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Abstract—Until now object storage has not been a first-
class citizen of the Apache Hadoop ecosystem including Apache
Spark. Hadoop connectors to object storage have been based
on file semantics, an impedance mismatch, which leads to low
performance and the need for an additional consistent storage
system to achieve fault tolerance. In particular, Hadoop depends
on its underlying storage system and its associated connector for
fault tolerance and allowing speculative execution. However, these
characteristics are obtained through file operations that are not
native for object storage, and are both costly and not atomic. As
a result these connectors are not efficient and more importantly
they cannot help with fault tolerance for object storage.

We introduce Stocator, whose novel algorithm achieves both
high performance and fault tolerance by taking advantage of
object storage semantics. This greatly decreases the number of
operations on object storage as well as enabling a much simpler
approach to dealing with the eventually consistent semantics
typical of object storage. We have implemented Stocator and
shared it in open source. Performance testing with Apache Spark
shows that it can be 18 times faster for write intensive workloads
and can perform 30 times fewer operations on object storage than
the legacy Hadoop connectors, reducing costs both for the client
and the object storage service provider.

I. INTRODUCTION

Data is the natural resource of the 21st century. It is being
produced at dizzying rates, e.g., for genomics, for Media
and Entertainment, and for Internet of Things. This data
increasingly resides in cloud object stores, such as Amazon S3
[1], Azure Blob storage [2], and IBM Cloud Object Storage
[3], that are highly scalable distributed cloud storage systems
offering high capacity and cost effective storage. But it is not
enough just to store data; we also need to derive value from
it, for example, through analytics engines such as Apache
Hadoop [4] and Apache Spark [5]. However, these highly
distributed analytics engines were originally designed to work
on data stored in HDFS (Hadoop Distributed File System)
where the storage and processing are co-located in the same
server cluster. Moving data from object storage to HDFS in
order to process it and then moving the results back to object
storage for long term storage is inefficient. In this paper we
present Stocator [6], a high performance storage connector,
that enables Hadoop-based analytics engines to work directly
on data stored in object storage systems. Here we focus on
Spark however, our work can be extended to work with the
other parts of the Hadoop ecosystem.

Until now Hadoop connectors to object storage, e.g., S3a
[7] and the Hadoop Swift Connector [8], have been based on
file semantics, a natural assumption given that their model of
operation is based on the way that Hadoop interacts with its
original storage system, HDFS [9]. However, treating object
storage like a file system constitutes an impedance mismatch,
which can lead to poor performance and incorrect execution.
In particular, operations that are atomic for files may not be
atomic for objects and operations that are inexpensive for
files may not be inexpensive for objects, and vice versa. For
example, to rename a directory in a file system requires a
single atomic operation, whereas in object storage it requires
copy and delete operations for each of the objects in the tree
under the “virtual directory”1.

We are not the first to recognize the poor performance of the
object storage connectors. Others have tried to improve perfor-
mance, by sacrificing speculative execution, and then writing
objects directly to their final names, e.g., the DirectOutput-
Committer [10] for Amazon S3, or by renaming Hadoop
output objects to their final names when tasks complete (task
commit) instead of waiting until the entire job completes (job
commit) [11]. However, due to the impedance mismatch these
attempts led to subtle failures.

Current connectors can also lead to failures and incorrect
execution because the list operation on object storage con-
tainers/buckets is eventually consistent. EMRFS [12] from
Amazon and S3mper [13] from Netflix overcome eventual
consistency by storing file metadata in DynamoDB [14], an
additional strongly consistent storage system separate from the
object store. A similar feature called S3Guard [15] is being
developed by the Hadoop open source community for the S3a
connector. Solutions like these, which require multiple storage
systems, are complex and can introduce issues of consistency
between the stores. They also add cost since users must pay
for the additional strongly consistent storage.

In this paper, we introduce Stocator, whose novel algo-
rithms achieve both high performance and fault tolerance by
taking advantage of object storage semantics. This greatly
decreases the number of operations on object storage as well
as enabling a much simpler approach to dealing with the
eventually consistent semantics typical of object storage. We
have implemented our connector for both the OpenStack Swift

1Object stores emulate directories through hierarchical naming.This research received funding from the EU Horizon 2020 Research and
Innovation Programme (grant agreement 644182-IOStack)



API [16] and the Amazon S3 API, and have shared it in
open source [17]. We have compared its performance with the
S3a and Hadoop Swift connectors over a range of workloads
and found that it executes far less operations on the object
store, in some cases as little as one thirtieth of the operations.
Since the price for an object storage service typically includes
charges based on the number of operations executed, this
reduction in the number of operations lowers costs in addition
to reducing the load on client software. It also reduces costs
and load for the object storage provider since it can serve more
clients with the same amount of processing power. Stocator
also substantially increases performance for Spark workloads
running over object storage, especially for write intensive
workloads, where it is as much as 18 times faster.

In summary our contributions include:
• The design of a novel storage connector for Hadoop and

Spark that leverages object storage semantics to provide
high performance and correct execution in the face of
faults and speculation.

• A solution that works correctly despite the eventually
consistent semantics of object storage, yet without re-
quiring additional strongly consistent storage.

• An implementation that has been contributed to open
source.

Stocator is in production in the IBM Cloud and has enabled
the SETI project to perform computationally intensive Spark
workloads on multi-terabyte binary signal files [18].

The remainder of this paper is structured as follows. In Sec-
tion II we present background on object storage and Apache
Spark, we discuss related work and we motivate our work.
In Section III we describe how Stocator works. In Section IV
we present the methodology for our performance evaluation,
including our experimental set up and a description of our
workloads. In Section V we present a detailed evaluation of
Stocator, comparing its performance with existing Hadoop
object storage connectors, from the point of view of run
time, number of operations and resource utilization. Finally
in Section VI we conclude.

II. BACKGROUND

We provide background material necessary for understand-
ing the remainder of the paper. First, we describe object
storage and then the background on Spark [5] and its im-
plementation that have implications on the way that it uses
object storage. Then we discuss related work and finally, we
motivate the need for Stocator.

A. Cloud Object Storage

An object encapsulates data and metadata describing the
object and its data. An entire object is created at once and
cannot be updated in place, although the entire value of an
object can be replaced. This simple object semantics enables
the implementation of highly scalable, distributed and durable
storage that can provide very large capacities at low cost.
Object storage is typically accessed through RESTful HTTP,
which is a good fit for cloud applications. It is ideal for

storing unstructured data, e.g., video, images, backups and
documents such as web pages and blogs. Examples of object
storage systems include Amazon S3 [1], Azure Blob storage
[2], OpenStack Swift [19] and IBM Cloud Object Storage [3].

Object storage has a shallow hierarchy. A storage account
may contain one or more buckets or containers (hereafter we
use the term container), where each container may contain
many objects. Typically there is no hierarchy in a container,
e.g., no containers within a container, although there is support
for hierarchical naming. This is different than file systems
where there is both hierarchy in the implementation as well
as in naming.

Common operations on object storage include: PUT Object,
which creates an object, with the name, data and metadata
provided with the operation; GET object, which returns the
data and metadata of an object; HEAD Object, which returns
just the metadata of an object; DELETE Object, which deletes
an object; GET Container, which lists the objects in a con-
tainer; and HEAD Container, which returns the metadata of a
container. Object creation is atomic, so that two simultaneous
PUTs on the same name will create an object with the data of
one PUT, but not some combination of the two. Object storage
does not have an atomic rename operation; rename can be
emulated non-atomically through COPY and DELETE.

In order to enable a highly distributed implementation the
consistency semantics for object storage often includes some
degree of eventual consistency [20]. Eventual consistency
guarantees that if no new updates are made to a given data
item, then eventually all accesses to that item will return the
same value. There are various degrees of eventual consistency.
An important aspect typical to most object stores concerns the
listing of the objects in a container; the creation and deletion
of an object may be eventually consistent with respect to the
listing of its container. In particular, a container listing may
not include a recently created object and may not exclude a
recently deleted object.

B. Apache Spark

We describe Apache Spark’s execution model and how it
interacts with storage, pointing out some of the problems that
arise when it works on data in object storage.

1) Spark execution model: The execution of a Spark ap-
plication is orchestrated by the driver. The driver divides the
application into jobs and jobs into stages. One stage does not
begin execution until the previous stage has completed. Stages
consists of tasks, where each task is totally independent of the
other tasks in that stage, so that the tasks can be executed in
parallel. The output of one stage is typically passed as the
input to the next stage, so that a task reads its input from the
output of the previous stage and/or from storage. Similarly, a
task writes its output to the next stage and/or to storage. The
driver creates worker processes called executors to which it
assigns the execution of the tasks.

The execution of a task may fail. To overcome a failure the
driver starts a new execution of the same task. The execution of
a task may also be slow. Spark has an important feature to deal



Fig. 1. Hadoop Storage Connectors

with slow execution called speculation, where it speculatively
executes multiple executions of the same task in parallel.
Speculation can cut down on the total elapsed time for a
Spark application/job. Thus, a task may be executed multiple
times due to a failure or speculation and each such attempt to
execute a task is assigned a unique identifier, containing a job
identifier, a task identifier and an execution attempt number.

2) Spark and its underlying storage: Spark interacts with its
storage system through Hadoop [4], primarily through a com-
ponent called the Hadoop Map Reduce Client Core (HMRCC)
as shown in the diagram on the left side in Fig. 1. HMRCC
interacts with its underlying storage through the Hadoop File
System Interface. A connector that implements the interface
must be implemented for each underlying storage system. For
example, the Hadoop distribution includes a connector for
HDFS, as well as an S3a connector for the Amazon S3 API
and a Swift connector for the OpenStack Swift API.

A task writes output to storage through the Hadoop File-
OutputCommitter. Since each task execution attempt needs
to write an output file of the same name, Hadoop employs
a rename strategy, where each execution attempt writes its
own task temporary file. At task commit, the output committer
renames the task temporary file to a job temporary file. Task
commit is done by the executors, so it occurs in parallel. And
then when all of the tasks of a job complete, the driver calls
the output committer to do job commit, which renames the job
temporary files to their final names. Job commit occurs in the
driver after all of the tasks have committed and does not benefit
from parallelism. This two stage strategy of task commit and
then job commit ensures fault tolerance, i.e., that the output
contains just a single complete output file for each task despite
multiple executions due to failures and speculation.

Hadoop also writes a zero length object with the name
SUCCESS when a job completes successfully, so the case

of incomplete results can easily by identified by the absence
of a SUCCESS object. This enables a new version of the
file output committer algorithm (called version 2), where the
task temporary files are renamed to their final names at task
commit and job commit is largely reduced to the writing of
the SUCCESS object. However, as of Hadoop 2.7.3, this
algorithm is not yet the default output committer.

Hadoop is highly distributed and thus it keeps its state in
its storage system, e.g., HDFS or object storage. In particular,

the output committer determines what temporary objects need
to be renamed through “directory” listings, i.e., it lists the
“directory” of the output dataset to find the “directory” and
files holding task temporary and job temporary output. In
object stores this is done through container listing operations.
However, due to eventual consistency a container listing may
not contain an object that was just successfully created, or it
may still contain an object that was just successfully deleted.
This can lead to situations where some of the legitimate output
objects do not get renamed by the output committer, so that
the output of the Spark/Hadoop job will be incomplete.

This danger is compounded when speculation is enabled,
and thus, despite the benefits of speculation, Spark users are
encouraged to run with it disabled. Furthermore, in order to
avoid the dangers of eventual consistency entirely, Spark users
are often encouraged to copy their input data to HDFS, run
their Spark job over the data in HDFS, and then when it is
complete, copy the output from HDFS back to object storage.
Note, however, that this adds considerable overhead. Existing
solutions to this problem require a consistent storage system
in addition to object storage [12], [13], [21].

C. Related Work

There has been a variety of work, both from academia and
industry, that target different aspects of analytics frameworks.
The authors in [22]–[30], focus on analyzing the performance
of analytics frameworks.

In particular Ousterhout et al. [22] use an ideal configuration
(compute and data layer on the same Virtual Machine), with
limited knowledge of the underlying storage system. With the
help of an analysis performed on network, disk block time
and percentages of resource utilization, this work states that
the runtime of analytics applications is generally CPU-bound
rather than I/O intensive. A recent work [31] shows that this
is not always true; moving from a 1Gbps to a 10Gbps network
can have a huge impact on the application runtime.

Albeit valid, all address a specific storage type, that is
file storage. Object storage has not been the focus since
it is not native to the ecosystems of analytics frameworks.
Lately, the authors in [32]–[34] show the existence of an
impedance mismatch between the analytics frameworks and
object storage that imposes a toll on performance. Moreover,
[32] shows that it is possible to improve performance by
eliminating the impedance mismatch between the compute and
storage layer, which can highly affect the run times of such
applications, in particular, when using object storage (e.g.,
Openstack Swift [19], [35]). There has also been some work
from industry and open source to improve this impedance mis-
match. Databricks introduced the DirectOutputCommitter [10]
for Amazon S3, but it failed to preserve the fault tolerance and
speculation properties of the temporary file/rename paradigm.
At the same time Hadoop developed version 2 of the FileOut-
putCommitter [11], which renames files when tasks complete
instead of waiting for the completion (commit) of the entire
job. However, this solution does not solve the entire problem.



val data = Array(1)
val distData = sc.parallelize(data)
val finalData = distData.coalesce(1)
finalData.saveAsTextFile(”hdfs://res/data.txt”)

Fig. 2. A Spark program that executes a single task that produces a single
output object.

As mentioned in Section II-A, current connectors from the
Hadoop community for the OpenStack Swift [8] and Amazon
S3 [7] APIs, can also lead to failures and incorrect executions
due to eventual consistency. Some work has been done to
address this problem. EMRFS [12], [36] from Amazon and
S3mper [13], [37] from Netflix overcome eventual consistency
by storing file metadata in DynamoDB [14], an additional
storage system separate from the object storage that is strongly
consistent. A similar feature called S3Guard [15], [21] is being
developed by the Hadoop open source community for the S3a
connector. Solutions such as these that require multiple storage
systems are complex and can introduce issues of consistency
between the stores. They also add cost since users must pay for
the additional strongly consistent storage. Our solution does
not require any extra storage system.

Recently Databricks introduced a new commit protocol
called DBIO [38] that removes the impedance mismatch and
guarantees fault tolerance. This new transactional commit
protocol provides strong guarantees in the face of various
types of failures. Moreover, by enforcing correctness, it is
able to provide safe task speculation, atomic file overwrite and
consistency for Spark output. DBIO achieves similar objec-
tives as our work, but the solution is proprietary, whereas we
fully describe our work, put it in open source, and thoroughly
analyze its performance.

D. Motivation

To motivate the need for Stocator we describe the sequence
of interactions between Spark and its storage system for a
program that executes a single task that produces a single
output object as shown in Fig. 2.

At the beginning of a job, the Spark driver and executor
recursively create the directories for the task temporary, job
temporary and final output. Then, the task outputs the task
temporary file. At task commit the executor lists the task
temporary directory, and renames the file it finds to its job
temporary name. At job commit the driver recursively lists the
job temporary directories and renames the file it finds to its
final names. Finally, the driver writes the SUCCESS object.

When this same Spark program runs with the Hadoop
Swift or S3a connectors, these file operations are translated
to equivalent operations on objects in the object store. These
connectors use PUT to create zero byte objects representing
the directories, after first using HEAD to check if objects
for the directories already exist. When listing the contents
of a directory, these connectors descend the “directory tree”
listing each directory. To rename objects these connectors use
PUT or COPY to copy the object to its new name and then

TABLE I
BREAKDOWN OF REST OPERATIONS BY TYPE FOR THE SPARK PROGRAM

THAT CREATES AN OUTPUT CONSISTING OF A SINGLE OBJECT.

HEAD
Object

PUT
Object

COPY
Object

DELETE
Object

GET
Cont. Total

Hadoop-Swift 25 7 3 8 5 48

S3a 71 5 2 4 35 117

Stocator 4 3 − − 1 8

use DELETE on the object at the old name. All of the zero
byte directory objects also need to be deleted. Overall the
Hadoop Swift connector executes 48 REST operations and
the S3a connector executes 117 operations. Table I shows the
breakdown according to operation type.

In the next section we describe Stocator, which leverages
object storage semantics to replace the temporary file/rename
paradigm and takes advantage of hierarchal naming to avoid
the creation of “directory” objects. For the Spark program in
Fig. 2 Stocator executes just 8 REST operations: 3 PUT object,
4 HEAD object and 1 GET container.

III. STOCATOR LOGIC

The right side of Fig. 1 shows how Stocator fits underneath
HMRCC; it implements the Hadoop Filesystem Interface just
like the other storage connectors. Below we describe the basic
Stocator protocol; and then how it streams data, deals with
eventual consistency, and reduces operations on the read path.
Finally we provide several examples of the protocol in action.

A. Basic Stocator protocol

The overall strategy used by Stocator to avoid rename is
to write output objects directly to their final name and then
to determine which objects actually belong to the output at
the time that the output is read by its consumer, e.g., the next
Spark job in a sequence of jobs. Stocator does this in a way
that preserves the fault tolerance model of Spark/Hadoop and
enables speculation. Below we describe the components of this
strategy.

As described in Section II the driver orchestrates the ex-
ecution of a Spark application. In particular, the driver is
responsible for creating a “directory” to hold an application’s
output dataset. Stocator uses this “directory” as a marker to
indicate that it wrote the output. In particular, Stocator writes
a zero byte object with the name of the dataset and object
metadata that indicates that the object was written by Stocator.
All of the dataset’s parts are stored hierarchically under this
name.

Then when a Spark task asks to create a temporary object
for its part through HMRCC, Stocator recognizes the pattern
of the name and writes the object directly to its final name
so it will not need to be renamed. If Spark executes a task
multiple times due to failures, slow execution or speculative
execution, each execution attempt is assigned a number. The
Stocator object naming scheme includes this attempt number
so that individual attempts can be distinguished.

Finally, when all tasks have completed successfully, Spark
writes a SUCCESS object through HMRCC; the presence of



a SUCCESS object means that there was a correct execution
for each task and that there is an object for each part in the
output. Notice that by avoiding rename, Stocator also avoids
the need for list operations during task and job commit that
may lead to incorrect results due to eventual consistency.

B. Alternatives for reading an input dataset

Stocator delays the determination of which parts belong to
an output dataset until it reads the dataset as input. We consider
two options.

The first option is simpler to implement since it can be
done entirely in the implementation of Stocator. It depends
on the assumption that Spark exhibits fail-stop behavior, i.e.,
that a Spark server executes correctly until it halts. After
determining that the dataset was produced by Stocator through
reading the metadata from the object written with the dataset’s
name, and checking that the SUCCESS object exists, Stocator
lists the object parts belonging to the dataset through a GET
container operation. If there are objects in the list representing
multiple execution attempts for same task, Stocator will choose
the largest. Given the fail-stop assumption, the fact that all
successful execution attempts write the same output, and that
it is certain that at least one attempt succeeded (otherwise there
would not be a SUCCESS object), this is the correct choice.

At the completion of a Spark job, the second option
includes the creation of a manifest inside the SUCCESS
object that contains a list of all the successful task execution
attempts completed by the job. Now after determining that
the dataset was produced by Stocator through reading the
metadata from the object written with the dataset’s name, and
checking that the SUCCESS object exists, Stocator reads
the manifest of successful task execution attempts from the
SUCCESS object. Stocator uses the manifest to reconstruct

the list of constituent object parts of the dataset. In particular,
the construction of the object part names follows the same
pattern used when the parts were written.

The benefit of the second option is that it solves the re-
maining eventual consistency issue by constructing the object
names from the manifest rather than issuing a REST command
to list the object parts, which may not return a correct result
in the presence of eventual consistency. However, given that
our primary target for Stocator is IBM Cloud Object Storage
and that its container listing is immediately consistent with
respect to the writing and deleting of objects, we have not
had the need to implement this option.

C. Streaming of output

When Stocator outputs data it streams the data to the object
store as the data is produced using chunked transfer encoding.
Normally the total length of the object is one of the parameters
of a PUT operation and thus needs to be known before starting
the operation. Since Spark produces the data for an object on
the fly and the final length of the data is not known until all of
its data is produced, this would mean that Spark would need
to store the entire object data prior to starting the PUT. To
avoid running out of memory, a storage connector for Spark

val data = Array(1, 2, 3)
val distData = sc.parallelize(data)
distData.saveAsTextFile(”swift2d://res.sl/data.txt”)

Fig. 3. A Spark program where three tasks each write an object part.

can store the object in the Spark server’s local file system
as the connector produces the object’s content, and then read
the object back from the file to do the PUT operation on the
object store. Indeed this is what the default Hadoop Swift and
S3a connectors do. Instead Stocator leverages HTTP chunked
transfer encoding, which is supported by the Swift API. In
chunked transfer encoding the object data is sent in chunks,
the sender needs to know the length of each chunk, but it does
not need to know the final length of the object content before
starting the PUT operation. S3a has an optional feature, not
activated by default, called fast upload, where it leverages the
multi-part upload feature of the S3 API. This achieves a similar
effect to chunked transfer encoding except that it uses more
memory since the minimum part size for multi-part upload is
larger than for chunked transfer.

D. Optimizing the read path

We describe several optimizations that Stocator uses to
reduce the number of operations on the read path.

The first optimization can remove a HEAD operation that
occurs just before a GET operation for the same object. In
particular, the storage connector often reads the metadata of
an object just before its data. Typically this is to check that the
object exists and to obtain the size of the object. In file systems
this is performed by two different operations. Accordingly
a naive implementation for object storage would read object
metadata through a HEAD operation, and then read the data
of the object itself through a GET operation. However, object
store GET operations also return the metadata of an object
together with its data. In many of these cases Stocator is able
to remove the HEAD operation, which can greatly reduce the
overall number of operations invoked on the underlying object
storage system.

A second optimization is caching the results of HEAD
operations. A basic assumption of Spark is that the input is
immutable. Thus, if a HEAD is called on the same input object
multiple times, it should return the same result. Stocator uses
a small cache to reduce these calls.

E. Examples

We show here some examples of Stocator at work. For
simplicity we focus on Stocator’s interaction with HMRCC
to eliminate the rename paradigm and so we do not show
all of the requests that HMRCC makes on Stocator, e.g., to
create/delete “directories” and check their status.

Figure 3 shows a simple Spark program that will be exe-
cuted by three tasks, each task writing its part to the output
dataset called data.txt in a container called res. The swift2d:
prefix in the URI for the output dataset indicates that Stocator
is to be used as the storage connector. Table II shows the



TABLE II
POSSIBLE OPERATIONS PERFORMED BY THE SPARK APPLICATION SHOWED IN FIG. 3

Hadoop Map Reduce Client Core Stocator
1 PUT /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 0/part-00000 PUT /res/data.txt/part-00000 attempt 201512062056 0000 m 000000 0
2 PUT /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 0/part-00001 PUT /res/data.txt/part-00001 attempt 201512062056 0000 m 000000 0
3 PUT /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 0/part-00002 PUT /res/data.txt/part-00002 attempt 201512062056 0000 m 000000 0
4 PUT /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 1/part-00002 PUT /res/data.txt/part-00002 attempt 201512062056 0000 m 000000 1
5 PUT /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 2/part-00002 PUT /res/data.txt/part-00002 attempt 201512062056 0000 m 000000 2
6 DELETE /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 0/part-00002 DELETE /res/data.txt/part-00002 attempt 201512062056 0000 m 000000 0
7 DELETE /res/data.txt/ temporary/0/ temporary/attempt 201512062056 0000 m 000000 2/part-00002 DELETE /res/data.txt/part-00002 attempt 201512062056 0000 m 000000 2
8 Task commits and job commit generate 2 pairs of COPY and DELETE for each successful attempt No operations are performed here
9 PUT /res/data.txt/ SUCCESS PUT /res/data.txt/ SUCCESS

operations that can be executed by our example in different
situations.

Lines 1-3 and 8-9 are executed when each task runs exactly
once and the program completes successfully. We show the
requests that HMRCC generates; for each task it issues one
request to create a temporary object and two requests to
“rename” it (copy to a new name and delete the object at
the former name). We see that Stocator intercepts the pattern
for the temporary name that it receives from HMRCC, and
creates the final names for the objects directly. At the end of
the run Spark creates the SUCCESS object.

Lines 1-5, instead, shows an execution where Spark decides
to execute Task 2 three times, i.e., three attempts. This could
be because the first and second attempts failed or due to
speculation because they were slow. Notice that Stocator
includes the attempt number as part of the name of the objects
that it creates.

By adding lines 6-9 to the previous, we show what happens
when Spark is able to clean up the results from the duplicate
attempts to execute Task 2. In particular, Spark aborts attempts
0 and 2, and commits attempt 1. When Spark aborts attempts 0
and 2, HMRCC deletes their corresponding temporary objects.
Stocator recognizes the pattern for the temporary objects and
deletes the corresponding objects that it created.

If Spark is not able to clean up the results from the duplicate
attempts to execute Task 2, we have lines 1-5 and 8-9. In
particular, we see that Stocator created five object parts, one
each for Tasks 0 and 1, and three for Task 2 due to its extra
attempts. We assume as in the previous situation that it is
attempt 1 for Task 2 that succeeded. Stocator recognizes this
through the manifest stored in the SUCCESS object.

IV. METHODOLOGY

We describe the experimental platform, deployment scenar-
ios, workloads and performance metrics that we use to evaluate
Stocator.

A. Experimental Platform

Our experimental infrastructure includes a Spark cluster,
an IBM Cloud Object Storage (formerly Cleversafe) cluster,
Keystone, and Graphite/Grafana. The Spark cluster consists
of three bare metal servers. Each server has a dual Intel Xeon
E52690 processor with 12 hyper-threaded 2.60 GHz cores (so
48 hyper-threaded cores per server), 256 GB memory, a 10

Gbps NIC and a 1 TB SATA disk. That means that the total
parallelism of the Spark cluster is 144. We run 12 executors on
each server; each executor gets 4 cores and 16 GB of memory.
We use Spark submit to run the workloads and the driver runs
on one of the Spark servers (always the same server). We use
the standalone Spark cluster manager.

Our IBM Cloud Object Storage (COS) [39] cluster also runs
on bare metal. It consists of two Accessers, front end servers
that receive the REST commands and then orchestrate their
execution across twelve Slicestors, which hold the storage.
Each Accesser has two 10 Gbps NICs bonded to yield 20
Gbps. Each Slicestor has twelve 1 TB SATA disks for data.
The Information Dispersal Algorithm (IDA) or erasure code is
(12, 8, 10), which means that the erasure code splits the data
into 12 parts, 8 parts are needed to read the data, and at least
10 parts need to be written for a write to complete. IBM COS
exposes multiple object APIs; we use the Swift and S3 APIs.

We employ HAProxy for load balancing. It is installed on
each of the Spark servers and configured in round-robin so that
connections opened by a Spark server with the object storage
alternate between Accessers. Each of the three Spark servers
has a 10 Gbps NIC thus, the maximum network bandwidth
between the Spark cluster and the COS cluster is 30 Gbps.

Keystone and Graphite/Grafana run on virtual machines.
Keystone provides authentication/authorization for the Swift
API. We collect monitoring data on Graphite and view it
through Grafana to check that there are no unexpected bot-
tlenecks during the performance runs. In particular we use
the Spark monitoring interface and the collectd daemon to
collect monitoring data from the Spark servers, and we use
the Device API of IBM COS to collect monitoring data from
the Accessers and the Slicestors.

B. Deployment scenarios

In our experiments, we compare Stocator with the Hadoop
Swift and S3a connectors. By using different configurations
of these two connectors, we define six scenarios: (i) Hadoop-
Swift Base (H-S Base), (ii) S3a Base (S3a Base), (iii) Stocator
Base (Stocator), (iv) Hadoop-Swift Commit V2 (H-S Cv2),
(v) S3a Commit V2 (S3a Cv2) and (vi) S3a Commit V2 + Fast
Upload (S3a Cv2+FU). These scenarios are split into 3 groups
according to the optional optimization features that are active.
The first group, with the suffix Base, uses connectors out of
the box, meaning that no optional features are active. The



TABLE III
AVERAGE RUN TIME

Read-Only 50GB Read-Only 500GB Teragen Copy Wordcount Terasort TPC-DS
Hadoop-Swift Base 37.80± 0.48 393.10± 0.92 624.60± 4.00 622.10± 13.52 244.10± 17.72 681.90± 6.10 101.50± 1.50

S3a Base 33.30± 0.42 254.80± 4.00 699.50± 8.40 705.10± 8.50 193.50± 1.80 746.00± 7.20 104.50± 2.20

Stocator 34.60± 0.56 254.10± 5.12 38.80± 1.40 68.20± 0.80 106.60± 1.40 84.20± 2.04 111.40± 1.68

Hadoop-Swift Cv2 37.10± 0.54 395.00± 0.80 171.30± 6.36 175.20± 6.40 166.90± 2.06 222.70± 7.30 102.30± 1.16

S3a Cv2 35.30± 0.70 255.10± 5.52 169.70± 4.64 185.40± 7.00 111.90± 2.08 221.90± 6.66 104.00± 2.20

S3a Cv2 + FU 35.20± 0.48 254.20± 5.04 56.80± 1.04 86.50± 1.00 112.00± 2.40 105.20± 3.28 103.10± 2.14

second group, with the suffix Commit V2, uses the version 2 of
Hadoop FileOutputCommitter that reduces the number of copy
operations on the object storage (as described in Section II).
The last group, with the suffix Commit V2 + Fast Upload,
uses both version 2 of Hadoop FileOutputCommitter and an
optimization feature of S3a called S3AFastOutputStream that
streams data to the object storage as it is produced (as de-
scribed in Section III). We decided to compare Stocator to the
Base scenarios, because the optional features are experimental
and not always stable.

All experiments run on Spark 2.0.1 with a patched [40]
version of Hadoop 2.7.3. This patch allows us to use, for
the S3a scenarios, Amazon SDK version 1.11.53 instead of
version 1.7.4. The Hadoop-Swift scenarios run with the de-
fault Hadoop-Swift connector that comes with Hadoop 2.7.3.
Finally, the Stocator scenario runs with stocator 1.0.8.2

C. Benchmark and Workloads

To study the performance of our solution we use sev-
eral workloads from popular benchmark suites that cover
different kinds of applications. The workloads span from
simple applications that target a single and specific feature of
the connectors (micro benchmarks), to complex applications
composed by several jobs (macro benchmarks).

The micro benchmarks include three applications: (i) Read-
only, (ii) Write-only and (iii) Copy. The Read-only application
reads two different text datasets, one whose size is 46.5 GB
and the second 465.6 GB, and counts the number of lines
in them. For the Write-only application we use the popular
Teragen application, available in the Spark example suite, that
only performs write operations, creating a dataset of 46.5 GB.
The last application that we use for our micro benchmark set is
what we call the Copy application; it copies the small dataset
used by the Read-only application.

We also use three macro benchmarks. The first, Wordcount
from Intel Hi-Bench [41], [42] test suite, is the “Hello World”
application for parallel computing. It is a read-intensive work-
load, that reads an input 46.5 GB text file, computes the
number of times each word occurs in the file and then
writes a much smaller output file (1.3 MB) containing the
word counts. The second macro benchmark, Terasort, is a
popular application used to understand the performance of
large scale computing frameworks like Spark and Hadoop. Its

2These were the latest official releases of these software components at the
time of writing the paper.

input dataset is the output of the Teragen application used
in the micro benchmarks. The third macro benchmark,TPC-
DS, is the Transaction Processing Performance Council’s
decision-support benchmark test [43], [44] implemented with
DataBricks’ Spark-Sql-Perf library [45]. It executes several
complex queries on files stored in Parquet format [46]; the
input dataset size is 50 GB, which is compressed to 13.8
GB when converted to Parquet. The query set that we use to
perform our experiments is composed of the following 8 TPC-
DS queries: q34, q43, q46, q59, q68, q73, q79 and ss max.
These are the queries from the Impala subset that work with
the Hadoop-Swift connector. Stocator and S3a support all of
the queries in the Impala subset.

The inputs and outputs for the Read-only, Copy, Wordcount,
Teragen and Terasort benchmarks are divided into 128 MB
objects. We also run Spark with a partition size of 128 MB.

D. Performance metrics

We evaluate the different connectors and scenarios by using
metrics that target the various optimization features. As a
general metric we use the total runtime of the application; this
provides a quick overview of the performance of a specific
scenario. To delve into the reason behind the performance
we use two additional metrics. The first is the number of
REST calls – and their type; with this metric we are able
to understand the load on the object storage imposed by the
connector. The second metric is the number of bytes read from,
written to and copied in the object storage; this also help us
to understand the load on the object storage imposed by the
connectors.

V. EXPERIMENTAL EVALUATION

We now present a comparative analysis between the differ-
ent scenarios that we defined in Section IV-B. We first show
the benefit of Stocator through the average run time of the
different workloads. Then we compare the number of REST
operations issued by the Compute Layer toward the Object
Storage and the relative cost for these operations charged by
cloud object store services. Finally we compare the number of
bytes transferred between the Compute Layer and the Object
Storage.

A. Reduction in run time

For each workload we ran each scenario ten times. We
report the average and standard deviation in Table III. The
results shows that, when using a connector out of the box



TABLE IV
WORKLOAD SPEEDUPS WHEN USING STOCATOR

Read-Only 50GB Read-Only 500GB Teragen Copy Wordcount Terasort TPC-DS
Hadoop-Swift Base x1.09 x1.55 x16.09 x9.12 x2.29 x8.10 x0.91

S3a Base x0.96 x1.00 x18.03 x10.33 x1.82 x8.86 x0.94
Stocator x1 x1 x1 x1 x1 x1 x1

Hadoop-Swift Cv2 x1.07 x1.55 x4.41 x2.57 x1.57 x2.64 x0.92
S3a Cv2 x1.02 x1.00 x4.37 x2.72 x1.05 x2.64 x0.93

S3a Cv2 + FU x1.02 x1.00 x1.46 x1.27 x1.05 x1.25 x0.93

TABLE V
RATIO OF REST CALLS COMPARED TO STOCATOR

Read-Only 50GB Read-Only 500GB Teragen Copy Wordcount Terasort TPC-DS
Hadoop-Swift Base x2.41 x2.92 x11.51 x9.18 x9.21 x8.94 x2.39

S3a Base x1.71 x1.96 x33.74 x24.93 x25.35 x24.23 x2.40
Stocator x1 x1 x1 x1 x1 x1 x1

Hadoop-Swift Cv2 x2.41 x2.92 x7.72 x6.55 x6.92 x6.29 x2.39
S3a Cv2 x1.71 x1.96 x21.15 x16.18 x16.44 x15.41 x2.40

S3a Cv2 + FU x1.71 x1.96 x21.15 x16.18 x16.44 x15.41 x2.40

TABLE VI
FINANCIAL COST FOR REST CALLS COMPARED TO STOCATOR FOR IBM, AWS, GOOGLE AND AZURE INFRASTRUCTURE

Read-Only 50GB Read-Only 500GB Teragen Copy Wordcount Terasort TPC-DS
Hadoop-Swift Base x9.72 x13.67 x8.23 x8.60 x8.58 x8.57 x2.23

S3a Base x1.63 x1.94 x27.82 x26.74 x26.84 x25.88 x2.25
Stocator x1 x1 x1 1 x1 x1 x1

Hadoop-Swift Cv2 x9.72 x13.67 x5.24 x5.86 x5.85 x5.81 x2.23
S3a Cv2 x1.63 x1.94 x17.59 x17.29 x17.36 x16.40 x2.25

S3a Cv2 + FU x1.63 x1.94 x17.55 x17.29 x17.34 x16.40 x2.25

and under workloads that perform write operations, Stocator
performs much better than Hadoop-Swift and S3a. Only by
activating and configuring optimization features provided by
the Hadoop ecosystem, Hadoop-Swift and S3a manage to close
the gap with Stocator, but they still fall behind.

Table IV shows the speedups that we obtain when using
Stocator with respect to the other connectors. We see a
relationship between Stocator performance and the workload;
the more write operations performed, the greater the benefit
obtained. On the one hand the write-only workloads, like
Teragen, run 18 time faster with Stocator compared to the
other out of the box connectors, 4 time faster when we enable
FileOutputCommitter Version 2, and 1.5 times faster when
we also add the S3AFastOutputStream feature. On the other
hand, workloads more skewed toward read operations, like
Wordcount, have lower speedups.

These results are possible thanks to the algorithm imple-
mented in Stocator. Unlike the alternatives, Stocator removes
the rename – and thus copy – operations completely. In
contrast, the other connectors, even with FileOutputCommitter
Version 2, must still rename each output object once, although
the overhead of the remaining renames is partially masked
since they are carried out by the executors in parallel.

Stocator performs slightly worse than S3a on two of the

workloads that contain only read operations (no writes), Read-
only 50 GB and TPC-DS, and virtually the same for the larger
500 GB Read-only workload. We have identified a small start-
up cost that we have not yet removed from Stocator that can
explain the difference between the results for the 50 GB and
500 GB Read-only workload.3 As expected the results for the
read-only workloads for S3a and Hadoop-Swift connectors are
virtually the same with and without the FileOutputCommitter
Version 2 and S3AFastOutputStream features; these features
optimize the write path and do not affect the read path.

B. Reduction in the number of REST calls

Next we look at the number of REST operations executed
by Spark in order to understand the load generated on the
object storage infrastructure. Figure 4 shows that, in all the
workloads, the scenario that uses Stocator achieves the lowest
number of REST calls and thus the lowest load on the object
storage.

When looking at Read-only with both 50 and 500 GB
dataset, the scenario with Hadoop-Swift has the highest num-
ber of REST calls and more than double compared to the

3Since writing this paper we have removed start-up costs and improved the
performance of the read-path of Stocator.



H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

200

400

600

800

1000

1200

1400
C

a
lls

Read-only 50GB

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POST

H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

2000

4000

6000

8000

10000

12000

C
a
lls

Read-only 500GB

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POST

H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

5000

10000

15000

20000

25000

30000

35000

C
a
lls

Teragen

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POST

H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

5000

10000

15000

20000

25000

30000

35000
C

a
lls

Copy

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POST

H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

5000

10000

15000

20000

25000

30000

35000

C
a
lls

Wordcount

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POST

H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

5000

10000

15000

20000

25000

30000

35000

C
a
lls

Terasort

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POST

H
-S

 B
as

e

S
3
a 

B
as

e

S
to

ca
to

r

H
-S

 C
v2

S
3
a 

C
v2

S
3
a 

C
v2

+
FU

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C
a
lls

TPC-DS

HEAD container
HEAD object

GET container
GET object

PUT
COPY

DELETE
DELETE multiple + POSTFig. 4. Benchmarks REST calls comparison

scenario with Stocator. The Hadoop-Swift connector does
many more GET calls on containers to list their contents.
Compared to S3a, Stocator is optimized to reduce the number
of HEAD calls on the objects. We see this consistently for all
of the workloads.

In write-intensive workloads, Teragen and Copy, we see that
the scenarios that use S3a as the connector have the highest
number of REST calls while Stocator still has the lowest.
Compared to Hadoop-Swift and Stocator, S3a performs many
more HEAD calls for the objects and GET for the containers.
Stocator also does not need to create temporary “directories”
objects, thus uses far fewer HEAD requests, and does not need
to DELETE objects; this is possible because our algorithm
is conceived to avoid renaming objects after a task or job
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Fig. 5. Object Storage bytes read/written comparison

completes. Table V shows the number of REST calls that
is possible to save by using Stocator. We observe that, for
write-intensive workloads, Stocator issues 6 to 11 times less
REST calls compared to Hadoop-Swift and 15 to 33 times less
compared to S3a, depending on the optimization features.

Having a low load on the Object Storage has advantages
both for the data scientist and the storage providers. On the
one hand, cloud providers will be able to serve a bigger pool
of consumers and give them a better experience. On the other
hand, since most public providers charge fees based on the
number of operations performed on the storage tier, reducing
the operations results in a lower cost for the data scientists.
Table VI shows the relative costs for the REST operations.
For the workloads with write (Teragen, Copy, Terasort and
Wordcount) Stocator is 16 to 18 times less expensive than S3a
run with FileOutputCommitter version 2, and 5 to 6 times less
expensive than Hadoop-Swift. To calculate the cost ratio we
used the pricing models of IBM [47], AWS [48], Google [49]
and Azure [50]; given that the models are very similar we
report the average price.

As an additional way of measuring the load on the object
storage and confirming the fact that Stocator does not perform
COPY (or DELETE) operations we present the number of
bytes read and written to the object storage. From Fig. 5 we
see that Stocator does not write more data than needed on the
storage. In contrast we confirm that Hadoop-Swift and S3a
base write each object three times – one from the PUT and
two from the COPY – while Stocator only does it once. Only
by enabling FileOutputCommitter Version 2 in Hadoop, it is
possible to reduce the COPY operations to one, but this is
still one more object copy compared to Stocator. We show



only the workloads that have write operations since during a
read-only workload, the number of bytes read from the object
storage are identical for all of the connectors and scenarios
(as we see from the Wordcount workload in Fig. 5 where
the number of bytes written is very small). As expected the
S3a scenario that uses the S3AFastOutputStream optimization
gains no benefit with respect to the number of bytes written
to the object storage.

VI. CONCLUSION AND FUTURE WORK

We have presented a high performance object storage con-
nector for Apache Spark called Stocator, which has been
made available to the open source community [17]. Stocator
overcomes the impedance mismatch of previous open source
connectors with their storage, by leveraging object storage
semantics rather than trying to treat object storage as a file
system. In particular Stocator eliminates the rename paradigm
without sacrificing fault tolerance or speculative execution. It
also deals correctly with the eventually consistent semantics of
object stores without the need to use an additional consistent
storage system. Finally, Stocator leverages HTTP chunked
transfer encoding to stream data as it is produced to object
storage, thereby avoiding the need to first write output to local
storage.

We have compared Stocator’s performance with the Hadoop
Swift and S3a connectors over a range of workloads and found
that it executes far less operations on object storage, in some
cases as little as one thirtieth. This reduces the load both
for client software and the object storage service, as well
as reducing costs for the client. Stocator also substantially
increases the performance of Spark workloads, especially write
intensive workloads, where it is as much as 18 times faster than
alternatives.

In the future we plan to continue improving the read
performance of Stocator and extending it to support addi-
tional elements of the Hadoop ecosystem such as MapReduce
(primarily a matter of testing) and Hive. We also plan to
continue extend our work on the impedance mismatch to
enable additional data intensive frameworks such as those for
deep learning to work efficiently with object storage.
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