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Abstract— In an effort to improve positioning accuracy in
Vehicular Ad hoc NETworks (VANETs), Cooperative Localiza-
tion (CLoc) has been proposed to fuse relative observations
from Vehicle-to-Vehicle (V2V) communication devices with
absolute observations from on-board resources such as Global
Navigation Satellite Systems (GNSS), Inertial Measurement
Units (IMU), and Wheel Speed Sensors (WSSs). In challenging
but common tunnel environments, prolonged GNSS outages
and unsustainable error accumulation of inertial sensors over
time (e.g., gyroscopes) lead to the fast divergence of position
estimates. In this paper, we aim at resolving this problem by
relying on additional Vehicle-to-Infrastructure (V2I) measure-
ments, making use of RoadSide Units (RSUs) internally to the
tunnel. In particular, we explore practical trade-offs between
V2I technology (i.e., Impulse Radio - Ultra WideBand (IR-
UWB) or ITS-G5) and RSUs deployment costs (i.e., in terms
of density and geometric configuration), while improving CLoc
absolute accuracy. We also consider combining this solution with
lane detection capabilities (e.g., camera-based) and associated
road information, while comparing it with a more conventional
approach based on GNSS repeaters.

I. INTRODUCTION

Future Cooperative Intelligent Transport Systems (C-
ITS) applications based on Vehicular Ad hoc NET-
works (VANETs) assume the availability of a positioning
system to provide each vehicle with accurate location in-
formation regardless of operating conditions. Although the
Global Navigation Satellite System (GNSS) is the most com-
mon, accessible and obvious choice for vehicle localization
today, it still fails to fulfill C-ITS application requirements,
especially in challenged environments such as long tun-
nels and dense urban canyons. In this context, Cooperative
Localization (CLoc), which takes advantage of ubiquitous
location awareness through Vehicle-to-Vehicle (V2V) com-
munications, appears as a promising complementary strategy.
Contextually, an “ego” vehicle considers its neighbors as
potential “virtual anchors” [1]–[4] (i.e., mobile anchors with
imperfect location information). CLoc is organized in three
phases. First, each vehicle encapsulates its latest absolute
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location in a Beacon1 broadcast over V2V communication
links. After receiving such Beacons, a given “ego” vehicle
becomes aware of the estimated absolute positions of its
neighbors. The second phase aims at retrieving relative
V2V location-dependent information with respect to the
“virtual anchors”, either directly out of received Beacon
signals (e.g., based on physical radiolocation metrics) or by
relying on a side ranging-enabled wireless technology. All
this cooperative information (i.e., V2V measurements and
claimed neighbors’ estimates) is then combined with the
locally predicted “ego” position based on on-board devices,
such as an Inertial Measurement Unit (IMU), a Wheel Speed
Sensor (WSS), and whenever available, a GNSS receiver.
Hybrid data fusion techniques are then applied to further
refine the “ego” absolute position accordingly (See Fig. 1).
In the last phase, the “ego” vehicle contributes to improve
also the localization of other vehicles by sharing its own
fusion-based position estimates in subsequent Beacons.

V2V communications have stimulated research interest in
the field of CLoc for the last past years, making it possible
to exploit signals of opportunity such as the Received Signal
Strength Indicators (RSSIs) of received Cooperative Aware-
ness Messages (CAMs) [1], [3]–[5], in compliance with
Vehicle-to-X (V2X) ITS-G5 technology [6]2. For the sake of
improving further localization performances, in [7], [8], ITS-
G5-based RSSI measurements are replaced by Impulse Radio
- Ultra WideBand (IR-UWB) Time-of-Flight (ToF) mea-
surements (See Fig. 1), which can theoretically performed
within centimeter-level distance resolutions [9]. However,
despite fine V2V ranging accuracy, in large-scale GNSS-
denied environments like long tunnels, performing CLoc over
large time periods with respect to “virtual anchors” only is
subject to divergence issues. This is due to errors propagation
through cooperation in lack of absolute re-calibration means
(e.g., re-injecting unbounded biased neighbors’ positions
from vehicle to vehicle) and/or poor Geometric Dilution of
Precision (GDoP) constrained by both vehicular mobility and
road width. Alternatively, in such pathological environments,
conventional (non-cooperative) GNSS-based solutions based
on a high density of repeaters in the tunnel (e.g., typically,
one every 30–50 meters) are notoriously costly and neces-
sitate huge deployment efforts to retrieve just the nominal
clear-sky GNSS accuracy (at most, in optimistic cases).

In this paper, we thus propose a new CLoc scheme mixing

1To remain technology neutral, a “Beacon” is a message periodically
broadcast by each node.

2CAM and ITS-G5 are European counterparts to the Basic Safety
Message (BSM) and Dedicated Short Range Communication (DSRC) in the
US. ITS-G5 is expected to be available in every vehicle sold from 2019.



Fig. 1. “Ego” car receiving CAMs and exchanging ranging frames
RFRAME from/with single-hop “virtual anchors” to perform distributed
CLoc. The CLoc positional beliefs (i.e., through GNSS/IMU/WSS/V2V or
IMU/WSS/V2V) are expected to be more concentrated than that of non-
CLoc (i.e., with either GNSS/IMU/WSS or IMU/WSS).

V2V and V2I capabilities for better robustness. The latter
solution claims good suitability in pathological environments
under GNSS full blockage conditions such as long tunnels.
The main contributions of the paper include: (i) describing
the proposed Bayesian data fusion framework relying on
Particle Filtering (PF), which combines IMU/WSS-based
position predictions with both V2V and V2I range-dependent
measurements; (ii) examining the localization potential of
two kinds of V2I modalities and technologies (i.e., IR-
UWB ToF-based ranges vs. ITS-G5 RSSIs), in terms of
achievable performance trade-offs between accuracy gains
(i.e., capability to mitigate divergence effects in GNSS-
free CLoc) and cost (in consideration of the deployed
extra-infrastructure); and finally, (iii) comparing the previous
strategies with solutions based on GNSS repeaters and/or on
a lane boundary detector (e.g., camera-based) that enables to
spatially constrain the posterior density of location estimates.

The paper is organized as follows. Section II describes
general concepts and system models related to vehicular
CLoc, while Section III presents our new PF-based data
fusion solution, capable of mixing V2V and V2I measure-
ments. Simulation results and benchmarks are presented in
Section IV. Finally, Section V concludes the paper and
discloses planned future works.

II. PROBLEM STATEMENT AND SYSTEM MODEL

We consider a VANET consisting of a fleet V of connected
vehicles. At each vehicle i ∈ V , time is locally sampled into
a sequence of discrete events ti,0, ti,1, . . . , ti,k, which are
simply indexed by k3. Vehicles’ dynamic states are defined
by Xi,k, i ∈ V collecting components of interest e.g., the 2-
D absolute position xi,k = (xi,k, yi,k)†, the 2-D velocity
vi,k = (vxi,k, v

y
i,k)†, the heading θi,k, etc. Note that (·)†

is the transpose of its argument. These state variables are
assumed to evolve according to an a priori mobility model.
At local discrete time k, the “ego” vehicle i has the set
S→i,k, i /∈ S→i,k of “virtual anchors”, the set T→i,k of fixed
anchors (i.e., static RoadSide Units (RSUs)), and acquires an
observation vector zi,k, which is related to its own state Xi,k,

3Due to asynchronously sampled time instants, the index k is locally
meaningful. For notation brevity, the subscript indicating the vehicle index
is dropped. If, however, it is included, the associated variable is strictly
considered w.r.t. the timeline of the stated vehicle index.

its neighboring states Xj,ki , j ∈ S→i,k, and its connected
RSUs’ positions Xl,ki = xl, l ∈ T→i,k via a measurement
model.

A. True Mobility and Mobility Prediction Models Mismatch
We herein assume a Gauss-Markov mobility model, which

well describes the correlated velocity of vehicles in the form
of a time-correlated Gauss-Markovian process suitable into
vehicular contexts [4], as follows(
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where α is the memory level, ∆T the time step, v̄i =
(v̄xi , v̄

y
i )† the 2-D asymptotic (cursing) velocity, wi,k =

(wxi,k, w
y
i,k)† ∼ N ((0, 0)†,Qi,k) the 2-D Gaussian noise

term associated with noisy control inputs, Qi,k the noise
covariance matrix, and I2 the identity matrix of size 2× 2.

Although one can assume that each vehicle knows its
own mobility model i.e., a model like in (1) or more
generally, a conditional transition probability density func-
tion (pdf) p(Xi,k+1|Xi,k) (known a priori for highly con-
trolled mobility regimes or possibly self-calibrated on the
fly based on previous state estimates), this perception is
usually an approximation of the true mobility statistics.
To remain mobility-independent, the well-known kinematic
bicycle model is employed as mobility prediction model [10],
as follows

xi,k+1 ≈ xi,k + ∆Tsi,k cos(θi,k + 1/2∆Tωi,k), (2a)
yi,k+1 ≈ yi,k + ∆Tsi,k sin(θi,k + 1/2∆Tωi,k), (2b)
θi,k+1 = θi,k + ∆Tωi,k, (2c)

where ωi,k is the yaw rate and si,k the speed. These signals
are considered as driving inputs to the mobility prediction
model. They can be provided by the gyroscope in the
IMU and the WSS respectively. Defining the new state as
Xi,k = (xi,k, yi,k, θi,k)† and the motion measurement as
ui,k = (si,k, ωi,k)†, the model in (2) can now be represented
in a more compact form by a function f(·), as follows

Xi,k+1 = f(Xi,k,ui,k). (3)

Assuming the measurements si,k and ωi,k are independent
of each other and Gaussian with variances (σsi )

2 and (σωi )2

respectively, ui,k is a 2-D Gaussian vector with covariance
matrix

Σu
i,k =

(
(σsi )

2 0
0 (σωi )2

)
. (4)

B. Observation Models
1) IR-UWB V2X Ranges: Through a ranging protocol

(e.g., based on the ToF estimation of transmitted packets
involved in multiple-way handshake transactions [9], [11]),
vehicle i at time ti,k estimates the V2X distance zj→i,k to
node j, j ∈ S→i,k ∪ T→i,k in position xj,ki (or xj)

zj→i,k = ‖xi,k − xj,ki‖+ nj→i,k, (5)
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Fig. 2. 1-σ along-track (top) and cross-track (bottom) errors perceived
by fusion filters for each vehicle during the first 3 seconds for non-CLoc
(IMU/WSS) and pure CLoc (IMU/WSS/UWB). Simulation settings and
scenarios are given in Sec. IV-A.

where nj→i,k ∼ N (0, σ2
UWB) is the ranging measurement

noise of standard deviation σUWB.
Note that node j could be indifferently another mobile

“virtual anchor” or a static RSU set as fixed anchor (i.e., a
true anchor).

2) V2X Received Power: Out of a received CAM, the
RSSI zj→i,k (on a dB scale) measured by vehicle i at
time ti,k with respect to vehicle j, j ∈ S→i,k ∪ T→i,k in
position xj,ki (or xj) is assumed to follow the widely used
log-distance path loss model

zj→i,k = P (d0)−10np log10(‖xi,k − xj,ki‖)+Xj→i,k, (6)

where P (d0) [dBm] is the average received power at a
reference distance d0, np the path loss exponent, Xj→i,k ∼
N (0, σ2

Sh), and σSh the shadowing standard deviation.
Similarly to IR-UWB ToF-based range measurements,

node j is herein either a “virtual anchor” or a true anchor.
3) GNSS Repeater-Based Absolute Position: The 2-D

position estimate delivered by a GNSS receiver, pi,k =
(pxi,k, p

y
i,k)†, is affected by an Additive White Gaus-

sian Noise (AWGN) vector ni,k = (nxi,k, n
y
i,k)† ∼

N ((0, 0)†, σ2
GNSSI2) [2], [4] of standard deviation σGNSS.

pxi,k = xi,k + nxi,k, pyi,k = yi,k + nyi,k. (7)

Finally, for the sake of notation brevity and simplic-
ity, we introduce the following set notation to gather
different vehicles’ variables: stacked state of “virtual an-
chors” XS→i,k = {Xj,ki |∀j ∈ S→i,k} and XS→i,k− =
{Xj,k<ki |∀j ∈ S→i,k}; stacked state of fixed anchors in
range XT→i,k = {xj |∀j ∈ T→i,k}; full stacked state
Xi∪S∪T ,k = (X†i,k,X

†
S→i,k,X

†
T →i,k)†; V2V measurement

vector zS→i,k = {zj→i,k|∀j ∈ S→i,k}; and V2I measure-
ment vector zT→i,k = {zj→i,k|∀j ∈ T→i,k}.

C. Divergence of Position Estimates and Errors Propagation

In a pure VANET context, the performance of range-based
CLoc depends on three critical factors: (i) the quality of

range measurements, (ii) the uncertainty of prior position
estimates for both the “ego” vehicle and “virtual anchors”,
and (iii) the local geometric configuration of the latter an-
chors relatively to the “ego” vehicle (i.e., GDoP conditions).
The first condition can be satisfied by choosing an accurate
time-based ranging technology such as IR-UWB. However,
despite fine V2V ranging accuracy, as the position estimated
through CLoc at each ”ego” vehicle depends on the previous
estimate (via the IMU/WSS-based position prediction) and
on the neighbors’ estimates (via cooperation), errors tend to
accumulated over both time and space. Estimation is then
subject to significant unbounded biases unless absolute re-
calibration is performed or much better GDoP is achieved.
Unfortunately, none of these conditions is usually met in
standard tunnels. Since mobility is strongly constrained by
the roads/lanes and driving rules, the vehicles’ relative ge-
ometry is rather poorly conditioned in this context. More
particularly, the VANET topology is usually distorted along
the direction colinear to the road due to the huge disparity
between the longitudinal safety distances (e.g., 20–150 m4)
and the lateral lane width (e.g., 2.25–3.5 m). Accordingly,
the GDoP is likely poor in the direction orthogonal to the
road; therefore, the cross-track location error remains high.
Such situations can be fatal, since such malicious information
cannot be re-calibrated by absolute means and then is propa-
gated over the network and degrades the position accuracy of
all neighbors accordingly. Fig. 2 illustrates this phenomenon
where CLoc uniquely based on V2V IR-UWB measurements
yields worse accuracy than IMU/WSS non-CLoc. Fig. 2(a)
confirms the advantage of CLoc to decrease the along-track
error whereas Fig. 2(b) shows that jointly or separately,
poor GDoP effects and neighbors’ unbounded biased position
estimates lead to the faster divergence of CLoc accuracy
along the cross-track direction (which dominates the total
localization error) in comparison with non-CLoc.

III. PROPOSED DATA FUSION FRAMEWORK

A. Distributed PF for Hybrid CLoc based on V2X

PF is attractive for nonlinear sequential state estimation
when KF-based methods may diverge. Moreover, PF is
intrinsically nonparametric with respect to the posterior
density, which may be arbitrarily complex and multimodal.
In PF, the latter density, p(Xi,k|zi,1:k), is approximated by
a particles cloud of P random samples {X(p)

i,k}Pp=1 with
associated weights {w(p)

i,k }Pp=1 [10] i.e., p(Xi,k|z1:k) ≈∑P
p=1 w

(p)
i,k δ(Xi,k −X

(p)
i,k ), where δ(·) is the Dirac delta

function. However, it is challenging and expensive from a
computational point of view to draw samples directly from
p(Xi,k|zi,1:k) due to its complex functional form [10]. Thus,
an approximate distribution called the sequential proposal
density π(Xi,k,XS→i,k|X(p)

i,k−1,X
(p)
S→i,k− , zi,1:k) is used in-

stead, from which one can easily draw samples. One popular
embodiment thus consists in using the mobility model as the

4The two-second (or three-second) rule is applied to maintain a safe
following distance.



Algorithm 1 Bootstrap PF (iteration k, “ego” vehicle i)
1: CAM Collection: Receive CAMs from the set N→i,k of perceived

neighbors, exact the parametric beliefs, and draw samples to recon-
struct the approximated particle clouds {X̃(p)

j,k , 1/P}
P
p=1, j ∈ N→i,k .

2: Data Resynchronization: Perform prediction of both “ego” and
neighboring particle clouds based on mobility models in (3) at time ti,k

X
(p)
i,k ∼ p(Xi,k|X

(p)
i,k−1), p = 1, . . . , P,

X
(p)
j,ki
∼ p(Xj,ki

|X̃(p)
j,k), p = 1, . . . , P, j ∈ N→i,k.

3: Observation Query and Aggregation: Select the subset S→i,k ⊂
N→i,k of paired “virtual anchors” and the set T→i,k of paired
true anchors. Aggregate the measurements (and the corresponding
observation model) zi,k = (z†S→i,k, z

†
T→i,k)

†.
4: Correction: Calculate the new weights according to the likelihood

w
(p)
i,k ∝ p(zi,k|X

(p)
i∪S∪T ,k) =

∏
j∈S→i,k

p(zj→i,k|X
(p)
j,ki

,X
(p)
i,k )×∏

l∈T→i,k

p(zl→i,k|xl,X
(p)
i,k ), p = 1, . . . , P,

normalize them to sum to unity, and compute the approximate Mini-
mum Mean Square Error (MMSE) estimator as the second filter/fusion
output X̂i,k ≈

∑P
p=1 w

(p)
i,kX

(p)
i,k .

5: Resampling, Message Approximation, Broadcast

sequential proposal density [1], [10] i.e.,

π(·) = p(Xi,k|X(p)
i,k−1)

∏
j∈S→i,k

p(Xj,ki |X
(p)
j,k). (8)

Note that the above function describes a joint mobility
model of both “ego” and neighboring vehicles. Therefore,
the drawn samples take into account the uncertainty of
“virtual anchors”. This step is particularly crucial. Indeed,
if the PF treated “virtual anchors” as real anchors, more
estimation biases affecting the neighboring estimates would
be propagated to the “ego” vehicle, leading to even more
significant accuracy degradation.

Then we propose to apply this filter as the core fusion
engine in our CLoc framework, as described in Algorithm 1
(including also side CAM reception, message approximation
and CAM broadcast steps). Note that our PF-based data
fusion combines the V2X measurements to give robust and
accurate position estimates in Step 3 and 4.

B. Deployment of GNSS Repeaters

Another infrastructure-based solution to assist CLoc with
absolute positioning capabilities consists in deploying GNSS
repeaters in tunnels instead of RSUs. From the local-
ization point of view, the Algorithm 1 is thus modified
in Step 3 and Step 4 so as to integrate the GNSS ob-
servation. Accordingly, the measurement vector in Step
3 becomes zi,k = (p†i,k, z

†
S→i,k)† and the weights are

now updated as follows w
(p)
i,k ∝ p(zi,k|X(p)

i,k ,X
(p)
S→i,k) =

p(pi,k|X(p)
i,k )

∏
j∈S→i,k

p(zj→i,k|X(p)
j,ki

,X
(p)
i,k ), p = 1, . . . , P .

C. Integration of Lane Constraints (LCs)

The mobility of land vehicles is tightly constrained by the
road and lane boundaries. Thus, such contextual information
can be contributed into the localization problem [12]. We

TABLE I
MAIN SIMULATION PARAMETERS

Parameter Value

Sampling period ∆T 0.1 [s] (fast update rate for high mobility)
Gyroscope signal noise 0.1 [deg/s] (rms) [13]
WSS noise 1% actual speed [13]
V2X IR-UWB ranging rate 5 [Hz] (V2V), 10 [Hz] (V2I)
V2X IR-UWB ranging noise 0.2 [m] (rms)
V2X IR-UWB communication range 600 [m]
V2X CAM rate 10 [Hz] (critical)
V2X CAM range 1000 [m] [6]
Path loss exponent np 1.6 (V2V in tunnels) [14]
Std. of shadowing σSh 3.4 [dB] (V2V in tunnels) [14]
Inter-site RSU interval 500, 200, and 100 [m]
GNSS rate 10 [Hz]
GNSS noise 1.5 [m] (SBASa), 3.6 [m] (SPSb) (rms) [15]
GNSS repeater noise 5–10 [m] (rms)
Number of particles 1000
Initial pos. errors in x- and y-axes 1 [m] (rms) (plausible hypothesis)
Initial heading error 4 [deg] (rms) (plausible hypothesis)

a Satellite-Based Augmentation System.
b Standard Positioning Service.

assume in this paper that lane allocation can be performed
at each vehicle using for instance a vision-based system
(e.g., monocular camera) and a digital map [13]. The latest
filtered/fused estimate is cross-checked with the side digital
map to identify the current road occupancy and its associated
attributes (e.g., lanes number and width). In addition, the
camera system scans the road and detects the lanes [13] As
a result, the absolute positions of the lane boundaries can be
determined and used to constrain the filtered/fused outputs.
In this method, the posterior density of location estimate is
numerically truncated beyond the lane boundaries, which are
considered as constraints to restrict the valid state domain.
More precisely, particles lying outside a drivable area are
removed. Finally, the constrained density is constructed
based on the remaining valid samples on the occupied lane.
This truncated density is subsequently used to calculate the
filter MMSE output.

IV. PERFORMANCE EVALUATION

A. Simulation Settings and Scenarios

In our MATLAB-based evaluations, we consider a 1000-
m three-lane straight tunnel, where 10 ITS-G5 connected
vehicles endowed with IR-UWB ranging capabilities (V2V
and/or V2I) are driving steadily in a common direction
at the average speed of 70 km/h. In addition, RSUs are
deployed along the tunnel, with different inter-site intervals
of 500, 200, and 100 meters either on one single side of
the road or on both sides as shown in Fig. 3. These units
support both ITS-G5 and IR-UWB technologies for both V2I
communication and V2I ranging w.r.t. mobile vehicles. The
main simulation parameters are summarized in Table I.

B. Numerical Results

1) Localization Performance Comparison: The localiza-
tion performance achieved for different algorithmic and
technological options is summarized in Fig. 4 by means of
empirical Cumulative Distribution Functions (CDFs). Dead
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Fig. 3. Evaluated VANET and related attributes in 1000-m straight tunnel
scenario.

Reckoning (DR) based on IMU and WSS is by default
assumed available at each vehicle and thus considered in
all the tested scenarios (either as standalone solution or in
combination with other technologies).

Fig. 4(a) shows spectacular performance gains when using
RSUs with accurate IR-UWB ranging capabilities even under
reasonably loose deployments i.e., with inter-site RSUs inter-
vals of 500 m on both sides of the tunnel. As aforementioned,
conventional DR provides relatively poor performance in
the long-term due to error accumulation and resulting drift
effects, whereas pure ad hoc V2V cooperation based on both
IR-UWB V2V measurements and DR (thus, relying on ill-
positioned “virtual anchors”) leads to mutual contamination
among vehicles and even worse localization performance
in the end. The capability to provide CLoc with reliable
absolute information however strongly depends on the V2I
ranging technology available at RSUs. In particular, the ad-
dition of V2I range measurements based on IR-UWB yields
significant performance gain over DR (relative drops of 88%
in median error and 85% in worst-case (WC) error (defined
for a CDF of 90%)) and pure ad hoc CLoc (relative drops of
94% and 90% in median and WC errors respectively), while
V2I RSSI measurements based on ITS-G5 are not sufficiently
informative so that the localization performance is equivalent
to that of a pure ad hoc case relying on IR-UWB V2V
ranging and DR. RSSI-based positioning is indeed usually
not considered as a high precision solution [3], [9]. Thus its
contribution to the position estimate correction (by updating
the weights in Algorithm 1 in Step 4) is relatively marginal
in comparison with that of accurate V2V IR-UWB ranges.

In Fig. 4(b), we compare the proposed RSU-based so-
lution with the use of LC (with DR) or GNSS repeaters
(with DR), assuming in the latter case systematic GNSS
signal availability in the entire tunnel5 but various quality
levels. It is indeed reasonable to assume degraded accuracy
in comparison with open-sky conditions due to multi-path
propagation (e.g., SPS and SBAS accuracy of 1.5 m and
3.6 m respectively [15]). It is thus observed that the absolute
positional information provided by GNSS repeaters must be
accurate enough to be able to re-calibrate position estimates.
However, this information is always beneficial for fusion
since it is assumed to be bounded and unbiased. Besides,

5This is usually achieved with typical inter-side intervals in the range of
30− 50 m)

the non-CLoc scheme including LC and DR outperforms
the solution based on GNSS repeaters but still cannot reach
the performance level of full V2X CLoc including IR-UWB
range measurements w.r.t. both mobile neighbors and RSUs,
even if the performance gap is not so significant (increased
median and WC errors of 12 cm and 8 cm respectively). Two
main reasons can be invoked to explain this phenomenon.
First, we have considered a very accurate WSS sensor in our
validations [13]. LC naturally thus tends to correct the only
remaining accumulated errors affecting the input heading
measurements used in state predictions. Second, the tested
RSU deployment (i.e., 500-m inter-site interval) is rather
sparse, leading to an average number of 4 connected anchors
(as shown in Fig. 5), what contributes to sustain poor GDoP
conditions.

In Fig. 4(c), we are interested in more aggressive scenarios
to boost localization accuracy. In particular, we assume a
denser RSU deployment (e.g., down to 100-meter inter-
site intervals) and more accurate GNSS repeaters reaching
optimistically the open-sky accuracy of SPS or even SBAS.
Let us now consider the non-CLoc scheme with LC and DR
as a reference baseline. By using massive RSUs, the V2I
RSSI now yields better performance and at least outperforms
the standalone DR solution (relative decreases of 67% and
24% in median and WC errors respectively) but still cannot
be compared with the proposed full CLoc scheme relying on
both V2V and V2I IR-UWB range measurements.

Then, we verify if and to which extent it is possible
to improve also the solution based on ITS-G5 V2I RSSI
measurements by integrating LC. However, it only gives
comparable performance levels with the solution combining
DR and LC, due to inaccurate ITS-G5 V2I RSSIs again.

When assuming even more optimistic GNSS repeater ac-
curacy to the level of open-sky in the exchange of increased
cost of deployment, only the solution combining SBAS and
DR yields performance gains over the solution combining LC
and DR, even though yet the gap is not so remarkable. Under
denser IR-UWB RSUs deployment, much better accuracy is
achievable through full V2X CLoc (relative drops of 68%
and 60% in median and WC errors respectively w.r.t. the
DR and LC).

2) Deployment Cost Analysis and Discussion: We con-
front here the trade-off between the accuracy gain and the
associated deployment cost. Particularly, we compare the
use of IR-UWB RSUs and GNSS repeaters for tunnels. We
claim that the IR-UWB RSU approach is more favorable
than the GNSS repeater scheme in terms of both accuracy
performance and deployment cost. As an illustration, in the
considered 1000-meter tunnel scenario, we would need to
place about 20–35 repeaters (i.e., one every 30–50 meters)
to achieve the accuracy of 0.4–2 m whereas 6–20 IR-UWB
RSUs yield 0.2–0.1 m6. Motivated by the clear benefits from
RSUs, we further compare different RSU configurations,
as depicted in Fig. 5. A closer look at the figure reveals

6We assume in first approximation that the deployment efforts -and thus
costs/unit- of GNSS repeaters and IR-UWB RSUs are comparable.
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Fig. 4. Empirical CDF of localization errors for different filter/fusion schemes. Note that all the options implement IMU/WSS-based position prediction.
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Fig. 5. Impact of the RSU deployment on V2X UWB CLoc’s loc. accuracy.

that with a similar number of connected RSUs (as well as
a total number of deployed RSUs) (e.g., single-sided 200-
meter inter-site RSUs interval vs. double-sided 500-meter
and double-sided 200-meter vs. single-sided 100-meter), the
shorter inter-site RSUs interval, the better accuracy. It is due
to the fact that cross-track error is significantly reduced when
vehicles pass by the anchors (See [16] for more details).
Thus, short inter-site RSUs interval shall be preferred to
looser double-sided deployment.

V. CONCLUSION AND FUTURE WORKS

We investigate the problem of range-based CLoc for
VANETs specifically in tunnel environments. Simulation
results clearly indicate that in long tunnels, CLoc only with
respect to neighboring vehicles is prone to fast divergence
and inaccurate position estimates. We solve this problem by
additionally integrating V2I measurements with respect to
RSUs, which are deployed along the tunnel, relying on an
adapted PF-based data fusion framework. By applying the
proposed hybrid CLoc with generalized V2X measurements
(i.e., V2I on top of V2V), we have found that: (i) V2I IR-
UWB range measurements boost the CLoc accuracy even
under sparse RSUs deployment; (ii) V2I RSSI only slightly
improves the CLoc accuracy in case of massive RSUs
deployment; (iii) V2X IR-UWB CLoc is more attractive

than the CLoc assisted by GNSS repeaters in terms of both
accuracy performance and cost of deployment. Future works
will study communication aspects (e.g., efficient protocol
design for packet exchanges, impact of packet error rate,
etc.) on the localization performance.
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