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Abstract—We present RUDIK, a system for the discovery of
declarative rules over knowledge-bases (KBs). RUDIK discovers
rules that express positive relationships between entities, such
as “if two persons have the same parent, they are siblings”,
and negative rules, i.e., patterns that identify contradictions in
the data, such as “if two persons are married, one cannot be
the child of the other”. While the former class infers new facts
in the KB, the latter class is crucial for other tasks, such as
detecting erroneous triples in data cleaning, or the creation of
negative examples to bootstrap learning algorithms. The system is
designed to: (i) enlarge the expressive power of the rule language
to obtain complex rules and wide coverage of the facts in
the KB, (ii) discover approximate rules (soft constraints) to be
robust to errors and incompleteness in the KB, (iii) use disk-
based algorithms, effectively enabling rule mining in commodity
machines. In contrast with traditional ranking of all rules based
on a measure of support, we propose an approach to identify the
subset of useful rules to be exposed to the user. We model the
mining process as an incremental graph exploration problem and
prove that our search strategy has guarantees on the optimality of
the results. We have conducted extensive experiments using real-
world KBs to show that RUDIK outperforms previous proposals
in terms of efficiency and that it discovers more effective rules
for the application at hand.

I. INTRODUCTION

Building large RDF knowledge-bases (KBs) is a popular
trend in information extraction. KBs store information in the
form of triples, where a predicate, expresses a binary relation
between a subject and an object. KB triples, called facts, store
information about real-world entities and their relationships,
such as “Michelle Obama is married to Barack Obama”.
Significant effort has been put on KBs creation in the last
10 years in the research community (DBPedia [3], FreeBase
[4], Wikidata [24], DeepDive [19], Yago [20]) as well as in
the industry (e.g., Google [10], Wal-Mart [9]).

Unfortunately, due to their creation process, KBs are
usually erroneous and incomplete. KBs are bootstrapped by
extracting information from sources with minimal or no human
intervention. This leads to two main problems. First, false facts
are propagated from the sources to the KBs, or introduced
by the extractors [10]. Second, usually KBs do not limit the
information of interest with a schema and let users add facts
defined on new predicates by simply inserting new triples.
Since closed world assumption (CWA) does no longer hold in
KBs [10], [13], we cannot assume that a missing fact is false,
but we rather label it as unknown (open world assumption).

As a consequence, the amount of errors and incompleteness
in KBs can be significant, with up to 30% errors for facts

derived from the Web [1], [21]. Since KBs are large, e.g.,
WIKIDATA has more than 1B facts and 300M entities, checking
all triples to find errors or to add new facts cannot be done
manually. A natural approach to assist curators is to discover
declarative rules that can be executed over the KB to improve
the quality of the data [2], [5], [13]. We target the discovery
of two types of rules: (i) positive rules to enrich the KB with
new facts and thus increase its coverage, (ii) negative rules to
spot logical inconsistencies and identify erroneous triples.

Example 1: Consider a KB with information about parent and
child relationships. A positive rule is the following:

r1 : parent(b, a)ñ child(a, b)

stating that if a person a is parent of person b, then b is child
of a. A negative rule has similar form, but different semantics.
For example (DOB stands for Date Of Birth),

r2 : DOB(a, v0)^ DOB(b, vi)^ v0 ą vi ^ child(a, b)ñ K

states that person b cannot be child of a if a was born after b.
By executing the rule as a query over child facts, we identify
erroneous triples.

In order to be executed over a KB, or plugged into an
existing inference system [17], rules must be manually crafted,
a task that can be difficult for domain experts without a CS
background. Also, the rule creation process is usually very
expensive, as large KB can have rules in the thousands [22].
A rule discovery system is therefore a crucial asset to help the
users in data curation. However, three main challenges arise
when discovering positive and negative rules from KBs.

Data Quality. While traditional rule mining techniques assume
that data is either clean or has a negligible amount of errors [6],
KBs can present errors and are incomplete.

Open World Assumption. Other approaches rely on the
presence of positive and negative examples [8], [16], but KBs
contain only positive statements, and, without CWA, there is
no immediate solution to derive counter examples.

Volume. Existing approaches for rule discovery assume that
data fit into main memory [2], [13], [5], [12]. Given the large
and increasing size of KBs, these approaches focus on a simple
rule language to minimize the size of the search space.

We present RUDIK (Rule Discovery in Knowledge Bases),
a novel system for the discovery of rules over KBs that
addresses these challenges. RUDIK is the first system designed
to discover both positive and negative rules over noisy and
incomplete KBs. By relying on disk based algorithms, RUDIK



can handle a larger search space and discover rules with a
richer language that allows value comparisons. This increase
in the expressive power enables a larger number of patterns to
be expressed in the rules, and therefore a larger number of new
facts and errors can be identified with high accuracy. These
results are achieved by exploiting the following contributions.

1. Problem Definition. We formally define the problem of
robust rule discovery over erroneous and incomplete KBs. The
input of the problem are two sets of positive and negative
examples for every predicate. In contrast to the traditional
ranking of a large set of rules based on a measure of
support [8], [13], [18], our problem definition aims at the
identification of a subset of approximate rules, i.e., rules that
do not necessarily hold over all the examples, since data errors
and incompleteness are in the nature of KBs. The solution
is then the smallest set of rules that cover the majority of
input positive examples, and as few input negative examples
as possible (Section III).

2. Example Generation. Positive and negative examples
for a target predicate are crucial to our approach as they
determine the ultimate quality of the rules. However, crafting
a large number of negative examples is a tedious exercise that
requires manual work. We present an algorithm for example
generation that is aware of missing data and inconsistencies
in the KB. Our generated examples lead to better rules than
examples obtained with alternative approaches (Section IV).

3. Rule Discovery Algorithm. We give a log(k)-
approximation algorithm for the rule discovery problem, where
k is the maximum number of input positive examples covered
by a single rule. We discover rules by judiciously using the
memory. The algorithm incrementally materializes the KB as
a graph, and discovers rules by navigating only the paths that
potentially lead to the best rules. By materializing only the
portion of the KB that is needed for the promising rules,
the disk-access is minimized and the low memory footprint
enables the mining with a richer rule language (Section V).

We experimentally test the performance of RUDIK on
three popular and widely used KBs. We show that our system
delivers accurate rules, with a relative increase in average
precision by 45% both in the positive and in the negative
settings w.r.t. state-of-the-art systems. Also, differently from
other proposals, RUDIK performs consistently well with KBs
of all sizes on a regular laptop. Finally, we demonstrate
how discovered negative rules provide Machine Learning
algorithms with training examples of quality comparable to
examples manually crafted by humans (Section VI).

II. PRELIMINARIES

We focus on discovering rules from RDF KBs. An RDF
KB is a database that represents information through RDF
triples xs, p, oy, where a subject (s) is connected to an ob-
ject (o) via a predicate (p). Triples are often called facts.
For example, the fact that Scott Eastwood is the child
of Clint Eastwood could be represented through the triple
xClint Eastwood, child, Scott Eastwoody. RDF KB triples
respect three constraints: (i) triple subjects are always entities,
i.e., concepts from the real world; (ii) triple objects can be
either entities or literals, i.e., primitive types such as numbers,
dates, and strings; (iii) triple predicates specify real-world
relationships between subjects and objects.

Differently from relational databases, KBs usually do not
have a schema that defines allowed instances, and new pred-
icates can be added by inserting triples. This model allows
great flexibility, but the likelihood of introducing errors is
higher than traditional schema-guided databases. While KBs
can include T-Box facts to define classes, domain/co-domain
types for predicates, and relationships among classes to check
integrity, in most KBs – including the ones used in our
experiments – such information is missing. Hence our focus
is on the A-Box facts that describe instance data.

A. Language

Our goal is to automatically discover first-order logical
formulas in KBs. More specifically, we target the discovery of
Horn Rules with universally quantified variables only. A Horn
Rule is a disjunction of atoms with at most one unnegated
atom. In the implication form, they have the following format:

A1 ^A2 ^ ¨ ¨ ¨ ^An ñ B

where A1^A2^¨ ¨ ¨^An is the body of the rule (a conjunction
of atoms) and B is the head of the rule (a single atom).
However, it is logically equivalent to rewrite the atom in the
head of the rule in its negated form in the body to emphasize
contradictions:

A1 ^A2 ^ ¨ ¨ ¨ ^An ^ B ñ K

We therefore distinguish between positive rules, which gener-
ate new facts (e.g., r1 in Example 1), and negative rules (e.g.,
r2 in Example 1), which identify incorrect facts, similarly to
denial constraints for relational data [6]. An atom is a predicate
connecting two variables, two entities, or an entity and a
variable. For simplicity, we write an atom with the notation
rel(a, b), where rel is a KB predicate and a, b are either
variables or entities. Given a rule r, we define rbody and rhead
as the body and the head of the rule, respectively, and refer to
the variables in the head of the rule as the target variables.

We remark that we also discover rules with a body atom
in its negated form in the head. The result is a formula
that generates negative facts. For example, negative rule r2
is obtained by rewriting in the body the atom notChild in
the following rule:

r12 : DOB(a, v0)^DOB(b, vi)^v0 ą vi ñ notChild(a, b)

As shown in the negative rule, we allow literal comparisons
in our rules. A literal comparison is a special atom rel(a, b),
where rel P tă,ď,‰,ą,ěu, and a and b can only be
assigned to literal values except if rel is equal to ‰, i.e.,
we allow inequality comparisons for entities.

Given a KB kb and an atom A “ rel(a, b) where a and b
are two entities, we say that A holds over kb iff xa,rel, by P
kb. Given an atom A “ rel(a, b) with at least one variable,
we say that A can be instantiated over kb if there exists at least
one entity from kb for each variable in A s.t. if we substitute all
variables in A with these entities, A holds over kb. Transitively,
we say that rbody can be instantiated over kb if every atom
(with entities) in rbody can be instantiated and every literal
comparison is logically true.

As in other approaches [13], [5], we want to avoid Carte-
sian products in our rules and therefore define a rule valid



iff every variable in it appears at least twice. Target variables
already appear once in the head of the rule, but each non target
variable must be involved in a join or in a comparison.

B. Rule Coverage

Given a pair of entities px, yq from a KB kb and a Horn
Rule r, we say that rbody covers px, yq if px, yq |ù rbody . In
other words, given a rule r : rbody ñ r(a, b), rbody covers a
pair of entities px, yq P kb iff we can substitute a with x, b with
y, and the rest of the body can be instantiated over kb. Given
a set of pair of entities E “ tpx1, y1q, px2, y2q, ¨ ¨ ¨ , pxn, ynqu
and a rule r, we denote by CrpEq the coverage of rbody over
E as the set of elements in E covered by rbody: CrpEq “
tpx, yq P E|px, yq |ù rbodyu.

Given the body rbody of a rule r, we denote by r˚body
the unbounded body of r. The unbounded body of a rule is
obtained by keeping only atoms that contain a target variable
and substituting such atoms with new atoms where the target
variable is paired with a new unique variable. As an example,
given rbody “ rel1(a, v0) ^ rel2(v0, b) where a and b
are the target variables, r˚body “ rel1(a, vi)^rel2(vii, b).
While in rbody the target variables are bounded to be connected
by variable v0, in r˚body they are unbounded. Given a set
of pair of entities E “ tpx1, y1q, px2, y2q, ¨ ¨ ¨ , pxn, ynqu and
a rule r, we denote by UrpEq the unbounded coverage of
r˚body over E as the set of elements in E covered by r˚body:
UrpEq “ tpx, yq P E|px, yq |ù r˚bodyu. Note that, given a set
E, CrpEq Ď UrpEq.

Example 2: We denote with E the set of all possible pairs
of entities in kb. The coverage of r2 of Example 1 over E
pCrpEqq is the set of all pairs of entities px, yq P kb s.t. both
x and y have the DOB information and x is born after y. The
unbounded coverage of r over E pUrpEqq is the set of all pairs
of entities px, yq s.t. both x and y have the DOB information,
no matter what the relation between the two birth dates is.

The unbounded coverage is essential to distinguish between
missing and inconsistent information: if for a pair of entities
px, yq the DOB is missing for either x or y, we cannot say
whether x was born before or after y. But if both x and y have
the DOB and x is born before y, we can state that r2 does not
cover px, yq. As KBs are incomplete, we must discriminate
between missing and conflicting information. We extend the
definition of coverage and unbounded coverage to a set of rules
R “ tr1, r2, ¨ ¨ ¨ , rnu as the union of individual coverages:

CRpEq “
ď

rPR

CrpEq URpEq “
ď

rPR

UrpEq

III. RULE DISCOVERY FOR NOISY KBS

For the sake of simplicity, we define the discovery problem
for a single target predicate given as input. To obtain all rules
for a given KB, we compute rules for every predicate in it. We
characterize a predicate with two sets of pairs of entities. The
generation set G contains examples for the target predicate,
while the validation set V contains counter examples for the
same. Consider the discovery of positive rules for the child
predicate; G contains true pairs of parents and children and V
contains pairs of people who are not in a child relation. If we
want to identify errors (negative rules), the sets of examples

are the same, but they switch role. To discover negative rules
for child, G contains pairs of people not in a child relation
and V contains pairs of entities respecting the child relation.

We formalize next the exact discovery problem. In the
following definitions, we assume for the sake of simplicity
that all possible valid rules and the sets of examples have been
already generated, we detail in the rest of the paper how they
are efficiently obtained from the KB.

Definition 1: Given a KB kb, two sets of pairs of entities G
and V from kb with GXV “ H, and all the valid Horn Rules
R for kb, a solution for the exact discovery problem is a subset
R1 of R s.t.:

argmin
R1

psizepR1q|pCR1pGq “ Gq ^ pCR1pV q X V “ Hqq

The exact solution is the minimal set of rules that covers
all pairs in G and none of the pairs in V . It minimizes the
number of rules in the output (sizepR1q) to avoid overfitting
rules covering only one pair, as such rules have no impact when
applied on the KB. In fact, given a pair of entities px, yq, there
is always an overfitting rule whose body covers only px, yq by
assigning target variables to x and y as shown next.

Example 3: Consider the discovery of positive rules for the
predicate couple between two persons using as example the
Obama family. A positive example is (Michelle, Barack) and
a negative example is their daughters (Malia, Natasha). Given
three rules:

r3 : livesIn(a, v0)^ livesIn(b, v0)ñ couple(a, b)

r4 : hasChild(a, vi)^ hasChild(b, vi)ñ couple(a, b)

r5 : hasChild(Michelle,Malia)^ hasChild(Barack,Malia)

ñ couple(Michelle, Barack)

Rule r3 states that two persons are a couple if they live in
the same place, while rule r4 states that they are a couple
if they have a child in common. Assuming the information
livesIn(x,y) and hasChild(x,y) are in the KB, both
rules r3 and r4 cover the positive example. Rule r4 is an exact
solution, as it does not cover the negative example, while this
is not true for r3, as also the daughters live in the same place.
Rule r5 explicitly mentions entity values (constants) in its head
and body. It is also an exact solution, but it applies only for
the given positive example.

If any of the hasChild relationships between the parents
and the daughters is missing in G, the exact discovery would
find only r5 as a solution. This highlights that the exact
discovery is not robust to data problems in KBs. Even if a
valid rule exists semantically, missing triples or errors for the
examples in G and V can lead to faulty coverage. In the worst
case, every rule in the exact solution would cover only one
example in G, i.e., a set of overfitting rules with no effect
when applied on the KB.

A. Weight Function

Given errors and missing information in both G and V ,
we drop the requirement of exactly covering the sets with the
rules. In other words, we mine rules that hold for most of
the data (soft-constraints), as we want to be robust w.r.t. noise
and incompleteness. However, coverage is a strong indicator of



quality: good rules should cover several examples in G, while
covering elements in V can be an indication of incorrect rules.
We model this idea in a weight associated with every rule.

Definition 2: Given a KB kb, two sets of pair of entities G
and V from kb with G X V “ H, and a Horn Rule r, the
weight of r is defined as follow:

wprq “ α ¨ p1´
| CrpGq |

| G |
q ` β ¨ p

| CrpV q |

| UrpV q |
q (1)

with α, β P r0, 1s and α` β “ 1, thus wprq P r0, 1s.

The weight captures the quality of a rule w.r.t. G and
V : the better the rule, the lower the weight – a perfect
rule covering all generation elements of G and none of the
validation elements in V has a weight of 0. The weight is
made of two components normalized by parameters α and β.
The first component captures the coverage over the generation
set G – the ratio between the coverage of r over G and G itself.
The second component quantifies the coverage of r over V .
The coverage over V is divided by the unbounded coverage
of r over V , instead of the total elements in V , because some
elements in V might not have the predicates stated in rbody .
Intuitively, we restrict V with unbounded coverage to validate
on “qualifying” examples.

Parameters α and β give relevance to each component. A
high β steers the discovery towards rules with high precision
by penalizing the ones that cover negative examples, while a
high α champions the recall by favoring rules covering more
generation examples.

Example 4: Consider again rule r2 of Example 1 and two sets
of pairs of entities G and V from a KB kb. The first component
of wr is computed as 1 minus the number of pairs px, yq in
G where x is born after y divided by the number of elements
in G. The second component is the ratio between number of
pairs px, yq in V where x is born after y and number of pairs
px, yq in V where the birth date for both x and y is known in
kb, i.e., examples with missing birth dates are not in Ur2pV q.

Definition 3: Given a set of rules R, the weight for R is:

wpRq “ α ¨ p1´
| CRpGq |

| G |
q ` β ¨ p

| CRpV q |

| URpV q |
q

Weights enable the modeling of the presence of errors in
KBs. Consider the case of negative rule discovery, where V
contains positive examples from the KB. We report in the
experimental evaluation several negative rules with significant
coverage over V , which corresponds to errors in the KB.
The weight is important also for plugging rules into existing
inference systems for KBs. For example, weighted rules can be
interpreted as soft constraints for probabilistic reasoning [17].

B. Problem Definition

We can now state the approximate version of the problem.

Definition 4: Given a KB kb, two sets of pair of entities G
and V from kb with G X V “ H, all the valid Horn Rules
R for kb, and a w weight function for R, a solution for the
robust discovery problem is a subset R1 of R such that:

argmin
R1

pwpR1q|CR1pGq “ Gq

The robust version of the discovery problem aims to
identify rules that cover all elements in G and as few as
possible elements in V . Since we do not want overfitting rules,
we do not generate in R rules having constants in both target
variables, thus avoiding any rule that covers only one example.

We can map this problem to the weighted set cover prob-
lem, which is proven to be NP–complete [7]. The reduction
follows immediately from the following mapping: the set of
elements (universe) corresponds to the generation examples
in G, the input sets are identified by the rules defined in R
(where each rule covers a subset of G), the non-negative weight
function w : r Ñ IR is wprq in Definition 2, and the cost of
R is defined to be its total weight, according to Definition 3.

IV. RULE AND EXAMPLE GENERATION

In this Section we describe how to generate the universe
of all possible rules. We start by assuming that the positive
and the negative examples are given, and then show how they
can be computed. However, our approach is independent of
how G and V are generated: they could be manually crafted
by domain experts, with significant additional manual effort.

We detail the discovery of positive rules having true facts
in G and false facts in V . In the dual problem of negative rule
discovery, our approach remains unchanged, we just switch the
roles of G and V . The generation set G is formed out of false
facts, while the validation set V is built from true facts.

A. Rule Generation

In the universe of all possible rules R, each rule must cover
one or more examples from the generation set G. Thus the
universe of all possible rules is generated by inspecting the
elements of G alone. We translate a KB kb into a directed
graph: entities and literals are the nodes, and there is a directed
edge from node a to node b for each triple xa, rel, by P kb.
Edges are labelled with the relation rel that connects subject
to object. Figure 1 shows four triples.

child
parent

birthDate birthDate

Clint
Eastwood

Scott
Eastwood

May 31,
1930

March 21,
1986

Fig. 1. Graph example for four triples from DBpedia.

The body of a rule can be seen as a path in the graph. In
Figure 1, the body child(a, b)^parent(b, a) corresponds
to the path Clint Eastwood Ñ Scott Eastwood Ñ Clint
Eastwood. As defined in Section II-A, a valid body contains
target variables a and b at least once, every other variable at
least twice, and atoms are transitively connected. If we allow
navigation of edges independently of the edge direction, we
can translate bodies of valid rules to valid paths on the graph.
Given a pair of entities px, yq, a valid body corresponds to a
valid path p on the graph such that: (i) p starts at the node
x; (ii) p covers y at least once; (iii) p ends in x, in y, or
in a different node that has been already visited. Given the
body of a rule rbody , rbody covers a pair of entities px, yq
iff there exists a valid path on the graph that corresponds to
rbody . This implies that for a pair of entities px, yq, we can
generate bodies of all possible valid rules by computing all



valid paths starting at x with a standard BFS. The key point
is the ability to navigate each edge in any direction by turning
the original directed graph into an undirected one. However,
we need to keep track of the original direction of the edges.
This is essential when translating paths to rule bodies. In fact,
an edge directed from a to b produces the atom rel(a, b),
while b to a produces rel(b, a).

Since every node can be traversed multiple times, for two
entities x and y there might exist infinite valid paths starting
from x. This is avoided with a maxPathLen parameter that
determines the maximum number of edges in the path, i.e.,
the maximum number of atoms allowed in the corresponding
body of the rule. We show the impact of this parameter in
Section VI.

We now describe the two main steps in our generation of
the universe of all possible rules for G.

1. Create Paths. Given a pair of entities px, yq, we retrieve
from the KB all nodes at a distance smaller than maxPathLen
from x or y, along with their edges. The retrieval is done
recursively: we maintain a queue of entities, and for each entity
in the queue we execute a SPARQL query against the KB to
get all entities (and edges) at distance 1 from the current entity
– we call these queries single hop queries. At the n-th step,
we add the new found entities to the queue iff they are at a
distance less than (maxPathLen ´ n) from x or y and they
have not been visited before. The queue is initialized with x
and y. Given the graph for every px, yq, we then compute all
valid paths starting from every x.

2. Evaluate Paths. Computing paths for every example in G
implies also computing the coverage over G for each rule. The
coverage of a rule r is the number of elements in G for which
there exists a path corresponding to rbody . Once the universe
of all possible rules has been generated (along with coverages
over G), computing coverage and unbounded coverage over
V requires only the execution of two SPARQL queries against
the KB for each rule in the universe.

Since one of our goals is to increase the expressive power
of discovered rules, we generate different atom types:

Literal comparison. We want predicate atoms with compar-
isons beyond equalities. To discover such atoms, the graph
representation must contain edges that connect literals with
one (or more) symbol from tă,ď,‰,ą,ěu. As an example,
Figure 1 would contain an edge ‘ă’ from node “March 31,
1930” to node “March 21, 1986”. Unfortunately, the original
KB does not contain this kind of information explicitly, and
materializing such edges among all literals is infeasible.

However, in our algorithm we discover paths for a pair of
entities from G in isolation. The size of the graph resulting for
a pair of entities is orders of magnitude smaller than the KB,
thus we can afford to compare all literal pairwise comparisons
within a single example graph. Besides equality comparisons,
we add ‘ą’,‘ě’,‘ă’,‘ď’ relationships between numbers and
dates, and ‰ between all literals. These new relationships
are treated as normal atoms (edges): x ě y is equivalent to
rel(x, y), where rel is equal to ě.

Not equal variables. The “not equal” operator introduced for
literals is useful for entities as well. Consider the rule:

bornIn(a, x)^ x ‰ b^ president(a, b)ñ K

It states that if a person a is born in a country that is different
from b, then a cannot be the president of b. One way to
consider inequalities among entities is to add edges among
all pairs of entities in the graph. However, this strategy is
inefficient and would lead to many meaningless rules. To limit
the search space while aiming at meaningful rules, we use the
rdf:type triples associated to entities. We add an inequality
edge in the input example graph only between pairs of entities
of the same type (as in the example above).

Constants. Finally, we allow the discovery of rules with
constant selections. Suppose that for the above president rule,
all examples in G are people born in “U.S.A.”, and there is at
least one country for which this rule is not valid. According
to our problem statement, the right rule is therefore:

bornIn(a, x)^ x ‰ U.S.A. ñ  president(a,U.S.A.)

To discover such atoms, we promote a variable v in a given
rule r to an entity e iff for every px, yq P G covered by r, v
can always be instantiated with the same value e.

B. Input Example Generation

Given a KB kb and a predicate rel P kb, we automatically
build a generation set G and a validation set V as follows.
G consists of positive examples for the target predicate rel,
i.e., all pairs of entities px, yq such that xx, rel, yy P kb. V
consists of counter (negative) examples for the target predicate.
These are more complicated to generate because of the open
world assumption in KBs. Differently from classic databases,
we cannot assume that what is not stated in a KB is false
(closed world assumption), thus everything that is not stated
is unknown. However, since the likelihood of two randomly
selected entities being a positive example is extremely low,
one simple way of creating false facts is to randomly select
pairs from the Cartesian product of the entities [16]. While this
process gives negative examples with a very high precision,
only a very small fraction of these entity pairs are semantically
related. This semantic aspect has effects in the applications that
use the generated negative examples. In fact, unrelated entities
have less meaningful paths than semantically related entities
and this is reflected in lower quality in the experimental results.

A semantic connection is guaranteed for positive examples
by definition, since pairs in G are always connected at least
by the target predicate. To generate negative examples that are
likely to be correct (true false facts) and that are semantically
related, we mine the facts to identify the entities that are
more likely to be complete, i.e., entities for which the KB
contains full information. This process is done exploiting and
extending the popular notion of Local-Closed World Assump-
tion (LCWA) [13]. LCWA states that if a KB contains one or
more object values for a given subject and predicate, then it
contains all possible values. For example, if a KB contains
one or more children of Clint Eastwood, then it contains all
his children. This is always true for functional predicates (e.g.,
capital), while it might not hold for non-functional ones
(e.g., child).

We generate negative examples taking the union of entities
satisfying the LCWA. For a predicate rel, a negative example
is a pair px, yq where either x is the subject of one or more



triples xx, rel, y1y with y ‰ y1, or y is the object of one or more
triples xx1, rel, yy with x ‰ x1. For example, if rel “ child,
a negative example is a pair px, yq s.t. x has some children
in the KB who are not y, or y is the child of someone who
is not x. The LCWA guarantees that, since at least another
child exists for x, px, yq cannot be in such relation and we
can safely use the pair as a counter-example. In addition, to
obtain examples that are semantically related, it is enough to
add the constraint that every example is made from a pair of
entities that are connected via a predicate different from the
target predicate. In other words, given a KB kb and a target
predicate rel, px, yq is a negative example if xx, rel1, yy P kb,
with rel1 ‰ rel.

Example 5: A negative example px, yq for the target predicate
child has the following characteristics: (i) x and y are not
connected by a child predicate; (ii) either x has one or
more children (different from y) or y has one or more parents
(different from x); (iii) x and y are connected by a predicate
that is different from child (e.g., colleague).

To enhance the quality of the input examples and avoid
cases of mixed types, we require that for every example pair
px, yq, either in G or V , all the x occurrences have the same
type, same for the y values.

V. DISCOVERY ALGORITHM

We introduce a greedy approach to solve the approximate
discovery problem (Section III-B). Since the number of pos-
sible rules can be very large, we introduce an algorithm that
generates only promising rules from the KB, while preserving
the same quality guaranteed by the exhaustive generation.

A. Marginal Weight for a Greedy Algorithm

Our goal is to discover a set of rules to produce a weighted
set cover for the given examples. We therefore follow the
intuition behind the greedy algorithm for weighted set cover by
defining a marginal weight for rules that are not yet included
in the solution [7].

Definition 5: Given a set of rules R and a rule r such that
r R R, the marginal weight of r w.r.t. R is defined as:

wmprq “ wpRY truq ´ wpRq

The marginal weight quantifies the weight increase by
adding r to an existing set of rules. Since the problem aims
at minimizing the total weight, we never add a rule to the
solution if its marginal weight is greater than or equal to 0.

If all rules have been generated, the algorithm for greedy
rule selection is quite straightforward: given a generation set
G, a validation set V , and the universe of all possible rules R,
pick at each iteration the rule r with minimum marginal weight
and add it to the solution R1. The algorithm stops when one
of the following termination conditions is met: 1) R is empty
– all the rules have been included in the solution; 2) R1 covers
all elements of G; 3) the minimum marginal weight is greater
than or equal to 0, i.e., among the remaining rules in R, none
of them has a negative marginal weight.

The greedy solution guarantees a log(k) approximation
to the optimal solution [7], where k is the largest number of
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Fig. 2. Two positive examples.

elements covered in G by a rule in R. If the optimal solution is
made of rules that cover disjoint sets over G, then the greedy
solution coincides with the optimal one.

B. A˚ Graph Traversal

The greedy algorithm for weighted set cover assumes that
the universe of rules R has been generated. To generate R, we
need to traverse all valid paths from a node x to a node y, for
every pair px, yq P G. But do we need all possible paths for
every example?

Example 6: Consider the mining of positive rules for the
target predicate spouse. The generation set G includes two
examples g1 and g2 shown as graphs in Figure 2. Assume
for simplicity that all rules in the universe have the same
coverage and unbounded coverage over the validation set V .
One candidate rule is r : child(x, v0)^ child(y, v0)ñ
spouse(x, y), stating that entities x and y with a common
child are married. In the graph, r covers both g1 and g2. Since
all rules have the same coverage and unbounded coverage over
V , there is no need to generate any other rule. In fact, any other
candidate rule will not cover new elements in G, therefore their
marginal weights will be greater than or equal to 0. Thus the
creation and navigation of edges livesIn in g1, worksAt
in g2, and partner in g2 is not needed.

Based on the above observation, we avoid the generation of
the entire universe R, but rather consider at each iteration the
most promising path on the graph as in the A˚ graph traversal
algorithm [14]. For each example px, yq P G, we start the
navigation from x. We keep a queue of not valid rules, and at
each iteration we consider the rule with the minimum marginal
weight, which corresponds to paths in the example graphs. We
expand the rule by following the edges, and we add the new
founded rules to the queue of not valid rules. Unlike A˚, we do
not stop when a rule (path) reaches the node y (i.e., becomes
valid). Whenever a rule becomes valid, we add the rule to the
solution and we do not expand it any further. The algorithm
keeps looking for plausible paths until one of the termination
conditions of the greedy cover algorithm is met.

A crucial point in A˚ is the definition of the estimation
cost. To guarantee the solution to be optimal, the estimation
must be admissible [14], i.e., the estimated cost must be less
than or equal to the actual cost. In our setting, given a rule
that is not yet valid and needs to be expanded, we define an
admissible estimation of the marginal weight.

Definition 6: Given a rule r : A1 ^ A2 ¨ ¨ ¨An ñ B, we
say that a rule r1 is an expansion of r iff r1 has the form
A1 ^A2 ¨ ¨ ¨An ^An`1 ñ B.

In the graph traversal, expanding r means traversing one
further edge on the path defined by rbody . To guarantee the
optimality condition, the estimated marginal weight for a rule
r that is not valid must be less than or equal to the actual



Algorithm 1: RUDIK Rule Discovery.
input : G – generation set
input : V – validation set
input : maxPathLen – maximum rule body length
output: Ropt – union of rules in the solution

1 Ropt ÐH;
2 Nf Ð tx|px, yq P Gu;
3 Qr Ð expandFrontierspNf q;
4 r Ð argmin

rPQr

pw˚mprqq;

5 repeat
6 Qr Ð Qrztru;
7 if isValidprq then
8 Ropt Ð Ropt Y tru;

9 else
// rules expansion

10 if lengthprbodyq ă maxPathLen then
11 Nf Ð frontiersprq;
12 Qr Ð Qr Y expandFrontierspNf q;

13 r Ð argmin
rPQr

pw˚mprqq;

14 until Qr “ H_ CRoptpGq “ G_ w˚mprq ě 0;
15 return Ropt

weight of any valid rule that is generated by expanding r.
Given a rule and some expansions of it, we can derive the
following.

Lemma 1: Given a rule r and a set of pair of entities E, then
for each r1 expansion of r, Cr1pEq Ď CrpEq and Ur1pEq Ď
UrpEq.

The above Lemma states that the coverage and unbounded
coverage of an expansion r1 of r are contained in the cover-
age and unbounded coverage of r, respectively, and directly
derives from the augmentation inference rule for functional
dependencies. The only positive contribution to marginal
weights is given by |CRYtrupV q|. |CRYtrupV q| is equivalent to
|CRpV q|` |CrpV qzCRpV q|, thus if we set |CrpV qzCRpV q| “
0 for any r that is not valid, we guarantee an admissible
estimation of the marginal weight. We estimate the coverage
over the validation set to be 0 for any rule that can be further
expanded, since expanding it may bring the coverage to 0.

Definition 7: Given a not valid rule r and a set of rules R,
we define the estimated marginal weight of r as:

w˚mprq “ ´α¨
|CrpGqzCRpGq|

|G|
`β¨p

|CRpV q|

|URYtrupV q|
´
|CRpV q|

|URpV q|
q

The estimated marginal weight for a valid rule is equal to
the actual marginal weight (Definition 5). Valid rules are not
considered for expansion, therefore we do not need to estimate
their weights since we know the actual ones. Given Lemma 1,
we can see that w˚mprq ď w˚mpr

1q, for any r1 expansion of r.
Thus our marginal weight estimation is admissible.

We are ready to introduce Algorithm 1, which shows
the modified set cover procedure, including the A˚-like rule
generation. For a rule r, we call frontier nodes, Nf prq,
the last visited nodes in the paths that correspond to rbody
from every example graph covered by r. Expanding a rule
r implies navigating a single edge from any frontier node.
In the algorithm, the set of frontier nodes is initialized with

starting nodes x, for every px, yq P G (Line 2). The algorithm
maintains a queue of rules Qr, from which it chooses at
each iteration the rule with minimum estimated weight. The
function expandFrontiers retrieves all nodes (along with
edges) at distance 1 from frontier nodes and returns the set of
all rules generated by this one hop expansion. Qr is therefore
initialized with all rules of length 1 starting at x (Line 3). In
the main loop, the algorithm checks if the current best rule r
is valid or not. If r is valid, it is added to the output and it
is not expanded (Line 8). If r is not valid, it is expanded iff
the length of its body is less than maxPathLen (Line 10).
The termination conditions and the last part of the algorithm
are the same of the greedy set-cover algorithm, except that the
output may not cover all input examples in G.

To analyze the complexity of Algorithm 1, we assume that
each query has a constant cost (linear scan over an index).
Each iteration in Algorithm 1 corresponds to the discovery of
a rule (valid or invalid), and for each rule we count how many
examples from G such a rule covers. The total number of
iterations is at most the total number of rules. The worst case
is a complete graph where for each predicate p in the KB and
for each pair of nodes px, yq, there exists a labelled edge with
p that connects x with y. In this case, the number of distinct
paths of length L ď maxPathLen between any two nodes
of G is |P |L, where |P | is the number of predicates in the
KB. The asymptotic complexity of Algorithm 1 is therefore
Op|G| ˚ |P |Lq, where G is the generation set, and P is the
set of predicates in the KB. In reality, most pairs in KBs are
connected by very few predicates (1 to 2), thus |P | is small.
This is reflected by low execution times for the algorithm in
the experiments.

The simultaneous rule generation and selection of Algo-
rithm 1 brings multiple benefits. First, we do not generate the
entire graph for every example in G. Nodes and edges are
generated on demand, whenever the algorithm requires their
navigation (Line 12). Rather than materializing the entire graph
and then traversing it, our solution gradually materializes parts
of the graph whenever they are needed for navigation (Lines 3
and 12). Second, the weight estimation prunes unpromising
rules. If a rule does not cover new elements in G and does not
unbounded cover new elements in V , then it is pruned.

VI. EXPERIMENTS

We implemented the above techniques in RUDIK, our
system for Rule Discovery in Knowledge Bases (https://github.
com/stefano-ortona/rudik). We carried out an experimental
evaluation of our approach and grouped the results in four
categories: (i) demonstrating the quality of our output for
positive and negative rules; (ii) comparing our method with
the state-of-the-art systems; (iii) showing the applicability of
rule discovery to create representative training data to learning
algorithms; (iv) testing the role of the parameters in the system.

Settings. Experiments were run on a desktop with a quad-
core i5 CPU at 2.80GHz and 16GB RAM. We used OpenLink
Virtuoso, optimized for 8GB RAM, with its SPARQL query
endpoint on the same machine. Weight parameters were set to
α “ 0.3 and β “ 0.7 for positive rules, and to α “ 0.4 and
β “ 0.6 for negative rules. We set the maximum number of
atoms admissible in the body of a rule (maxPathLen) to 3.
We discuss the role of these parameters in Section VI-D.



TABLE I. DATASET CHARACTERISTICS.
KB Version Size #Triples #Predicates

DBPEDIA 3.7 10.06GB 68,364,605 1,424
YAGO 3 3.0.2 7.82GB 88,360,244 74
WIKIDATA 20160229 12.32GB 272,129,814 4,108

Evaluation Metrics. We evaluated the effectiveness in
discovering both positive and negative rules. For every KB,
we first ordered predicates according to descending popularity
(i.e., number of triples having that predicate). We then picked
the top 3 predicates for which we knew there existed at least
one meaningful rule, and other 2 top predicates for which we
did not know whether meaningful rules existed or not.

The evaluation of the discovered rules has been done
according to the best practice for rule evaluation [13]. If a rule
was clearly semantically correct, we marked all its results over
triples as true. If a rule correctness was unknown, we randomly
sampled 30 triples either among the new facts (for positive
rules) or among the errors (for negative rules), and manually
checked them. The precision of a rule is then computed as the
ratio of correct assertions out of all assertions. While we man-
ually annotated only popular predicates, we executed RUDIK
on all predicates in DBPEDIA and verified that results are
consistent even with non popular predicates. Source code and
test results, including annotated examples and discovered rules,
are available online at https://github.com/stefano-ortona/rudik.

A. Quality of Rule Discovery in RUDIK

The first experiment evaluated the accuracy of discovered
rules over three KBs: DBPEDIA, YAGO, and WIKIDATA.
Table I shows their characteristics. Over the three KBs, the
selected predicates cover 0.2% to 0.4% of the total triples,
0.2% to 8% of the total predicates, 3% to 7% of the total
entities, with 8% to 14% entity overlap among the predicates.

Size is important, as loading a KB entirely in memory
requires to either use large amount of memory [5], [12], or
to shrink it by eliminating the literals [13]. Given the small
memory footprint of our algorithm, we can mine rules with
commodity HW resources and retain the literals, which are
crucial for obtaining expressive rules. While RUDIK takes as
input a target predicate at a time, it can discover rules over the
entire KB by applying the same procedure on every predicate
in it. We discuss next results for subsets of predicates because
the manual annotation of the identified new facts and errors is
a very expensive process. However, when RUDIK is executed
on all the predicates of a KB, results are consistent in terms of
number of discovered rules and execution times. For example,
for 600 predicates in DBPEDIA we mined about 3000 positive
rules, with at most 26 rules for a predicate, and 4000 negative
rules, with at most 32 rules for a predicate.

Positive Rules RUDIK. We evaluate the precision for the
positive discovered rules on the top 5 predicates for each KB.
The number of new induced facts varies significantly from
rule to rule. To avoid the overall precision to be dominated by
such rules, we first compute the precision for each rule, and

TABLE II. RUDIK POSITIVE RULES ACCURACY.
KB Avg. Avg. Precision over # Labeled

RunTime Predicates with Rules (All) Triples
DBPEDIA 35min 87.86% (63.99%) 139
YAGO 3 59min 79.17% (62.86%) 150

WIKIDATA 141min 85.71% (73.33%) 180

then average values over all induced rules. Table II reports
precision values, along with predicates average running time,
and the number of manually annotated triples. We distinguish
predicates for which we knew there existed at least one correct
rule (in bold), and all predicates (in brackets).

As precision varies across different KBs and facts, we
report the value for every predicate. For DBPEDIA: aca-
demicAdvisor (100%), child (58%), spouse (97%), founder
(no valid rules), successor (68%). YAGO: hasChild (50%),
influences (35%), isLeaderOf (70%), isMarriedTo (100%),
exports (83%). WIKIDATA: spouse (100%), child (76%), paint-
ingCreator (60%), academicAdvisor (100%), subsidiary (67%).
Average precision values are brought down by few predicates,
such as founder, where meaningful positive rules probably
do not exist at all. Our experience show that it suffices to read
the rules to recognize that they are semantically wrong and
should be discarded, e.g., a human immediately sees that it is
not possible to derive a founder from the KB’s predicates.

The running time is influenced by the size of the KB. The
more edges we have on average for a node (entity), the more
alternative paths we test while traversing the graph. Another
relevant aspect is the target predicate involved. Some entities
have a large number of outgoing and incoming edges, e.g.,
entity “United States” in WIKIDATA has more than 600K.
When the generation set includes such entities, the navigation
of the graph is slower. Parameter maxPathLen also impacts
the running time. The longer the rule, the bigger is the search
space, as we discuss in Section VI-D.

TABLE III. RUDIK NEGATIVE RULES ACCURACY.
KB Avg. Run Time # Pot. Errors Precision

DBPEDIA 19min 499 (84) 92.38%
YAGO 3 10min 2,237 (90) 90.61%

WIKIDATA 65min 1,776 (105) 73.99%

Negative Rules RUDIK. We evaluate discovered negative
rules as the percentage of correct errors identified for the
top 5 predicates in each KB. Table III shows, for each
KB, the total number of potential erroneous triples found
with the discovered rules, whereas the precision is computed
as the percentage of actual errors among potential errors.
Numbers in brackets show the number of triples manually
annotated to obtain the precision. At the predicate level, the
results are the following. DBPEDIA: academicAdvisor (29%),
child (90%), spouse (87%), founder (95%), ceremonialCounty
(100%). YAGO: hasChild (82%), isMarriedTo (97%), created
(100%), hasAcademicAdvisor (100%), wroteMusicFor (43%).
WIKIDATA: spouse (78%), child (82%), founder (100%), cre-
ator (48%), oathGiven (100%).

Negative rules have better accuracy than positive ones when
considering all predicates. This is due to the fact that negative
rules exist more often than positive rules. While quality of
the rules is good, especially on the more noisy KBs, we
also discover rules that are supported by the large majority
of the data, but do not hold semantically. For example, we
identify the rule that two people with same gender cannot be
married both in YAGO and WIKIDATA. Such rule has a 94%
precision in YAGO and 57% in WIKIDATA. Differently from
positive rules, literals play a key role in negative rules. In
fact, several correct negative rules rely on temporal aspects in
which something cannot happen before/after something else.



TABLE IV. AMIE DATASET CHARACTERISTICS.
KB Size #Triples #Predicates #rdf:type

DBPEDIA 551M 7M 10,342 22.2M
YAGO 2 48M 948.3K 38 77.9M

Temporal information is usually expressed through dates and
years, which are represented as literal values in KBs.

Discovering negative rules is faster than discovering pos-
itive rules because of the different nature of the examples
covered by validation queries. Whenever we identify a can-
didate rule, we execute the body of the rule against the KB
with a SPARQL query to compute its coverage over the
validation set. These queries are faster for negative rules since
the validation set only contains entities directly connected by
the target predicate, whereas in the positive case the validation
set corresponds to counter examples that do not have this
property and are more expensive to evaluate.

For non popular predicates, the system found rules with
quality comparable to the popular predicates. For example,
it discovers the valid negative rule routeStart(x, a) ^
routeEnd(x, b) ñ notMeetingRoad(a, b) for pred-
icate meetingRoad with just 114 facts in DBPE-
DIA, and the valid positive rule highestState(a, x) ^
municipality(b, x) ñ highestRegion(a, b) for
predicate highestRegion with just 36 facts.

B. Comparative Evaluation

We compared our methods against AMIE [13], a state-of-
the-art positive rule discovery system for KBs. AMIE assumes
that the given KB fits into memory and discovers positive rules
for every predicate. It then outputs all rules that exceed a given
threshold and ranks them according to a coverage function.

Given its in-memory implementation, AMIE went out of
memory for the KBs of Table I on our machine. Thus, we used
the modified versions of YAGO and DBPEDIA from the AMIE
paper [13], which are devoid of literals and rdf:type facts.
Removing literals and rdf:type triples drastically reduce the
size of the KB. Since our approach needs type information (for
the generation of G and V and for the discovery of inequality
atoms), we run AMIE on its original datasets, while for our
algorithm we used the AMIE dataset plus rdf:type triples.
Last column of Table IV reports the number of triples added
to the original AMIE dataset.

Positive Rules Comparison. For this experiment we ran
RUDIK as follows: we first list all the predicates in the
KB that connect a subject to an object. We then computed
for both subject and object the most popular rdf:type
that is not super class of any other most popular type. We
finally ran our approach sequentially on every predicate, with
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maxPathLen “ 2 (AMIE default setting). AMIE discovers 75
output rules in YAGO, and 6090 in DBPEDIA. We followed
their experimental setting and picked the first 30 best rules
according to their score. We then picked the rules produced
by our approach on the same head predicate of the 30 best
rules output of AMIE.

Figures 3 and 4 report the results on YAGO and DBPEDIA,
respectively. We plot the total cumulative number of new
unique facts (x-axis) versus the aggregated precision (y-axis)
when incrementally including in the solution the rules accord-
ing to their descending (AMIE’s) score. Rules from AMIE
produce more predictions, but with significant lower accuracy
in both KBs. This is because many good rules are preceded
by meaningless ones in the ranking, and it is not clear how to
set a proper k to get the best ones. In RUDIK, instead of the
conventional ranking mechanism, we use a scoring function
that discovers only inherently meaningful rules with enough
support. As a consequence, RUDIK outputs just 11 rules for
8 target predicates on the entire YAGO – for the remaining
predicates RUDIK does not find any rule with enough support.
If we limit the output of AMIE to the best 11 rules in YAGO
(same output as our approach), its final accuracy is still 29%
below our approach, with just 10K more predictions.

Negative Rules Comparison. While AMIE has not been
designed to discover negative rules, we created a baseline
solution on top of it. First, we created a set of negative exam-
ples (Section IV-B) for each predicate in the top-5. For each
example, we added a new fact to the KB by connecting the two
entities with the negation of the predicate. For example, we
added a notSpouse predicate connecting each pair of people
who are not married according to our generation technique. We
then ran AMIE on these new predicates.

Table V shows that RUDIK outperforms AMIE in both
cases with an absolute precision gain of almost 20% (41-49%
relative). The drop in quality for RUDIK w.r.t. the results in
Section VI-A is because of the KBs without literals. Numbers
in brackets show the number of triples manually annotated.

TABLE V. NEGATIVE RULES VS AMIE.
AMIE RUDIK (no literals)

KB # Errors Precision # Errors Precision
DBPEDIA 457 (157) 38.85% 148 (73) 57.76%
YAGO 2 633 (100) 48.81% 550 (35) 68.73%

Running Time. On our machine, AMIE could finish the
computation on YAGO 2, while for other KBs it got stuck
after some time. For these cases, we stopped the computation
if there were no changes in the output for more than 2 hours.
Running times for AMIE are different from [13], where it was
run on a 48GB RAM server.



TABLE VI. TOTAL RUN TIME COMPARISON.
KB #Predicates AMIE RUDIK Types

YAGO 2 20 30s 18m,15s 12s
YAGO 2s 26 (38) ą 8h 47m,10s 11s

DBPEDIA 2.0 904 (10342) ą 10h 7h,12m 77s
DBPEDIA 3.8 237 (649) ą 15h 8h,10m 37s

WIKIDATA 118 (430) ą 25h 8h,2m 11s
YAGO 3 72 - 2h,35m 128s

Table VI reports the running time on different KBs. The
first five KBs are AMIE modified versions, while YAGO 3
includes literals and rdf:type. The second column shows
the total number of predicates for which AMIE produced at
least one rule before getting stuck, while in brackets we report
the total number of predicates in the KB. The third and fourth
columns report the total running time of the two approaches.
Despite being disk-based, RUDIK successfully completes the
task faster than AMIE in all cases, except for YAGO 2. This
is because of the very small size of this KB, which fits in
memory. However, when we deal with complete KBs (YAGO
3), the KB could not even be loaded due to out of memory
errors. The last column reports the running time to compute
rdf:type information for all predicates.

Other Systems. In [2], the system mines rules that are less
general than our approach; on YAGO 2, it discovers 2K new
facts with a precision lower than 70%, while our rule on YAGO
2 already produces more than 4K facts with a 100% precision.
Another system [5] implements AMIE algorithm with a focus
on scalability and the output is the same as AMIE. We did not
compare with Inductive Logic Programming systems [8], [23],
as these are already significantly outperformed by AMIE both
in accuracy and running time.

C. Machine Learning Application

The goal of this experiment is to test RUDIK’s ability
in providing valid training examples to ML models. We
chose DeepDive [19], a framework for information extraction.
DeepDive extracts entities and relations from text articles via
distant supervision. The key idea in distant supervision is to
use an external source of information (e.g., a KB) to provide
training examples for a supervised algorithm. For example,
DeepDive can extract mentions of married couples from text
documents. In this scenario, it uses a KB to label pairs of
married couples that can be found in DBPEDIA as true positive
example. As KBs provide facts, in DeepDive the burden of
creating negative examples is left to the user. We compare
the output of DeepDive upon its spouse example trained with
different sets of negative examples over two datasets.
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Figure 5 shows DeepDive accuracy plot with 1K input
documents. The plot shows the fraction of correct positive

predictions over total predictions (y-axis), for each output
probability value (x-axis). The ideal execution, marked by the
dotted blue line, would predict all facts with a probability of
1 and zero facts with an output probability of 0. The best
algorithm deflects the least from the blue dotted line, and
this distance is our evaluation metric. RUDIK is the output
of DeepDive using our discovered rules to generate negative
examples on DBPEDIA. OnlyPos uses only positive exam-
ples from DBPEDIA, Manual uses positive examples from
DBPEDIA and manually defined rules to generate negative ex-
amples, while ManualSampl uses a sample of the manually
generated negative examples in size equal to positive examples.
OnlyPos and Manual do not provide valid training, as the
former has only positive examples and labels everything as
true, while the latter has many more negative examples than
positive ones and labels everything as false. ManualSampl
is the winner, while our approach suffers from the absence
of data to mine: over the input 1K articles, there are only 20
positive examples from DBPEDIA. The lack of evidence in
the training data also explains the missing points for RUDIK,
with no prediction in the probability range 25-45%.
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Fig. 6. DeepDive executions with different training examples – 1M articles.

When we extend the input to 1M articles, things change
drastically (Figure 6). All approaches except OnlyPos suc-
cessfully drive the training, with the examples provided with
RUDIK leading to the best result. This is because of the quality
of the negative examples: our rules generate representative
examples that are correct (thanks to the LCWA), semantically
related (thanks to the constraint on the predicate connecting
them), and have the number of negative examples in the same
order of magnitude of the positive ones. The correct and
rich examples enable DeepDive to identify discriminatory
features between positive and negative labels. The output
of ManualSampl and RUDIK are very similar, meaning
that we can use our approach to simulate user behavior and
automatically produce negative examples.

D. Internal Evaluation

We outline the impact of individual components in RUDIK.
Full results are reported in the technical report online at http:
//www.eurecom.fr/publication/5321.

KB Noise Impact. In terms of quality of the KBs, the per-
centages of erroneous triples identified by our rules are 0.23%
for WIKIDATA, 0.26% for DBPEDIA, and 0.6% for YAGO. To
study the impact of errors in the KB, we first manually removed
errors from the top five predicates in DBPEDIA to obtain clean
positive and negative examples. We collected such rules and
consider them the best possible output. We then gradually
introduced errors by switching positive and negative examples
between their sets. Figure 7 shows the accuracy degradation
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Fig. 7. KB Noise Impact on Rules Quality.

averaged over predicates (y-axis) from 0% errors to 100% (x-
axis). As expected, the accuracy decreases with the amount
of errors. RUDIK is robust enough to deliver mostly correct
rules until 40% of errors, while after that accuracy starts to
drop significantly. An interesting point is that even with 90% of
errors, RUDIK is still able to isolate the 10% of good examples
to mine at least one valid rule.

LCWA. We study the effect of the LCWA assumption for the
generation of negative examples. Given a predicate p, we tested
three generation strategies: RUDIK strategy (Section IV-B),
Random (randomly select k pairs px, yq from the Cartesian
product s.t. triple xx, p, yy R kb), and LCWA (RUDIK strategy
but x and y do not have to be connected by a predicate
different from p). Table VII reports quality results for the
discovered rules. Random and LCWA show similar behavior,
with a slightly better precision than RUDIK. This is because
by randomly picking examples from the Cartesian product
of subject and object, the likelihood of getting entities from
different time periods is very high, and negative rules pivoting
on time constraints are usually correct. Instead, by forcing x
and y to be connected with different predicate, we generate
semantically related examples that lead to more rules. Rules
such as parent(a, b)ñ notSpouse(a, b) are not gener-
ated with random strategies, since the likelihood of picking two
people that are in a parent relation is very low. The RUDIK
strategy enables the discovery of more types of rules, and not
only rules involving time constraints.

TABLE VII. IMPACT OF EXAMPLES GENERATION ON DBPEDIA.
Strategy # Potential Errors Precision
Random 247 95.95%
LCWA 263 95.82%

RUDIK 499 92.38%

Effect of Literals. Table VIII reports the output precision
obtained by enabling and disabling the use of literal compar-
isons in RUDIK. Including literal values has a considerable
impact on accuracy, both for positive and negative rules. Neg-
ative rules without literals find less than half potential errors
(numbers in brackets) with lower precision. For predicate
founder, RUDIK discovers 79 potential errors with a 95%
precision with literal rules, while none are detected by using
rules without literals. Interestingly, including literals reduces
also the running time. This is due to the pruning effect of the
A˚ search, literals enable the early discovery of good rules.

Rule Length Impact. The maxPathLen parameter fixes
the maximum number of atoms in the body of a rule. Low

TABLE VIII. IMPACT OF LITERALS ON DBPEDIA.
With Literals Without Literals

Rules Run Time Precision Run Time Precision
Pos. „35min 63.99% „54min 60.49%
Neg. „19min 92.38% (499) „25min 84.85% (235)

values may exclude from the search space meaningful rules,
while high values exponentially increase the search space and
consequently the running time. With maxPathLen “ 2, there
is a significant improvement in running time, but meaningful
rules are lost and precision drop to 49% for positive rules and
90% for negative ones. In particular, we lose rules with literals
comparison, as these require at least three atoms in the body.
At the other side of the spectrum, with maxPathLen “ 4
the search space explodes and RUDIK could not finish the
computation within 24 hours for any predicate. We measured
the accuracy of rules discovered in 24 hours of computa-
tion and the results are comparable to those computed with
maxPathLen “ 3, with a small increase in precision for
positive rules and a small drop for negative ones. Rules with
length 4 are more complex to understand, and when executed
over the KB they often return an empty result because of their
higher selectivity. We therefore set maxPathLen “ 3 as a
compromise between efficiency and accuracy.

Weight Parameters. For positive rules, the best assignment
is α “ 0.3 and β “ 0.7, while for negative rules is α “ 0.4
and β “ 0.6. Since discovering correct positive rules is more
challenging than negative ones, favoring precision over recall
gives the best accuracy, while for negative rules we can be
more recall oriented. In both positive and negative settings, the
variation in performance for α P r0.1, 0.9s is limited (ď 12%),
showing the robustness of the set cover problem formulation.
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Fig. 8. A˚ Pruning Runtime Improvement.

Search. We quantify the benefit of the A˚ algorithm on the
running time. Figure 8 shows the running time, for each
predicate, of the A˚ algorithm (light-colored bars) against a
modified version that first generates the universe of all possible
rules, and then applies the greedy set cover algorithm on such
a universe (dark-colored bars). The last two predicates refer to
the y-axis labels on the right hand side, as they have higher
running times. In the figure, (P) indicates positive rules and
(N) negative ones. The A˚ strategy shows an average 50%
improvement in running times as it avoids the generation of
unpromising paths and the loading of the corresponding RDF
instances from disk. When there exist rules that cover many
examples from the generation set (e.g., successor (P),
founder (P)), the algorithm identifies such rules rather
early, thus pruning several unpromising paths. In such cases
the running time improvement is above 70%.

Set Cover. Our set cover problem formulation leads to a
concise set of rules in the output, which is preferable to the
large set of rules obtained with a ranking based solution.
Oftentimes correct rules are not among the top-10 ranked,
and we found cases where meaningful rules are below the
100th position. For example, the only valid negative rule for



the predicate founder, which states that a person born after
the company was founded cannot be its founder, figures at
a rank of 127 when emitted by the ranking-based version of
RUDIK, whereas it is included in the compact set discovered
by the standard variant of RUDIK.

VII. RELATED WORK

A significant body of work has addressed the problem of
discovering constraints over relational data, e.g., [6]. However,
these techniques cannot be applied to KBs because of the
schema-less nature of RDF data and the OWA. Traditional
approaches rely on the assumption that data is either clean or
has a negligible amount of errors, which is not the case with
KBs, and, even when the algorithms are designed to tolerate
errors [1], [15], a direct application of relational database tech-
niques on RDF KBs requires the prohibitive materialization
of all possible predicate combinations into relational tables.
Recently, theoretical foundations of Functional Dependencies
on Graphs have been laid [11]. However, their language covers
only a portion of our negative rules and does not include
general literal comparisons.

Rule mining approaches designed for positive rule dis-
covery in RDF KBs load the entire KB into memory prior
to the graph traversal step [13], [5]. This is a limitation for
their applicability over large KBs, and neither of these two
approaches consider value comparison. In contrast to them,
RUDIK load in memory a small fraction of the KB. This
makes it scalable and the low memory footprint enables a
bigger search space with rules that have literal comparisons.
Finally, association rules can be mined to recommend new
facts [2], but such rules are made of constants only and are
therefore less general than the rules generated by RUDIK.

ILP systems such as WARMR [8], Sherlock [18], and
ALEPH1 are designed to work under the CWA and require the
definition of positive and negative error-free examples. It has
been showed how this assumption does not hold in KBs and
that AMIE outperforms this kind of systems [13]. Detection of
semantic errors in KBs has also been tackled with approaches
that are orthogonal to negative rules. For example, discovering
domain and range restrictions [23], or identifying outliers after
grouping subjects by type [25]. Finally, the output of our rules
can be modeled as the result of a link prediction problem over
the KB [10]. However, we focus on logical rules for their
benefits as “white boxes”, including the possibility of doing
static analysis, execution optimization, and interpretability.

VIII. CONCLUSION

We presented RUDIK, a rule discovery system that mines
both positive and negative rules on noisy and incomplete
KBs. Positive rules identify new valid facts for the KB, while
negative rules identify errors. We experimentally showed that
our approach generates concise sets of meaningful rules with
high precision, is scalable, and can work with exisisting KBs.

Open questions are related to the interactive discovery of
the rules, if and how it is possible to drastically reduce the
runtime of the discovery without compromising the quality of
the rules. Another interesting direction is to discover more

1https://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph

expressive rules that exploit temporal information through
smarter analysis of literals [1], e.g., “if two person have age
difference greater than 100 years, then they cannot be married”.
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