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Policies for DTN Applications of Different Traffic

Classes
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Abstract—Delay/Disruption Tolerant Networks target environments suffering from the instability or lack of end-to-end paths.
Store-carry-and forward principle aims to sustain data sessions, and data replication to increase the probability of on-time delivery.
However, these techniques require efficient scheduling and buffer management, to comply with limited resources availability (i.e.,
communication duration, storage). Multiple existing schemes aim to improve, or even optimize the resources usage. Nevertheless, their
majority considers equally important application sessions. The few proposals considering different traffic classes, fail to provide real
QoS guarantees. In this paper, we formulate the problem of maximizing the performance, subject to distinct QoS constraints
(requirements) for each application class. We consider requirements related to delivery probability and delay. Then, we propose a
distributed algorithm which: (i) guarantees satisfaction of the individual constraints, when this is feasible given the available resources,
and (ii) allocates any remaining resources optimally, to maximize the desired performance metric. We first consider homogeneous
mobility, and then extend our analysis to heterogeneous contact rates and sparse contact graphs, that better correspond to real life
mobility. Simulation results, based on synthetic and real mobility scenarios, support our theoretical claims and show that our policy
outperforms other existing schemes (i.e., ORWAR [1] and CoSSD [2]).

Index Terms—Delay/Disruption Tolerant Networks, Scheduling policy, Buffer Management policy, QoS provision.
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1 INTRODUCTION

Delay and Disruption Tolerant Networking (DTN) aims
to provide communication capabilities for a wide range of
challenged environments, where there is a difficulty in es-
tablishing end-to-end paths. Such networking environments
may be subject to connectivity disruptions due to sparse
network topologies, terrain obstacles, nodes mobility or re-
source constraints (bandwidth per contact, storage, energy).
In this context, the DTN community [3] has promoted the
store-carry-and-forward routing paradigm: instead of drop-
ping an end-to-end session (as TCP for example would do),
nodes can store data content (their own, or their neighbors)
persistently, and forward it to other nodes or the destination,
when a communication opportunity appears.

In DTNs, end-to-end control feedback might be absent
due to long delays and highly dynamic network topologies.
As a result, discovering valid routes to content destinations
is a challenging task which has dominated the research
efforts for years. In this context, if we consider resource-
unconstrained environments, data replication (e.g. [4], [5])
can increase the performance significantly both in terms of
delivery ratio (i.e., data received/data sent) and delivery de-
lay (i.e., time needed to reach the destination). However, the
lack of constraints is rather unrealistic for most DTN settings
(e.g. Energy/Buffer limited wireless sensor networks [6],
vehicular networks with limited contact durations and/or
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buffer limited [7], military DTNs [8]). As a result, dissemi-
nating multiple replicas per message in a DTN network can
increase dramatically the overall traffic load comparing to
the available resources.

To this end, a lot of multiple copy routing protocols
incorporate distributed scheduling and buffer management
policies, in order to determine which data should be repli-
cated during a meeting of limited duration with another
node and which data should be dropped during a buffer
congestion event [9], [10], [11]. Such policies aim to optimize
scheduling and dropping decisions, by keeping track of
important message parameters (e.g., number of replicas, re-
maining Time-to-Live (TTL)) and using them to estimate the
probability of encountering the destination. Nevertheless,
these schemes assume all end-to-end sessions (and, thus,
messages) to be of equal importance.

This is generally not true. In many envisioned scenarios,
network nodes might be running multiple applications in
parallel. In this context, ensuring successful data delivery
and/or minimizing the delivery delay may be more impor-
tant for one DTN application than for another. Consider
the example of a military operation where we have two
applications launched concurrently at the DTN nodes: one
reporting position information of friendly forces periodi-
cally and another one generating mission debriefings less
frequently. We can consider that the delivery delay require-
ment for the first one is lower than the second one, since,
after some time, a reported position may be stale. On the
contrary, ensuring that a single mission debriefing message
is delivered successfully may be more important than losing
some (out of many) position updates. It is thus reasonable
to assume that different messages might have different QoS
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requirements and resource allocation decisions should take
these into account.

Based on the bundle protocol [12], there is provision for
three different QoS classes: Expedited (high priority), Nor-
mal (medium priority) and Bulk (low priority) by the DTN
community [3]. More recently there has been an extension to
support more priority levels within the Expedited class [13].
While such QoS classes provide a static characterization of
different classes of messages, prioritization decisions among
bundles belonging to different classes is an open issue. If we
simply prioritize messages based on their QoS class, then
applications belonging to lower classes would “starve” (i.e.,
they would always be the last to be scheduled and the first
to get dropped), if resources are limited (which is most often
the case).

A number of recent proposals attempts to address priori-
tization in a more elaborate manner. In the ORWAR protocol
[1], Spray-and-Wait is used for routing [5], but a higher
number of copies is assigned to bundles of higher QoS
classes. Additionally, when it comes to dropping decisions,
the higher QoS classes are always prioritized (dropped last)
over the lower ones (assuming bundles of fixed size). Soares
et al. [14] propose different queue sizes, proportional to each
QoS class’s priority. Dropping decisions of each queue are
then independent of the others. In terms of scheduling, they
propose that the contact window during a communication
opportunity can be shared among different classes, again
proportionally to their nominal priority (e.g. 60 % of time
for expedited class, 30% for Normal and 10% for Bulk).
However, there is no described mechanism on determining
the dropping or scheduling sequence among bundles of the
same queue.

All the aforementioned policies apply prioritization be-
tween QoS classes essentially by distributing the available
resources (e.g. number of copies per class, available contact
window, available buffer space per class), proportionally to
the importance of each QoS class. However, this distribution
is based on applying fixed thresholds. This raises a number of
concerns. First, it is not clear how these thresholds could
be tuned based on the environment in hand. Second, fixed
thresholds cannot keep up with a dynamically changing
DTN environment. Finally, depending on the availability
of resources and threshold parameters, the behavior of the
policy might be qualitatively different. E.g., if resources are
not sufficient to satisfy all constraints, such policies still
distribute resources proportionally, and might not satisfy
the requirement of any class, not even the highest priority
one. On the other hand, if resources are plenty, applying
fixed thresholds might keep favoring higher classes un-
necessarily (since the marginal utility of extra resources
becomes small), and restrain lower classes from achieving
a high performance.

To this end, the key contributions of this paper are
to: (i) formally define the problem of optimizing network-wide
performance, either in terms of delivery delay minimization or
delivery rate maximization, while satisfying individual class QoS
constraints (ii) derive a distributed algorithm for this problem
that adapts to the available resources (iii) provide a framework to
address the challenges of applying this algorithm in real life mo-
bility conditions. We show that the optimal algorithm for the
prioritization problem ends up adding appropriate penalty

functions to the optimal utilities of the unconstrained prob-
lem of [15]. In this aspect, the work closest to ours is [2],
that also extends the optimal utilities derived in [15], to
support QoS based prioritization. However, their approach
is a heuristic additive term which can neither ensure that
QoS requirements are met nor that the resulting allocation
of resources leads to optimal network-wide performance, as
we will show.

A prerequisite for the fine operation of our algorithm
is to be able to make accurate predictions regarding the
delivery performance, on a per message basis. In this
context, capturing the inter-contact time statistics between
individual pairs of nodes adequately can increase accuracy.
In a previous work [16], also focusing on optimal QoS
prioritization, we consider that the pair-wise inter-contact
times are independent from each other and can be mod-
eled assuming homogeneous mobility scenarios: i.e., scenarios
where all pairs of nodes meet with approximately the same
rate. In the current work, we remove this assumption and
make the necessary adaptations in our scheme to account for
heterogeneous mobility scenarios, which correspond better to
real life mobility conditions [17], [18], [19]. As we show
through extensive simulations with real traces in section
4.2, the benefits in the performance of our scheme are
significant.

We also propose an alternative approach to our basic
scheme, accounting for scenarios where the message related
information which is required for our policy (e.g. per mes-
sage number of copies that exist in the network at a given
time) cannot be available. This approach is based on Spray-
and-Wait (SnW), instead of epidemic routing. The results of
the comparison of this approach with our basic scheme are
presented in section 4.2.3.

The rest of the document is organized as follows. In sec-
tion 2 we present our QoS policy. We start from the descrip-
tion of our system model (section 2.1) and then formulate
both QoS prioritization problems, as constrained optimiza-
tion problems (sections 2.2-2.3). We propose a distributed
resource allocation policy that is proven to be equivalent to
a distributed gradient-ascent implementation of the solution
(section 2.4). In sections 3.1-3.3, we derive some closed-form
approximations to account for delivery predictions for real
heterogeneous mobility scenarios. In section 4, we evaluate
the performance of our scheme by comparing the obtained
results: (a) based on different approximations (b) with the
ones from other prioritization schemes. Finally, in section 5,
we conclude the paper.

2 THE QOS PRIORITIZATION POLICY

2.1 Model description

In the following, we provide some details on our system
model regarding our assumptions on mobility, data traffic,
application QoS requirements and resource constraints, as
well as our general framework with respect to data routing,
scheduling and buffer management. In table 1 the notation
that is used throughout the paper is summarized.

Mobility Model The impact of mobility on the deliv-
ery performance, and consequently the performance of our
scheme, is determined by the distribution of the pairwise
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residual inter-contact times: time elapsed until the next contact
of a pair of nodes starting from a random observation moment.
Indeed, in our framework, residual inter-contact times can
model the distribution of time durations between a moment
when scheduling or dropping decisions have to be made
and the moment of the next meeting with a bundle’s desti-
nation. In this context, we assume that there are N mobile
nodes in the network and each node encounters other nodes
according to a random “contact” process. Initially, we model
the residual inter-contact times of this process through the
exponential distribution with a common rate parameter λ̃.
It has been shown that a number of mobility models and
real traces correspond to contact models with approximately
exponential tails [20], [21], [22]. Assuming that the nodes
meet each other with approximately the same rate, λ̃ can
describe the inter-contact patterns between different pairs
accurately enough (homogeneous pairwise contacts). In
section 3, we relax this condition to be more compliant with
real life mobility scenarios.

Data traffic Model We consider each DTN node run-
ning C distinct applications concurrently. Each application
generates autonomous data units that we will call bundles
from now on, to be compliant with the DTN Architecture
[23] and the associated bundle protocol [12]. The bundle
generation is modeled through the Poisson distribution with
mean rate λg per node per application class. We denote
as Lk(t) the number of distinct bundles of class k that
exist in the network at time t. All application bundles have
the same fixed size, which cannot be fragmented. Each
individual bundle has a unique destination (unicast) and
each transmission is considered successful, if it reaches its
destination before expiry (i.e., within its Time-to-Live (TTL)
interval).

Application QoS model We associate each distinct level
of QoS performance (we will call it priority class from
now on) with a specific value of the Bundle Delivery Ratio
(BDR) (i.e., Bundles received on time/Bundles sent) or Bundle
Delivery Delay (i.e., elapsed time since bundle’s creation, until
one of its copies is delivered to the destination). From a bun-
dle’s perspective, this requirement can be expressed as its
minimum accepted delivery probability P (k)

QoS , or maximum

accepted delivery delay D
(k)
QoS , respectively. We note that

each bundle can belong to a single QoS class.
Resource Constraints Our prioritization policy applies

to DTN settings with limited buffer availability (b slots
per node) and contact windows, comparing to the network
traffic load. This load originates from bundle generations
at the DTN nodes and bundle replications during node
meetings. We model the amount of data which can be
replicated within a contact window through the Poisson
distribution with a rate parameter rd.

Routing model, scheduling and buffer management
framework We consider epidemic routing. When two nodes
encounter, they aim to exchange their non-common bun-
dles. If the contact opportunity is limited comparing to
the amount of non-common bundles, the scheduling policy
determines which bundles will be replicated. If the amount
of replicated bundles leads to buffer congestion(s) at the
recipient node, the buffer management policy determines
which bundles will be dropped.

Notation Description
N Number of nodes in the network

Ti
Elapsed time up to current time since the cre-
ation of bundle i

n
(k)
i (Ti)

Number of copies of bundle i belonging to QoS
class k after time Ti since the creation of the
bundle

m
(k)
i (Ti)

Number of nodes who have “seen” bundle i
belonging to QoS class k after time Ti since the
creation of the bundle

R
(k)
i

Remaining Time To Live (TTL) for bundle i
belonging to QoS class k

b Number of buffer slots per node
C Number of distinct QoS classes
Lk(t) Number of distinct bundles of class k at time t

P
(k)
QoS

Minimum required probability of delivery for
bundles of class k

D
(k)
QoS

Maximum accepted delivery delay for bundles
of class k

P
(k)
i (Ti)

Probability of delivery for bundle i belonging
to class k after time Ti since the creation of the
bundle

E
[
D

(k)
i (Ti)

] Expected delivery delay for bundle i belonging
to class k after time Ti since the creation of the
bundle.

λ̃
Mean inter-meeting rate parameter (exponential
distribution)

λij Meeting rate between node i and node j
σ2
λ Variance of meeting rates
ps Network’s density coefficient

rd
Rate of exchanged data per contact (poisson
distribution)

λg
Bundle generation rate per node per application
class (poisson distribution)

TABLE 1: Notation

2.2 QoS optimization for average delivery rate

As we have already highlighted, a good prioritization
policy should: first, make sure that the QoS requirements of
different application classes are satisfied; second, it should
allocate the remaining resources, if any, in order to maximize
the overall performance of the network. In the current
section, we first formulate the prioritization problem for
average Bundle Delivery Rate (BDR) maximization, given
a set of different application QoS requirements that have to
be satisfied. Then, we show analytically how we can obtain
a distributed solution to this problem. Our formulation is
one of a constrained optimization problem in the following
form:

max
n
(k)
i

f(n) = max
n
(k)
i

C∑
k=1

Lk(t)∑
i(k)=1

(1− exp(−λ̃n(k)i ·R
(k)
i )), (1)

gk(n
(k)
i ) = (1− exp(−λ̃n(k)i ·R

(k)
i )) ≥ P (k)

QoS ∀i ∈ class k,
(2)

Nb−
C∑
k=1

Lk(t)∑
i=1

n
(k)
i ≥ 0 ∀i ∈ class k, (3)

N − n(k)i ≥ 0 ∀i ∈ class k, (4)

n
(k)
i ≥ 1 ∀i ∈ class k, (5)

Assuming message i of class k has R(k)
i remaining time-

to-live, then if we maintain n(k)i copies of it, the probability



4

of it being delivered is the probability of one of its n(k)i

copies to encounter the destination before its TTL expires
and it is given by (1−exp(−λn(k)i R

(k)
i )), from fundamental

properties of the exponential distribution. Hence, the objec-
tive function (1) is the sum of the delivery probabilities of
each individual bundle over all bundles and all classes. The
objective function, denoted as f(n), is concave on n(k)i .

The first constraint (2) expresses the per bundle delivery
probability requirement (P (k)

QoS), depending on which ap-
plication class (k) it belongs to. This constraint is concave
as well. Constraint (3) is linear and states that the total
number of bundle copies should not exceed the total buffer
space in the network (Nb)1. Constraint (4) ensures that each
bundle should not have more copies than the total number
of nodes (i.e., no node is allowed to have more than one
copy). Finally, constraint (5) is there to make sure that a
bundle should have at least one copy throughout its lifetime
(i.e., the source of a bundle is not allowed to drop it before
it expires).

Given that n(k)i ∈ N, the above problem is an integer
non-linear optimization problem, hard to solve optimally.
However, we relax this condition, assuming n

(k)
i ∈ R+.

The continuous relaxation of the problem leads to a convex
optimization problem; it can be solved analytically using the
method of Lagrange multipliers and KKT conditions [24,
chapter 5], to derive a vector of n∗ values that is feasible,
i.e., ensures that the delivery probability of each message
is at least as high as its class requirement, and optimal, i.e.,
f(n∗) ≥ f(n) for all feasible n2.

However, the above solution requires a centralized im-
plementation of bundle copies, which is not possible, since
there is no central entity in DTNs that could control the state
of all messages, instantaneously. Instead, each node only has
access to its own buffer content. During a contact between
two nodes, dropping a bundle from one buffer or copying a
bundle to the node encountered will affect a single variable
in the allocation vector n. Hence, two nodes encountering
each other can compare the bundles they have in their
own buffers and make decisions independently of other
nodes. The goal of these decisions should be to modify the
allocation vector n towards increasing the objective f(n).
If we ignore the set of QoS constraints (Eq. (2)), such a
distributed solution has been derived in [15], based on an
enhanced bundle delivery probability expression, P (k)

i (Ti),
used within the objective function (as opposed to Eq. (1)):

(
1− m

(k)
i (Ti)

N − 1

)
· (1− exp(−λ̃n(k)i (Ti)R

(k)
i )) +

m
(k)
i (Ti)

N − 1
,

(6)
There, the objective is differentiated to get the “marginal

gain of an extra copy for each message” (referred to as

1. We note that this constraint is valid if all the nodes in the network
have equal buffer size b and IID mobility, as assumed in the basic
framework. In the case of different capacities per node, a different con-
straint would be needed for each node, in the theoretical formulation.
In practice however, due to the distributed nature of our problems, each
node by definition will satisfy its own individual capacity even if it’s
different from other nodes.

2. In practice, one could round these values to the closest integer to
get an approximately optimal solution.

“message utility”):

Ui(DR) =

(
1− m

(k)
i (Ti)

N − 1

)
· λ̃R(k)

i exp(−λ̃n(k)i (Ti)R
(k)
i ),

(7)
Note that, m(k)

i (Ti) term in Eq. (6) and (7) stands for
the number of nodes who have “seen” bundle i (i.e., they
have obtained one copy of it at some point, regardless of
whether they still have it or not). This term accounts for the
probability of one of these m

(k)
i (Ti) nodes being actually

the destination of bundle i. If a node ranks all bundles
in its buffer according to this utility, and uses it to make
drop or scheduling decisions, then during each contact, the
improvement in f(n) will be maximal among all feasible
directions (a variable n(k)i cannot change during a contact, if
message i is not present in the buffer of any of the two meet-
ing nodes); given the concavity of the objective, this method
is shown to correspond to a distributed implementation of
a gradient ascent algorithm [15].

Nevertheless, the above solution considers a single pri-
ority class only and does not provide any QoS guarantees.
Our aim is to modify this distributed algorithm, in order to
be able to first satisfy the set of constraints in Eq.(2), i.e.,
to find a “feasible” solution to the problem, and then to
maximize the performance among all feasible allocations. In
the context of constrained optimization problems, gradient
ascent algorithms can be modified to include appropriate
penalty functions for each violated constraint [25, chap-
ter 23.5]. Thus, an enhanced objective function would have
the following form:

φ(n∗) = f(n∗)−
C∑
k=1

Lk(t)∑
i=1

ψk(P
(k)
QoS − P

(k)
i (Ti)), (8)

where ψk(·) is a penalty function related to the constraint
for bundles of class k. We would like ψk(x) = 0, when x <
0, i.e, no penalty when the predicted delivery probability
P

(k)
i (Ti) for message i is large enough. However, we would

like ψk(x) to take very large values when the constraint is
not satisfied (x ≥ 0), imposing a large negative penalty on
φ(n).

Based on this observation, we can maximize the above
objective and solve the constrained version of the problem
in a distributed manner, by using the following per message
utilities:

U
(k)
i (DR) = Ui(DR) ·

[
1 + max{0, ck(P (k)

QoS − P
(k)
i (Ti))}

]
(9)

In other words, the utility of a message is equal to its
unconstrained utility Ui of Eq.(7), if the predicted delivery
probability is above the class requirement. Otherwise, this
utility is incremented by a term proportional to the delivery
probability deficit. ck is a very large constant which ensures
that the utilities of bundles that do not satisfy their con-
straint will always be higher than the utilities of bundles
that do satisfy them (to ensure convergence to feasible
solutions only).

As a result of these utilities, the bundles which are
below their desired QoS threshold are always prioritized
(i.e., dropped last, scheduled first) over the ones which are
above. Furthermore, note that these utilities correspond to
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differentiating the extended objective of Eq.(8) with ψk(·)
chosen as an appropriately normalized quadratic penalty
function. Hence, ranking and handling (e.g. dropping) bun-
dles according to these utilities at every contact, guarantees:
(i) eventual convergence to a feasible solution (i.e, satisfying
the constraints), if there is one, and (ii) allocating any “ex-
tra” resources optimally, i.e., among all feasible allocations
delimited by the constraints3.

2.3 QoS optimization for average delivery delay
In the following section, we turn our attention to the QoS
prioritization problem with respect to minimizing the av-
erage delivery delay. Thus, we proceed with the following
formulation:

min
n
(k)
i

f(n) = min
n
(k)
i

C∑
k=1

Lk(t)∑
i(k)=1

E[D
(k)
i (Ti)], (10)

gk(n
(k)
i ) =E[D

(k)
i (Ti)] ≤ D(k)

QoS ,

∀i ∈ class k : Ti < D
(k)
QoS

(11)

Similarly to section 2.2, the objective function (Eq. (10)) is
expressed as the sum of the expected delivery delays over
all bundles and classes. Based on the model of exponential
inter-contact times, the expected time until one of the n(k)i

copies encounters the destination, considering also the m(k)
i

nodes who have “seen” bundle i, can be approximated as:

E[D
(k)
i (Ti)] =

(
1− m

(k)
i (Ti)

N − 1

)
·
(
Ti +

1

n
(k)
i (Ti)λ̃

)
, (12)

where D
(k)
i (Ti) stands for the delivery delay of bundle i

belonging to class k and Ti is the already elapsed time
since bundle’s i creation. Based on Eq. (12), the new ob-
jective function is obviously convex on n(k)i . The constraint
of Eq. (11) expresses the desired average delivery delay
requirement (D(k)

QoS ≤ TTL) for bundles of class k and

it is also convex on n
(k)
i . It is important to stress here

that the constraint refers only to bundles whose elapsed
time since creation is less than their threshold of delivery
delay requirement (i.e., for a bundle i belonging to class k:
Ti < D

(k)
QoS). This makes sense, if we consider that it is point-

less to give higher priority to bundles which have already
missed their delay target. Furthermore, such a policy would
lead to wasting resources against other bundles which still
have the possibility of being delivered before D

(k)
QoS . The

rest of the constraints are the same with the delivery rate
optimization problem (i.e., Eq. (3) - (5)).

As for the case of the delivery rate metric, the uncon-
strained message utility function (i.e., without considering
the QoS constraints) for the delivery delay is derived in [15],
as:

Ui(DD) =

(
1− m

(k)
i (Ti)

N − 1

)
1(

n
(k)
i (Ti)

)2
· λ̃
, (13)

3. We note here that the above penalty function is not unique in
achieving these goals. Other functions penalizing low predicted de-
livery probabilities sharply could suffice to implement a distributed
ascent algorithm moving to feasible and better solutions. However, the
priority given between constraints when the feasible domain is empty
depends on the penalty function choice, as we shall see later.

where the number of nodes who have seen the bundle,
m

(k)
i (Ti), is also considered. Following the same approach

with the one described in section 2.2, appropriate penalty
functions can be introduced in an enhanced objective func-
tion φ(n∗), to penalize each violated constraint:

φ(n∗) = f(n∗) +
C∑
k=1

Lk(t)∑
i=1

ci(Ti)ψk(E[D
(k)
i (Ti)]−D(k)

QoS),

(14)
where ci(Ti) = 1 for a bundle i belonging to class k, when
Ti < D

(k)
QoS and zero otherwise, so as to determine whether

bundle’s i constraint violations are still considered or not.
The penalty function ψk(x), should take very large values
when the expected delivery delay is higher than the class’s
threshold (i.e., x > 0) and zero otherwise (i.e., when x ≤ 0).

According to the aforementioned rule, the distributed
solution of this constrained optimization problem can be
achieved by using the following form of per bundle utilities,
U

(k)
i (DD):

Ui(DD) ·
[
1 + ci(Ti) ·max{0, ck(E[D

(k)
i (Ti)]−D(k)

QoS)}
]
.

(15)
Similarly to Eq. (9), ck is a constant large enough to

ensure prioritization of bundles that do not satisfy their
constraint over bundles that do satisfy it.

2.4 Implementation of the scheduling and dropping
policies
In the previous section, we have described a distributed QoS
algorithm for the two constrained optimization problems in
hand, and have provided theoretical support for its conver-
gence to the desired solutions (i.e., optimal either in terms
of delivery rate or delivery delay metric, conditionally on
satisfying the requirements). Here, we show a simple im-
plementation of this algorithm, and discuss some additional
practical issues. Similarly to the previous discussion, the
framework of the suggested implementation is the same for
both optimization problems and the differentiation between
them lies mainly on the distinct objective functions and the
respective utilities and QoS thresholds.

We propose that the bundles residing inside a node’s
buffer (queue) can be separated in two dynamic groups,
as shown in Fig. 1: the first group contains all bundles
whose predicted delivery probability/delay hasn’t reached
the desired QoS threshold; the second group consists of
bundles which have reached their threshold. In the case of
delivery delay optimization, the second group includes also
the messages whose elapsed time since creation is higher
than the desired threshold (i.e., for i ∈ class k, Ti ≥ D

(k)
QoS

). The bundles of the first group are always prioritized over
the bundles of the second group. Ranking among bundles
of the same group is based on the classic utility Ui. It is
easy to see that the desired QoS message utility of Eq.(9)
or (15) is monotonically decreasing from left to right in the
queue of Fig. 1, and thus dropping bundles from the right
and scheduling from the left of this queue implements the
desired policy.

The above policy works fine if the network parame-
ters (e.g. packet generation rate, available storage in the
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Fig. 1: Bundle scheduling and dropping sequence

network, inter-meeting rates) permit an algorithm to reach
the desired delivery ratios, or average delivery delays, for
all priority classes. However, in some scenarios this might
not be possible, i.e., the feasible domain of the defined
optimization problem is empty. It is somewhat subjective
what a desired policy behavior should be, in that case. While
one could apply a heuristic ranking in that case, or accept
the (infeasible) solution the above policy converges to, in
a number of cases we can modify the policy to provably
achieve a desired outcome. We believe that an interesting
class of cases is when it is more important to try to satisfy
the constraints of the higher QoS classes first.

One could achieve this by choosing a different constant
ck in Eq.(9) or (15), for bundles of different QoS classes (k).
Specifically, choosing c1 � c2 � ... � cC � 0 (with 1
corresponding to the class with the highest nominal priority,
and C the class with the lowest one) ensures a “smooth”
fallback, if no feasible solution exists 4. Specifically, if there
is a feasible solution, the algorithm converges to it (as
explained earlier). But if there is none, it converges to a
solution where: for some j < C, QoS inequality constraints
for all classes from 1 to j are satisfied with equality, class
j + 1 is not satisfied, and all classes larger than j + 1 (if
any) get no more resources than a single copy per bundle
(based on Eq. (5))5. It is important to stress here that this
algorithm does not need to know in advance whether a feasible
solution exists. By construction, it navigates the infeasible
domain so as to either enter the feasible domain eventually,
or stop at an infeasible solution that is the most desirable
one, according to the previous discussion.

The above algorithm can again be mapped into our
simple buffer classification system by defining subgroups
inside the first priority group (Fig. 2): each subgroup is
composed of bundles of a particular priority class which
are below their threshold (and, in case of delivery delay
optimization, haven’t missed their QoS target, D(k)

QoS , yet).
In this context, a subgroup attributed to a higher QoS class
will always have higher priority than a subgroup of a lower
QoS class.

At this point we should highlight an important aspect
with respect to the implementation of our policy for the

4. Note that, in practice, it is not necessary to define a QoS threshold
for the Cth class. Regardless of whether such a constraint is used or
not, the corresponding bundles get additional resources, only if they are
competing against higher class bundles which are predicted to satisfy
their constraints. To this end, it doesn’t make any difference if the Cth
class bundles are classified at the Cth subgroup of the first priority
group, or at the second priority group

5. While this starvation of low priority classes is undesirable, when
enough resources are available to satisfy all classes, it can be argued
that it’s a desirable feature in emergency cases with very limited
resources. Furthermore, other policies could be defined and achieved
by manipulating ck differently.

ADD optimization problem. So far, we have considered
that the bundles can be kept in the node buffers even
after their required delivery delay threshold has passed,
but in this case they are downgraded to best effort (i.e.,
second priority group), in order to minimize the storage
resources consumption for the sake of newer messages. Such
an implementation choice can be meaningful in use case
scenarios such as military applications, where the nodes
can disseminate operational pictures or position updates.
Then, although the faster these messages get delivered the
more substantial they are, they might still be beneficial if
they get delivered later (e.g., to discover a nodes trajectory).
However, our policy can easily be adapted to an alternative
implementation, where all messages get dropped after the
elapse of the desired delivery delay limit. In this context,
we consider both implementation options in our policy’s
performance evaluation (section 4.1) and examine the re-
spective performance trade-offs.

Fig. 2: An approach for bundle scheduling and dropping sequence for
infeasible domains

As a final remark, the above algorithm requires reliable
estimates for the number of copies and seen nodes, (i.e.,
n
(k)
i (Ti), m

(k)
i (Ti)). This is not a trivial problem in a DTN

setting. However, it is a problem that has already been
addressed efficiently in [15], in the context of the “HBSD”
policy. The authors there propose a distributed protocol
to obtain estimates of these quantities, and show, using
extensive simulations, that the communication overhead
is reasonable and that the policy based on the estimate
performs closely to one assuming instant knowledge.

Accordingly, the number of nodes, N , could also be
reliably estimated based on either a similar protocol, as
suggested in [15], or other distributed algorithms with
reasonable overhead (e.g., [26]). In any case, the selected
scheme running on top of our policy should ensure that: (i)
it converges fast enough to a valid estimation on the current
number of nodes, (ii) it ensures that all these nodes share
a more or less common estimation. Alternatively, a simpler
and faster approach could be used, which would be well
aligned to our policy. According to our metric estimation
and utility expressions (e.g., Eq (7), (12), (13)), we in fact

need to estimate the ratios m
(k)
i (Ti)
N−1 , instead of estimating

the absolute value of N. Such estimates could be acquired
in a distributed manner, having each node keep track of
the percentage of encountered nodes that have “seen” a
specific bundle out of all the nodes it has encountered.
Assuming homogeneous contact patterns, this percentage
would quickly converge to its mean value (due to the law of
large numbers). Some additional modifications for the case
of heterogeneous mobility could be further considered (e.g.
exchanging this percentage estimates between nodes, and
averaging appropriately, e.g. methods proposed in [26]).
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In the remainder of this text we assume that some sort of
reliable estimation algorithm for the aforementioned quan-
tities is implemented, and focus on the problem of reliably
estimating the QoS constraints. Finally, in section 4.2.3 we
briefly discuss an alternative “one-shot” approach, if no
such reliable estimates can be obtained while the algorithm
is running.

3 CONSIDERING HETEROGENEOUS CONTACT NET-
WORKS

As highlighted earlier, a large majority of real mobility sce-
narios are characterized by heterogeneous pairwise contacts
(i.e., some node pairs encounter more or less frequently
than others). Furthermore, some pairs of nodes may never
encounter each other. If we treat such scenarios as if all the
pairwise inter-meeting times follow the same distribution
(with rate λ̃), we might be lead to significant prediction
errors that will degrade the performance of our scheme. Our
analysis so far has been based on the assumption of homo-
geneous pairwise contacts. In the current section, we remove
this assumption and make the necessary adaptations in our
scheme, in order to extend its suitability for heterogeneous
contact networks.

3.1 QoS optimization of delivery rate for heteroge-
neous contact networks
We still consider that the inter-meeting times between in-
dividual pairs are exponentially distributed; however, we
now consider that the meeting rate of each individual pair
is a random variable λ drawn from a probability distribution
f(λ), which is a characteristic of a mobility trace. Based on
this, the probability of a bundle with ni(Ti) copies not being
delivered, assuming that it has not been delivered yet, can
be expressed as follows:

P (bundle i will not be delivered/ has not been delivered yet) =

Eλ

[ ni(Ti)∏
j=1

exp(−λj ·Ri)
]
=

ni(Ti)∏
j=1

∫ ∞
0

exp(−λjRi) · f(λj)dλj

(16)
Assuming that we do not know the exact distribution f(λ),
it is not possible to calculate the above probability. However,
we can approximate it, based on the knowledge of the first
moments of λ.

Our approach is similar to the one described in [27].
Specifically, if we consider Eq. (16) for ni(Ti) = 1, we
observe that it is the expectation of a function of a random
variable λ (i.e., g(λ) = exp(−λRi)), and thus it can be
approximated through the Delta method [28], [29]. Based
on the Delta method, the expectation of a function of a
random variable (i.e., E[g(λ)] = E[exp(−λRi)]) can be
approximated through the Taylor expansion of the function
and the first moments of the variable.

Thus, we first express g(λ) as a Taylor series expansion
of its first h terms, centered at λ̃:

g(λ) =
h∑
l=0

g(l)(λ̃)

l!
· (λ− λ̃)l (17)

We approximate g(λ) by considering the first three terms of
the Taylor series (i.e., h = 2), corresponding to the first two
moments of the random variable λ. We consider that the
knowledge of these two moments is a realistic assumption.
Then, the approximation on E[g(λ)] can be derived after
taking the expectation of Eq. (17), as follows:

E[g(λ)] =
2∑
l=0

g(l)(λ̃)

l!
· E[(λ− λ̃)l]

= exp(−λ̃ ·Ri) ·
(
1 +

R2
iV ar(λ)

2

) (18)

where V ar(λ) is the variance of the meeting rates. The
above expression is the probability of one of bundle i’s
copies not being delivered, given that it hasn’t been deliv-
ered yet. Notice that, if we consider the first two instead
of three terms of the Taylor series (i.e., h=1), the expression
becomes the one used in section 2.2. To this end, we will
refer from now on to the current approximation as second
order and to the one of section 2.2 as first order, with respect
to the utilized moments of variable λ. Note also that, given
the convexity of g(.) and, as the first order approximation
is a pure function of λ̃, it is actually a lower bound on
the expected probability of non-delivery, based on Jensen’s
inequality (i.e., g(λ̃) ≤ E[g(λ)]). Intuitively, this means
that the first order approximation is expected to give the
most “optimistic” predictions, with respect to the delivery
probability.

We can now express the unconditional probability of
one of bundle’s i, belonging to class k, n(k)i (Ti) copies to
be delivered, based on the second order approximation, as
follows:

Eλ[P
(k)
i (Ti)] = 1−

(
1− m

(k)
i (Ti)

N − 1

)
E[g(λ)]n

(k)
i (Ti) =

1−
(
1− m

(k)
i (Ti)

N − 1

)
exp

(
− λ̃n(k)i (Ti)R

(k)
i

)
·

·
[
1 +

(
R

(k)
i

)2
· V ar(λ)
2

]n(k)
i (Ti)

(19)
It can be shown that the above function is concave on n(k)i .
This allows us to redefine the objective (Eq.( 1)) and the
constraint (Eq. (2)) functions of the optimization problem in
section 2.2 by substituting P (k)

i (Ti) with Eλ[P
(k)
i (Ti)] of Eq.

(19). We can also derive the new unconstrained utilities, as
follows:

Ui(DR) =
∂Eλ[P

(k)
i (Ti)]

∂n
(k)
i

=

(
1− m

(k)
i (Ti)

N − 1

)
· exp

(
− λ̃n(k)i (Ti)R

(k)
i

)
·

·
(
λ̃R

(k)
i − lnA

)
·An

(k)
i (Ti)

(20)

where A = 1 +

(
R

(k)
i

)2
·V ar(λ)
2 . Having the new expressions

of delivery probability (Eq.( 19)) and per bundle utility (Eq.
(20)) in hand, we can apply them in our QoS prioritization
algorithm, in the same manner we did for the homogeneous
case (Eq. (9)).
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3.2 QoS optimization of delivery delay for heteroge-
neous contact networks
Considering the probability distribution of the pair-
wise meeting rates, f(λ), the expected delivery delay,
Eλ
[
D

(k)
i (Ti)

]
, for heterogeneous contact networks can be

expressed as follows:(
1− m

(k)
i (Ti)

N − 1

)
·
(
Ti +

∫ ∞
0

1

n
(k)
i (Ti)λj

· f(λj)dλj
)
(21)

Similarly to the case of delivery probability, the above
expression can be approximated through the Taylor series
expansion and the first moments of λ, as follows:(

1− m
(k)
i (Ti)

N − 1

)
·
(
Ti +

1

n
(k)
i (Ti)λ̃

[
1 +

V ar(λ)

λ̃2

])
(22)

Then, the corresponding unconstrained utilities are de-
rived by differentiating with respect to n(k)i :

Ui(DD) = −
∂Eλ

[
D

(k)
i (Ti)

]
∂n

(k)
i

=

(
1− m

(k)
i (Ti)

N − 1

)
· 1(
n
(k)
i (Ti)

)2
· λ̃

[
1 +

V ar(λ)

λ̃2

] (23)

Thus, we can now substitute expressions 12 and 13 with 22
and 23 respectively, in the optimization problem defined in
section 2.3.

3.3 Bounds on the expected performance
Although second order approximations are supposed to
predict accurately enough the performance in terms of the
metric of interest, it would be useful to know and exploit
some bounds with respect to the expected performance. As
already described in section 3.1, first order approximations
can give us best case estimates (i.e., upper bounds for
delivery probability, lower bounds for delivery delay). In
the framework of our policy, though, it would be much more
useful to derive bounds describing the worst case estimates.
Indeed, such estimates would indicate that more resources
are required to capture a given QoS threshold, thus ensuring
the QoS constraints with higher consistency. Starting from
convex functions of the random variable λ for both opti-
mization problems, we can use the upper bounds derived
in [30], based on the Edmundson-Madansky inequality [31]
and the first h moments of λ:

EMh(λ) =
h∑
i=0

(
h

i

)
E[(λ− a)i(d− λ)h−i]

(d− a)h
f

(
a+

i

h
(d− a)

)
(24)

where α and d correspond to the minimum and maximum
values of λ, respectively, and f(.) is our convex function.
It generally holds that E[f(λ)] ≤ EMh(λ) ≤ EMh−1(λ).
Similarly to the case of the second order approximation,
we consider the second order bound (i.e., h=2). Thus, by
setting either f = exp(−λRi), or f = 1

λ , we can derive
upper bounds on a single copy’s expected probability of
non-delivery, EMDR

2 (λ), or delivery delay, EMDD
2 (λ), re-

spectively. These bounds are based only on the knowledge

of the first two moments of λ and its min and max values.
Then, the lower and upper bounds for the expected delivery
probability and delay respectively, can be expressed as:

Eλ[P
(k)
i (Ti)] ≥ 1−

(
1− m

(k)
i (Ti)

N − 1

)
· [EMDR

2 (λ)]n
(k)
i (Ti)

(25)

Eλ

[
D

(k)
i (Ti)

]
≤
(
1− m

(k)
i (Ti)

N − 1

)
·
(
Ti +

EMDD
2 (λ)

n
(k)
i (Ti)

)
(26)

3.4 Considering sparse contact networks

Based on the previous analysis, our policy requires estimates
on the first and second moments of the pairwise meeting
rates, λ̃ and σ2

λ, which characterize each mobility trace.
However, for extracting those estimates, only the pairs of
nodes < i, j > that encounter at least once during the
duration of the trace are considered.

Nonetheless, in real traces there is usually a large por-
tion of node pairs that never encounter (i.e., λi,j = 0).
In [27] it is shown that, for such sparse contact networks
(corresponding to sparse contact graphs), the contact rate
moments should be altered as follows:

λ̃ps = ps · λ̃
σ2
λps

= ps · (σ2
λ + λ̃2 · (1− ps))

(27)

where ps is a density characteristic of each trace, which can
be approximated as the ratio of the total number of pairs
that encounter throughout the trace, over the total number
of distinct pairs that exist in the network

(N
2

)
.

3.5 Discussion

Throughout our analysis, we have considered QoS require-
ments applied with respect to the “expected” values for
the metric of interest. However, our framework could be
appropriately adopted to support more generalized QoS re-
quirements. Thus, an alternative policy can consider tighter
constraints to ensure the requirements satisfaction. For ex-
ample, one could impose that the delivery delay per bundle
should be lower than its class’s threshold, with a probability
larger than 90 %, as opposed to the two implementation
options discussed in section 2.4 which consider the expected
delay. Of course there is a tradeoff there. The more conser-
vative a policy is, the fewer the instances when it is actually
missing the threshold, but the more the cases when it is
wasting too many resources, just to ensure constraints sat-
isfaction. The generalization of QoS requirements is beyond
the scope of this paper, but, at the end, the design of a policy
boils down to which is the primal goal: meet the constraints
at all costs, or optimize the performance, while meeting the
constraints, on average, and not wasting resources.

Another interesting problem, which we are planning to
address in future work, could consider both traffic sensitive
to delivery ratio and traffic sensitive to delay, concurrently.
This would imply imposing both the respective types of
constraints in our system. The solution to such a problem
would be of practical use in many scenarios where applica-
tions having either type of requirements are launched at the
same time.
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4 PERFORMANCE EVALUATION

For the evaluation of our policy we examine the results
obtained with both synthetic and real mobility traces. For
the synthetic traces, we create an homogeneous contact
network. The aim is to show how our policy complies
with the intended optimal behavior, discussed analytically
in section 2.2. To this end, we compare the performance of
our policy with the approximate expected one, based on the
resources availability, as well as with two other prioritiza-
tion policies that we described in section 1, namely: ORWAR
[1] and CoSSD [2]. Furthermore, we examine the impact
of: generating different loads per traffic class, varying the
traffic generation rate during the simulation scenario, as
well as the impact of the number of network nodes. In
terms of the ADD optimization problem, we evaluate and
compare the performance of our policy based on the two
different implementation options discussed in section 2.4.
For the evaluation with real traces, we compare the results
obtained with our policy when its implementation is based
on the first, second order and upper/lower bound approxi-
mations. Then, we compare our scheme to the two afore-
mentioned policies and an alternative approach that we
propose based on using SnW, instead of Epidemic routing.
In the following, we split the discussion on synthetic and
real mobility traces. The configuration parameters for the
three mobility scenarios are summarized in table 2 and will
be discussed in the respective sections.

Synthetic Cabspot. Infocom
Number of Nodes (N) 50, 100, 150 536 98

Total simulation time
(sec.)

BDR opt.:
550,
ADD opt.:
1.5 · 104

2.64 · 104 2.01 · 104

Mean pairwise meeting
rate (λ̃, (sec−1))

BDR opt.:
10−2,
ADD opt.:
2 · 10−3

6.9 ·10−5 3.8 ·10−4

Pairwise meeting rates
variance (σ2

λ, sec−2) 0 2.5 ·10−9 1.3 ·10−7

Density coefficient (ps) 100% 47% 68%
Bundle TTL (BDR
Optimization problem,
(sec.))

30 6000 3000

Bundle TTL (ADD Op-
timization problem, Ex-
ped. class (sec.))

500, 3000 15000 4000

Bundle TTL (ADD
Optimization problem,
Norm. class (sec.))

3000 15000 4000

Mean data exchange
rate of contact window
rd (% of unconstrained
rate)

0.5 0.5 0.5

Classes loads ratio
(Expedited over other
classes)

1, 0.25 1 1

Expedited desired QoS
(BDR opt.) 0.77 0.74 0.77

Normal desired QoS
(BDR opt.) 0.55 N/A N/A

Expedited desired QoS
(ADD opt, sec.) 500 3900 560

TABLE 2: Simulation Parameters (N/A stands for no applicable QoS
requirements in the corresponding 2 class scenarios)

4.1 Homogeneous synthetic traces

4.1.1 Evaluation Setup

Initially, we consider three priority classes, namely Expe-
dited (highest), Normal and Bulk (lowest) (based on the ter-
minology of the bundle protocol specification [12], regard-
ing different QoS classes). The BDR results are presented for
various values of total available buffer space in the network,
aiming to test our policy, as we vary the amount of buffer
congestions. The bundles are created following a Poisson
distribution with a fixed, or varying rate parameter per traf-
fic class, throughout the simulations duration. The schedul-
ing constraints are applied in our simulation framework as
follows. The number of bundles which can be exchanged in
every meeting between two nodes is drawn from a Poisson
distribution with rate parameter rd. In our scenarios, we set
rd equal to 50% of the measured average number of bundle
exchanges per meeting, from the corresponding scenarios
where we have the same mobility patterns and buffer con-
straints but where no scheduling restrictions are applied.
The actual number of exchanged bundles per contact is then
drawn from a Poisson distribution with rate parameter rd.
In this way, we restrict the number of bundles that can be
replicated from one node to the other. Finally, as highlighted
in section 2.1, the nodes meet each other with a common rate
λ̃ based on the exponential distribution.

4.1.2 Results

Based on our previous descriptions, the intended behavior
of our policy is to prioritize bundles in the order of their
QoS class importance, when the available resources do
not permit to reach the desired performance for all three
classes (infeasible domain). In other words, under these
circumstances, the first goal is to satisfy the Expedited class,
then the Normal class and then the Bulk class. As a result,
we expect from our policy to first reserve enough buffer
resources to reach the performance target of the Expedited
class and leave the remaining resources to the other two
classes. This behavior is shown in Fig. 3 - 5, where we
also compare our policy with the other two. To evaluate
the performance of the three policies, each set of obtained
BDR results, can be compared to the approximate desired
performance (Table 3), when the buffer resources are dis-
tributed based on this logic. Obtaining such an approximate
performance is straightforward, if we consider the expected
number of copies per bundle required to reach a desired
delivery probability and then map this to the total amount
of required buffer space per QoS class. Thus, when the
buffer availability is too low (i.e., 200 total spaces), corre-
sponding to the infeasible domain, we expect not to have
enough resources to satisfy even the Expedited class (i.e.,
BDR = 0.77). The other two classes should not get more
resources, on average, than the ones corresponding to the
minimum of a single copy per bundle throughout its lifetime
(based on the constraint of Eq. (5)). This can be verified from
Fig. 3 where the obtained BDR results per class comply with
the expected ones. As the buffer availability increases (i.e.,
300 total spaces), the first to converge to the required QoS is
the Expedited class. Then, as we move towards the feasible
domain (i.e., 300 - 400 total spaces), the other two classes
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Fig. 3: QoS Policy vs ORWAR Fig. 4: QoS Policy vs CoSSD Fig. 5: Overall policies comparison

gradually improve their performance, with the Normal class
achieving steadily higher performance than the bulk one.

Buffer
spaces BDR Exped. BDR Normal BDR Bulk

200 0.54-0.59 0.25 0.25
300 0.71 - 0.77 0.33 - 0.36 0.25
400 0.71 - 0.77 0.54 - 0.59 0.41 - 0.45
500 0.71 - 0.77 0.54 - 0.59 0.54 - 0.59
600 0.71 - 0.77 0.71 - 0.77 0.71 - 0.77
700 0.74 - 0.80 0.74 - 0.80 0.74 - 0.80
800 0.77 - 0.83 0.77 - 0.83 0.77 - 0.83

TABLE 3: Approximate desired performance when varying the total
available buffer space

Inside the feasible domain (i.e., 400 - 800 total spaces) the
additional resources are used to improve the performance
of the lower classes and, as a result, optimize the overall
network performance. This is depicted in the region 400 -
600 spaces of the figure, where the Normal and the Bulk
class gradually converge to the performance of the Expe-
dited class. Beyond that point, all of the classes achieve the
same performance and exploit the complementary buffer
spaces in order to further increase their BDR. We should
highlight the fact that, overall, it is not until the point where
the two lower classes reach the performance threshold of
the Expedited class (600 - 700 total spaces), that the BDR of
the latter is increased, which is the intended behavior that
leads to optimal resources distribution.

Regarding the comparison with ORWAR, the protocol
description [1] does not specify a precise way for selecting
the spraying factors per class. Since, for our simulations, all
bundles are of the same length, the scheduling/dropping
policy is based purely on each bundle’s QoS class, by al-
ways favoring the higher class bundles over the lower class
ones. Thus, to compare ORWAR with our policy, we select
the replication factors per class, based on the restrictions
imposed by the total buffer availability in the network and
by keeping a fixed ratio among replication factors attributed
to distinct QoS classes. Particularly, given a total number
of available resources, nall, half of the resources

⌈
nall

2

⌉
are

distributed to Expedited bundles and, among the remaining
nrem =

⌊
nall

2

⌋
,
⌈
2nrem

3

⌉
are distributed to normal class

bundles and
⌊
nrem

3

⌋
to bulk class bundles 6.

Based on Fig. 3, it is clear that our scheme outperforms
ORWAR. For low buffer values (i.e., < 500 buffer spaces),

6. We note that in the copies assignment rule, we also impose a
minimum of 1 copy per bundle, for all QoS classes.

all three classes achieve higher BDR with our scheme. OR-
WAR fails to capture even the required performance of the
Expedited class, even when the resources are adequate to
do so (table 3). For higher buffer availabilities, ORWAR’s
expedited class reaches to higher BDR than the required
threshold. However, this is not desired based on the pre-
vious discussion, as it comes at the cost of the other two
classes, whose performance is much lower than it could be.
The superiority of our scheme is also captured by the overall
network performance (Fig. 5, considering all classes), which
is up to 20% higher with our policy, comparing to ORWAR7.

As described in section 1, the derived utility function in
CoSSD is based on a heuristic approach to extend [15] for
the support of multiple QoS classes. Particularly, it has the
following form:

(C − ki) + α ·
(
1− m

(ki)
i (Ti)

N − 1

)
· λRiexp(−λn(ki)i (Ti)Ri),

(28)
where ki is the QoS class of bundle i (lower values for higher
classes), C is the total number of distinct QoS classes and
α is a control parameter. To compare the performance of
CoSSD with our policy, we set α equal to the value for which
CoSSD achieves the intended per class BDR, on average
(based on table 3), for total buffer size equal to 400 (border
of the feasible region).

In Fig. 4, the results of the comparison with CoSSD
policy are shown. Inside the infeasible region (< 400)
the lower classes, as well as the overall performance (Fig.
5), are improved comparing to our policy. However, this
comes at the cost of significant performance degradation
for the Expedited class, which does not manage to reach
its required performance threshold for the first values of
Buffer sizes (< 400). This is obviously contrary to the
intended behavior, which dictates that our primal goal is
to reach the desired performance for the expedited class.
The relative behavior between the two compared policies
changes inside the feasible region (> 400). The Expedited
class’s BDR for CoSSD increases beyond its desired QoS
threshold, without the lower classes having reached this
threshold. As highlighted for the comparison with ORWAR,
this is opposite to the optimal behavior. The consequence is

7. We should note that other static rules for assigning copies per QoS
class could have also been used. However, we claim that any such static
rule would suffer from similar shortcomings, comparing to our policy
and the required performance.
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Fig. 6: QoS policy with different CLRs vs
Single class policy

Fig. 7: QoS Policy: Stable vs varying traffic
generation rate

Fig. 8: QoS policy with different number of
nodes and same generated data traffic load

that our policy outperforms CoSSD both in terms of lower
classes (Fig. 4), as well as overall network performance (Fig.
5) in this buffer availability region.

In Fig. 6 the performance of our policy is evaluated,
as we modify the relative class load ratio (CLR) among
two traffic classes and compare it also to the optimal QoS
unconstrained scheme of Krifa et al. [15] (single class pol-
icy). Thus, for our policy we consider the cases where, the
poisson traffic generation rate of the Expedited class is one
quarter of the Normal class’s rate (CLR = 0.25) and the
scenario where the two traffic rates are equal (CLR = 1.0).
We note that the total generated traffic is equal among the
three different scenarios. Thus, in the CLR = 0.25 case
we have less amount of Expedited class bundles competing
with each other on equal terms for being replicated, or avoid
getting dropped, comparing to the CLR = 1.00 case. As a
result, it should be expected that the Expedited class can
satisfy its required QoS performance with fewer resources
and leave more remaining resources for the improvement of
the Normal class. The performance impact is verified in Fig.
6 where the Expedited class achieves better performance for
200 − 400 buffer spaces and, accordingly, the Normal class
performs better in the region 200− 500.

Regarding the comparison with the single class policy, it
is evident that our scheme achieves better performance than
the single class policy in terms of the Expedited class, but
worse in terms of the Normal class in the region 200− 500.
This indicates how our policy “sacrifises” the Normal class’s
performance to the required degree, so that the Expedited
class can satisfy its QoS requirement. The benefit of using
our policy in multi-class scenarios is further justified, by
comparing with the CLR = 0.25 use case. Thus, our policy
significantly outperforms the single class policy with respect
to the Expedited class (max. by ≈ 25%), at the cost of
the Normal class’s performance. However, the difference
between our policy’s Normal class and the single class
policy is not large (max. ≈ 10%) and it keeps decreasing,
as the buffer space availability in the network increases, up
to the point where the resources availability allow for the
two classes convergence (buffer space = 500).

In Fig. 7 we evaluate the performance of our policy when
we vary the total traffic generation rate throughout the sim-
ulation and compare this scenario to the one of stable traffic
generation rate. Particularly, we divide the simulation time
in 4 intervals, among which the total rate changes. In each

interval, this rate is equal to either 1.5 ·λg , or 0.5 ·λg , where
λg corresponds to the classic static rate scenario. Thus the
average rate throughout the whole simulation remains equal
to λg . We note that for both cases we set the CLR = 0.25
and that the BDR per class performance is extracted at the
end of the simulation. It can be observed that, within the
infeasible region of the variable rate scenario (buffer space
< 400), the performance of the Expedited class is lower than
the respective one in the stable rate scenario. This should
be expected, if we consider that the BDR performance is
averaged over: intervals where the resources are not enough
to satisfy the respective QoS requirement given the heavy
amount of traffic load (i.e., 1.5 · λg); intervals where the
resources are enough to satisfy the QoS requirement given
the lighter amount of traffic(i.e., 0.5 · λg), but our policy
restricts the Expedited class performance from going above
its threshold when the Normal class performance is lower.
Accordingly, the Normal class’s performance seems to im-
prove even though the Expedited class has not reached its
QoS requirement (on average), but this happens because of
the intervals where the traffic load is low and our policy
allows for this improvement. However, when we switch our
interest to the feasible domain (i.e., buffer availability ≥ 500
allowing for the satisfaction of the Expedited class even
with 1.5 · λg), it is shown that the Expedited class always
reaches its required QoS threshold at the cost of the Normal
class’s performance (about 10% lower than in the stable rate
scenario), highlighting the required policy behavior.

In Fig. 8 the performance of our policy is evaluated as
we vary the number of nodes, and consequently the total
available buffer space, but generate the same amount of
total traffic in the network. Intuitively, we should expect
that, as the number of nodes is decreased, the amount
of congestions in the network increases significantly and,
consequently, the overall performance is decreased as well.
This is verified in Fig. 8 where it can be observed that the
best per class performance is achieved with N=150 and the
worst with N=50. However, despite the quantitative perfor-
mance differences in the three scenarios, we notice that the
intended qualitative behavior, is always captured. Thus the
expedited class maintains its performance even with fewer
nodes, at least when the total storage capacity leads to a
feasible solution of the optimization problem. Of course this
comes at the cost of the normal class’s performance.

In Fig. 9 - 10 we focus on the performance of our
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Fig. 11: Infocom: BDR Optimization, Approx-
imations comparison

Fig. 12: Infocom: Copies over time, Approxi-
mations comparison (Buff= 10)

Fig. 13: Infocom: BDR Optimization, ADD
metric Approximations comparison

Fig. 14: Cabspotting: BDR Optimization, Ap-
proximations comparison

Fig. 15: Cabspotting: Copies over time, Ap-
proximations comparison (Buff= 20)

Fig. 16: Cabspotting: BDR Optimization,
ADD metric Approximations comparison

Fig. 9: ADD optimization perfor-
mance with two different imple-
mentations of the QoS policy

Fig. 10: BDR metric performance
with two different implementa-
tions of the QoS policy

policy with respect to the ADD optimization problem. We
consider two application classes and provide the results
out of the two implementation options that were discussed
in sections 2.4 and 3.5: (i) the expedited bundles get dropped
when their required QoS delivery requirement is exceeded (i.e.,
TTLexped = QoSexped = 500sec.), (ii) the expedited bundles
TTL (3000 sec.) is larger than their QoS threshold. We note that,
for both scenarios, we set the Normal class TTL equal to
3000 sec. For the former case, it is shown in Fig. 9 that the
Expedited class stabilizes its performance much below the
desired threshold, as the results are extracted from bundles
which were delivered before the QoS delivery threshold. For
the latter case, the Expedited class gets stabilized close to
the desired QoS threshold. For both cases, the Normal class
gradually improves its performance, as the buffer availabil-
ity in the network is increased and eventually converges to
the Expedited class’s performance, indicating the intended
performance of our policy. However, the Normal class’s
performance is significantly improved in the first implemen-
tation option comparing to the second one, both in terms of

ADD (Fig. 9) and BDR (Fig. 10). This occurs because, in this
case, the Normal class bundles find much more available
resources to use for replication, comparing to the second
option where they find less ones due to the competition
with the “longer living” Expedited bundles. Nevertheless,
the first implementation option also comes at the cost of
significantly lower BDR for the Expedited class than the
second option. This indicates the performance trade-offs
that should be considered, based on the application context
where our policy is applied.

4.2 Real traces

For the evaluation with real traces we consider: 1. The
Cabspotting trace which is based on tracking the movement
of 536 taxis in San Fransisco [32], 2. The Infocom trace [33]
originating from Bluetooth sightings of 98 nodes during 4
days in the Infocom 2006 conference.

4.2.1 Evaluation Setup

For both traces, we focus on time windows where the
total number of meetings per hour does not change sig-
nificantly. This time, we consider the competition among
two distinct QoS classes (i.e., expedited and normal class).
The performance is evaluated for both delivery rate and
delivery delay optimization problems, as we vary the buffer
spaces availability. As observed from the analysis of the
Cabspotting and Infocom traces, the respective networks are
not fully mixed (i.e., ps < 1, table 2), within the duration
of the time windows that we investigate. Based on this
observation, the mean and the variance of meeting rates for
each trace are extracted based on Eq. (27).
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4.2.2 Comparison among approximations

In Fig. 11 - 22, we evaluate the performance of our policy
when its implementation is based on the three different ap-
proximation approaches. In terms of the BDR optimization
problem (Fig. 11 and 14), it can be verified that all the
three approaches manage to achieve the intended optimal
performance, as for the case of the synthetic traces. Particu-
larly, for both traces, the Expedited class stabilizes its BDR
around the desired value (i.e., 0.77 for Infocom, 0.74 for
Cabspotting) and, as the buffer resources further increase,
the normal class steadily improves its performance up to
the point where the two curves converge. This behavior is
captured ideally in the case of the Cabspotting trace (Fig.
14). In the case of the Infocom trace (Fig. 11), it can be
noticed that, for low buffer availability, some of the Normal
class bundles start getting delivered without the Expedited
class having totally stabilized at its QoS threshold. This can
be justified by the source copy restriction that we impose
(Eq.(5)) even for Normal class bundles. Given the smaller
size of the network comparing to the Cabspotting trace, the
relative impact of a single copy on the delivery performance
is greater in the Infocom trace. Thus, this restriction in
combination with the limited resources availability, do not
permit the Expedited class BDR to perfectly converge to the
required value, before the Normal class starts increasing its
own BDR.

The fact that no difference is observed in the perfor-
mance of the three policies can be explained by inspecting
Fig. 12 and 15. There, the average number of copies per
bundle per class is drawn, throughout the bundle’s life-
time for some fixed amount of buffer availability. It can
be observed that, with the second order and lower bound
approximations, more copies are distributed to Expedited
class bundles at the beginning of their lifetime, as opposed
to the respective copies distribution with the first order
approximation. This comes as a result of the second order
and lower bound approximations making more “conserva-
tive” predictions, with respect to the bundle delivery prob-
abilities. Consequently, they indicate that more copies are
required to reach the desired Expedited class performance.
However, as described in section 2.2, the predictions are also
based on dynamically monitoring the percentage of “seen”

nodes
(m(k)

i (Ti)
(N−1) in Eq. (7)

)
. When this percentage is low,

with respect to the remaining TTL of the expedited class
bundles and the desired QoS threshold, our policy can com-
pensate the possible “over-optimistic” initial predictions,
by distributing more copies to them, as they approach at
the end of their lifetime. This behavior is more obvious in
the case of the first order approximation for the Infocom
trace (Fig. 12); It can be explained by the trace’s higher
heterogeneity with respect to pairwise contact rates, which
makes it harder to make accurate predictions based on the
first order approximation.

Although the delivery probability mispredictions of the
first order approximation can be compensated in the manner
we described, the same doesn’t occur when we examine the
ADD performance for the Expedited class (Fig. 13 and 16,
yet still in the context of the BDR optimization problem).
There, it is evident that the distribution of more copies at the
beginning of the bundles lifetime by the two more conserva-

tive approximations permits to decrease the average deliv-
ery delay, comparing to the first order approximation. Intu-
itively, this makes sense if we consider that, by distributing
more copies at the beginning of a bundle’s lifetime, it is more
likely that one of them will encounter the destination sooner.
Thus, the usefulness of the better approximations is evident
for the BDR optimization problem, as the results in terms
of the delay metric are improved, without compromising
something else. At this point, we should highlight that the
ADD performance is extracted from the delivered messages
only. This explains why, in some cases, the increase in buffer
space availability is accompanied by an increase, instead of
decrease, in the ADD performance. Particularly, when the
delivery ratios are lower, it is more likely that the fewer
messages that get delivered do so in relatively shorter time,
than when they are higher. This also explains analogous
behavior in the results of Fig. 17 and 20.

Let’s turn our discussion now to the evaluation with
respect to the actual ADD optimization problem (Fig. 17
- 22). For this set of results, we have selected the implemen-
tation option where a bundle’s required delivery delay (560
seconds for Infocom, 3900 seconds for Cabspotting trace)
is different from its TTL, which is actually much larger
(i.e., 4000 sec. for Infocom, 15000 sec. for Cabspotting) to
permit for delivery probability close to 100%. In Fig. 19
and 22, the BDR per class performance of the two traces is
depicted, for the three different approximation approaches.
Once again, the second order and upper bound-based im-
plementations of our algorithm distribute more copies to the
Expedited class bundles at the beginning of their lifetime
(Fig. 18 and 21)8. Contrary to the BDR performance of the
respective optimization problem though, this has a crucial
impact on the performance of our scheme. The two more
conservative approximations manage to capture the QoS
requirement of the Expedited class better, for all the range
of buffer values (and both traces), as opposed to the first
order approximation, whose mispredictions do not allow to
do so (Fig. 17 and 20). Of course, the distribution of more
copies to the Expedited class, leaves less resources to the
Normal class and, as a result, the latter’s performance is
better with the first order approximation than with the other
two, for a range of buffer values. However, once again we
verify the intended behavior of the algorithm: as the buffer
availability increases, the delivery delay of the normal class is
constantly decreasing with the conservative approximations, while
the Expedited class remains stable around its threshold.

Regarding the comparison between the second order
and (upper/lower) bound approximations, for both opti-
mization problems, the following can be observed. For the
Infocom trace, it is evident that the ADD of the Expedited
class with the upper bound is constantly below the one
with the second order approximation for all the evaluated
scenarios (Fig. 13 and 17). As explained in section 3.3, this
is foreseen, as the predictions with the bound approxima-
tions are expected to be more conservative than the ones
of the second order approximation (Fig. 12 and 18). For

8. We note that the steep decrease in the number of copies of the
expedited class for Ti > D

(k)
QoS is dictated by our algorithm which im-

poses that copies of bundles which have exceeded their QoS threshold
cannot be classified in the high priority group (section 2.3).
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Fig. 17: Infocom: ADD Optimization, Approx.
comparison

Fig. 18: Infocom: Copies over time, Approx.
comparison (Buff= 23)

Fig. 19: Infocom: ADD Optimization, BDR
metric Approximations comparison

Fig. 20: Cabspotting: ADD Optimization, Ap-
prox. comparison

Fig. 21: Cabspotting: Copies over time, Ap-
prox. comparison (Buff= 20)

Fig. 22: Cabspotting: ADD Optimization,
BDR metric Approximations comparison

the Cabspotting trace, though, the performance differences
between the second order and bound approximations are
smaller and, for the case of the delivery delay optimization
problem, the ADD with the second order approximation
is even slightly lower than the respective one with the
upper bound (Fig. 20). Although not expected, this can be
due to the distribution of meeting rates during the selected
time window of the trace, which leads to more optimistic
estimations of the delivery delay than the second order
approximation (Fig. 21).

4.2.3 Comparison with other policies
In the following, we compare the performance of our policy
with other policies. In Fig. 23, the per class performance of
our policy is compared to ORWAR and CoSSD, with respect
to BDR optimization. The configuration of the two other
policies has been done in the manner described in section
4.1.2. It is obvious that our policy outperforms ORWAR for
both classes. This of course has an impact on the overall
performance (Fig. 24), where our scheme achieves up to
20% higher results than ORWAR. Regarding the comparison
with CoSSD, similarly to the synthetic simulation results
(section 4.1.2), it is clear that CoSSD fails to capture the
intended per class (Fig. 23) and overall performance (Fig.
24). Our policy steadily outperforms it in terms of Expedited
class BDR, inside the infeasible domain (i.e., 4250-12800
buffer spaces), at the cost of the Normal class’s performance;
inside the feasible domain (i.e., ≥ 17000 buffer spaces) the
picture changes, with our scheme’s Normal class BDR ex-
ceeding the respective one with CoSSD, while the Expedited
class remains stable around the desired threshold. Notice
that, for both domains, the performance difference in terms
of Normal class BDR between the two policies is much

Fig. 23: QoS policy vs ORWAR
and CoSSD (Cabspotting)

Fig. 24: Overall policies BDR
comparison (Cabspotting)

larger than the respective difference in terms of the Expe-
dited class. This can be explained considering that, given
the same amount of additional resources (bundle copies),
the performance gain for bundles which are given a low
number of initial copies on average (i.e., Normal class) can
be much higher than the respective gain for bundles with
an already high number of copies (i.e., Expedited class).

In Fig. 24, the overall BDR performance of our scheme
is also compared to the optimal QoS unconstrained scheme
of Krifa et al. [15], which considers a single priority class.
It is evident that the unconstrained scheme achieves higher
performance than our policy. This makes sense since the
primal aim of our scheme is to satisfy the constraints of the
higher classes. Thus, when the resources are limited, this has
an impact on the overall network performance degradation
comparing to the unconstrained case. However, when the
resources are enough to allow the normal class to start
converging to the performance of the expedited class (i.e.,
≥ 15000 spaces), the overall performance of our scheme
also starts to converge to the one of the single class scheme.
This is another indicator of the optimal intended behavior
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Fig. 25: QoS Policy vs Opt. SnW
(BDR, Infocom)

Fig. 26: QoS Policy vs Opt. SnW
(Normalized ADD, Infocom)

of our policy.
In Fig. 25 - 26, the comparison of our policy with a more

“optimized” version of the ORWAR protocol is depicted.
Similarly to ORWAR, we use SnW and assign different
replication factors per QoS class, proportional to their im-
portance. However, this assignment is not done based on
a static rule, like the one we used for ORWAR. Instead,
it is done based on the logic specified in section 4.1.2.
Thus, resources permitting, nexp copies are always given to
Expedited class bundles, to ensure its QoS requirement. If
there exist remaining resources, 0 < nrem < nexp, after this
assignment, they consist the replication factor for Normal
class bundles. Finally, if nrem > nexp, both classes are given
equal initial number of copies, towards the target of overall
performance maximization. For the BDR optimization prob-
lem, similarly to ORWAR, the higher class bundles are given
absolute priority over the lower class ones. For the ADD
optimization problem, though, to prevent starvation of the
normal class, expedited class bundles are given absolute
priority only while it holds that Ti < D

(k)
QoS . For higher

Ti they get the same priority as normal class. Finally, for
both problems, bundles of the same class are prioritized in
descending order of their remaining TTL 9.

From Fig. 25, it is evident that the aforementioned ap-
proach performs worse than our basic policy. Contrary to
our scheme, it cannot dynamically adjust the number of
copies each bundle is getting in order to cope with possible
initial delivery probability mis-predictions. In practice, a
lower number of copies might be required on average to
reach the desired threshold, than the one indicated by our
prediction10. However, the subset of bundles which do not
get delivered contribute to the worse performance compar-
ing to our basic policy. As a result, the BDR of the Expedited
class is constantly below the required threshold and the
respective BDR of our basic policy (5% - 15%). Regarding
the performance of the Normal class, although it is below
our basic policy as well, its “starvation” is prevented for
increasing availability of resources (i.e.,> 1600 total spaces),
in a more efficient manner than with the previous configu-
ration of ORWAR (Fig. 23). This performance is indicative
of a more desired behavior with respect to our optimization
problem.

9. As it is shown in [15] this simple “drop oldest bundle” (or
“schedule youngest”) can be a good approximation of the optimal
unconstrained utilities, when the congestion regimes in the network
are low.

10. To determine the required number of copies, the delivery pre-
dictions based on the lower bound approximation were used (most
conservative approximation).

We turn our attention to the ADD optimization problem
now. Due to the large difference which was observed in
terms of BDR per QoS class (up to 23% higher Normal
class BDR with the basic policy), a direct comparison in
terms of delivered bundles ADD wouldn’t be fair. Thus, we
compared the two schemes with respect to a normalized
ADD metric, which considers the non-delivered bundles as
well. Particularly, for a BDR value x and an ADD value y
(of delivered bundles), the normalized ADD is computed as:
x · y + (1 − x) · TTL. Although the performance in terms
of the Expedited class is practically the same, it is obvious
that the basic QoS policy outperforms the other scheme in
terms of the Normal class and, thus, the overall network
performance.

Overall, we claim that the optimized SnW scheme can
consist a decent alternative to our QoS policy, considering
its reduced overhead comparing to the latter. Indeed this
“myopic” approach doesn’t require any statistics collection
for the prediction of ni and mi, as the QoS policy does.
Instead, the resources distribution is purely based on the
initial predictions, with respect to the required number of
copies per class. These predictions are dependent on the
knowledge of some network conditions information (i.e.,
mean pairwise meeting rate, meeting rates variance and
density coefficient), which consist the only implementa-
tion complexity of this scheme. Given this information,
the optimized SnW policy can better satisfy the intended
overall behavior comparing to ORWAR (static replication
factors per class without considering network conditions)
and CoSSD (heuristic approach without any specific perfor-
mance target).

5 CONCLUSIONS

In this work, we proposed a dynamic distributed prioritiza-
tion scheme with the aim of preventing starvation of lower
priority applications, while ensuring that the standards of
higher priority applications are met. As discussed in sec-
tions 2.2-2.3, our policy manages to maximize the overall
delivery ratio (thus, the average delivery rate), or minimize
the average delivery delay metrics, among feasible solutions
(i.e., solutions where the constraints of each QoS class are
met). Moreover, we suggested efficient extensions of our
policy, in order to be able to guarantee the intended per-
formance in real life mobility conditions, characterized by
heterogeneous and sparse contacts. Finally, we suggested
an alternative scheme based on SnW. Although performing
worse than our basic scheme, it can be appropriate for
cases where we need to balance the trade-off between ease
of use and high performance guarantees. We verified the
optimality of our approach through simulations based on
both synthetic and real mobility traces and we compared
it with other QoS proritization approaches, to validate its
superiority.
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