
Toward a mobile gaming based-computation
offloading

Farouk MESSAOUDI
IRT b�com

Rennes, France
farouk.messaoudi@b-com.com

Adlen KSENTINI
Eurecom

SophiaTech, Biot, France
adlen.ksentini@eurecom.fr

Philippe BERTIN
IRT b�com, Orange Labs

Rennes, France
philippe.bertin@b-com.com

Abstract—3D Video games are considered as one of the most
complex applications in the market, due to their real-time
constraint and high computational requirements. Compared to
dedicated gaming boxes (e.g., Xbox and PlayStation), mobile
devices, including smartphones and tablets, still fail to achieve
interactive rendering rates, even with low gaming requirements.
Two solutions are offered to mobile gamers, leveraging resource-
ful platforms. The first one is the cloud gaming; wherein the
entire game engine is hosted on dedicated servers in the cloud.
The servers render the frames and stream back an encoded
video to the player. The latter interacts with the servers through
Human Interface Device (HID), and uses a decoder to display
the streamed video. The second solution is known as computation
offloading that consists in migrating parts of tasks of the game
engine (the most resource consuming) to a remote powerful
computer hosted in the cloud or at the network edge (using
the concept of Edge computing). On the successful execution, the
results are sent back to the mobile device for integration with the
rest of the application inside the mobile device. In this paper, we
unveil an offloading solution to improve the performance of one
of the most popular game engines in the market, namely “Unity
3D”. Using a testbed composed of a smartphone and a server, we
evaluate and compare the performance of the proposed solution
by report to the classical solution (i.e., running all the game on
the smartphone); particularly focusing on the ability to improve
the capacity of the smartphone to run complex games.

I. INTRODUCTION

Video Games are complex, intensive, and real-time applica-
tions that need powerful devices to run smoothly. To provide
a gamer an illusion of inside an animated world, the rendering
engine should perform all the rendering activities in real-time.
For a gamer, a good Quality of Experience (QoE) is obtained
when the game engine displays frames at a higher rate, more
than 30 frames per second (fps) [1]. Thus, the rendering engine
has at most 33ms to generate one frame. Usually, much less
time is available, since the bandwidth is also consumed by
the other engines such physics and scripting. While dedicated
hardware, such as “boxes” (e.g., Xbox and PS4), are able to
achieve this rate for best-seller games, running these high-
resources consuming games on powerless devices (such as
smartphones and tablets) is still a challenge. To overcome
the limited mobile device capabilities, one of the envisioned
solutions is to use Cloud gaming systems such as Onlive1 and
Gaikai2. Although Cloud gaming offers good performance, it

1http://onlive.com
2http://gaikai.com

is high bandwidth consuming, latency dependent and limited
in the number of games.

An alternative to cloud gaming is computation offloading
of part of the gaming tasks to remote server. Computation
offloading is gaining ground with the emergence of Mobile
Edge Computing (MEC), which locates servers at the network
edge allowing to drastically reduce the end-to-end latency.
Several works have addressed the problem of computation
offloading in the context of mobile Cloud. In MAUI [2], the
authors presented a dynamic offloading framework operat-
ing at the method (i.e. application component) granularity.
Similarly, ThinkAir [3] introduced a mobile cloud computing
framework, with dynamic offloading. The proposed framework
clones the smart phone platform in Virtual Machine (VM). It
offers a library and a compiler to make easy the adaptation
of games. A code generator creates the wrappers and utility
functions. A customized native development kit (NDK) is
used to convert the ARM-based instructions of the remote
methods into x86 instructions. ThinkAir uses Java reflection to
offload methods based on past invocations. ThinkAir defines
four objective functions that combine execution time, energy,
and money cost. In [4], [5] the authors propose DPartner
framework, an automatic partitioning system that rewrites the
Java bytecode of monolithic application into a distributed one.
The framework operates in three steps; first, it classifies the
Java bytecode classes into anchored or movable based on
the Java lexicon. Then, the framework clusters the classes
regarding the call frequency into different groups represent-
ing the game modules. Finally, the framework rewrites the
clusters bytecode and packages them into OSGi bundles.
These bundles are classified into anchored or movable modules
according to classes. The framework defines a proxy, which
rewrites the classes to create new interfaces, and duplicates
classes on both sides (client and server). The framework
offloads all the bundles that improve the performance and
reduce the energy consumption. Another framework proposing
to offload Graphics Processing Unit (GPU) computation to
remote servers has been introduced in Kahawai [6]. It uses
a collaborative rendering, which combines both server GPU
and mobile device GPU outputs to render frames. Kahawai
uses two techniques for collaborative rendering; the delta
encoding and client-side I-frame rendering. In delta encoding,
the mobile device renders frames with low quality encoding,

while in the server, the same frames are rendered with high
quality. The per-frame difference is streamed to the mobile
device to transform frames into high quality frames. In client-
side I-frame, both the mobile device and server are rendering
frames at high quality encoding, however, the mobile device
generates the frames at a low rate compared with the server.
The server compresses the frames into a video, replaces the
I-frames with empty place-holders, and streams the remaining
P-frames to the mobile device, which fills in the missing I-
frames and renders the video. Di et al. [7] have proposed
Dust, a real-time code offloading system for device-to-device.
Dust uses a network evaluator component to find the stable
linked offloadees, and a task scheduler component, which
takes a decision regarding each task of a game. The tasks
are annotated by programmers as “@offloadable”.

However, the common drawback of these frameworks is
the non consideration of 3D First Person Shooter (FPS)
games, which are very high resource consuming and real-
time interacting. Indeed, in all these frameworks, authors have
considered only strategic 2D games like Sudoku, Chess, N-
Queens, and Gomuko, which renders one frame for each
player movement. In this paper, we introduce a first offloading
3D FPS game system, using one of the most popular game
engines in the market namely “Unity 3D”. We split the game
scene into different Game Objects (GOs) including Non-Player
Character (NPC), Player Character (PC), environment, and
particles. To select the GOs to offload, we use a heuristic
relaying on three main criteria, namely, resource consumption,
code dependency, and network latency as detailed later. Fur-
thermore, we introduce a network manager component, which
orchestrates the offloading mechanism. This solution offers a
promising performance. It is easy to configure, as the GOs to
offload are added to the server through a network manager, and
scalable as all the games could be modified easily to fill in this
architecture. Lastly, the proposed solution is not bandwidth
consuming, as only command packets are exchanged over the
network.

The rest of the paper is organized as follows. In section II,
we present some foundations of the game’s world. We describe
our methodology in section III. Section IV aims to highlight
our proposed solution. Section V presents the performance of
our framework. Finally, Section VI draws a conclusion around
the contribution in the paper.

II. GAME ENGINES BACKGROUND

To better understand our contribution in this paper, we
introduce in the following some concepts and keywords that
we will use through the paper.

A. Interactivity and Framerate

The interaction delay, defined as the elapsed time between
a user action is captured by a HID, and the moment that the
result of this action appears on the screen, is central in gaming.
Studies [8]–[10] have shown that the acceptable delay depends
on the game genre and varies from 100 to 200ms and even
up to 500ms for Role-Playing Games (RPGs) and Massively

Multiplayer Online Games (MMOGs). FPS games require low
delays (less than 100ms), since the gamer is immersed in the
scene, and a high interaction delay will degrade the QoE [11].
Regarding this constraint, the management of FPS games has
received scientific efforts [12], [13]; therefore the interaction
delay will be considered as a metric in this work.

The framerate is another key criteria to ensure high QoE
for the gamers. Indeed, the latter are immersed in an animated
world when the game engine generates a high number of
fps. Less than 30 fps is seen as non-tolerable by players [1].
For the interactive multimedia, the High Frame Rate (HFR)
combined with the High Dynamic Range (HDR) technology
can deliver up to 240 fps [14]. The rendering pipeline [15]
represents the engine responsible for generating frames; every
xms the graphic pipeline displays one frame, with x ranging
from 33 to 10ms. The framerate will be also considered as a
metric in this work.

B. Main Modules

A game engine is a combination of different modules
depending on the game genre. Messaoudi et al. [16] have
identified some modules that are common to most game en-
gines, and classified them into different families. Some of these
module families are written by game developers that include:
(i) the Artificial Intelligence (AI), which emulates an artificial
and intelligent behaviour of the NPC to learn, to interact,
to fight, and to survive; (ii) the scripts represent the game
scenario. Game developers detail, in a scripting language, the
control flow of the game, from the instant wherein the gamer
command is captured by HID until displaying a frame on the
screen. (iii) Animations are used to make objects, dynamic in
the game. They emulate movement or reshape objects.

Some other families of modules are leveraged as a third-
party Software Development Kits (SDK) and middleware ac-
cessible through Application Programming Interfaces (APIs).
These families of module represent an abstraction layer com-
mon to all games created within a given framework, aiming
at preventing the game developers from spending time in low-
level programming. These modules include the following: (iv)
physics, which simulates the physics laws to make the game
as realistic as possible. Physics uses collisions and rigid body
dynamics3. Without physics module, objects would interpene-
trate, leading to block interactions with the virtual world. (v)
Multimedia rendering modules are responsible for generating
the graphical and audio elements of the game. Rendering is
a resource-consuming module in game engines, since the 3D-
scene undergoes several transformations through the rendering
pipeline before getting displayed on the screen [17]. (vi) Inputs
convert the physical commands applied by the gamer on his
HID (including gamepad, joystick or keyboard) into logical
game functions, and forward them to the engine system.
Finally, (vii) networking modules define a set of routines and
protocols that enable interactions with a remote server to share
a game instance between multiple players.

3https://gafferongames.com/post/physics in 3d/

C. Scene Representation

A real-world scene is a projection of dynamic foreground
(the dynamic GOs) on a layout of a static background or static
GOs. The static background layout is crucial in video games,
as it brings the player inside an immersive world. The game’s
world populates different types of GOs, through which the
gamer explores the virtual world. The game world as a whole
presents perceptual stimuli to the player, which experiences
a degree of presence over the objects of this world that he
can manipulate. These objects include: (i) a PC, which is a
fictional character, controlled by the gamer. Generally, these
characters are based on real persons, such as sportive and
historical persons. FPS games use black characters without
any characteristic. (ii) A NPC is controlled by the computer
through an AI and triggered by specific actions. A NPC may
define an enemy, a partner or a support character, depending
on whether the NPC opposes the PC in duels, helps the
PC in its adventure or assists the storyline of the game.
(iii) Environment represents the virtual static and realistic
area where the game takes place. (iv) Lights are a key step
to produce a realistic scene. The light sources are simple
objects, defined in the world space, which are a combination
of color, intensity, direction, focus, and position. (v) Particles
are amorphous objects such as smoke clouds and sparks. They
are animated in a rich variety of ways that vary in position,
orientation, and size from frame to another. (vi) Sound sources
are in charge of reproducing what the player would like to
hear such as a car engine sound or a background music. (vii)
Camera is a GO that displays what it currently seen on the
screen. The camera can move and rotate around, hence the
displayed view moves and rotates accordingly. The area seen
by the camera defines a truncated pyramid known as a frustum.

III. METHODOLOGY

We describe now the game, platform, and qualities encoding
that have been used in our experiment, and the methodology
undertaken to offload modules to a remote server.

A. Game

We modified the multiplayer FPS game4 to make player
characters fighting together against a NPC inside an arena.
The player character is a robot with blasters flying inside the
arena. The NPC is a humanoid avatar triggered by the player
characters when they are near to its position. The game scene
is depicted in Figure 1. We summarize the main characteristics
of this game in Table I.

TABLE I: Game characteristics
of players Dimension Type Rendering Physics Scripts

multiplayer 3D FPS ++++ +++ +++

4https://www.youtube.com/watch?vŪK57qdq lak

B. platform

To evaluate the performance of the proposed solution, we
installed Unity 3D engine v5.4 on top of a Dell PC tower.
The installed engine is used to compile the tested game and
generate two different instances; the first one runs on the server
(Dell PC tower), while the second one runs on the smartphone
HTC One M8. The configuration of these devices is given in
Table II.

TABLE II: Platforms characteristics
Platform CPU GPU RAM OS

HTC one (M8) Quad-Core 801 Snapdragon, 2.3GHz Adreno 330 2GB Android 4.4.2

Dell PC tower Intel Core i7, 3.4 GHz 3x NVIDIA GeForce
GTX 780 Ti, 3GB

16GB Windows 8.1 Pro

C. Quality Encoding

We generated 10,000 frames for two encoding qualities; a
good and fast quality. The good quality is encoded with high
parameter settings, which generate a reasonable framerate,
i.e., around 30 fps. The fast quality, configured with
reduced requirements, produces inferior visualization results,
hence obtain a maximum framerate. Unity 3D achieves these
two qualities through different parameters as described in [17].

In light of what is stated in the background section, the
following tackles the questions: how we can improve the
performance of a game through modules offloading? or what
is the optimal location (on the mobile device or on the server)
of each module of the game engine? To answer efficiently this
question, we introduced the following criteria:

1) Resource consumption. Usually, the gameplay is concen-
trated within dynamic objects, which are high resource
consuming. Rendering these GOs is complex in video
games [17]. Each object in the scene is approximated
by triangle meshes. The more triangles are used to
approximate an object, the better is the approximation,
but more is the processing.

2) Code Dependency. Games depend on hardware (e.g.,
sensors) and software known as libraries and SDKs, but
also interact with players via User-Interfaces (UIs), which
manage the HIDs. According to this, we distinguish three
classes of non-transferable modules; modules involving
UIs [2], [18]; modules interacting device sensors [19];
and modules depending on local APIs [20], [21].

3) Bandwidth consumption and Network latency. Some
GOs, if they are offloaded to the server, need high
network communication with the mobile device, which
increases the bandwidth consumption and the interaction
delay. Particles are an example, they are 2D images
generated and animated in large number. Several modules
are interacting together to make their behaviour, which
leads to high communication between modules of the
game engine.

Fig. 1: Game screenshot

IV. PROPOSED FRAMEWORK

Figure 2 presents a global view of the proposed architecture.
At the beginning, a connection is established between the
mobile device and the server via a network manager. This
latter is a set of scripts responsible for remotely instantiating
GOs, and orchestrating the offloading process.

When the connection is established, a game manager script
is executed on the mobile device. It starts the execution of
the local GOs, while it requests the network manager to
start computation on the server. Therefore, remote GOs are
rendered on the server at default coordinates. Start playing
the game, input modules capture the gamer inputs and send
commands to the server. On the server side, both the GOs
and the outputs of the involved modules (modules used by
each GO to compute its behaviour) are updated with the
gamer commands. Thus the network manager captures these
results and injects them on modules, located in the mobile
device, interacting with the remote GOs. At the end, a frame
composed of the local and the remote GOs is rendered on the
mobile device. This process is repeated for each frame until a
disconnection of the gamer. In this case, the GOs are destroyed
on both client and server.

The network manager uses both Remote Procedure Call
(RPC) and GigE Vision Streaming Protocol (GVSP) [22]
carried over User Datagram Protocol (UDP) for communi-
cation between the mobile device and the remote server,
with a multi-channel design supporting a variety of levels
of Quality of Service (QoS), and a flexible network topology
supporting peer-to-peer and client-server architectures. RPCs
are used to update some module entries and variables such as
(N)PC health level or weapon state. GVSP is used to stream
OpenGL ES commands from the remote server to the mobile
device, then the latter will prefetch these commands and inject
them inside the rendering pipeline to draw a frame on the
mobile device.

A. Proposed Heuristic

Each GO involves a number of modules to compute its
behaviour and to draw its shape. These modules may differ
in number and family between the GOs. We propose to
enclose for each GO, the requested modules inside clusters.
Our heuristic, computed by the network manager, dissects the
possibility to offload or not a cluster, with respect to the code
dependency constraint. This solution is a cluster decision-
making; that is, it focuses on each GO independently from

Launch the Network
manager interface

Launch the Network
manager interface

Connect
Ready

Trigger
“Game

Manager”

Profiling: �CPU consumption, �Network communication

�Scene decomposition,
�Modules clustering

Partitioning & Offloading

Computing local partition Computing remote partition

Streaming OpenGl ES commandsRendering a
game scene

Rendering GOs in
default position

PLaying the game:
moving, shooting,
jumping, running, etc.

Compute the frame
with the received
updates

Send Input Commands
Stream results (OpenGL ES commands & Updates)

RPC Calls

Keep Updating

Disconnect

Fig. 2: Global overview of the architecture

the others, since we need to decide rapidly to offload a cluster
or not, to avoid any additional delay induced by more sophis-
ticated algorithms like Integer Linear Programming (ILP) or
graph resolution. The proposed algorithm accepts as input a
cluster, j (the set of modules requested by the object GOj)
and returns a binary decision xj (i.e., to offload or not the
cluster j). The concept of this algorithm is simple; if either the
network latency or the time to send/receive data is higher than
the local execution time of a cluster, then offloading the cluster
will not improve the performance, thus xj = 0. Otherwise, if
both latency and time to exchange data are less than the cluster
execution time, the algorithm checks if a gain is achieved when
offloading the cluster. The offloading gain is the difference
between the local cost and the offload cost, this latter includes
the communication cost and the remote execution. It is given
by:

TGGOj
=

(
s− 1

s

)
×

kj∑
i=1

Ti −
(

di

UL
+

ri

DL
+RTT

)
(1)

where s is the speed ratio between the mobile device and the
remote server, Ti is the execution time of the module i that
belongs to cluster j, kj is the number of modules enclosing
the cluster j, and di and ri represent respectively, the data to
send (receive, respectively) on the uplink, UL (downlink DL,
respectively) bandwidth.

If offloading a cluster will achieve a gain, then it will be
offloaded (i.e., xi = 1).

Algorithm 1 Offloading Decision

Inputs: GOj : {Ti, i = 1, 2, ..., ki}
Outputs: Decision xj

if ((RTT <
∑kj

i=1 Ti) & (di/Bs + ri/Br <
∑kj

i=1 Ti))
then

if (TGGOj
> 0) then

xj = 1
else

xj = 0

else
xj = 0

return xj

V. PERFORMANCE

Now, we present the results of our measurement campaign
regarding the CPU consumption and network communication
needed to generate one game frame.

A. CPU Consumption

This section discusses the CPU consumption per frame and
per module, for local and remote execution, under the two
encoding qualities. Figure 3a presents the time (in ms) needed
to generate one frame. We used box-plots as we want to focus
on the variability of the CPU consumption per frame. The aim
is to quantify the stability of our framework. The box plot
includes the 10th, 25th, median, 75th, and 90th percentiles of
these times. On the other hand, Figure 3b shows (in %) the
time spent by the aforementioned modules to contribute to the
frame generation. We observe two things:

• Performance improvement. As seen in Figure 3a, our
framework improves the performance by up to 21%.
Indeed, more than 50% of frames are generated in less
than 154ms (125ms, respectively) for the good (fast,
respectively) quality. However, the framework is not
enough stable as the IRQ5 and the range6 are high values
(143.97ms and 151.52ms, respectively).

• Rendering consumption. As Figure 3b is showing, render-
ing is the main consuming module. Indeed, this module
is responsible for up to 70% of the CPU consumption
for both executions (i.e., whether or not the game is
offloaded) under the two encoding qualities. This high
CPU consumption represents a concern in mobile gaming.
For the other modules that are not related to rendering,
they represent less than 30% of the CPU consumption of
the demanding games.

5Interquartile Range (IQR) corresponds to the range of half of the scores
around the median (the difference between the 75th and the 25th percentiles)

6The difference between the highest (90th) and the lowest (10th) score

Local Offload Local Offload

30

60

90

120

150

180

210

240
Good Fast

Solution

C
PU

tim
e

(i
n
m
s)

(a) Consumption per frame

Local Offload Local Offload
0

20

40

60

80

100
Good Fast

Solution

%
C

PU

Rendering

Scripts

Physics

Others

Garbage Coll.

GI

VSync

(b) Consumption per Module

Fig. 3: CPU-Time consumption per frame and module

B. Network Communication

To test the network performance of our framework, we
captured the network load incurred by offloading the game
modules to the remote server. Packets were captured using
“Wireshark”. We limited the captures to 200 s.

We plot in Figure 4 the bitrate (in bytes/s) for the network
traffic between the mobile device and the remote server for
the two qualities encoding.

We captured both the uplink and downlink traffic between
the client and the server. In the downlink direction, the
packet size varies between 54 and 394B, and the median is
88B for both the fast and the good quality. On the uplink
direction, the packet sizes vary between 60 and 162B (60
and 228B, respectively) with a median about 86.5B (83.9B,
respectively) for the fast (good, respectively) quality. As stated
above, only commands are streamed to the mobile device.
Therefore, the variation in the bit rate depends on the number
of offloaded GOs. Indeed, higher are the GOs offloaded to
the remote server, the greater is the number of streamed
commands, hence, the higher is the bit rate. Between the two
qualities, there is also a variation in the bit rate. We believe that
it is due to the difference in the time needed by the server to
compute the GOs before streaming the commands. This time
depends on the number and type of GOs, which may differ
between the two qualities encoding.

0 20 40 60 80 100120140160180200

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
·104

Time(s)

B
it

R
at

e
(B

yt
es

/s
)

Good

Fast

Fig. 4: Packets load per a tick of 1 second interval

Figure 5a (5b, respectively) illustrates the number of packets
captured on the uplink and downlink directions for each frame
encoded with the good (fast, respectively) quality. We make
three main observations:

• Downlink rate is higher than the uplink rate. The
average rate for the fast (good, respectively) on the
downlink direction is around 17.13 (3.94, respectively)

packets/frame, while on the uplink direction, this aver-
age is about 11.51 (2.39, respectively) packets/frame.
This is somehow obvious as our framework relies on the
remote server to stream back rendering commands and
update various modules. The uplink traffic represents only
input commands and (N)PC variables.

• The server follows the client pace. Despite the powerful
capabilities of the remote server, it has to follow the
client pace to stream back the results, since the network
manager synchronizes between them. Indeed, the server is
triggered only when it receives an event (input commands
or RPC) from the mobile device.

• Server requested only on performance enhancement. Both
Figures 5a and 5b exhibit two behaviors; less and high
network communication. When the heuristic estimates
that no offloading gain can be achieved, then the whole
game is computed on the mobile device, hence the server
is in an idle state, that is to say, only few control packets
are sent by the server. However, when a gain can be
achieved, the network manager establishes a communi-
cation between the mobile device and the remote server
to collaborate in the frame rendering.

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Frame (#)

Pa
ck

et
R

at
e

(#
) Downlink

Uplink

(a) Good Quality

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Frame (#)

(b) Fast Qualiy

Fig. 5: Uplink and Downlink packets rate per frame

C. Responsiveness

To better understand how the client and server contributed
in the frame generation, it is necessary to determine the
interaction delay, which is consumed by several tasks: (i)
capture of gamer input actions, (ii) transfer of command(s) to
the remote server, (iii) execution of the m offloaded modules
(om) on the server and the n − m non-offloaded modules
(nom) on the client (where n is total number of modules),
(v) stream OpenGL ES commands, and finally (vi) inject the
commands in the graphic pipeline and render a frame. This
overall interaction delay IDL is divided into three parts:

1) Processing Delay, PD, is the maximum time between
local and remote execution. Local (remote, respectively)
execution time is the sum of non-offloaded (offloaded,
respectively) modules execution delays as given in Equa-
tion (2). We used the visual studio profiler to extract these
delays.

PT = max

(
n−m∑
i=1

t
(nom)
i ,

m∑
i=1

t
(om)
i

)
(2)

2) Updating Delay, UD, is the time spent to update locally
modules inputs (such as the scripting module). We in-
strumented the code of the game to identify these delays.
The UD is then, equal to the sum of all the networked
update times t

(uom)
i for omi, given by Equation (3).

UT =

m∑
i=1

t
(uom)
i (3)

3) Communication Delay, CD, corresponds to the command
streaming delay, input commands forwarding delay, and
other control communication delay. It is the sum of the
RTT and the time to send an amount of Q data as shown
in Equation (4).

CT =
(PacketRate)× (Packet Size)

Bandwidth
+RTT (4)

The ID is given by Equation (5). It corresponds to the
average time obtained in Figure 3a.

RT = PT + UT + CT (5)

Local Offload Local Offload
0

50

100

150

200
Good Fast

Solution

In
te

ra
ct

io
n

D
el

ay
(m

s
)

PD

UD

CD

Fig. 6: Average of interaction Delay

Figure 6 illustrates the average ID achieved under both
the local and remote execution. We observe that: (1) our
framework achieves a small UD, at most 3.91ms (1.62ms,
respect.) for fast (good, respect.) quality. This time repre-
sents 3% (0.93%, respect.) of the ID. (2) The PD is 3×
longer than what we expected, 105.79ms and 151.48ms for
respectively fast and good quality. Since we leverage powerful
remote server, we hope closer performance to cloud gaming
solutions, as the consuming modules are computed on the
remote server and only command packets transit over the
network. We believe that this drawback is due to the injection
of the OpenGL ES commands in the graphic pipeline.

D. Framerate

We conclude the performance section by summarizing the
different results via the framerate performance.

Figures 7a and 7b depict the ratio of frames in a population
of 1000 frames that are generated in less than xms for the
good and fast quality, respectively. When using our heuristic,
the game engine generates more than 65% (30%, respectively)
of frames in less than 33ms for the good (fast, respectively)
quality in comparison to the local execution, where the engine
generates less than 10% of frames for the two qualities. Some
frames are composed of several GOs that highly communicate

through various modules which increase the interaction delay.
Indeed, as the figures are showing, up to 35%, 70% of frames
for the good, respectively fast quality need until 210ms and
150ms to be rendered. Our heuristic, in this case, offloads
only a few clusters, as the communication cost is higher
than the computational cost, or because no offloading gain
is obtained for these frames.

0 30 60 90 120 150 180 210 240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (in ms)

R
at

io
n

of
fr

am
es

(a) Good Quality

0 30 60 90 120 150 180 210 240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (in ms)

LocalGaming

Comp.Offload

(b) Fast Qualiy

Fig. 7: CDF for frame generation

VI. CONCLUSION

In this paper, we proposed a solution to play best-seller 3D
games with high quality encoding, on powerless devices via
offloading computation to a remote server. The concept is to
identify modules involved by each GO in the game scene.
Then, decide to offload them (as a whole) or not, depend-
ing on three main criteria: resource consumption, network
communication, and code dependency. The mobile device
and the server are synchronized through network manager,
which orchestrates the offloading. The solution is scalable and
adaptable to the network latency as only modules improving
performance are offloaded. It supports mobility since network
packets are automatically routed to the mobile device.

Our framework is still a work in progress, with several
performance optimizations still possible. In the future we
will deal with two main issues; the network latency and
the rendering activity. One of our motivations is to leverage
MEC architecture as an enabler for low-latency computation
offloading based-games. To this aim we want to rely on
our framework proposed in [23] to orchestrate the offloading
process.

REFERENCES

[1] M. Claypool and K. Claypool, “Perspectives, frame rates and resolutions:
it’s all in the game,” in Proceedings of the 4th ACM International
Conference on Foundations of Digital Games, 2009.

[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer
with code offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys 2010), San
Francisco, California, USA, June 15-18, 2010, 2010, pp. 49–62.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the IEEE INFOCOM 2012,
Orlando, FL, USA, March 25-30, 2012, 2012, pp. 945–953.

[4] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang,
“Refactoring android java code for on-demand computation offloading,”
in Proceedings of the 27th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25,
2012, 2012, pp. 233–248.

[5] Y. Zhang, G. Huang, W. Zhang, X. Liu, and H. Mei, “Towards module-
based automatic partitioning of java applications,” Frontiers of Computer
Science, vol. 6, no. 6, pp. 725–740, 2012.

[6] E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu,
and M. Musuvathi, “Kahawai: High-quality mobile gaming using GPU
offload,” in Proceedings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys 2015, Florence,
Italy, May 19-22, 2015, 2015, pp. 121–135.

[7] D. Huang, L. Yang, and S. Zhang, “Dust: Real-time code offloading
system for wearable computing,” in 2015 IEEE Global Communications
Conference, GLOBECOM 2015, San Diego, CA, USA, December 6-10,
2015, 2015, pp. 1–7.

[8] M. Claypool and K. T. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, 2006.

[9] Y. Lee, K. Chen, H. Su, and C. Lei, “Are all games equally cloud-
gaming-friendly? an electromyographic approach,” in Proceedings of the
11th ACM Netgames Workshop, 2012.

[10] P. Quax, A. Beznosyk, W. Vanmontfort, and R. Marx, “An evaluation
of the impact of game genre on user experience in cloud gaming,” in
Proc. of the IEEE Int. Games Innov. Conf. (IGIC), 2013, pp. 216–221.

[11] M. Jarschel and D. Schlosser, “An evaluation of qoe in cloud gaming
based on subjective tests,” in Proceedings of the 5th Conf. on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011.

[12] G. J. Armitage and A. Heyde, “REED: optimizing first person shooter
game server discovery using network coordinates,” TOMCCAP, vol. 8,
no. 2, p. 20, 2012.

[13] Y. Li, X. Tang, and W. Cai, “Play request dispatching for efficient
virtual machine usage in cloud gaming,” IEEE Trans. Circuits Syst. Video
Techn., vol. 25, no. 12, pp. 2052–2063, 2015.

[14] D. Q. M. Lantin and A. G. S. Arden, “High frame rate (hfr), a white
paper.”

[15] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross, “Surfels: Surface
elements as rendering primitives,” in Proceedings of the 27th annual
conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 335–342.

[16] F. Messaoudi, G. Simon, and A. Ksentini, “Dissecting games engines:
The case of unity3d,” in Network and Systems Support for Games
(NetGames), 2015 International Workshop on, Dec 2015, pp. 1–6.

[17] F. Messaoudi, A. Ksentini, G. Simon, and P. Bertin, “Performance
analysis of game engines on mobile and fixed devices,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 13, no. 4, pp. 57:1–57:28,
Sep. 2017.

[18] S. Ou, K. Yang, and A. Liotta, “An adaptive multi-constraint partitioning
algorithm for offloading in pervasive systems,” in 4th IEEE International
Conference on Pervasive Computing and Communications (PerCom
2006), 13-17 March 2006, Pisa, Italy, 2006, pp. 116–125.

[19] M. Othman and S. Hailes, “Power conservation strategy for mobile
computers using load sharing,” Mobile Computing and Communications
Review, vol. 2, no. 1, pp. 44–51, 1998.

[20] X. Gu, A. Messer, I. Greenberg, D. S. Milojicic, and K. Nahrstedt,
“Adaptive offloading for pervasive computing,” IEEE Pervasive Com-
puting, vol. 3, no. 3, pp. 66–73, 2004.

[21] S. Ou, K. Yang, and Q. Zhang, “An efficient runtime offloading
approach for pervasive services,” in IEEE Wireless Communications
and Networking Conference, WCNC 2006, 3-6 April 2006, Las Vegas,
Nevada, USA, 2006, pp. 2229–2234.

[22] W. He, K. Yuan, H. Xiao, and Z. Xu, “A high speed robot vision system
with gige vision extension,” in 2011 IEEE International Conference on
Mechatronics and Automation. IEEE, 2011, pp. 452–457.

[23] F. Messaoudi, A. Ksentini, and P. Bertin, “On using edge computing
for computation offloading in mobile network,” in 2017 IEEE Global
Communications Conference, GLOBECOM 2017, Singapore, December
4-8, 2017, 2017, pp. 1–7.

	Introduction
	Game Engines Background
	Interactivity and Framerate
	Main Modules
	Scene Representation

	Methodology
	Game
	platform
	Quality Encoding

	Proposed Framework
	Proposed Heuristic

	Performance
	CPU Consumption
	Network Communication
	Responsiveness
	Framerate

	Conclusion
	References

