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Abstract—We consider the design of linear precoders for the
MISO Interfering Broadcast Channel (IBC) with partial Channel
State Information at the Transmitter (CSIT) in the form of
both channel estimates and channel covariance information. Most
of the results can also be transposed to the SIMO Interfering
Multiple Access Channel with linear receivers. We first point out
that in the case of reduced rank covariance matrices, there is
significant gain in sum rate by using LMMSE as opposed to
Least-Squares (LS) channel estimates. We also analyze various
beamforming designs exploiting partial CSIT. Then we go beyond
assuming the availability of covariance CSIT and propose varia-
tional Bayesian learning (VBL) techniques to acquire it assuming
TDD channel reciprocity. In particular a Space Alternating
version of Variational Estimation (SAVE) allows a well founded
alternative to AMP based techniques while being of similar
complexity. The SAVE techniques can also be applied to obtain
reduced complexity iterative techniques for determining the
transmit/receive signals or beamformers themselves.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless transmis-
sion. Base stations (BSs) disposing of multiple antennas are
able to serve multiple Mobile Terminals (MTs) simultaneously,
which is called Spatial Division Multiple Access (SDMA) or
Multi-User (MU) MIMO. However, MU systems have precise
requirements for Channel State Information at the Tx (CSIT)
which is more difficult to acquire than CSI at the Rx (CSIR).
Hence we focus here on the more challenging downlink (DL).

The recent development of Massive MIMO (MaMIMO) [1]
opens new possibilities for increased system capacity while at
the same time simplifying system design. We refer to [2] for
a further discussion of the state of the art, in which MIMO
Interference Alignment (IA) requires global MIMO channel
CSIT. Recent works focus on intercell exchange of only scalar
quantities, at fast fading rate, as also on two-stage approaches
in which the intercell interference gets zero-forced (ZF). Also,
massive MIMO in most works refers actually to MU MISO.
[3] proposes optimal beamformers (BFs) in the case of partial
CSIT in the massive MIMO limit.

Gaussian (Posterior) partial CSIT can optimally combine
channel estimate and channel covariance information. How-
ever, the posterior covariance computation requires matrix
inversion on the O(M3) which is computationally cumber-
some. The huge number of antennas M at the base station
and K, the number of users imposes a very high computa-
tional complexity on the massive MIMO systems. Computing
the precoding/detection matrices from the estimated channel

also require matrix inversions which consists of O(K3) and
O(MK2) operations. This is the main motivation behind
searching for low complexity solutions with close to optimal
performance. [4] proposes truncated polynomial expansion
(PE) for reducing precoder complexity. [5] introduces a non-
parametric algorithm called NOPE that doesn’t require any
knowledge of the signal and noise powers. The authors also
prove that in the large system limit, NOPE achieves the same
performance as that of the Linear Minimum Mean Squared
Error (LMMSE) equalizer. [6] showed that the design of all
variants of linear precoder/combiners for the downlink (DL)
and uplink (UL) can be posed as the solution of a set of
linear equations. Furthermore, this is solved using Kaczmarz
method, which is essentially the Normalized LMS algorithm
from adaptive filtering, applied to a randomized selection of
the normal equations to be satisfied.

In this paper, we propose Bayesian learning techniques
in compressed sensing to tackle the two major MaMIMO
issues discussed above, namely computational complexity
and (LMMSE) CSIT acquisition. In compressed sensing, the
system model is y = Ax + w, where A ∈ RN×M is
the measurement matrix, x ∈ RM is a possibly sparse
vector, w is the noise vector and y the observation or
data. In sparse Bayesian learning (SBL), a hierarchical prior
distribution structure is assumed, in which each element of
x is conditionally Gaussian. The inverse variance αi of xi
is Gamma distributed which leads to a sparsity inducing
distribution for x. Despite its superior performance, SBL
has high computational complexity since it requires matrix
inversions [7]. In [8], the authors propose a Fast Marginalized
Maximum Likelihood (FMML) by alternating maximization
of the hyperparameters αi. [9] introduces a Fast version of
SBL by alternatingly maximizing the variational posterior
lower bound with respect to single (hyper)parameters. They
analytically show that the stationary points for the αi are
the same as those of FMML, provide the pruning conditions
and thus accelerate the convergence. Both previous approaches
allow for a greedy initialization (OMP-like) which improves
convergence speed and handles initialization issues. [10] uses
AMP to approximate matrix inversions in SBL and uses EM
to update the precision parameters αi. [11] introduces inverse-
free SBL via a Taylor series expansion.

A. Contributions of this paper

In this paper:



• We first review optimal BFs for the expected weighted
sum rate (EWSR) criterion in the MaMIMO limit.

• We evaluate the ergodic sum rate performance for LS,
LMMSE and subspace projection channel estimators.
Numerical results suggest that there is substantial gain by
exploiting the channel covariance information compared
to just using the LS estimates.

• We propose a novel Space Alternating Variational Esti-
mation (SAVE) based SBL technique called SAVE.

• We suggest the use of SAVE to compute the LMMSE
Tx/Rx signal in the UL/DL.

• We also extend the SAVE techniques to compute the
LMMSE channel estimates, by estimating the parameters
for both the instantaneous channels and their covariances.

II. STREAMWISE IBC SIGNAL MODEL

We start with a per stream approach (which in the perfect
CSI case would be equivalent to per user). In an IBC formu-
lation, one stream per user can be expected to be the usual
scenario. In the development below, in the case of more than
one stream per user, treat each stream as an individual user.
So, consider again an IBC with C cells with a total of K users.
We shall consider a system-wide numbering of the users. User
k is served by BS bk. The Nk× 1 received signal at user k in
cell bk is

yk=Hk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, Hk,bk is the Nk ×Mbk channel from BS bk to user
k. BS bk serves Kbk =

∑
i:bi=bk

1 users. We are considering
a noise whitened signal representation so that we get for the
noise vk ∼ CN (0, INk

). The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk. Treating interference as noise, user k
will apply a linear Rx filter fk to maximize the signal power
(diversity) while reducing any residual interference that would
not have been (sufficiently) suppressed by the BS Tx. The Rx
filter output is x̂k = fHk yk.

III. MAX WSR WITH PERFECT CSIT

We consider the optimization of the beamformers based on
the max WSR criterion subject to a per base station power
constraint,

WSR = WSR(g) =
∑K
k=1 uk ln 1

ek∑
k:bk=j tr{Qk} ≤ Pj ,

(2)

where g represents the collection of BFs gk, the uk are rate
weights, the ek = ek(g) are the Minimum Mean Squared

Errors (MMSEs) for estimating the xk:

1

ek
=1+gHk HH

k,bk
R−1

k
Hk,bkgk=(1−gHk HH

k,bk
R−1
k Hk,bkgk)−1

Rk = Hk,bkQk HH
k,bk

+Rk , Qi = gig
H
i ,

Rk =
∑
i 6=k

Hk,biQi H
H
k,bi + INk

.

(3)
Rk, Rk are the total and interference plus noise Rx covariance
matrices resp. and ek is the MMSE obtained at the output
x̂k = fHk yk with an optimal (MMSE) linear Rx fk,

fk = R−1
k Hk,bkgk = R−1

k hk,k . (4)

A. From Max WSR to Min WSMSE

The expression for MSE with a general Rx filter fk is,

ek(fk,g) = (1− fHk Hk,bkgk)(1− gHk HH
k,bk

fk)

+
∑
i 6=k fHk Hk,bigig

H
i HH

k,bi
fk + ||fk||2 = 1−fHk Hk,bkgk

−gHk HH
k,bk

fk+
∑
i

fHk Hk,bigig
H
i HH

k,bifk+||fk||2.
(5)

The WSR(g) is a non-convex and complicated function of g.
Inspired by [12], an augmented cost function is introduced in
[13], [14], the Weighted Sum MSE,

WSMSE(g, f , w) =∑K
k=1 uk(wk ek(fk,g)− lnwk) +

∑C
i=1 λi(

∑
k:bk=i ||gk||2−Pi)

(6)
where λi are Lagrange multipliers. Optimization over the
aggregate auxiliary Rx filters f and weights w, lead to the
original WSR expression:

min
f ,w

WSMSE(g, f , w) = −WSR(g) +

K∑
k=1

uk (7)

From the augumented cost function, alternating optimization
leads to solving simple quadratic or convex functions as
follows,

min
wk

WSMSE ⇒ wk = 1/ek

min
fk

WSMSE ⇒ fk=(
∑
i

Hk,bigig
H
i HH

k,bi +INk
)−1Hk,bkgk

min
gk

WSMSE ⇒
gk=(

∑
i uiwiH

H
i,bk

fif
H
i Hi,bk +λbkIM )−1HH

k,bk
fkukwk (8)

UL/DL duality: the optimal Tx filter gk can also be interpreted
as an MMSE linear Rx for the dual UL in which λ plays the
role of Rx noise variance and ukwk plays the role of stream
variance.

B. Minorization (DC Programming)

In a classical difference of convex functions (DC program-
ming) approach (also called Successive Convex Approxima-
tion (SCA)) as in [15], the cost function is written as the
sum of a convex and concave terms. The concave signal
terms are kept and the convex interference terms are replaced
by the linear (and hence concave) tangent approximation.
This linearization is with respect to the Tx covariance matrix
Qk. However, after substituting Qk = GkG

H
k in terms of



BF matrices Gk, the concave character is less clear. But in
any case, this DC programming/SCA approximation allows to
construct a minorizer cost function, and minorization is a well
established optimization approach [16].

So, consider the WSR as a function of Qk alone. Then

WSR = uk ln det(R−1

k
Rk) +WSRk ,

WSRk =
∑K
i=1,6=k ui ln det(R−1

i
Ri)

(9)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is

convex in Qk. A linear function is simultaneously convex and
concave. So we consider the first order Taylor series expansion
of WSRk in Qk around the current1 Q

′
(i.e. all Q

′

i) with e.g.
Ri = Ri(Q

′
), then

WSRk(Qk,Q
′
) ≈WSRk(Q

′

k,Q
′
)− tr{(Qk −Q

′

k)Ak}

Ak =−
∂WSRk(Qk,Q

′
)

∂Qk

∣∣∣∣∣
Q
′
k,Q
′

=

K∑
i 6=k

uiH
H
i,bk

(R−1

i
−R−1

i )Hi,bk

(10)
Note that the linearized (tangent) expression for WSRk
constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Qk = GkG

H
k and perform this

linearization for all users. We augment the WSR cost function
with the Tx power constraints, resulting in the Lagrangian,

WSR(G,G
′
, λ) =

C∑
j=1

λjPj+

K∑
k=1

uk ln det(1 +GH
k BkGk)−GH

k (Ak + λbkI)Gk

(11)

where
Bk = HH

k,bk
R−1

k
Hk,bk . (12)

The gradient (w.r.t. Gk) of this concave WSR lower bound
is actually still the same as that of the original WSR crite-
rion! And it can be interpreted as a generalized eigenvector
condition,

BkGk = (Ak + λbkI)Gk
1

uk
(I +GH

k BkGk) (13)

or hence Gk = Vmax(Bk,Ak + λbkI) are the (normal-
ized) ”max” generalized eigenvectors of the two indicated
matrices, with eigenvalues Σk = Σmax(Bk,Ak + λbkI). Let
Σ

(1)
k = G

H

k BkGk and Σ
(2)
k = G

H

k AkGk. The advantage
of formulation (11) is that it allows straightforward power
adaptation: introducing stream powers in the diagonal matrices
Pk ≥ 0 and substituting Gk = Gk P

1
2

k in (11) yields

WSR(P , λ) =
∑C
j λjPj+

K∑
k=1

[uk ln det(I + PkΣ
(1)
k )− tr{Pk(Σ

(2)
k + λbkI)}]

(14)

1To keep notation light, we shall not denote Ri, Ak as R
′
i, A

′
k etc.

optimization of which leads to the following interference
leakage aware water filling (WF) (jointly for the Pk and λc)

Pk =
(
uk(Σ

(2)
k + λbkI)−1 − Σ

−(1)
k

)+

,
∑
k:bk=c

tr{Pk} = Pc

(15)
where the Lagrange multipliers (to satisfy the power con-
straints) are computed by bisection and gets executed per BS.
It is possible that some Lagrange multipliers could be zero.
Note also that as with any alternating optimization procedure,
there are many updating schedules possible, with different
impact on convergence speed. The quantities to be updated are
the gk, the Pk and the λc. Note that the minorization approach,
which avoids introducing Rxs, can at every BF update allow
to introduce an arbitrary number of streams per user by
determining multiple dominant generalized eigenvectors. The
WF operation then decide how many streams can actually be
sustained.

In contrast, in [15], for given λ, the G get iterated till
convergence and the λ are found by duality (line search):

min
λ≥0

max
G

[

C∑
j

λjPj +
∑
k

{uk ln det(R−1

k
Rk)− λbk tr{Pk}}]

= min
λ≥0

WSR(λ).
(16)

This typically leads to higher computational complexity for a
given convergence precision.

IV. EWSR BF IN THE MAMIMO LIMIT

In this section, we consider the case when there is only par-
tial channel state information. Here we consider the BF design
based on the expected weighted sum rate, EH|ĤWSR(G,H),

EH|ĤWSR(G,H) = EH|Ĥ

∑
k

uk ln(I+GH
k HH

k,bk
R−1

k
Hk,bkGk).

(17)
If the number of Tx antennas M becomes very large, we get
a convergence for any quadratic term of the form,

HQHH M→∞−→ EH|Ĥ HQHH = ĤQĤH+ tr{QCp}Cr .
(18)

and hence we get the following MaMIMO limit matrices,

R̂k = INk
+

K∑
i=1

{
Ĥk,biQiĤ

H
k,bi + tr{QiCp,k,bi}Cr,k

}
R̂k = INk

+

K∑
i=1,6=k

{
Ĥk,biQiĤ

H
k,bi + tr{QiCp,k,bi}Cr,k

}
B̂k = ĤH

k,bk
R̄−1

k
Ĥk,bk + tr{Cr,kR̄

−1

k
}Cp,k,bk

Âk =

K∑
i 6=k

ui

[
ĤH
i,bk

(
R̄−1

i
− R̄−1

i

)
Ĥi,bk

+tr{
(
R̄−1

i
− R̄−1

i

)
Cr,i}Cp,i,bk

]
.

(19)
Here Cp,k,bi corresponds to the error covariance matrix as in
Section V, for the channel between user k and BS bi. It suffices
now to replace the matrices Ak, Bk in the DC programming



approach of Section III-B by the matrices Âk, B̂k above to
get a maximum EWSR design. Thus the digital beamformers
could be written as:

Gk = Vmax

(
B̂k,

(
Âk + λbkI

N
bk
t

))
. (20)

V. MISO CASE : CHANNEL ESTIMATES

In this case Cr = 1 and we shall denote the matrices R, Ĥ
as the scalar r and the vector h. The channel h, its estimate ĥ
and the estimation error h̃ have covariance matrices θ = Chh,
θ̂ = Cĥĥ and θ̃ = Ch̃h̃, all three of which are arbitrary. Two
special cases:
(i) In the case of a deterministic channel estimate (we abbre-
viate it as LS (Least Squares)), we have ĥ = h + h̃ where h
and h̃ are independent.
(ii) In the case of a LMMSE channel estimate, we have
h = ĥ + h̃ in which ĥ and h̃ are decorrelated and hence
independent in the Gaussian case. In the partial CSIT case,
the term ĥĥH of the perfect CSIT case gets replaced by its
estimate S = Eh|ĥhhH = ĥĥH + θ̃, where

i) In the LS ĥ case, θ̃ = Ch̃h̃ = σ2
h̃
I . For the unbiased LS,

θ̃ = Ch̃h̃ = −σ2
h̃
I .

ii) In the LMMSE case, θ̃ = Ch̃h̃ is the posterior covariance,
θ̃ = θ − θ(θ + σ2

h̃
I)−1θ. Three types of channel estimates

can be analyzed. In the case of partial CSIT we get for the
Rx signal,

yk = ĥk,bk gk xk + h̃k,bk gk xk︸ ︷︷ ︸
sig. ch. error

+

K∑
i=1,6=k

(ĥk,bi gi xi + h̃k,bi gi xi︸ ︷︷ ︸
interf. ch. error

) + vk .

(21)

Naive EWSR : just replace h by ĥ in a perfect CSIT approach.
Ignore h̃ everywhere. EWSMSE: accounts for covariance
CSIT in the interference.
This can have significant impact, even on the DoF if the
instantaneous channel CSIT quality does not scale with SNR.
However, EWSMSE also moves the signal h̃ term to the
interference plus noise!

A. Subspace Projection based Channel Estimator

In this section, we investigate the effect of reducing chan-
nel estimation error to the covariance subspace (without the
LMMSE weighting, this is a simplification of the LMMSE
estimate). Subspace channel estimate is given as,

ĥS = PAĥLS = h + PAh̃LS , Ch̃Sh̃S
= σ2

h̃
PA, (22)

where PA = A(AHA)−1AH = PCt
, Ct = AAH , where

AH = DHH
t and D and HH

t are as defined in Section VIII.
So, in WSR expressions hhH gets replaced by,
(i) naive Subspace Channel Estimator, S = ĥSĥHS .
(ii) Subspace Channel Estimator in the MaMIMO limit, S =
ĥSĥHS +Ch̃S h̃S

.
(iii) unbiased Subspace Channel Estimator, S = ĥSĥHS −
Ch̃S h̃S

.

VI. VB-SBL
In this section we assume the system model as defined in

section I. In Bayesian compressive sensing, a two-layer hier-
archical prior is assumed for the x as in [7]. The parameters
of the hierarchical prior are such that it supports the sparsity
property of x. x is assumed to have a Gaussian distribution
parameterized by α = [α1 α2 ... αM ], where αi represents
the inverse variance of xi.

p(x/α) =

M∏
i=1

p(xi/αi) =

M∏
i=1

N (xi/0, α
−1
i ). (23)

Further a Gamma prior is considered over α,

p(α) =

M∏
i=1

p(αi/a, b) =

M∏
i=1

Γ−1(a)baαa−1
i e−bαi . (24)

The inverse of noise variance γ is also assumed to have a
Gamma prior,

p(γ) = Γ−1(c)dcαc−1
i e−dγ . (25)

A. Variational bayes

The computation of the posterior distribution of the pa-
rameters is usually intractable. In order to address this issue,
in variational bayesian framework, the posterior distribution
p(x,α, γ) is approximated as the product of the marginals:

p(x,α, γ/y) ≈ qγ(γ)

M∏
i=1

qxi
(xi)

M∏
i=1

qαi
(αi) = q(x,α, γ/y)

(26)
Variational bayes compute the factors q by minimizing
the Kullback-Leibler distance between posterior distribution
p(x,α, γ/y) and the q(x,α, γ/y). From [17],

KLDV B = KL (p(x,α, γ/y)||q(x,α, γ/y)) (27)

The KL divergence minimization is equivalent to maximizing
the evidence lower bound (ELBO) [18],

p(y,θ) = p(y/x,α)p(x/α)p(α)p(γ) (28)

ln(qi(θi)) =< ln p(y,θ) >k 6=i +ci, (29)

where θ = {x,α, γ} and θi represents each scalar in θ.
Here <>k 6=i represents the expectation operator over the
distributions qk for all k 6= i.

VII. SAVE - SPACE ALTERNATING VARIATIONAL
ESTIMATION

In this section, we propose a Space Alternating Variational
Estimation (SAVE) based alternating optimization between
each elements of θ. We assume that the probability distribution
of each xi factorizes independently in q. The joint distribution
can be written as,

ln p(y,θ) = N
2 ln γ − γ

2 ||y −Ax| |2+
N∑
i=1

(
lnαi −

αi
2
|xi|2

)
+

N∑
i=1

(ln b− bαi) + ln d− dγ

q =
∏M
i=1 qxi (xi)

∏M
i=1 qαi (αi)

∏M
i=1 qγ (γ) .

(30)



Update of qxi
(xi): ln qxi

(xi) is quadratic in xi and thus can
be represented as a Gaussian distribution as follows,

ln qxi(xi) =

−γ2
{
< ||y −Aīxī| |2 > − (y −Aī < xī >)TAixi−

xiA
T
i (y −Aī < xī >) + ||Ai| |2x2

i

}
− <αi>

2 x2
i + cxi

= − 1
2σ2

i
(xi − µi)

2
+ c′xi

(31)
Note that we split Ax as, Ax = Aixi + Aīxī, where Ai

represents the ith column of A, Aī represents the matrix with
ith column of A removed, xi is the ith element of x, and xī
is the vector without xi. Clearly, the mean of the variance of
the resulting Gaussian distribution becomes,

σ2
i = 1

γ||Ai||2 +αi
, µi = σ2

iA
T
i (y − Aī < xī >) < γ >

(32)
Update of qαi(αi): The variational approximation leads to the
following Gamma distribution for the qαi

(αi),

ln qαi
(αi) = 1

2 lnαi − αi

(
<x2

i>
2 + b

)
+ cαi

,

qαi
(αi) ∝ α

1/2
i e

−αi

(
<x2

i >

2 + b

)
.

(33)

The mean of the Gamma distribution is given by,

< αi >= 3/2(
<x2

i
>

2 + b

) ,
where < x2

i >= µ2
i + σ2

i .
(34)

Update of qγ(γ): Similarly, the Gamma distribution from
the variational bayesian approximation for the qγ(γ) can be
written as,

ln qγ(γ) = N
2 ln γ − γ

(
<||y−Ax||2>

2 + d
)

+ cγ ,

qγ(γ) ∝ γN/2e
−γ
(

<||y−Ax||2>
2 + d

)
.

(35)

The mean of the gamma distribution for γ is given by,

< γ >= N/2 + 1(
<||y−Ax||2>

2 + d
) ,

where,
< ||y − Ax| |2 >=
||y| |2 − 2yTAµ + trATA

(
µµT + Σ

)
,

Σ = diag(σ2
1 , σ

2
2 , ..., σ

2
M )

µ = diag(µ1, µ
2, ..., µM ).

(36)

A. Reduced Complexity Linear Tx/Rx Computation
An optimal linear Tx/Rx filter in MU MIMO is of the form

F = (AD1 AH + λ I)−1AD2. (37)

Other sub-optimal beamformers are special cases of this,
where, for the R-ZF, D1 = I and ZF λ→ 0. LMMSE Tx/Rx
can also be found by SAVE. Consider the case of a multi-user
UL system, with A ∈ CN×M SIMO channel, x as the M × 1
transmit signal from all users and y ∈ CN×1 is the received
signal at the BS. From (32), it can be seen that the estimate
of x = µ converges to the L-MMSE equalizer,

σ2
vµi + σ2

iA
T
i Aµ = σ2

iA
T
i y ⇒

x̂ = µ = (ATA + σ2
vΣ
−1)−1ATy.

(38)

SAVE recursions are similar to PE [4]. However, PE only
converges in case of sufficient diagonal dominance of ATA,
whereas SAVE is guaranteed to converge, employing implicitly
varying damping factors (the σ2

i ).

VIII. MULTIPATH CHANNEL MODEL

We get for the matrix impulse response of a time-varying
frequency-selective MIMO channel H(t, τ) [19],

H(t, τ) =
∑L
i=1Ai(t) e

j2π fi t hr(φi) hTt (ψi) p(τ − τi) .
(39)

with L (specular) pathwise contributions where

• Ai: complex attenuation
• fi: Doppler shift
• ψi: direction of departure (AoD) (azimuth, elevation,

polar)
• φi: direction of arrival (AoA) (azimuth, elevation, polar-

ization)
• τi: path delay (ToA)
• ht(.), hr(.): M/N × 1 Tx/Rx antenna array response
• p(.): pulse shape (Tx filter)

In the case of distributed antenna systems (near field), or very
wideband regime, the array responses become a function of
the position parameters of the (last) path scatterers. The fast
variation of the phase in ej2π fi t and possibly the variation
of the Ai (when the nominal path represents in fact a super-
position of paths with similar parameters) correspond to the
fast fading. All the other parameters (including the Doppler
frequency) vary on a slower time scale and correspond to slow
fading.

The channel impulse response H has per path a rank one
contribution in four dimensions (Tx and Rx spatial multi-
antenna dimensions, delay spread and Doppler spread). Hence,
going to the frequency domain, we get

vec(H(1 : t, f1 : f2)) =

L∑
i=1

Ai ht(ψi)⊗ hr(φi)⊗ vf (τi)⊗ vt(fi).

(40)
where vf (.), vt(.) are appropriate Vandermonde vectors (pos-
sibly subsampled in the case of vf (.)). Hence we get a sum
of rank one 4D tensors. hr, ht could themselves have a
Kronecker structure in the case of polarization or in the case
of 2D antenna arrays with separable structure [20]. In the
model above, each of the four Kronecker factors is assumed
to be parametric. For instance, ht(.) is also a Vandermonde
vector in the case of a basic Uniform Linear Array depending
on azimuth only, neglecting antenna coupling. Whereas more
generally ht(.) may be known or learned at the BS side, it is
less reasonable to assume a parametric form for hr on the UE
side, especially in the case of a hand-held device (orientation,
way of holding it).



In OFDM, we can factor the channel response at subcarrier
n as

H[n] =
∑L
i=1 |Ai| ejξi[n]hr(φi)h

T
t (ψi) = Hr Ξ[n] D HH

t ,

Hr = [hr(φ1) hr(φ1) · · ·] , Ξ[n] =

 e
jξ1[n]

ejξ2[n]

. . .

 ,
D =

 |A1|
|A2|

. . .

 , HH
t =

 hTt (ψ1)
hTt (ψ2)

...


(41)

Tx side covariance matrixCt, which only explores the channel
correlations as they can be seen from the BS side,

Ct = E HHH = Ht D
2 HH

t . (42)
by averaging of the random path phases ξi.

A. Non-Separable (Non-Kronecker) Covariance CSIT

Averaging over the (uniform) path phases ψi leads to

Chh =
∑L
i=1 |Ai|2 hih

H
i =∑L

i=1A
2
i (hr(φi)h

H
r (φi))⊗ (ht(ψi)h

H
t (ψi)).

(43)

where Chh = E hhH , h = vec(H) and hi = ht(ψi)⊗hr(φi).
NADA (Narrow AoD Aperture): the rank of Chh can be
substantially less than the number of paths, consider e.g. a
cluster of paths with narrow AoD spread, then we have

ψi = ψ + ∆ψi (44)

where ψ is the nominal AoD and ∆ψi is small. Hence a first
order taylor series approximation leads to,

ht(ψi) ≈ ht(ψ) + ∆ψi ḣt(ψ) . (45)

Such a cluster of paths only adds a rank 2 contribution to Chh.
Covariance of h = vec(H) is not of Kronecker form.

B. Channel estimation using VB

In this section, we discuss the VB based technique to
approximate the LMMSE channel estimate using the LS
channel estimate as the observation. Some of the existing
works on multi-path parameter estimation can be found in
[19]–[22]. [21] focuses on joint channel estimation and data
detection in an OFDM system using SBL. The authors in [22]
discuss about tracking channel subspaces (motivated by Joint
Spatial Division and Multiplexing). This requires to determine
dominant subspace dimension, which may vary with SNR.
[20] proposes tensor decomposition algorithms to estimate the
channel parameters.

We can model the path amplitudes Ai as gaussian. Our
aim is to compute the posteriors for path parameters, allowing
to express covariance CSIT uncertainty. Hence can use VB-
SBL or SAVE with Gaussian posterior approximation. VB (or
any sparse technique) for automatic model order detection.
For path clusters (NADA), requires to handle multiple atoms
jointly.

IX. SIMULATION RESULTS

In this section, we present the Ergodic Sum Rate Evalua-
tions for BF design for the various channel estimates. Monte
Carlo evaluations of ergodic sum rates are done with the fol-
lowing parameters: C, number of cells. K, number of (single-
antenna) users per cell. Nt, number of transmit Antennas. We
consider a path-wise channel model as in section VIII, with L
number of paths/Channel Rank. c, scale factor for LS channel
estimation error variance σ2

h̃
= c/SNR. In the figures, iCSIT

refers to the BF design for the instantaneous CSIT case.

A. Single Cell Simulations
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Fig. 1. Expected sum rate for C = 1 cell, K = 5 users/cell, Nt = 32,
L = 2 paths in each channel, σ2

h̃
= 1/SNR.
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L = 2 paths in each channel, σ2

h̃
= 1/SNR.

B. Multi-Cell Simulations
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In Figure 3, we plot the EWSMSE beamforming perfor-
mance also and it is evident from the figure that EWSR based
beamformers such as LMMSE/Subspace projection techniques
perform better than EWSMSE design.
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From the numerical simulations, it is quite evident that just
using LS channel estimates may lead to substantial EWSR
loss. In Massive MIMO, the exploitation of channel subspaces
(reduced rank covariances) in channel estimates may lead to
substantial reductions in the SNR loss. Moreover, there is
significant gain from exploiting (error) channel covariances in
addition to channel estimates and proper handling of channel
error covariance in the direct link in the BF design.

X. CONCLUSION

In Massive MIMO, we suggest the application of Compres-
sive Sensing inspired Bayesian learning techniques to reduced
complexity LMMSE-style Tx/Rx signal computation. We also
apply the SBL technique called SAVE to structured channel
estimation, providing both instantaneous and covariance (or
even beyond) CSIT. So far implicitly assumed a TDD case
with channel estimation on the uplink for Tx computation on
the downlink. The Rx computation in the TDD UL can further
benefit from joint Rx determination and channel estimation. In
FDD, the channel estimation in the UL still allows to use the
slow channel parameters for DL covariance CSIT.
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