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Abstract—Rapid advances in sequencing technologies are pro-
ducing genomic data on an unprecedented scale. The first, and
often one of the most time consuming, step of genomic data
analysis is sequence alignment, where sequenced reads must be
aligned to a reference genome. Several years of research on
alignment algorithms has led to the development of several state-
of-the-art sequence aligners that can map tens of thousands of
reads per second.

In this work, we answer the question “How do sequence
aligners utilize modern processors?” We examine four state-of-
the-art aligners running on an Intel processor and identify that
all aligners leave the processor substantially underutilized. We
perform an in-depth microarchitectural analysis to explore the
interaction between aligner software and processor hardware.
We identify bottlenecks that lead to processor underutilization
and discuss the implications of our analysis on next-generation
sequence aligner design.

I. INTRODUCTION

The past few years have witnessed dramatic improvement
in both cost and throughput of DNA sequencing technologies.
Today, it is possible to sequence a single human genome
at 30-fold coverage for as little as $1,000. With sequencing
becoming more affordable, the amount of genomic data gen-
erated has been increasing at an alarming rate far outpacing
Moore’s law [20]. This data deluge has the potential to pave
way for the emerging field of personalized medicine and assist
in detecting when genomic mutations predispose humans to
certain diseases like cancer, autism, and aging.

However, to unlock the potential of genomic data, one
needs scalable, efficient data analytics platforms and tools. The
first and one of the most time-consuming steps in analyzing
such data is sequence alignment–the task of determining the
location in the reference genome that corresponds to each
sequenced read. In the last decade, researchers have designed
over 70 read mapping tools [8], each differing from another
with respect to accuracy, sensitivity, specificity, and speed.
Today, state-of-the-art read aligners can map tens of thousands
of reads per second to the reference genome.

While all prior research focuses on improving performance,
by reducing mapping time of individual reads, or scalability, by
mapping more reads per second, there is no study that analyzes
sequence aligners at the microarchitectural level. Such an
analysis is important for several reasons.

First, it answers the following question–Do state-of-the-art
aligners use modern processors efficiently? Microarchitectural
analysis in other applications areas, like relational databases
and data analytics platforms, showed that these applications
do not utilize modern processors efficiently [1], [6]. Such
analyses spurred research efforts to improve performance by
redesigning data structures, or energy efficiency by using low-
power processors that can match application requirements.
In this work, we perform a similar analysis for sequence
alignment.

Second, modern processors are complex pieces of hardware
that use a variety of techniques to execute instructions faster.
However, in order for such improvements to translate into
tangible performance benefit, software must be optimized to
avoid bottlenecks. Microarchitectural analysis reveals these
bottlenecks by exposing harmful interaction between applica-
tion software and processor hardware and helps in answering
the following question–Will current software automatically
benefit from microarchitectural improvements in the next-
generation of hardware?

Third, the past few years have witnessed a rise in adoption
of heterogeneous computing, as accelerators like General-
Purpose Graphics Processing Units (GPGPU) and Intel Xeon
Phi are being increasingly adopted in several data-intensive
application domains. Given that sequence alignment is a
complex, multi-stage process, several researchers have built
aligners that execute some, or all stages of sequence alignment,
on these accelerators [11], [18], [19], [21]. However, there has
been no systematic analysis that explores the interaction be-
tween alignment stages and CPU microarchitecture to clearly
identify which stages are more suited to the GPGPU than the
CPU.

In this work, we present, to our knowledge, the first
microarchitectural analysis of four state-of-the-art sequence
aligners. We show that despite a decade of research and
optimized implementations, modern aligners substantially un-
derutilize processor resources as the processor is stalled in
more than 50% of execution cycles without doing useful
work. We provide an in-depth breakdown of stall cycles to
identify hardware components in the processor pipeline and
algorithmic components in sequence alignment software that
contribute to these stalls. We discuss the implications of our
analysis on the design of next-generation of sequence aligners
and suggest directions for further research.



The rest of this paper is organized as follows. In Section II,
we provide a brief overview of alignment techniques and
processor microarchitecture. In Section III, we describe the
hardware and software setup we use for this analysis. We
present a global microarchitectural analysis of aligners in
Section IV and a stage-by-stage analysis of one the aligners in
Section V. Finally, we present the implications of our analysis
in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we will provide a brief overview of sequence
alignment techniques and modern processor microarchitecture
to set the context for this work. We refer the reader to prior
work for an in-depth algorithmic survey of sequence alignment
algorithms and experimental analysis of aligners [5], [8]–[10].

A. Sequence alignment

Modern Next-Generation Sequencing (NGS) technologies
produce millions of short string sequences, referred to as reads,
with each sequence corresponding a portion of the DNA. The
first step in the analysis of this NGS data, referred to as
sequence alignment, is to determine the location in the genome
that corresponds to each of these short reads. Thus, sequence
alignment is essentially a string matching problem where given
a string G (reference genome), and a set of substrings R
(reads), the origin of each read r ε R must be identified in
G. However, due to sequencing errors or due to differences
between the reference genome and the sequenced organism,
a read might not exactly match its corresponding location
in the reference genome. Thus, an aligner has to perform
approximate string matching that is tolerant to mismatches,
insertions, and deletions.

Since a read could potentially align at each one of the 3
billion locations in the reference, brute force search of each
possible alignment is infeasible even for a single read. Thus,
all modern aligners build an index over the reference and
use the index to quickly narrow down the search space of
potential locations. Aligners can be broadly classified into two
types based on the indexing technique used, namely, seed-and-
extend (SE) aligners or Burrows-Wheeler-Transform (BWT)-
based aligners.

SE aligners typically use a hashtable to index the reference
genome and store the contents and the occurrence locations
of short string sequences, also referred to as seeds or k-mers,
in a hash table. Each read is processed in three steps. First,
seeds are extracted from the read and the hash table is used to
look up potential mapping locations in the reference genome.
Second, filtering techniques are used to reduce the number of
potential locations where further extension must be performed.
Third, the entire read is aligned at each of potential reference
location using an approximate string matching algorithm like
Needleman-Wunsch or Smith-Waterman.

BWT-based aligners align reads against a suffix array built
using the reference genome. As suffix arrays are memory
intensive, all of these aligners use a space-optimized data
structure called FM-index [7] that uses a compressed string
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Fig. 1: Simplified microarchitectural depiction of modern
processors.

representation called Burrows-Wheeler Transform [4] to index
the reference genome and enable fast exact string matching. As
the FM-Index itself does not allow approximate string match-
ing, BWT-based aligners use an algorithmic technique called
backtracking that tries to insert errors at various positions in
the read as it is matched while traversing the FM-Index. As
the cost of backtracking increases exponentially, BWT-based
aligners also use heuristics to prune the search space.

BWT-based alignment, introduced by Bowtie [12] and
BWA [16], has been the most popular technique for aligning
short reads. The low error rate of NGS technologies and a
low divergence between reference and sequenced organisms
allowed aligners like trie-based Bowtie and BWA to traverse
the search space for very short reads 10 to 100 times faster than
hash-based aligners. However, with read lengths increasing to
100-150 base pairs, backtracking emerged as the bottleneck
especially if one needs to tolerate a larger number of errors.
Thus, newer variants of these aligners, like Bowtie2 [2] and
BWA-MEM [15] have also reverted back to using the seed-
and-extend technique.

B. Modern processor microarchitecture

In order to understand how state-of-the-art sequence aligners
utilize modern processors, we need to examine how well are
the microarchitectural resources of a processor used by the
aligner software. Modern processors are typically multi-core
in nature and contain several of processing cores. State-of-
the-art aligners exploit the task parallelism offered by multi-
core processors to scale sequence alignment by using multiple
threads, one per core, where each thread aligns a disjoin set
of input reads. While recent studies have focused on software
issues that prevent scalability on multi-core processors [13],
[14], in this paper, our focus is on the utilization of a single
processing core. Thus, in the rest of this paper, we will use
the term processor and core interchangeably.

The microarchitectural pipeline of a modern high-
performance processor is quite complex. Figure 1 shows
a simplified view of the microarchitectural components of
a processing core. The pipeline of a processor is divided



conceptually into two halves, the Front-end (FE) and the Back-
end (BE). The FE is responsible for fetching the program
code corresponding to the Instruction Set Architecture and
decoding them into one or more low-level hardware operations
called micro-operations (µOps). Once decoded, these µOps
are queued for execution by the BE. Before a µOp can be
executed, all necessary data operands must be fetched from
memory if necessary. The BE scheduler is responsible for
monitoring when a µOp’s data operands are available. Once
ready, the scheduler associates the µOp with a port depend-
ing on its intended execution purpose. For instance, a µOp
corresponding to an arithmetic operation would be associated
with a port between 0 and 2, while a µOp associated with
loading data from memory would be associated a port between
3 and 5 in Figure 1. When an execution unit is available, the
port dispatches the queued µOp and executes it. Execution
units, labelled as ALU, Divide, Mul, etcetera, in Figure 1, are
the work horses that perform various operations like memory
loads and stores, addition, multiplication, division, etcetera.
The FE and BE are also equipped with both on-chip and
off-chip cache memory, shown as L1/L2/L3 instruction/data
caches in Figure 1, to avoid long-latency DRAM accesses by
buffering data and instructions.

The completion of a µOp’s execution is called retirement.
When a µOp is retired, its results are committed back to the
architectural state by updating CPU registers or writing back
to memory. The Front-end of the pipeline on recent Intel
microarchitectures can allocate four µOps per clock cycle,
while the Back-end can retire four µOps per clock cycle. Thus,
in each clock cycle, modern Intel processors can potentially
execute four instructions simultaneously. During instruction
execution, most µOps pass completely through the pipeline
and retire. But sometimes, a µOp that is not be able to
complete immediately might delay, or stall, the pipeline.

Intel’s Top-Down Analysis Methodology [22] classifies
stalls into three major types, namely Front-end stalls, Spec-
ulation stalls, and Back-end stalls. During a cycle, if the BE
is ready to execute a µOp but the FE is unable to queue it
for execution, the stall is classified as a FE stall. A typical
reason for FE stalls is instruction cache misses caused by large
instruction footprint corresponding to a complex code base.
Disk-based relational database engines are known to suffer
from such stalls [1].

Modern processors use speculative execution to improve
instruction throughput. Conditional execution in programs,
like if–else blocks, get translated into branch instructions that
decide control flow depending on predicates in the conditional
statement. Before the processor has to execute a branch
instruction, the predicate value has to be determined. Instead
of waiting until a branch instruction’s predicate is resolved,
the Branch Predictor component in the FE implements an
algorithm that guesses the predicate and fetches the appro-
priate instruction stream. If the guess is correct, the execution
continues normally, and if it is wrong, the pipeline is flushed,
and the correct instruction stream is fetched and executed.
Such flushing creates pipeline stalls and these stalls caused by

incorrect branch prediction are classified as Speculation stalls.
In the case where the FE has a µOp ready but the BE is

not ready to handle it, the processor is stalled on the BE. BE
stalls can be further classified into Memory stalls and Core
stalls. As mentioned earlier, a µOp can be executed only if its
data operands are available. Memory stalls are caused by the
processor having to wait for such data operands to be fetched
from the cache or from memory. Core stalls, in contrast, are
caused by a less-than-optimal use of the available execution
units during each cycle. This can happen due to contention for
resources. For instance, if the code contains instructions that
result in several µOps being associated with a few ports, then
queue for those ports become full. Thus, the scheduler can no
longer associate any further µOps with those ports until the
queue shrinks. Similarly, if the code contains several divide
instructions in a row, they will compete for the few divide
execution units resulting in resource conflicts.

III. EXPERIMENTAL SETUP

In this section, we describe the hardware and software
setup we use in this analysis and outline the experimental
methodology.

A. Hardware–software setup

All experiments are conducted on a server running RHEL
7.2, equipped with a 12-core Intel Xeon E5-2650L v3 CPU
and 256GB RAM. We analyze four state-of-the-art sequence
aligners, namely, BWA-MEM [15] and Bowtie2 [2], Snap [23],
and FSVA [17]. We chose Bowtie2 and BWA-MEM as they are
the most popular short-read aligners that use a BWT-based
reference index. We chose Snap as a representative of a new
breed of hashtable-based aligners that exploit the increasing
read lengths to improve performance without sacrificing accu-
racy. We chose FSVA, as it is a state-of-the-art aligner built
for cohort studies that explicitly trades off accuracy for fast
single-threaded performance.

As described in Section II, all these aligners use the seed-
and-extend technique to perform fast alignment of reads.
However, these aligners differ dramatically with respect to
the actual methodology used for seed selection, filtration,
and extension. As a result, these aligners occupy different
points in the performance–accuracy dimensions. Our goal in
this analysis is to not to perform a side-by-side analysis of
execution time or accuracy of various aligners. The optimal
aligner choice is a complex analysis topic covered by prior
research [5], [8]–[10] as there is a delicate balance between
accuracy and performance that must be met depending on the
expected usage. As our focus in this paper is on microarchitec-
tural analysis of sequence aligners, we run each aligner only
in the single threaded mode. Thus, we report the execution
time and accuracy results only for completeness.

B. Experimental methodology

We use both synthetic and real datasets for evaluating each
system. The synthetic dataset is generated by using wgsim.
We generate two datasets with one million reads of length
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for indel-free dataset

150 bp each, one with the default rate of indels and one
without any indels or substitutions. BWA-MEM, Bowtie2, and
Snap can be configured via command-line parameters to trade
off alignment accuracy for improved performance. Thus, we
use the two simulated datasets to perform a sensitivity analysis
to the presence of indels. More specifically, for the indel-free
case, we configure aligners for maximum performance by (i)
increasing the reseeding parameter (-r) of BWA-MEM from
1.5 (default) to 10 (no further improvement beyond this on our
hardware and dataset), (ii) using the “–very-fast” configuration
option of Bowtie2, and (iii) setting the MaxDist parameter (-
d) to zero for Snap. For the with-indel dataset, we run all
aligners using default configuration parameters, thus trading
off performance for accuracy. It is important to note that our
goal is not to systematically explore the entire parameter space,
but rather identify trends in CPU utilization at extreme points
in the performance–accuracy spectrum. For the real dataset, we
use a paired-end read (sample NA12878/09252015) obtained
from the public Genome-In-A-Bottle (GIAB) dataset [24].
Similar to the simulated with-indel case, we run all aligners
using default configuration parameters for the GIAB dataset.

We use Intel VTune for profiling each system. Before
profiling, each aligner is run once to warm up the file system
cache and ensure that the necessary indices and input data are
memory resident. Then, we profile each aligner by executing
it for 30 seconds, to warm up the instruction cache, and then
attaching VTune to the target thread for another 30 seconds.
We repeat the analysis three times and report only the median
values as the variation across runs was less than 10%.

IV. ANALYSIS RESULTS

In this section, we present our analysis of the four sequence
aligners with respect to processor utilization.

A. Indel-free dataset analysis

Modern processors use an array of techniques like pipelin-
ing, out-of-order execution, speculation, and instruction
prefetching to improve single-threaded performance. As a
result, modern processors can retire multiple instructions per
clock cycle as described in Section II. The efficiency of a
software is determined by the metric Instructions Per Cycle
(IPC), which determines the number of machine instructions
executed and retired by the processor in each clock cycle.
The Intel processor we use in this analysis can retire four
instructions per cycle. Thus, in the ideal case, the IPC value
of a sequence aligner should be four.

IPC analysis. Table I shows the single-threaded execution
time of aligners and Fig 2 shows the IPC values for the four
aligners under the indel-free simulated dataset. Clearly, the
processor remains substantially underutilized across aligners
as the worst-case IPC is lower than 25% (for BWA-MEM),
and the best-case IPC is around 50% (for Bowtie2), of the
theoretically achievable maximum.

Execution cycle breakdown. In order to further understand
why observed IPC values are lower than the theoretical maxi-
mum and explain differences in IPC across aligners, we need
to analyze the processor activity on a finer microarchitectural
level. Figure 3 shows the breakdown of execution cycles for
each aligner into retiring and stalled for the indel-free dataset.
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Aligner Simulated Indel-Free Simulated With-Indel GIAB
bowtie2 176 437 3126

bwa 127 458 2919
snap 57 112 717
fsva 55 80 288

TABLE I: Execution time in seconds of aligners under
different datasets

We see that the processor is stalled in nearly 60-80% of cycles.
These stalls result in the low IPC values observed earlier.

Stall-cycle breakdown. Given that a substantial fraction
of cycles are stall cycles, the next step is to identify the
root cause of these stall cycles. Figure 4 shows the stall
cycle breakdown for each aligner under the indel-free dataset.
Clearly, the dominating source of stalls is the Back-end which
accounts for 60% to 80% of all stall cycles. Figure 5 breaks
down the Back-end stalls further into memory or core bound.
Memory stalls account for a 60% to 80% of Back-end stalls
across all aligners. This indicates that the processor is stalled
waiting for data.

Memory stalls analysis. Given that memory stalls dominate
the Back-end across all aligners, it is important to know
if these stalls are due to cache-resident data or DRAM-
resident data. The Intel processor we use in this study has a
three-level caching hierarchy, with a 32KB L1 cache, 256KB
L2 cache, and 30MB Last-level cache. In general, software
optimizations attempt to move data closer to the processor
so that critical data structures are L1-cache resident. Thus,
a memory stall at a lower cache level typically indicates an

optimization opportunity where data structure redesign can
improve utilization. However, if memory stalls are due to
DRAM-resident data, this is typically due to cache-unfriendly
random data access pattern which is harder to optimize.

Figure 6 breaks down memory stalls into load and store
stalls. Load stalls are further decomposed based on the location
that contributes to the stall (L1, L2, L3 cache, or DRAM).
Clearly, between 70–90% of memory stalls are DRAM stalls
indicating that the processor is waiting for long-latency mem-
ory accesses from DRAM.

Insights. All aligners substantially underutilize the proces-
sor, as over 50% of execution cycles are spent on stalls. The
processor is stalled as the Back-end is blocked on long-latency
DRAM accesses waiting for data.

B. Analysis of dataset with indels

Having analyzed the microarchitectural behavior of aligners
under the indel-free dataset, we now present our results using
the with-indel dataset. Our goal is to understand if the presence
of indels, and the associated changes in aligner parameters
to improve accuracy, results in a different microarchitectural
behavior compared to the indel-free case where aligners were
configured for peak performance.

IPC analysis. Table I shows the single-threaded execution
time of aligners under the with-indel simulated dataset. Com-
paring the execution times between indel-free and with-indel
datasets in Table I, we see that the execution time of all
aligners increases in the presence of indels. This is expected
given that the indels trigger expensive approximate alignment



algorithms. Figure 12 shows the ROC curve generated by
wgsim eval. The figure plots the number of correct align-
ments against the number of incorrect alignments as mapping
quality decreases from left to right. Clearly, BWA-MEM, and
Bowtie2 provide the most accurate alignment for this dataset
followed by Snap and FSVA. While our goal is not to provide
a side-by-side comparison of aligners, these results clearly
indicate that these aligners occupy different points in the
performance–accuracy spectrum.
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Figure 7 shows the IPC values under the with-indel dataset.
Comparing Figures 2, 7, we see that the IPC value of
aligners under the with-indel dataset is higher than the indel-
free dataset.

Execution cycle breakdown. Figure 8 shows the break-
down of execution cycles for each aligner into retiring and
stalled for the with-indel datasets. Similar to the indel-free
dataset (Figure 3), we see that even in the best case, the
processor is still stalled in nearly 50% of cycles. However, the
processor retires more instructions when the dataset has indels
compared to a dataset without indels. This directly translates
into corresponding difference in IPC observed earlier between
the two datasets.

Stall cycle breakdown. Figure 9 shows the stall cycle
breakdown for each aligner under the with-indel dataset. We
can make two important observations. First, under Bowtie2,
BWA-MEM, and FSVA, the dominating source of stalls is
still the Back-end which accounts for 60% to 70% of all
stall cycles. However, comparing this with the indel-free case
(Figure 4), we see that the contribution of speculation stalls
increases in the presence of indels. Second, unlike the marginal
increase in speculation stalls under BWA-MEM, Bowtie2, and
FSVA, we see that speculation emerges as the dominating
source of stalls under Snap accounting for nearly 45% of stall
cycles. The Back-end contributes to 35% of stalls with Snap.

Figure 10 breaks down the Back-end stalls further into
memory or core bound for Bowtie2, BWA-MEM, and FSVA.
We see that while memory stalls still account for over 40%
of Back-end stalls, they are no longer the only dominating
source, as core stalls account for as much as 60% of stalls
under some aligners. This contrasts sharply with the indel-free
case (Figure 5), where memory stalls overshadow core stalls.

These results show that aligners choose different code paths
for dealing with indel-free and with-indel cases as expected.
Further, the code path executed under the with-indel dataset
stresses the microarchitecture in a different way compared to
the code path executed under the indel-free case.

Memory stalls analysis. Given that memory stalls still
account for atleast 40% across aligners, Figure 11 breaks
down memory stalls across various cache levels and DRAM
under the with-indel dataset. Comparing Figures 6, 11, we
see that under BWA-MEM and FSVA, long-latency DRAM
stalls continue to dominate and contribute to over 80% of all
memory stalls in both indel-free and with-indel datasets.

Insights. While processor utilization improves in the pres-
ence of indels across all aligners, the processor still spends
majority of its cycles in the stalled state. However, memory
stalls are no longer the majority contributor, as aligners also
suffer from speculation and core stalls.

C. GIAB dataset analysis

So far, we have presented our analysis based on the sim-
ulated datasets. The microarchitectural behavior of aligners
under the GIAB dataset is very similar to the simulated, with-
indel dataset.

Table I shows the single-threaded execution time of aligners
under the GIAB dataset. Figures 13, 14 show the IPC and
execution cycle breakdown. Comparing this with Figure 8, we
see similar trends between the with-indel simulated dataset
and the GIAB dataset as the processor is stalled in 50-70% of
execution cycles.

Figure 15 breaks down the stall cycles into various compo-
nents. Similar to the simulated dataset (Figure 8), Back-end
stalls account for 60–70% of stall cycles under Bowtie2, BWA-
MEM, and FSVA. Speculation stalls are the dominating source
of stall cycles under Snap.

Among aligners bottlenecked on Back-end stalls, Figure 16
shows that memory stalls are the dominating factor. Figure 17
shows that long-latency DRAM stalls are the main contributors
for memory stalls.

V. PER-STAGE ANALYSIS

The analysis presented so far answers some questions–how
do aligners utilize the processor? what causes processors to
be stalled? But, it also raises other questions–why does the
presence of indels change the microarchitectural behavior? To
answer this question, we need to perform a stage-by-stage
analysis of sequence alignment.

All aligners we have considered in this study work by
considering one read at a time. Each aligner processes each
read using three distinct steps. In the first stage, seeds are
extracted from each read and used to lookup the index to
retrieve candidate locations. The second stage is the filtration
stage where heuristics and theoretical lower bounds are used
to reduce the number of candidate locations that must be
examined. The third stage is the extension stage where the
entire read is aligned with each candidate location to identify
the best match. Once a read has been processed by all the
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three stages, the aligner writes the alignment information to
the output file and moves to the next read.

The analysis results we have presented so far are from an
inter-stage analysis that spans across all stages. In this section,
we present intra-stage analysis where we explore processor
utilization within each stage to identify which stages account
for stall cycles so that we can answer the aforementioned
question. In order to perform the intra-stage analysis, we
modified FSVA so that data is processed in a stage-at-a-time
fashion. We chose FSVA as it was the fastest aligner in our
study and has a simpler code base due to its focus on single-
threaded performance.

In our modified FSVA, which we henceforth refer to as
staged-FSVA, all reads are first broken down into seeds and a
hashtable lookup is performed to identify candidate locations.
All such locations are saved in intermediate data structures
together with metadata to keep track of the mapping between
locations and reads. Once all reads are processed by the
first stage, the output from the first stage is passed to the
second stage. In this stage, the candidate locations are sorted
and filtered using the seed-and-vote filtration approach used
by FSVA [17]. The output of this stage are two candidate
locations that are the two most voted locations for each read.
Once these location pairs are identified for all reads, staged-
FSVA proceeds to the third stage where Smith-Waterman
alignment is used to perform approximate alignment.

By using a stage-at-a-time execution approach, staged-
FSVA makes it possible for us to accurately measure and
profile each stage independently.

A. IPC and execution cycle breakdown

Table II shows a breakdown of execution time of each
stage of staged-FSVA under the with-indel simulated dataset.
As expected, the Smith-Waterman extension stage dominates
overall execution time. Figure 18 shows the IPC values for
each phase of staged-FSVA. While the filtration and extension
stages have IPC values of 2.5 and 2.9, the seeding and
hashtable lookup stage has only an IPC value of 0.5. This
highlights that the main bottleneck leading to low IPC count,
and hence poor processor utilization, is the first stage.

Stage Time (secs)
Seeding and lookup 14
Filtration and voting 11

Extension 35
Misc. 22

TABLE II: Execution time in seconds of the three main
alignment stages and rest (loading reference, I/O, writing out
SAM file, etcetera) of FSVA

Figure 19 shows the breakdown of execution cycles per
stage for staged-FSVA. These results mirror the IPC values
in Figure 18. In the first stage, the processor spends 87% of
execution cycles in the stalled state, while retiring instructions
only in 13% of cycles. In the second and third stages, this
trend is reversed, as the processor spends 63% to 72% of
cycles retiring instructions.
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Fig. 20: Per-phase stall cycle breakdown
for with-indel dataset
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Fig. 21: Per-phase Back-end stall
breakdown for with-indel dataset
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Fig. 22: Per-phase memory stall
breakdown for with-indel dataset

B. Stall cycle breakdown
Figure 20 shows the breakdown of stall cycles for each

stage. Clearly, there is a dramatic difference between stages. In
the seeding and lookup stage, Back-end stalls account for 90%
of stall cycles. Figure 21 shows the breakdown of Back-end
stalls and as can be seen, memory stalls contribute to over 90%
of the Back-end stalls in the seeding stage. Figure 22 shows the
memory stall breakdown. Clearly, long-latency DRAM access
dominate this category and account for 93% of all memory
stalls in the seeding stage.

During this first stage of alignment, seeds of length 31 bp
are extracted from each read, hashed, and used to probe the
hashtable to determine coordinates in the reference. As each
seed potentially hashes to a completely random value in a 4GB
range, there is little spatial locality in this workload. Thus,
hashtable lookups do not benefit from processor caches, the
corresponding memory load instructions result in long-latency
DRAM accesses. As instructions that follow these memory
loads are dependent on the load, the pipeline is stalled and
the processor idles waiting for data to arrive from memory.

Unlike the seeding stage, the filtration stage is not entirely
bottlenecked on the backend. During filtration, Front-end,
speculation, and Back-end stalls contribute equally to stall
cycles as shown in Figure 21. FSVA uses a seed-and-vote-
based filtration scheme where all coordinates gathered are
used to vote for candidate locations where the read must be
aligned. This voting is accomplished by sorting the coordinates
determined in the seeding stage, eliminating duplicates and
low-frequency locations, and identifying the top two locations

with most votes. The branching logic in the sorting algorithm
results in speculation stalls. Mispredicted branches add delay
to the Front-End as it has to fetch operations from corrected
path, resulting in Front-end stalls. The Back-end stall break-
down shown in Figure 21 shows that core stalls are the major
(71%) contributor to Back-end stalls. Figure 22 shows that
the remaining 29% contribution from memory stalls is due
to L1 cache accesses and not due to DRAM access. Thus,
computation rather than memory access is the bottleneck in
the filtration stage.

The extension stages is similar to the filtration stage mi-
croarchitecturally. As we already mentioned, the processor
is stalled in only 30% of cycles (Figure 19). As shown in
Figure 20, Back-end stalls account for 40% of execution
cycles while Front-end and speculation account evenly for the
other 60%. While Back-end stalls are relatively higher in the
extension stage compared to the filtration stage, these stalls
are once again due to core stalls, which contribute to nearly
90% of Back-end stalls, rather than memory stalls as shown
in Figure 21. During the extension stage, FSVA uses the Smith
Waterman dynamic programming algorithm for aligning reads
to the reference. As the amount of data that the algorithm
operates on fits easily in the processor cache, there are very
few data misses. However, the complex control flow and
branching logic in the dynamic programming algorithm creates
speculation and core stalls.

Insights summary. There is a clear dichotomy between
various stages of sequence alignment with respect to mi-
croarchitectural utilization. The seeding stage exhibits very



low processor utilization with memory stalls in the Back-end
contributing to majority of processor stall cycles. The filtration
and extension stage, in contrast, have much better utilization,
and are bottlenecked on Front-end speculation stalls and Back-
end core stalls.

VI. IMPLICATIONS

In this section, we will discuss the implications of our
findings on the design of next-generation of sequence aligners.
We will consider three dimensions, namely, performance,
scalability, and energy efficiency.

A. Performance implications

Even though modern sequence aligners are able to map
reads to reference at a very high throughput, our analysis
reveals that they still substantially underutilize the processor.
Irrespective of the aligner used, the processor remains stalled
over 50% of time suggesting that there is room for further
improvement. Our analysis also showed that different stages
of sequence alignment behave differently with respect to pro-
cessor utilization. The seeding stage has the worst utilization
of all stages as memory stalls caused by hashtable lookups
dominate execution cycles. The filtration and extension stages,
in contrast, utilize the processor better and do not experience
such memory stalls.

Given this dichotomy between stages, it is clear that the
two stages should be optimized differently. Given that the
filtration and extension stages are bottlenecked on resource
conflicts (core stalls), using “beefier” processors with more
execution units, or using software techniques like vectorization
to feed more data to existing units, should both assist in
improving performance of these two stages. However, given
that the seeding stage is bottlenecked on memory stalls, simply
using faster processors will only result in an increase in stall
cycles instead of improved performance. The solution is to
use latency-hiding techniques for masking the overhead of
memory accesses. Thus, techniques like software prefetching,
simultaneous multithreading, can be explored further to ensure
that the processor continues to retire instructions correspond-
ing to one read while waiting for data to arrive from memory
for another read.

B. Scalability implications

Modern sequencing technologies produce millions of reads
in a single run. Given that each read is independent of other
reads, scaling sequence alignment is an embarrassingly parallel
problem as each read can be assigned to a different processing
thread. Given that modern servers are equipped with multicore
processors, state-of-the-art aligners have started exploiting the
thread-level parallelism of these processors to scale alignment.
However, given that a single processor is stalled 50% of
cycles, and given that various stages of alignment differ in
their usage of processor resources, such an approach of using
homogeneous multiprocessing where processors are identical
to one another will only aggravate underutilization.

A promising alternative is to consider the use of heteroge-
neous parallelism using accelerators like Xeon Phi or GPG-
PUs. However, although GPGPUs provide massive thread-
level parallelism with thousands of CUDA cores, research
has shown that current GPGPU-based aligners provide only
around 2–3× improvement compared to CPU-based align-
ers [19], [21]. Unlike CPUs which excel at task parallelism,
GPGPUs excel at data parallelism. Sequence alignment, how-
ever, lends itself naturally to task parallelism rather than
data parallelism due to the complex branching logic used
in dynamic programming-based extension algorithms. Thus,
current GPGPU-based aligners that attempt to execute the
extension stage on GPGPUs suffer from scalability limitations
due to warp divergence caused by branching logic.

Our analysis suggests a natural division between CPUs
and GPGPUs. CPUs are underutilized substantially during the
seeding phase due to long-latency data misses. GPGPUs, in
contrast, are capable of hiding long-latency accesses using
hardware-assisted multithreading. Thus, GPGPUs are a natural
fit for the seeding phase of sequence alignment. Similarly,
filtration phase of sequence alignment uses sorting, duplicate
removal, and candidate selection. As these operations are data
parallel, they also likely to benefit by execution on GPGPUs.
However, given that the extension stage uses complex branch-
ing logic, and given that CPU utilization is already high during
this stage, it might be better to schedule it on CPUs instead
of GPGPUs. Thus, further research is necessary to understand
the pros and cons of such a design as opposed to a CPU-only
or GPU-only aligner.

C. Energy efficiency implications

With the advent of cloud computing, it has become in-
creasingly more important for data analytics platforms to be
energy proportional [3], meaning that they consume power
proportional to the amount of work performed. Any program
that results in the processor stalling for a substantial portion
of time adversely impacts energy proportionality as the power
consumed by the processor is not used for performing useful
work. Given that the processor is stalled for over 50% of the
execution cycles under sequence aligners, we believe that there
is much work to be done in improving the energy efficiency
of these tools.

One promising research direction would be to use the
dichotomy between stages to implement sequence alignment
on heterogeneous big-LITTLE processor architectures like
ARM. As processors are equipped with both “beefy” cores
and “wimpy” cores, a sequence aligner that uses the latter
for the first stage and former for the latter two stages would
consume much less power than one built for contemporary
server-grade processors.

VII. CONCLUSION

Sequence alignment is the first stage of genomic data
analysis and a very well-studied problem. Decades of research
on scalable, high-performance approximate string matching
algorithms have led to the development of fast sequence



aligners that can map thousands of reads per second. However,
there is no work that analyzes the efficiency of sequence
aligners with respect to processor utilization.

In this study, we presented the first microarchitectural anal-
ysis of four state-of-the-art aligners. Our analysis on simulated
datasets as well GIAB data revealed that all aligners result in
substantial underutilization as the processor remains stalled
for 50%-70% of execution cycles. We identified Back-end
memory stalls and speculation stalls as leading sources of
inefficiency. To understand the source of these stalls, we also
presented a stage-by-stage analysis which mapped memory
stalls to the seeding stage and speculation stalls to the filtration
and extension stages. This microarchitectural study shows an
in-depth view of processor usage for one of the many steps
in genomic data analysis pipeline and opens up new oppor-
tunities for extending this analysis to other phases as well.
Given the growing popularity of heterogeneous parallelism,
such microarchitectural studies will play an important role in
determining the ideal processor type for each phase of the
genomic data analysis pipeline.
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