”. Pour le programme Spark en fig. 6.2 Stocator exécute seulement 8 opérations
REST: 3 objets PUT, 4 objets HEAD et 1 conteneur GET.

A.6 Conclusions et Perspectives 133

A.5.2 Résumé

Au Chapter 6nous présentons un connecteur de stockage d’objets haute performance pour Apache
Spark appelé Stocator,qui a été mis à la disposition de la communauté open source49. Stocator surmonte
l’impédancenon-concordance entre les connecteurs open source précédents et leur stockage, en exploitant
la sémantique de stockage des objets plutôt que d’essayer de traiter le stockage d’objets comme un
système de fichiers. En particulier Stocator élimine le renommer paradigme sans sacrifier la tolérance
aux pannes ou l’exécution spéculative. Il traite également correctement avec le Sémantique cohérente
des magasins d’objets sans avoir à utiliser un stockage cohérent supplémentaire système. Enfin, Stocator
exploite le codage de transfert par blocs HTTP pour diffuser les données telles qu’elles sont produites
stockage d’objets, évitant ainsi d’écrire en premier dans le stockage local.

Nous avons comparé les performances de Stocator avec les connecteurs Hadoop Swift et S3a sur une
gamme des charges de travail et a constaté qu’il exécute beaucoup moins d’opérations sur le stockage
d’objets, dans certains cas aussi peu que un trentième. Cela réduit la charge à la fois pour le logiciel
client et le service de stockage d’objets, ainsi que réduire les coûts pour le client. Stocator augmente
également considérablement la performance des charges de travail Spark, écrire des charges de travail
intensives, où il est jusqu’à 18 fois plus rapide que les alternatives.

A.6 Conclusions et Perspectives

Dans cette thèse, nous avons présenté des contributions à l’amélioration de l’efficacité des datacenters
en termes de la réactivité du système. Des solutions ont été proposées pour atteindre différents objectifs:

• Augmenter le niveau d’abstraction. Nous avons défini, pour la première fois, une construction
de haut niveau envoyé des applications analytiques, en se concentrant sur leur hétérogénéité, et
leur cycle de vie de bout en bout. nous établi un nouveau problème d’ordonnancement, et proposé
une heuristique flexible capable de gérer demandes hétérogènes, ainsi que diverses politiques de
programmation, avec pour objectif ultime améliorer la réactivité du système sous des charges
lourdes. Nous avons évalué notre politique d’ordonnancement en utilisant des traces de charge
de travail réalistes et à grande échelle et montrent qu’il surpasse constamment l’approche de
référence. Enfin, nous avons construit un système à part entière qui matérialise les idées des
applications analytiques et leur calendrier. En utilisant notre nouvelle heuristique, nous avons pu
réaliser des améliorations substantielles termes de la réactivité du système et de l’allocation des
clusters.

• Utilisation du cluster. Nous avons présenté la conception du système pour un mécanisme
dynamique d’allocation des ressources. nisme, qui peut généralement être appliqué aux cadres de
gestion de cluster existants. Nous avons ciblé un famille spécifique d’ordonnanceurs d’applications
analytiques, et matérialisé nos idées pour de tels ordonnanceurs. Nous avons introduit une

49https://github.com/SparkTC/stocator

134 French Résumé

nouvelle application de méthodologies d’apprentissage automatique à la fine pointe de prévision
de l’utilisation des ressources, avec un traitement probabiliste qui permet de quantifier incertitude.
Les informations de confiance ont été utilisées pour piloter les paramètres du système pics de
demande inattendus de ressources. Nous avons réalisé une vaste campagne de simulation en
utilisant des traces de production disponibles publiquement à partir des centres de données Google.
Nous avons comparé notre approche à celui de Borg, et de discuter sur le compromis qu’une
approche optimiste par rapport à une approche pessimiste la préemption de l’application implique.
Enfin, nous avons présenté la conception d’un prototype de mise en œuvre de notre système, que
nous utilisons dans un cluster académique au service des étudiants et des chercheurs. Nos résultats
indiqué des améliorations substantielles en termes d’efficacité, qui se traduisent par un système
capable de ingérer une charge de travail plus lourde avec le même nombre de machines.

• Calcul et stockage désagrégation. Nous avons réalisé une vaste campagne de mesure sur envi-
ronnement de cloud computing privé impliquant la combinaison de plusieurs services d’analyse.
Pour chaque scénario de déploiement, nous avons étudié les performances d’une variété de charges
de travail d’application, y compris des applications intensives de lecture / écriture, de business
intelligence et d’apprentissage automatique. nous présenté une notion intuitive de localité de
données qui peut être utilisée comme un proxy pour classer différents services compositions, en
termes de performance attendue. Nous avons examiné de manière critique la validité de notre
intuition en fonction des charges de travail des applications, et identifier et expliquer les valeurs
aberrantes. Nous avons montré preuve expérimentale de l’inadéquation de l’impédance entre
le cadre informatique à grande échelle et deux couches de stockage importantes - les object
stores et les block stores élastiques - et le mécanisme déduit à atténuer les effets négatifs sur la
performance.

• Stockage d’objets et incompatibilité des structures informatiques à grande échelle. Nous
avons présenté la conception d’un nouveau connecteur de stockage pour Hadoop et Spark qui
exploite le stockage d’objets sémantique pour fournir de hautes performances et une exécution
correcte face aux fautes et aux spéculations. Nous avons prouvé que cette solution fonctionne
correctement malgré la sémantique d’objet finalement cohérente stockage, mais sans nécessiter de
stockage supplémentaire fortement cohérent.

Avec le travail présenté dans cette thèse, nous avons réduit l’écart entre l’allocation des ressources
et utilisation. Plus de travail peut être fait afin d’étudier de nouvelles techniques qui peuvent mieux
modéliser les ressources utilisation à l’intérieur d’un cluster; de cette façon, nous pouvons encore
réduire le nombre de défaillances dues aux ressources contention et réduire le gaspillage de ressources.
Dans notre prose et nos expériences, nous avons toujours considéré que le processeur et la mémoire
comme ressources principales, cependant d’autres types de ressources peuvent être pris en compte,
comme le réseau bande passante et E / S disque. De plus, notre solution dynamique est à l’état de
prototype. Fournisseurs publics doit garantir certains SLO et SLA à leur utilisateur. Plus de travail doit

A.6 Conclusions et Perspectives 135

être fait pour comprendre l’impact de notre approche pessimiste sur ces contraintes de niveau de service.
Enfin, la méthodologie d’apprentissage automatique que nous avons proposé, peuvent échouer avec
des applications interactives en raison de leur nature "humain dans la boucle". Il est difficile de prédire
quand un utilisateur va interagir avec une application qui a été jugée inactive en regardant simplement
l’utilisation des ressources. En même temps, il n’est pas facile de comprendre quand un l’application
interactive est dans un état inactif; certaines ressources (par exemple, la mémoire) peuvent être occupés
même lorsque les applications ne produisent aucun travail.

