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Abstract

Cooperative Intelligent Transport System (C-ITS) applications assume the availability of

a reliable and accurate positioning system. Even if suitable to most Day-1 applications

(e.g. route navigation), the Global Navigation Satellite System (GNSS) accuracy, reli-

ability and availability are clearly not sufficient for more demanding Day-2 applications

(e.g., highly autonomous driving, advanced safety services including vulnerable road users

warning, etc.), which would require a consistent sub-meter localization accuracy regard-

less of operating conditions. To bridge this gap, Cooperative Localization (CLoc) has

been recently identified as a promising strategy. Accordingly, mobile nodes can help each

other by exchanging location data (typically, their own position estimates or raw GNSS

data), acquiring range-dependent metrics over their respective radio links and finally,

fusing the various sources of information. However, conventional CLoc solutions may be

partly unsuitable within the context of vehicular ad hoc networks (VANETs), which comes

along with unprecedented challenges such as specific mobility patterns, practical operat-

ing trade-offs with complexity and vehicle-to-vehicle (V2V) communication capabilities,

or even fusion optimality when multiple measurement modalities are available at the vehi-

cles. Thus, one central related research question is as follows: “Can the Day-2 sub-meter

localization accuracy be met through CLoc strategies between connected vehicles?”

In this thesis, following a gradually complex approach, we aim at evaluating how and

in which conditions position information from neighboring vehicles and/or associated V2V

measurements may improve localization accuracy and resilience. We first develop a generic

fusion-based CLoc framework, which can rely on various vehicle-to-everything (V2X) and

embedded sensor technologies. We then apply this framework to the standard ITS-G5

Cooperative Awareness Messages (CAMs), and show that it is possible to benefit from

neighboring position information and from received signal strength-based range estimates

to enhance local accuracy. On this occasion, we also make concrete proposals to handle
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messages/data asynchronism (through mobility-based predictions), as well as to reduce

both complexity and V2V communication footprint (through links/neighbors selection,

messages approximation and transmission control). Next, we extend this framework so

as to integrate more accurate V2V measurements based on the impulse radio ultra-wide

bandwidth (IR-UWB) technology, while dealing with fusion filter overconfidence and error

propagation issues. Finally, under even more challenging conditions with GNSS depraved

neighbors or in tunnel conditions, we considered the assistance of extra onboard sensors

(inertial unit, wheel speed sensor, camera-based lane detector, etc.), as well as static road-

side units (RSUs). The proposed framework and methodology show to typically improve

the localization accuracy from 2 m to below 30 cm in 80% of the cases. The proposed

framework has been tested analytically and through simplified simulations first, then on

realistic mobility data, and finally on real data from a small scale field test.
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9 Résumé Etendu des Travaux de Thèse 151
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de l’asynchronisme des quantités estimées θ̂i(·) et θ̂j(·), le véhicule i doit
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voisin). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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CAMs standards et des messages limités (Tiny), afin de réduire la charge
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Chapter 1

Introduction

1.1 Application Context

Over 1.2 million human losses globally reported each year make road traffic injuries the

first cause of death among young people aged 15–29 and the ninth across all age groups1.

In an attempt to redeem this, the automotive industry has been moving aggressively in the

direction of Intelligent Transport Systems (ITS) applications, among which active safety

systems2, advanced driver-assistance systems (ADAS) and autonomous driving are some of

the fastest-growing segments. Despite advances in active safety systems (e.g., brake assist

and electronic stability program (ESP)) as well as ADAS (e.g., adaptive cruise control

(ACC) and pre-crash systems (PSs)), the rate of injuries and fatalities has remained flat

due to the increased number of vehicles, the total distance driven in average per driver

per year, and system limitations in critical but common driving situations.

To improve the situation, road safety needs to go beyond the current active safety

technologies mostly based on ADAS perception systems (e.g., radars, cameras, and li-

dars) towards proactive safety systems and automated environment monitoring. For this

sake, vehicles need to cooperate, that is to say, they need to evolve from perceptive and

autonomous systems into perceptive, connected, and thus collectively smarter systems.

Cooperative Intelligent Transport Systems (C-ITS) (a.k.a. connected vehicle technology

in the U.S.), which rely on vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)

communications (commonly known as vehicle-to-everything (V2X)) [1, 2, 9], are thus a

key enabler. When compared to line of sight (LOS) perception sensors, V2X communi-

1http://www.who.int/mediacentre/factsheets/fs358/en/
2On the contrary, passive safety systems include airbags, seat-belts, and vehicle’s specific structure.

1

http://www.who.int/mediacentre/factsheets/fs358/en/
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cation can provide 360-degree awareness up to a kilometer, beyond physical obstructions

or adverse weather conditions. More importantly, it can predict the intentions of moni-

tored objects (e.g., neighboring vehicles, motorcycles, pedestrians, etc.) based on received

data [1]. Thus, potential road hazards can be anticipated in a much earlier phase. Among

the various possible communication technologies for C-ITS, the ITS-G5 (where G5 stands

for the 5 GHz frequency band), sometimes abusively depicted as IEEE 802.11p, is currently

the main standard in Europe, whereas the U.S. counterpart is called dedicated short-range

communications (DSRC)3.

1.2 Motivation and Objectives

The currently proposed C-ITS Basic Set of Applications (BSA) relies on the availability

of Global Navigation Satellite Systems (GNSSs), which provide a positioning accuracy on

the order of 3–10 meters in favorable conditions. This is obviously far from being sufficient

for advanced C-ITS applications, such as advanced safety services, vulnerable road user

detection and accident avoidance, or highly autonomous driving/platooning, which would

require a sub-meter accuracy (typically less than 0.5 m -the minimum accuracy level

for an autonomous vehicle to be on the right lane) in any operating condition. Such

a level of accuracy is not yet available with mass market GNSS technologies (including

Galileo), but requires instead expensive advanced dedicated GNSS technologies (e.g., real-

time kinematic (RTK), precise point positioning (PPP) or even special differential GNSSs),

with still unguaranteed performance in urban environments or under weak/no access to

satellite constellations/sided infrastructure.

Instead, we believe we can reach the same level of accuracy through cooperative strate-

gies between vehicles, or more specifically, considering techniques inheriting (or inspired)

from a field of wireless localization known as Cooperative Localization (CLoc). While non-

cooperative strategies consist in locating mobile nodes uniquely with respect to a set of

fixed anchors at known locations, CLoc solutions make use of neighboring nodes (moving or

static) as additional “virtual4 anchors”, for instance through distributed message-passing

approaches. Such CLoc schemes have been mostly applied to static wireless sensor net-

3DSRC shall not be confused with CEN DSRC in Europe, which refers to a dedicated communication
solution for toll roads.

4By “virtual”, we mean that the locations of cooperating -possibly mobile- nodes are estimated too,
and thus, imperfectly known (contrarily to “true” anchors).
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works (WSNs) or even mobile ad hoc networks (MANETs) so far. Similarly in VANETs,

vehicles could exchange location data with other vehicles in range (typically, their own po-

sition estimates or raw GNSS data), acquire range-dependent metrics over their respective

V2V links, and finally fuse these different sources of information. A major advantage of

CLoc in comparison with non-cooperative approaches is that it does not necessarily need

the presence of fixed elements of infrastructure, nor any prior map containing predefined

anchor nodes’ locations (even though it could still integrate the latter information). CLoc

in VANETs allows vehicles to exploit the (possibly better) positioning capabilities of their

neighbors and accordingly, to enhance their own location estimates. Said differently, it

benefits from other vehicles’ data and measurements, and more generally, from information

redundancy and diversity. However, even is CLoc yet remains a very promising approach

to enhance localization, in particular in GNSS (partially) denied environments, it is also

subject to novel and specific challenges, such as:

• Asynchronous transmission (Tx) events leading to unsynchronized received data

from the “virtual anchors”;

• High computational complexity and high traffic under exhaustive/systematic coop-

eration with all the available neighbors;

• Spatial and temporal correlations in sensor measurements;

• Highly dynamic and uncontrolled communication policies of connected vehicles, thus

making CLoc in VANETs even more challenging in comparison with conventional

CLoc (dedicated to WSNs or MANETs), in particular for a large amount of vehicles.

• Possible propagation of location errors among cooperative vehicles;

• Unfavorable geometry of the cooperative fleet topology, likely degrading localization

accuracy along the dimension orthogonal to the road;

• Prolonged GNSS outages and/or unsustainable measurement error accumulation of

inertial sensors over time (e.g., gyroscopes), leading occasionally to the fast diver-

gence of position estimates in most pathological cases.

In this work, we ambition to answer the fundamental question “Can sub-meter local-

ization accuracy be met through CLoc strategies between connected vehicles?” For this
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sake, we propose to adopt the following research methodology with gradual complexity.

After carefully analysis the mismatch between the CLoc needs and the capabilities of

current V2V communication standards, we first develop and adapt a cooperative fusion

framework based on the currently available ITS-G5 technology. In this phase, we no-

tably assume GNSS availability, even if degraded. One step ahead, deviating from this

(simplified) nominal setting, we consider the impact of V2V channel congestion and V2V

communication reliability. We then extend our framework to additionally benefit from

alternative V2V technologies for high accuracy ranging, and rely on advanced sensors and

C-ITS infrastructure to improve performance in most pathological GNSS-denied environ-

ments. We finally enhance our proposal to mitigate model mismatch considering realistic

mobility traces, and provide preliminary offline experimental validations, considering a

small-scale field test.

1.3 Thesis Contributions and Outline

According to the previously described challenges and methodology, the main contributions

of this thesis can be summarized as follows:

• The first contribution is a comprehensible review of state of the art contributions in

the two fields of vehicular communications and vehicular localization. Focusing on

the accuracy requirements from C-ITS applications, a gap analysis is also provided in

order to figure out the suitable communication technologies, localization techniques,

fusion architecture and algorithms for the CLoc approach, while pointing out related

open challenges. This topic is addressed in Chapter 2.

• Based on this gap analysis, the second contribution is a generic CLoc framework

adapted to the vehicular context. This contribution is detailed in Chapter 3 and led

to conference paper [10] and journal paper [11].

• The third contribution consists in adapting the previous generic CLoc framework

specifically to the ITS-G5 technology. We develop V2V CLoc through the standard

Cooperative Awareness Messages (CAMs) based on data fusion. Since there could

be numerous vehicles involved which are endowed with heterogeneous modalities, ca-

pabilities, and operating conditions, one challenge is the trade-off between accuracy,
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complexity, and communications. Thus, we first build a link selection algorithm

to identify the most informative neighbors. This contribution is also addressed in

Chapter 3 and led to conference paper [10].

• Still regarding the same trade-off, the fourth contribution is to propose a new V2V

communication strategy and message format to match the CLoc requirements under

imposed V2V communication limitations and capabilities. Accordingly, the trans-

mission control policy is then revised to optimize the communication footprint con-

ditioned by the accuracy requirements. Besides, spatial correlations found in V2V

measurements are also mitigated to maintain the accuracy level. This aspects is

treated in Chapter 4 and led to conference paper [12] and journal paper [11].

• Fifth, one limitation of the first approach lies in the utilization of the signal strength

associated with received CAMs. Hence, we propose a hybrid V2V CLoc scheme

integrating accurate impulse radio ultra-wide bandwidth (IR-UWB) ranging capa-

bilities. We first highlight that the unbalanced levels of uncertainty between GNSS

and IR-UWB may lead to performance gain or loss depending on the data fusion

algorithm. We then propose two enhancements to compensate for this drawback.

This topic is detailed in Chapter 5 and led to conference papers [13,14].

• Sixth, imperfect mobility knowledge and constrained mobility patterns causing harm-

ful geometric effects are solved through hybrid V2X multisensor CLoc. Since infor-

mation from individual sensors (e.g., inertial sensors, wheel odometry, and camera-

based lane detector) or V2X communications affects each component of position

error differently, we benchmark the performance of various combinations of these

modalities in different environments including tunnels. This topic is addressed in

Chapter 6 and led to conference papers [15,16].

• Seventh, we validate this fusion framework under more realistic assumptions/constraints

in terms of erratic vehicular mobility by exploiting traces from a dedicated simulator

called SUMO (rather than regular steady-state synthetic models), while considering

a mixed urban/sub-urban environment. First practical experiments are also carried

out to validate the proposed theoretical solutions, based on real integrated platforms.

This comparative study shows that a sub-meter accuracy is possible through CLoc
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and gives practical guidelines to the system design and operation of reliable and

accurate location services for C-ITS. This contribution is addressed in Chapter 7.

Finally, we conclude the thesis together with some remarks in Chapter 8.



Chapter 2

State of the Art in Vehicular

Localization

2.1 Introduction

In this chapter, we start by introducing the Cooperative-ITS context including foreseen

applications and communication technologies in Section 2.2. Then Section 2.3 provides

an overview of vehicular localization systems, pointing out their main limitations and

challenges. Finally, Section 2.4 provides a gap analysis to develop the CLoc framework in

the next chapters.

Although we focus uniquely on the vehicular context in this chapter for the sake of

conciseness, general comparative descriptions of radio-based localization metrics (along

with their prefered underlying technologies/standards), localization algorithms and fusion

architectures, are also available in Appendices C, B and D respectively. On this occasion,

we detail the main advantages and drawbacks of the different solutions.

2.2 Cooperative-ITS

2.2.1 V2X Applications

As vehicles have been equipped with wireless communication capability to directly com-

municate with each other and with infrastructure, we envision an entirely new paradigm

of applications. C-ITS applications will be a unique revolutionary way to detect and

avoid accidents through the awareness of vehicles of their surroundings beyond the sensor

7
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Figure 2.1: Examples of Day-1 applications and the scenarios V2V communications can
address (Source: C2C-CC).

capabilities. Extensive list of potential applications/services are compiled and assessed

by many projects, industry/government consortia [17]. Typically, C-ITS applications are

classified as safety, transport efficiency, and infotainment applications. In the scope of this

thesis, we only focus on C-ITS safety applications which require high accuracy localization.

Day-1 Applications

The objective of Day-1 applications is to increase the awareness for the drivers. To achieve

this goal, each vehicle broadcasts periodically its status data (e.g. their position, speed,

acceleration). Besides, they also broadcast situation-based information when an emer-

gency situation is detected, e.g. an accident or if an emergency vehicle is in action. Fig-

ure 2.1 illustrates some typical Day-1 applications relying on V2V communications such

as emergency vehicle warning, hazardous location warning, dangerous situation warning,

etc. identified by CAR-2-CAR Communication Consortium (C2C-CC).

Day-2 and Beyond

Focusing on information exchange (between traffic participants), the C2C-CC applications

roadmap envisions four main phases to deploy direct V2V communications, as illustrated

in Figure 2.2. When moving from previous phase to subsequent phase, vehicles exchange

more information, thus enabling new applications and classes of use cases [1].

• Phase 1: The initial awareness driving phase allows vehicles to broadcast their status

data (i.e., position, speed, events) so that neighboring vehicles are aware of them

and of hazardous events detected on the road.
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Figure 2.2: The C2C-CC applications road map.

• Phase 2: The sensing driving phase enables vehicles to disseminate their sensor data

(i.e., detected objects, field of view obtained from the on-board sensors like cameras

and radar). Thus vehicles can see with the eyes of others to detect hidden objects

(e.g., around a corner) or enable a more accurate view of the environment (e.g., an

intersection with various VRUs) [1].

• Phase 3: The cooperative driving phase allows vehicles to share their intention

data (i.e., intention, trajectories). This information is used to predict the behaviors

of another vehicle or a pedestrian, and thus optimize the vehicles’ decision and

maneuvers.

• Phase 4: The last synchronized driving phase (levels 4 and 5 in Figure 2.2) happens

when vehicles exchange coordination data (i.e., synchronized trajectories) to achieve

fully automated driving and optimal driving patterns.

When reviewing this roadmap, one may question whether there are special require-

ments on localization accuracy for higher automation levels. Table 2.1 summaries the

localization requirements for C-ITS applications. For instance, in the cooperative driv-

ing phase (i.e., phase 3), the prediction vehicles’ behaviors requires lane-level or even

higher where-in-lane-level localization accuracies. Otherwise, a vehicle is not certain of

what other vehicles will behave in the next several seconds, especially when they are close

to each other. Thus, it is implied that from Day-2, each vehicle is equipped with high

accuracy localization service at least at sub-meter level.
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Table 2.1: Localization requirements for C-ITS applications (Dempter, 2014).

Type Level
Accuracy requirement

Communication latency
95% RMSE

V2V
road-level 5 meter 0.1
lane-level 1.5 sub-meter 0.1

where-in-lane-level 1 decimeter 0.01–0.1

V2I
road-level 5 meter 1–5
lane-level 1.1 sub-meter 1

where-in-lane-level 0.7 decimeter 0.1

| 55

PHY

MAC

GeoNetworking

BTP

C-ITS messages

Safety and traffic efficiency apps Other apps

MAC extension

Facility layer

Networking and

transport layer

Access layer

Application layer

Figure 2.3: The C-ITS protocol stack (partial reproduction of [1, 2]).

2.2.2 V2X Messages and Services

C-ITS Protocol Stack

The C-ITS protocol stack for vehicles and RSUs contains four layers as illustrated in

Figure 2.3.

• The access layer combines the physical and data link layers in the open systems

interconnection model (OSI model).

• The networking and transport layer provides new protocols for routing and address-

ing in VANETs called GeoNetworking with Basic Transport Protocol (BTP).

• The facility layer contains C-ITS messages to enable application functionality.

• The application layer is not fully standardized [2].

CAM and DENM

The ETSI standard allows nodes to communicate via two major types of messages: Cooper-

ative Awareness Messages (CAMs) and Decentralized Environmental Notification Message

(DENMs). CAMs are distributed within the V2V or V2I network by vehicles and RSUs.
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Figure 2.4: CAM structure (ETSI EN 302 637-2).

CAM CAMs are periodic messages that broadcast status (e.g., position, speed, accelera-

tion/braking information) to neighbors within a single hop distance in order to improve the

awareness for the drivers. If CAMs are sent by an RSU, these include the basic attributes

of the RSU. Relevant use cases, which benefit from CAM, are collision risk warning, in-

tersection collision warning, emergency vehicle warning, slow vehicle indication, etc.

CAMs are transmitted at frequency ranges between 1–10 Hz, depending on the vehicle

dynamics (e.g. change of position by 4 m, speed by 0.5 m/s, and heading by 4◦), ap-

plication, current channel load, and decentralized congestion control (DCC) parameters.

Average the CAM size is between 300–800 bytes, depending on the content, including all

security trailers. As illustrated in Figure 2.4, a CAM is constructed by an ITS protocol

data unit (PDU) header and a set of containers. The position is carried in the basic

container while the speed and the heading are stored in the high frequency container.

Low frequency container can carry optional and larger data such as path history. Finally,

the special vehicle container enables a flexible message format for specific needs, while

minimizing the channel load.

DENM DENMs are event-driven short messages that broadcast to alert road users of

changes in vehicle behavior (or infrastructure status) that violate the continuity implied by

periodic CAMs. When detecting an event, vehicles immediately geo-broadcast a DENM

to all vehicles in a relevant area and possibly over multihop. The DENM transmission is

repeated with a certain frequency and certain range depending on the event, and persists

as long as the event is present to ensure that vehicles entering the relevant area later can

receive the information [2, 18].

Relevant use cases, which benefit from DEMNs, are emergency electronic brake light,
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collision risk warning, road adhesion, hazardous location, etc. Besides, DENMs can also be

used for traffic efficiency use cases, such as road-work warning, traffic condition warning,

etc.

Local Dynamic Map

In the previous section, the CAMs and DEMN provides information about the local envi-

ronments. This information has to be stored for multiple applications leading to the idea

of local dynamic map (LDM). Standardized by ETSI, LDM is a conceptual database in an

ITS station (vehicle) and manges topographical, positional and status information related

to ITS stations within a geographic area surrounding the host station [7]. It consists of 3

layers from low level to high level as follows:

• Transient static data (e.g., roadside infrastructure);

• Transient dynamic data (e.g. weather situation, traffic information);

• Highly dynamic data (e.g., CAMs).

2.2.3 V2X Technologies

We have identified various potential C-ITS applications enabled by V2X communications.

Future connected vehicles will be equipped with various communication technologies and

protocols. One key challenge is to select or to develop an appropriate communication tech-

nology that can meet the diverse application requirements in different countries following

different traffic rules and legal frequency bands. In this section, we provide an overview

of the currently available technologies and protocols for the communication subsystem

and performs a gap analysis with respect to the system requirements. Several candidates

have been considered for vehicular V2V/V2I communications including non-specific per-

sonal area networks (e.g., Bluetooth and ZigBee) or even future 5G technologies (e.g.,

mmWave). However, V2X communications is based on one of two main technologies:

IEEE 802.11p/ITS-G5/DSRC and cellular networks.

IEEE 802.11p/ITS-G5 (known as DSRC in the U.S.)

IEEE 802.11p provides the physical (PHY) and medium access control (MAC) layers of

the protocol stack for ITS-G5 in Europe [19] and DSRC in the U.S. [20]. This technol-
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ogy is derived from the most widely used IEEE 802.11 (WiFi) technology with specific

amendments for vehicular communications.

The PHY layer of the ITS-G5 is based on an orthogonal frequency-division multiplex-

ing (OFDM) from IEEE 802.11a standard but operates in 10-MHz channels instead of the

original 20-MHz channels [7,17,21,22]. Hence, data rate is limited in the range of 3 Mbps

to 27 Mbps. The data rate of the main safety channel, referred to channel 178 (5.9 GHz)

called control channel (CCH) in Europe or channel 172 (5.86 GHz) called collision avoid-

ance safety channel in the U.S., is 6 Mbps [17]. The typical line of sight (LOS) range is

from 300–1000 m, but the main purpose is to provide 360-degree non line of sight (NLOS)

awareness that cannot be achieved by ADAS sensors such as radar, lidar and camera.

To increase coverage, multi-hop communication such as GeoNetworking in the European

C-ITS protocol stack is available [22].

The MAC layer is based on an enhanced distributed channel access (EDCA) of IEEE

802.11e standard, which uses carrier sense multiple access (CSMA) with collision avoid-

ance (CSMA/CA) and four MAC queues for prioritizing traffic [17]. To cope with highly

dynamic and frequently fragmented network, vehicles can transmit messages directly and

immediately without delays for exchanging control frames through a new operational mode

called outside the context of a basic service set (BSS) or OCB mode. As there is no cen-

tralized coordinator to schedule transmissions between vehicles, a decentralized congestion

control (DCC) strategy is used to control the channel congestion and the communication

quality and fairness. It is done by adjusting Tx power, Tx rate, and Tx modulations. The

European version only controls the rate to vary between 10 Hz and 2 Hz according to the

channel load where the US version (SAE 2945.1) is more complex, as it adjusts the Tx

power and the Tx rate according to the channel load and the number of neighbors.

Though many discussions are undergoing at standardization bodies related to selecting

the best communication technologies for V2X communications, the technology of choice

has been IEEE 802.11p, which is the only one currently available, fully tested and actually

under deployment in the U.S.1, Japan2, and in Europe3. It is expected that all new vehicles

sold on the U.S. market will be equipped with DSRC starting from 2019, and similarly on

1In 2015, V2X pilot projects for IEEE 802.11p was funded by the USDOT in three cities including
over ten thousand vehicles implementing diverse applications and an investment of more than $45 million
according to https://www.its.dot.gov/pilots/.

2Toyota has installed IEEE 802.11p to approximate 100000 cars [23].
3Volkswagen publicly announced the selection of IEEE 802.11p to support V2X applications in https:

//www.volkswagen-media-services.com on 28 June 2017.

https://www.its.dot.gov/pilots/
https://www.volkswagen-media-services.com
https://www.volkswagen-media-services.com
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the European market thereafter [7].

4G LTE V2X

Long Term Evolution (LTE) is the fourth-generation (4G) technology for cellular networks.

The 4G systems have theoretical data rates of 100 Mbps for high mobility communications

(e.g., trains and cars). Standard cellular systems such as 3G and beyond 3G are promising

candidates for V2I communications, but still cannot support V2V communications that

are at the heart of the C-ITS applications [21]. To answer this urgent call, in 2017, 3rd

Generation Partnership Project (3GPP) group has introduced LTE sidelink or device-to-

device (D2D) communications under Release 14 including two new communication modes

(mode 3 and mode 4) specifically designed for V2V communications.

• Scheduled resource allocation (mode 3) in which evolved Node B (eNB) schedules

the radio resources. This mode is only available when in coverage.

• Autonomous resources selection (mode 4) in which user equipment (UE) randomly

selects the radio resources from a (pre)configured resource pool.

Within the context of safety-related communications, mode 4 is currently the only valid

strategy for safety-critical V2X communications due to required awareness of any LTE

UEs (vehicles) without the availability of cellular coverage.

5G mmWave V2X

Millimeter wave (mmWave) spectrum in the range of 30–300 GHz is occupied by military,

radar and backhaul [24]. Given possibly large spectrum availability, mmWave enables

access to very large bandwidth communication channels, leading to gigabit data rates and

millisecond latency. Historically, the mmWave bands were limited in use due to their

inherent high propagation path losses and lack of low-cost commercial hardware, among

other reasons [7]. With rapid advances in mmWave circuitry and the foreseen increased

network densification (smaller cell sizes), mmWave technology finds myriad applications

e.g., fifth-generation (5G) cellular connectivity. In 5G technology, mmWave plays an

important role in augmenting the currently saturated radio spectrum bands for wireless

communications. Then mmWave V2X communications are enabled through 5G systems

i.e., 5G base stations serve as infrastructure for V2I communications, and 5G D2D mode
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supports V2V communications [25]. Although mmWave technology is appealing with high

data rates, it also still faces numerous open challenges, mostly at the PHY layer level (e.g.,

beam alignment rapidity under high mobility scenarios, low-cost hardware integration of

agile antenna systems, multi-user tracking, short transmission ranges, etc.). For specific

mmWave V2X communication systems, three main problems are identified in [25] i.e.,

accurate mmWave vehicular channel models, market penetration rate of mmWave V2X-

capable vehicles, and simple and fast mmWave beam alignment algorithms for vehicular

communications.

2.3 Vehicular Localization and Navigation Systems

2.3.1 Satellite-Based Localization

Due to the universal availability of satellites and large penetration into the mass market,

Global Navigation Satellite Systems (GNSSs) have become a de facto standard solution

for outdoor positioning, especially for vehicle navigation. A GNSS refers to a constella-

tion of multiple artificial satellites transmitting signals from space encoding navigation

messages to enable the GNSS receivers to determine locations. Currently, the American

NAVSTAR Global Positioning System (GPS) and the Russian Globalnaya Navigatsion-

naya Sputnikovaya Sistema (GLONASS) are the only available GNSSs4. The European

Galileo is in the process of launching and is expected to be fully operational by 2020. The

three systems will be compatible with each other allowing GNSS receivers to work with

Galileo, GPS and GLONASS simultaneously. In this section, we briefly present the most

popular GPS system. Other GNSS systems are conceptually similar to the GPS but have

several differences. More details about these systems can be found in many textbooks.

The GPS system consists of three major segments [4, 26–28]:

• The space segment consists of a constellation of 24 satellites orbiting at an altitude of

about 20200 km and transmitting radio signals to users on shared L1 (1575.42 MHz),

L2 (1227.60 MHz), and L5 (1176.45 MHz) frequencies for different applications based

on code division multiple access (CDMA). Each satellite transmits different codes

such as coarse acquisition (C/A) codes for public use and encrypted precision (P)

codes or P(Y) codes for military uses.

4The Chinese BeiDou, the Indian IRNSS, and the Japanese QZSS are still regional services at the time
this thesis is being written.
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• The control segment consists of ground-based networked facilities of monitor stations,

master control stations, and ground antennas for monitoring the satellites’ signals

and status, performing analyses, and transmitting orbit and time corrections to the

space segment, respectively.

• The user segment consists of a GPS receiver equipment capable of receiving the

signals from the GPS satellites and processing the encapsulated information to de-

termine its 3-D position and time information.

GNSS positioning relies on the principle of trilateration, which is a technique of deter-

mining the position of a target by measuring its distances from known position marks (i.e.,

known position satellites herein). The GNSS receiver measures at least four ranges to four

satellites, three for calculating the 3-D position and the fourth for correcting receiver clock

error. The latter time synchronization is indispensable as the GNSS receiver determines

the propagation time by correlating the satellite-generated ranging code with the receiver-

generated replica code. This propagation time is transformed into a “pseudorange” after

being simply multiplied by the speed of light. Yet the pseudorange does not match the

geometric range due to several error sources as follows [26]:

ρiu = Riu + cδu + cδi + εi + ζiu, (2.1)

where ρiu is the pseudorange between receiver u and satellite i, Riu the geometric dis-

tance between them, c the speed of light, δu the clock error of receiver u, δi the clock

error of satellite i, εi the error due to ionosphere, troposphere, and orbit of satellite i,

and ζiu the effect of thermal noise in receiver u and multipath error of satellite i. And

Riu =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2, where (xu, yu, zu) is the position of receiver u

and (xi, yi, zi) is the position of satellite i using the ephemeris data encapsulated in the

navigation messages. The position of the receiver can be estimated by iterative LS or

EKF and is given in an Earth-centered Earth-fixed (ECEF) system, which can be trans-

formed to World Geodetic System 1984 (WGS 84) in the form of latitude, longitude, and

height [26].

Generally, the accuracy of the position estimation depends on both the pseudorange

error (aka user equivalent range error (UERE)) and the user/satellite geometry (aka dilu-

tion of precision (DOP)) [4, 26–28]. On the one hand, the UERE comprises common and
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Table 2.2: Standard deviations of range measurement errors in a single-frequency GPS
receiver [4].

Contributing source Standard deviation [m]

Common error
Satellite clock error 2
Ephemeris error 2.5
Ionospheric delay 5
Tropospheric delay 0.5

Noncommon error
Receiver noise 0.3
Multipath 1

Total (root sum squares) 6

noncommon errors. Common mode errors are highly correlated among receivers separated

by baselines up to 200 km and are caused by satellite clock error, ephemeris error, and

atmospheric effects (i.e., ionosphere and troposphere delays). Noncommon errors depend

on environment and receiver hardware/software and are caused by multipath and receiver

noise, respectively. The typical standard deviation of these errors for a single-frequency

GPS receiver in Standard Precision Service (SPS) is given in Table 2.2. From the table,

ionosphere error is dominant for single-frequency receivers. Dual-frequency equipment in

Precise Positioning Service (PPS) can nearly completely remove this atmospheric error

leading to a smaller pseudorange error budget of about 1.5 m [26].

On the other hand, when the satellites are clustered in a smaller region, the area of

overlap of the signals (i.e., the area of uncertainty) is larger as illustrated in Figure 2.5.

For this reason, error propagation from pseudorange estimates to position estimates is as

follows

cov(x̂u) = Dσ2
UERE, (2.2)

where cov(x̂u) is the covariance of estimated state vector x̂u = [x̂u, ŷu, ẑu, δ̂u]† whose the

first three components are the estimated 3-D position and the last is the estimated clock

error, σ2
UERE the standard deviation of the UERE (e.g., in Table 2.2), and D a 4× 4 sym-

metric matrix translating UERE to each component of cov(x̂u). From this formula, differ-

ent DOP variants are defined including Geometry DOP (GDOP), Position DOP (PDOP),

Horizontal DOP (HDOP), Vertical DOP (VDOP), and Time DOP (TDOP) [4,26–28]. By

using multiple constellations, the DOP can be improved resulting in better positioning

and timing accuracies. It is worth noting that this principle will be reused in Section 3.5

for the selection of vehicular links.
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Figure 2.5: Effect of DOP in satellite-based positioning systems.

GNSS Augmentations

GNSS augmentations are techniques that enhance accuracy, robustness, and reliability by

integrating external information in the position estimation. A number of techniques are

briefly reviewed below.

Differential GNSS Differential GNSS (DGNSS) uses a network of ground-based refer-

ence stations to broadcast the differential corrections to the common pseudorange errors

such as ionosphere and troposphere errors to the users (rovers) in local region. DGNSS

accuracy decreases as the distance from the reference station increases. An accuracy of

about 1 m can be achieved for users in the range of few tens of kilometers from the refer-

ence station [4]. However, this accuracy is only possible within much shorter baselines in

dense multipath environments such as urban areas because multipath error decorrelates

very quickly.

Real-time kinematic Real-time kinematic (RTK) in principle is a carrier-phase DGNSS.

The carrier-phase of GPS signal is modeled as

ϕiu =
1

λ
Riu +

c

λ
δu +

c

λ
δi +

1

λ
εi +N i

u + ς iu, (2.3)

where ϕiu is the carrier phase of the signal received from satellite i by receiver u, λ the

wavelength of the GPS signal, ς iu the carrier phase observation noise, N i
u the integer

ambiguity, which corresponds to the number of cycles between the receiver and satellite

when phase tracking starts. The carrier wave for the GPS signal is about 19 cm (for L1)

enabling centimeter-level ranging accuracy [4]. The configurations of DGNSS and RTK
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in terms of deployment and architecture are similar as both systems require a reference

station (base) to broadcast differential corrections to a user (rover) through communication

links. The difference is that the noise of carrier-based ranging is much smaller than that

of the code-based one in the DGNSS. Yet, integer ambiguity resolution in (2.3) has to be

fixed and this processing can take time from seconds to minutes. The RTK can be used

for baselines of up to 50 km, yielding positioning errors inferior to 10 cm [4]. In case of

frequent GNSS signal blockage, RTK is not appropriate because the rover has to track the

GNSS signals continuously to avoid reinitialization.

Precise point positioning Precise point positioning (PPP) requires a network of ref-

erence stations located worldwide to generate the satellites clock and orbit corrections to

users via satellites. Together with a dual-frequency GNSS receiver (to remove the first

order effect of the ionosphere), PPP provides positioning accuracy of a decimeter or even

better [4]. When compared to the RTK, the PPP does not depend on a base station, thus

provides full accuracy given satellites availability (i.e., a global positioning approach) at

the price of very long and uncontrolled convergence time up to 30 minutes in case of cold

start from scratch. Both RTK and PPP use carrier-based techniques.

Satellite-based augmentation systems The satellite-based augmentation system (SBAS)

uses geostationary (GEO) satellites to broadcast corrections to users in wide areas, even

at continental scale. The system includes several reference stations that monitor and col-

lect data from GNSS satellites, before relaying to its master stations to compute integrity

and differential corrections. This information is then uplinked to the GEO satellites then

relayed to the SBAS users. Thus, the SBAS improves the integrity by detecting erroneous

measurements very quickly, as well as accuracy and availability by providing the differen-

tial corrections and extra GEO range measurements [4, 26]. When compared to DGNSS,

the SBAS yields similar accuracy but better integrity. Besides, the SBAS does not need

any base stations. When compared to PPP, both receive corrections from satellites. Yet,

the PPP is more accurate than the SBAS, because the PPP is a carrier-based method

whereas the SBAS system is a code-based one.

Assisted GNSS Assisted GNSS (AGNSS) uses a cellular network to reduce the time-to-

first-fix (TTFF) which is the actual time required by a GNSS receiver to achieve a position
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estimation and thus improve the startup performance i.e., saving at least 30 seconds [29].

Nowadays AGNSS is extensively used in GNSS-capable cellular phones. There are two

types of AGNSS [29,30]:

• Mobile station (MS)-based: Assistance information (almanac and ephemeris) is sent

to the handset to acquire satellites more quickly.

• MS-assisted: Assistance information (timestamped pseudoranges) is sent to the net-

work server to calculate the position.

2.3.2 Sensor-Based Localization

Dead Reckoning and Integrated Systems

Dead reckoning (DR) computes the current position based on the previous position by

either measuring the change in position or measuring the velocity and integrating it [27].

DR can be implemented in various configurations depending on the employed sensors. If

only involving inertial sensors aka inertial measurement unit (IMU) (typically combining

three orthogonal gyroscopes and three orthogonal accelerometers), DR refers to inertial

navigation. We first give an overview of several sensors commonly found in existing auto-

motive navigation systems. It shall be noted that the list is far from being exhaustive. A

more complete but still comprehensive survey can be found in [27,31].

Gyroscope The gyroscope (aka gyro) measures angular velocity in a particular axis. A

change in vehicle’s heading is then obtained by integrating the gyroscope’s output. Errors

that appear in a typical gyro’s output include noise, a (time-varying) bias, scale factor

error, g-sensitivity, and cross-axis sensitivity [32, 33]. The scale factor and fixed bias are

deterministic by nature and can be calibrated at sensor level [33,34]. The bias instability

refers to bias drift, typically modeled as a random walk [33,35]. The thermal noise and the

bias instability result in angle random walk regarding the angle information and second-

order random walk in the integrated signal respectively. The error characteristics strongly

depend on the type of gyroscopes, which are commonly among mechanical, optical, and

micro-machined electromechanical systems (MEMS) gyroscopes.

Accelerometer The accelerometer measures specific forces along an axis, thus provid-

ing information about the acceleration of the host vehicle. The main sources of error for
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MEMS accelerometers are similar to those for gyroscopes. The important difference be-

tween errors arising from accelerometers is that they are integrated twice in order to track

position, whereas rate-gyro signals are only integrated once to track orientation [33]. An

accelerometer can be classified as mechanical, solid state, or MEMS devices whose error

characteristics are different from one another.

Odometer The odometer measures the rotation of the wheels a vehicle, thus providing

the speed and traveled distance. If a couple of odometers are placed on the two rear or

front wheels, or on the wheels on either side of a vehicle, heading change of the vehicle

can be estimated by differencing the wheel speeds.

Then the process of DR (and inertial navigation) can briefly be described as [33,36]:

• The 2-D/3-D orientation, or attitude of the vehicle (with a body frame attached

to it) relative to a global frame in which we are navigating is tracked by using a

gyroscope, a digital compass, or a differential odometer.

• The orientation information is then used to project the body frame acceleration,

velocity, or traveled distance into the global frame of reference.

• The traveled distance, velocity, or acceleration are then integrated over time to

obtain position and velocity estimates in the global frame of reference.

This integration also accumulates the errors of the sensors resulting in a positioning error

that grows unbounded over time and traveled distance. For an INS, uncorrected biases in

the accelerometers and gyroscopes cause errors in position, which grows proportionally to

the square and cube of time respectively [36]. In addition, an initial alignment (position

and orientation) must be provided and could be challenging and expensive especially

for orientation (e.g., magnetometer, dual GNSS antenna, gyrocompassing). However,

the advantages include high-bandwidth output (50–1000 Hz), self-contained navigation

without an external information subject to disturbance or blockage, and high accuracy in

terms of relative positioning in the short term.

GNSS/INS Fusion When compared to the INS, GNSS provides position and velocity

estimates with bounded errors, has low output rate (typically 4–10 Hz), and depends on

external sources. The pros and cons of the INS and the GNSS are complementary, so in
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Figure 2.6: Integrated GNSS/INS system architectures.

practice, they are usually integrated into a single solution. In an integrated GNSS/INS,

GNSS prevents the INS from drifting, while the INS smooths the GNSS and bridges signal

outages [27]. There are three most common architectures for integrating INS and GNSS,

and they mainly differ on the type of information shared between individual units as

illustrated in Figure 2.6.

• In loosely coupled GNSS/INS, the INS and GNSS function independently. The

outcomes of the two systems are then fused to produce a third solution. The fusion

is performed at the position, velocity, and time (PVT) level.

• In tightly coupled GNSS/INS, the INS and GNSS are reduced to their basic sensor

functions. Specifically, pseudoranges, pseudorange rates, acceleration, and angular

velocity are combined into single solution.

• In deep integration (aka ultra-tightly coupled), the architecture of the GNSS is

fundamentally different from the conventional architecture in such a way that the INS

is now a part of the GNSS architecture but not a separate system. This architecture

integrates in-phase (I) and quadrature (Q) components from the correlator of the

GNSS with the INS data.

In summary, when moving from the loose to the deep integration architectures, one gain

accuracy and robustness at the expense of sacrificing system simplicity, redundancy, and

independence of the INS and GNSS [28]. Particularly comprehensive studies about real-

time integration of these architectures can be found in Petovello’s Ph.D. thesis [37] which

uses tactical-grade IMU and in Godha’s Ph.D. thesis [38] which uses low cost MEMS-based

IMU for land vehicle navigation.

Perception Systems

Radar Radio detection and ranging (radar) has been massively deployed in the auto-

motive industry for the detection of objects and obstacles, as well as for the estimation
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of their positions, speeds, and azimuth-elevation angles relatively to the equipped vehicle.

Automotive radars are typically operating at mmWave frequencies, most often at in 24

GHz and 77 GHz to achieve high range and velocity resolutions [5, 39]. Radar simultane-

ously transmits and receives a special waveform, typically a pulsed continuous waveform

(CW) or frequency modulated continuous waveform (FMCW)5, to extract information

about neighboring vehicles or obstacles out of received waves (i.e., back-scattered wave-

forms) [5, 39]. In principle, the range to a target is determined based on the round-trip

time delay whereas the estimation of the target velocity is based on the Doppler effect.

Besides, the direction estimation can be made by means of an antenna array enabling

electronic or mechanical beam steering. Automotive radar sensors can be classified based

on their operating ranges: long-range radar (LRR) (10–250 m range) for ACC and AEBS;

medium-range radar (MRR) (1–100 m range) for cross-traffic alerts, lane-change assist,

rear-collision warning, and blind spot detection; and short-range radar (SRR) (0.15–30 m

range) for parking aid, obstacle detection, and precrash [39]. Table 2.3 provides examples

of commercialized automotive radar systems. Radar is robust in almost all environmental

conditions. However, data association problems are challenging in certain detection and

tracking scenarios.

Hammarsten et al. [40] uses SRR for vehicle localization and mapping. First, a 3-D

occupancy grid map of the static environment is developed using DGPS and radar. Next,

a vehicle driving through the same area can be located by map matching with new radar

measurements. Rao-Blackwellized particle filter (RBPF) or maximum likelihood (ML)

estimator can then be used as localization method. Localization accuracies within 0.3 m

are observed in most estimates on both simulation and real data. However, 3-D occupancy

grid map, which requires significant computational expenses, is the main drawback of this

work.

Ward et al. [41] also use SRR to localize a vehicle based on iterative closest point (ICP)

scan matching against saved radar data from a previous pass through the same road. These

ICP matches are inputed as vehicle state measurements in an EKF. This approach does

not require large amounts of mapping data to be processed offline as in [40].

Recently, MIT’s Lincoln Laboratory has developed a novel ground-penetrating radar

that maps underground geological features in order to provide autonomous vehicles with

5Other radar waveforms are compared and summarized in [39].
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Table 2.3: Examples of commercialized automotive radar systems [5].

Sensor Frequency Bandwidth Range Azimuth angle Accuracy Cycle

Bosch LRR3 77 GHz 1 GHz 250 m ±15◦ 0.1 m, 0.12 m/s, - 80 ms
Delphi ESR 77 GHz - 174 m ±10◦ 1.8 m, 0.12 m/s, - 50 ms

Continental ARS30x 77 GHz 1 GHz 250 m ±8.5◦ 1.5%, 0.14 m/s, 0.1◦ 66 ms
SMS UMRR Type 40 24 GHz 250 MHz 250 m ±18◦ 2.5%, 0.28 m/s, - 79 ms

TRW AC100 24 GHz 100 MHz 150 m ±8◦ -, -, 0.5◦ -

real-time localization in all-weather conditions [42]. The radar data of subterranean ob-

jects are recorded along with GPS tags to build the subsurface map. This map is then

used for online vehicle localization. Cross-track accuracies of 4.3 cm (rms) at speeds up

to 100 km/h during a night-time snow-storm are achieved.

Lidar Light detection and ranging (lidar) is a laser-based ranging system that measures

the time of flight (TOF) of light pulses reflected by objects in a similar fashion as radar.

Such lidar equipped with a spinning platform, known as laser scanner, and mounted on

top of a vehicle enables a 360-degree field of view. Specifically, the result is a dense

point cloud providing a 2-D or 3-D map of the environment. Lidar has been mostly

devoted to high-definition mapping and cartography applications so far. Over a decade

since the 2005 DARPA Grand Challenge and the 2007 DARPA Urban Challenge, lidar

has been preferred enabler of ADAS and semi-autonomous/autonomous driving systems.

They have been used for detecting other vehicles, objects, VRUs, road borders, etc. as

well as localization and mapping with very high accuracy (1–10 cm for 10–50 m ranges)

regardless of day or night operations [6]. Nevertheless, main limitations include weather

sensitivity [5], slow scanning repetition rates when compared to its rival camera systems,

and limited operating range (typically 10–50 m for centimeter accuracy). The cost of lidar

systems is notoriously too high for mass market deployment, though largely depending on

application requirements. Although many manufactures are delivering low-cost devices to

replace the most recognized 75000$ 64-beam Velodyn HDL-64E on the rooftop of Google’s

self-driving cars, these devices come with some reduced features (e.g., fewer beams, shorter

range, narrower field of view to address less demanding applications) which cannot be used

for high-accuracy localization and mapping. The characteristics of some commercialized

automotive lidars are summarized in Table 2.4.

As an example, Levinson el al. [43] fuse 3-D lidar, GPS, IMU, and wheel odometry

data to produce a offline high-resolution map of the environment, including characteris-
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Table 2.4: Examples of commercialized automotive lidar systems [5].

Sensor Dim. resolution Range Azimuth angle Accuracy Cycle

Quanergy M8-1 3-D 150 m 360◦ 0.05 m, -, 0.03◦ 33 ms
Ibeo LUX 2-D 200 m 110◦ 0.1 m, -, 0.125◦ 20 ms

Continental SRL1 2-D 10 m 27◦ 0.1 m, 0.5 m/s, 0.125◦ 10 ms
Velodyne HDL-64E S2 3-D 120 m 360◦ 0.02 m, -, 0.09◦ 50 ms

tic static features. Online vehicle localization is performed by correlating current lidar

measurements with this map in a PF framework. The system significantly outperforms

conventional GPS-IMU-odometry-based methods in terms of relative accuracy. This work

is extended in [44] using probabilistic maps with higher precision, learning to update the

map over time, and increased robustness to dynamic environments. A myriad of papers

about lidar-based localization for road vehicles are reviewed in [45].

Visual camera Visual camera senses environment through pixel analysis and can cap-

ture and interpret high-level information (e.g., color, texture, and contrast) for classi-

fication and thus, for scene understanding. Today, cameras are equipped in high-class

vehicles for ACC, traffic sign recognition, lane keeping assistance, and object detection

(pedestrians, vehicles, etc.) [5, 6]. However, visual camera is an angle sensor without

depth information so that range and range rate from an object in the environment can-

not be directly derived from a single 2-D image from a single (monocular) camera. The

unknown depths can be estimated by comparing frames captured at different times and

at different positions (of the vehicle). On the other hand, an additional depth sensor

(e.g., laser rangefinder, infrared depth sensor) or a stereo camera can directly infer the

distance information to viewed objects, which is of the highest importance to automotive

applications. The latter system with two visual cameras operates in the same way as

humans with two eyes. Generally, 3-D information can be constructed from 2-D images

captured by multiple cameras. However, when compared to radar, lidar, and TOF cam-

era, the ranging error of visual camera is superior [5, 6] and increases with distance [46].

For example, errors of 6.44% at 5–80 m distances are achieved with monocular cameras

in [47] whereas smaller errors of around 1% at 10–95 m distances are claimed with a stereo

camera in [48]. Therefore, vision systems are usually paired with radar or lidar in various

ADAS. For the range rate which is required in visual ACC, it has to be estimated by

differentiating the ranges. Again, similarly to human eyes, visual cameras are sensitive to
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Table 2.5: Usual characteristics of visual camera systems for automotive applications [5,6].

Resolution Range Azimuth angle Attitude angle Accuracy Cycle

640×480 3–50 m 50◦ 40◦ -, -, 0.1◦ 15–25 fps

adverse weather conditions (e.g., fog, rain) and variations in lighting (e.g., poor lighting

or strong head lighting of approaching vehicles). Table 2.5 summarizes the general vision

system characteristics.

Visual odometry (VO) and visual SLAM (V-SLAM) techniques are dominant in visual

localization. The VO first introduced by Nister el al. in [49] estimates the vehicle’s motion

using a sequence of images of the environment captured by monocular or stereo cameras

attached to it. A complete survey of VO systems is provided in [50]. The key difference

between the VO and the V-SLAM is that the VO only cares about the local consistency

of the trajectory while the V-SLAM is concerned with the global map consistency [50].

MonoSLAM presented by Davison el al. in [51] is the first V-SLAM algorithm which

uses a monocular camera. Based on a probabilistic feature-based map, the method tracks

both the estimates and the uncertainty of the state of the camera/vehicle as well as that

of all the detected features by an extended Kalman filter (EKF). A survey of V-SLAM

algorithms from 2010 to 2016 is presented in [52].

2.3.3 Infrastructure-Based Localization

Static elements of the road infrastructure, such as WiFi access points (APs), RSUs or

LTE eNBs, are considered as anchors, and vehicles independently estimate their locations

through classical trilateration, range-free cell connectivity information (possibly combined

with DR [53]), or even fingerprinting (e.g., possibly assisted by particle filtering [54]).

However these solutions strongly depend on the density, the availability and the relative

geometry of the road infrastructure.

With the current used ITS-G5 or IEEE 802.11p standard, it is also possible to examine

distance information with proprietary software-based solutions since there is no native

localization architecture implemented [55]. In [56], the authors estimate the angle of

arrival (AOA) of beacon packets transmitted from a RSUs by using linear antenna array.

In [57], a network-centric localization solution for cars in ultra-dense 5G networks is

presented. The state of the car is estimated using an EKF with AOA and time of arrival
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(TOA) measurements. Sub-meter accuracy for position estimation and meter accuracy

for position prediction in short-time of movement are claimed.

2.3.4 Cooperative Localization

The general principle of vehicular CLoc works in two main phases.

In the first phase, each vehicle piggybacks its position-dependent data (e.g., at least

its absolute GNSS position) in a “Beacon” sent over V2X communication links6.

In the second phase, through the reception of these “Beacons”, a given “ego” vehicle be-

comes aware of the absolute position estimates of its neighbors. The optional task consists

of using the “Beacon” signal statistics to sample relative position-dependent information

from these “virtual anchors”. So as to perform localization or localization enhancement,

data fusion thus combines the multiple sources of information including:

• Data from other entities representing their local observations through V2X commu-

nications (e.g., GNSS data, sensor data, etc.),

• Data from communication signals (e.g., received signal strength indicator (RSSI),

TOA, time difference of arrival (TDOA), AOA, etc.),

• Data from on-board sensors (e.g., GNSS data, sensor data, digital map, etc.).

CLoc with V2X Measurements

Extensive research has been devoted to incorporate V2V measurements with diverse

sources of information such as GNSS/GPS data, car’s kinematics (speed, acceleration,

heading, etc.), and even prior knowledge of the road map using different CLoc architec-

tures. With the advent of ITS-G5/DSRC standards, V2V RSSI (or V2V distance estimates

based on RSSI) or Doppler shift is primarily utilized in this vehicular CLoc context.

In [58], the authors present a distributed cooperative solution based on a dissimilarity

matrix composed of RSSI-based distance estimates. Position estimation is performed by a

least squares (LS) estimator yielding accuracy improvement over stand-alone GPS, while

using GPS estimates for initialization purposes only. The authors extend this work by

additionally incorporating vehicle’s kinematics and road constraints based on a extended

6To remain technology neutral, a “Beacon” is a message periodically broadcast by each node, while
V2X refers to any technology capable of D2D communication in a vehicular context.
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Kalman filter (EKF) in [59]. However, collecting V2V distance measurements in mesh

topology, which is challenging in a fast-moving VANETs, is not discussed the works.

Additionally, the RSSI-based ranging error less than 10 m is not realistic according to [60]

(see also Appendix C.1). A similar work is proposed in [61] together with a study on

communication overhead, its impacts on CLoc accuracy, and protocol improvements. The

authors claim to also improve neighboring vehicles’ positions at the same time. A very

similar CLoc problem is solved by a fast multidimensional scaling (MDS) in [62] and the

MDS coupled with a PF prefiltering V2V distances in [63]. A simplified CLoc architecture

fusing V2V distance measurements in star topology (to avoid range vector exchanges)

and GPS measurements in an EKF is found in [64]. However, since the trilateration is

performed with the GPS-based positioned neighbors, the sub-meter localization accuracy

cannot be achieved. Particularly, the best scenario with 14 neighboring vehicles only yields

about 3.5 m error.

In [65], the target vehicle’s position is trilaterated using the neighboring vehicles’ po-

sitions and range information (assumed to be perfect) in a LS technique. The algorithm

is initialized with Kalman filter (KF)-based GPS with kinematics. This also implies that

the neighbors communicate their enhanced positions and associated uncertainties rather

than the GPS ones.

Different from the majority of CLoc techniques employing distances between the par-

ticipating nodes, it is proposed in [66] to fuse on-board GPS position and velocity with

those of the neighbors and Dopller shifts of the received signals over V2V ITS-G5 in an

EKF. An accuracy improvement of up to 48% over the GPS accuracy is reported but still

without achieving the sub-meter level. Very recently, a GNSS/ITS-G5 integrated archi-

tecture considering both Doppler and range from DSRC is developed in [67] to improve

the CLoc performance. For the data fusion, a modified cubature KF is applied to account

for the probable anomalies in state estimation.

With an increased number of sensors on vehicles, [68] fuses information from on-board

GPS, on-board ranging sensors, and DSRC messages using an EKF. The association for

the data coming from independent DSRC and ranging sensors is based on the minimum

Mahalanobis distance and Chi-square test. If a neighboring vehicle is discovered by both

DSRC and on-board sensors, the corresponding relative distance is cross-checked and

corrected. Another strong point lies in the possibility to synchronize all the position



2.3. Vehicular Localization and Navigation Systems 29

information in DSRC messages using an open-loop KF.

Furthermore, an integrated localization algorithm that exploits all possible data sources,

relying on a WLS estimator and exploiting various data sources (e.g., GPS, RFID, V2X

and DR), has been proposed in [69]. Another recent work [70] improves GPS vehicle posi-

tioning by the fusion with V2X RSSIs through IEEE 802.11p interfaces and inertial sensors

on driver’s smartphone, and map information if available. A two-state Bayesian framework

is proposed including an UKF for prefilering the heading estimation using smartphone in-

ertial sensors, and a core PF to combine all the aforementioned information. The authors

perform a comparative evaluation with different combinations of the location information

sources using real-word data in an urban scenario i.e., the city of Porto. However, the

localization accuracy gain of the fusion approaches against the stand-alone GPS is limited

(location errors of 9.47 m and 9.8 m for GPS+V2V+map and GPS, respectively for full

trajectory).

CLoc without V2X Measurements

CLoc can also be performed with the information contained in the messages only, without

requiring explicit V2V measurements, contrarily to the methods discussed in the previous

section. At least a couple CLoc methods have been extensively investigated including

CLoc based on GNSS pseudorange information or map exchanges.

CLoc techniques with GNSS pseudoranges are commonly implemented in one of the

two following schemes. On the one hand, in [71], a tightly coupled GPS/INS integration

is adopted for relative CLoc. Based on the exchange of GPS pseudoranges and vehicles’

motion through V2V communications, the relative distances between vehicles are tracked

using a PF. Though simulated data of two vehicles is demonstrated, this work can be

extended to estimate the relative position of multiple neighboring vehicles, which is com-

pleted later in [72]. The latter even obtains experimental results. In [73], V2V distances

are estimated based on the sharing of GPS pseudorange measurements through DSRC and

a WLS method. Then, a distributed location estimation algorithm uses these distances

and the shared GPS fixes to compute the target vehicle’s absolute position.

Instead of sharing the GNSS pseudoranges, other studies such as [74, 75] propose to

broadcast GNSS pseudorange correction through V2V communications, thus, the receivers

can improve their GNSS positions by compensating the common errors. In other words,
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the principal of DGNSS is extended from fixed base stations to dynamic base stations such

as vehicles. Specifically, each vehicle estimates its position using all their on-board sensors

and then the geometric ranges to satellites. It eventually subtracts the latter from the

measured pseudoranges and broadcast this information to other vehicles. The receiving

vehicles can include this correction in their measured pseudoranges from the same satellites

to compensate the common errors. In [74], through simulation, the authors prove that a

large amount of the error on the measured pseudoranges can be compensated (5x) and

therefore, a more accurate positioning (3.5–6.5x) can be achieved whereas an experiment

with 2 vehicles is presented in [75].

By sharing both GPS absolute positions and pseudoranges only via the V2V com-

munications, in [76], Mattern el al. present a cooperative map matching method. Each

receiving vehicle can then calculate relative positions between itself and transiting vehi-

cles. Assuming that participating vehicles are within drivable areas, matching of groups of

vehicles to a lane-level map is performed. This matching is based on the fact that match-

ing of polygons to a map is less ambiguous than point map matching. A very similar

approach appears later on in [77]. However, this approach requires that the geometry of

the involved vehicles is good enough to remove ambiguity in 2-D space.

In [25], the authors discuss the possibility to exchange raw sensor data (i.e., radar,

lidar, camera) between vehicles using 5G mmWave V2X to enlarge sensing range and

improve automated driving functions as the current IEEE 802.11p and 4G LTE D2D do

not support the Gbps data rates required for raw sensor data exchange. A simplified

prototype so-called implicit cooperative positioning (ICP) is presented in [78] to jointly

estimate the positions of sensing vehicles and sensed features. Specifically, vehicles jointly

localize features (e.g., pedestrians, traffic lights, parked cars, etc.) in the surrounding areas

using radars or lidars, and consider them as common noisy reference marks to refine their

position estimates. Information on sensed features are simplified by Gaussian distributions

fully described by their means and covariances, and further exchanged between cooperating

nodes till convergence. However, the distributed data association issue, which may be

very challenging (e.g., considering clouds of lidar-based detected points), still needs to be

further investigated in depth in this very context and latency issues may be critical at

high speed (i.e., the iterative solution requiring the exchange of a few packets between a

pair of sensing nodes before achieving convergence).
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Table 2.6: Vehicular communication capabilities by today and prospective technologies [7].

Maturity Technologies Throughput Delay Range

Today ITS-G5/IEEE 802.11p 3–12 Mbps ≈ 10 ms 300–1000 m
Prospective 4D LTE V2X ≈ 70 Mbps ≈ 50 ms (Mode 1)/ ≈10 ms (Mode 2) 300–900m
Prospective 5G mmWave V2X > 10 Gbps 1 ms < 200 m

2.4 Gap Analysis and Challenges

From a communication perspective, the backbone of CLoc is the V2X communication

technology. Table 2.6 summaries the core V2X technologies that are or will be on-board

of future connected vehicles including ITS-G5/IEEE 802.11p, LTE V2X, and 5G mmWave

V2X. From this table, the technology of choice for our CLoc investigations is ITS-G5 since

it is by far the most mature, while already fulfilling basic CLoc needs in terms of range

(thus, cooperation potential), rate (sufficient for basic location awareness) and latency

(compatible with current nominal GNSS refresh rates). Moreover, it is fully tested and

available on the market today, what is particularly appealing for short-term algorithms

implementation and validations. Besides, it already provides adequate location awareness

mechanisms. On the contrary, LTE V2X is still under specification (at a quite early stage)

and needs several years to be validated while the promising 5G mmWave V2X has an

even longer time horizon ahead. Even if the cooperative fusion algorithms described in

this thesis are primarily adapted to ITS-G5 communications (and to some extent jointly

optimized, as it will be seen in particular in Chapters 2 and 3), note that the overall

optimization methodology is however agnostic to the underlying technology and could be

applied to other underlying V2X technologies in the near future.

From a location estimation perspective, according to the detailed taxonomy available in

Appendix B, we are interested in CLoc algorithms which fall into the following categories:

• Two-step localization due to its low complexity and modularity;

• Distributed architecture to cope with high mobility patterns, frequent fragmentation

and rapid evolution of the network topology, short link life time, etc.;

• Absolute localization to fulfill the requirements of the C-ITS applications;

• Probabilistic approach to exploit available statistical models;

• Multisensor fusion to exploit multiple available information sources from a number
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of sensors in vehicles;

• Range-based localization as approaches that do not require explicit V2X measure-

ments but just communicate raw GNSS information operate only under satellite

coverage, while those exchanging maps or raw sensor data are still quite challenging

for current ITS-G5 and even 4G LTE V2X specifications, besides other limitations

such as distributed data association and synchronization.

Table 2.7 summaries the relevant technologies that could provide explicit V2X range-

dependent measurements. Some technologies can support the exchange location-dependent

data and/or the acquisition of radiolocation metrics over V2V or V2I links. For exam-

ple, though ITS-G5 has been mostly adopted for communication purposes, it can support

limited ranging capability through RSSI measurements. On the contrary, IR-UWB is a

technology primarily intended for accurate ranging but it can hardly communicate data

at high rates (say above a few tens of Mbps) while achieving simultaneously sufficient

transmission ranges (say, beyond about 100 m). Throughout this thesis, we thus build our

CLoc framework in a gradually complex way. As a starting point, we fuse on-board GNSS

positions with opportunistic RSSI readings based uniquely on ITS-G5 under simplified

working assumptions first in Chapter 3, before considering more realistic V2V wireless

channel and protocol constraints in Chapter 4. This first combination of technologies is

intended as a nominal baseline (making opportunistic use of ITS-G5 only) and as such, it

is expected to offer only quite moderate accuracy. As RSSI is neither accurate enough, nor

reliable enough (as discussed in details in Appendix C), Chapter 5 presents a hybrid V2V

CLoc scheme combining on-board GNSS and IR-UWB V2V TOF measurements while still

using the ITS-G5 to communicate position estimates to neighboring vehicles. Our CLoc

framework is completed in Chapter 6 to include inertial/DR sensors (and even possibly,

camera-based lance detectors) under full V2X cooperation (i.e., including both V2V and

V2I links, considering systematically ITS-G5 for data communication, along with IR-UWB

TOF or ITS-G5 RSSI for range-dependent measurements).

To combine multiple information sources, we use a hybrid data fusion architecture

mainly due to its flexibility for proof of concept, besides the following reasons. On the one

hand, low level architectures are highly complex with more parameters to control, difficult

to extend with new modalities, and they also require deep access to the devices (e.g.,
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Table 2.7: V2X range-dependent measurement capabilities by today and prospective tech-
nologies [8].

Maturity Technologies Frequency Metric Links

Today ITS-G5/IEEE 802.11p 5.9 GHz RSSI V2V/V2I
Today ZigBee/IEEE 802.15.4 2.4 GHz RSSI/PDOA V2V/V2I
Today IR-UWB/IEEE 802.15.4a or proprietary 4 GHz TOA (TOF)/TDOA V2V/V2I

Prospective 4G LTE V2X 2 GHz Not defined V2V/V2I
Prospective 5G mmWave V2X 30–100 GHz AOA, AOD, TOA V2V/V2I
Prospective WiFi extension 2GHz Not defined V2V/V2I

GNSS pseudoranges). On the other hand, high level architectures requires that all the

involved sensors can independently estimate the state vector before fusing their results,

which can not always be realized.

To implement the hybrid fusion architecture above, PF is chosen as core filter fusion

engine due to its suitability to nonlinear and non-Gaussian dynamics. By using PF, we can

make our study generic enough to possibly integrate other location metrics/technologies

(considering the increasing number of sensors in today vehicles) which may be character-

ized by complex models. Besides, the complexity of PF is not an issue in the vehicular

context since the relative extra-cost to supply adequate powerful hardware and software

capabilities looks still relatively reasonable (i.e., in comparison with the cost of the whole

car).

Even if CLoc yet remains a very promising approach to enhance geo-localization, in

particular in GNSS (partially) denied environments. The combination of V2V and GNSS

information raises unprecedented and specific challenges that require in-depth understand-

ing and careful assessment as follows:

• Asynchronism of CAM transmissions and local estimations among the involved ve-

hicles (thus requiring advanced prediction mechanisms before fusing the received

data);

• High computational complexity and high data traffic under exhaustive/systematic

cooperation with all the available neighbors (thus requiring low-complexity and

context-aware links selection mechanisms);

• Measurements space-time correlation under constrained vehicle mobility and refresh-

ment rates (thus requiring correlation mitigation at both signal processing and pro-

tocol levels);
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• Limited CAM payloads and V2V channel congestion (thus requiring V2V message

simplifications and transmission rate/power adaptation);

• Whenever both GNSS and accurate V2V ranging based on IR-UWB are available,

propagation of location errors among vehicles and/or fusion filters overconfidence,

depending on local GNSS quality and dispersion (thus requiring mitigation mecha-

nisms at both signal processing and protocol levels);

• Poor GDOP along the dimension orthogonal to the road, due to highly constrained

VANET mobility and topology;

• In challenging but common tunnel environments, prolonged GNSS outages and un-

sustainable error accumulation of inertial sensors over time (e.g., gyroscopes), leading

to the fast divergence of position estimates.

The previous key points will be addressed in the following chapters.



Chapter 3

V2V Cooperative Localization

3.1 Introduction and Related Works

As already seen in Chapter 2, vehicular localization is mostly enabled today by GNSS. So

as to improve further the localization accuracy, GNSS augmentations or a maps of land-

marks/anchors can be used. However, the GNSS augmentations have to face specific issues

(e.g., deployed base stations for DGNSS and RTK, unguaranteed convergence time for

PPP). On the one hand, perception-based localization using lidars requires high definition

maps (of landmarks), which are costly and time-consuming to maintain up-to-date. On

the other hand, static elements of the road infrastructure, such as RSUs or LTE eNBs, are

considered as anchors, and vehicles independently estimate their locations through classi-

cal trilateration, range-free cell connectivity information, or even fingerprinting. However

these solutions strongly depend on the density, the availability and the relative geometry

of the road infrastructure. For instance, as illustrated on Figure 3.1, one single V2I link

with respect to a RSU would be insufficient to get the “ego” vehicle positioned through

standard trilateration with no ambiguity.

On the contrary, as illustrated in Figure 3.1, instead of considering only RSUs as static

anchors, CLoc refers to strategies that consider neighboring vehicles as additional “virtual

anchors”. More specifically, their periodically broadcast ITS-G5 CAMs can be used pri-

marily to receive and fuse the encapsulated GNSS-aided data (raw or refined estimates)

but, also opportunistically, to measure range-dependent metrics e.g., RSSI. The goal of

an “ego” vehicle is thus to infer its position (as part of its so-called “state” in the fol-

lowing) based on its own estimated GNSS position, on V2V RSSI readings with respect

35
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(a)

(b)

Figure 3.1: (a) Cooperative cars periodically exchange CAMs to maintain awareness of
each other and to support distributed CLoc. Both the transmission time @ti and the
received power level RSSIi depend on the transmission car i (and thus, on the V2V link).
(b) “Ego” car receiving asynchronous CAMs from one-hop “virtual anchors” to perform
distributed CLoc. The dispersion of CLoc location estimates (through both GNSS and
ITS-G5) is expected to be lower than that of non-CLoc estimates (i.e., standalone GNSS).

to one-hop neighbors (measured out of incoming CAMs), and on imperfect state informa-

tion from these neighbors viewed as “virtual anchors” (i.e., estimated locations and their

related uncertainties, encapsulated in the CAMs). The “ego” vehicle then contributes to

improve the localization of other vehicles by sharing its own fusion-based position esti-

mates in subsequent CAMs. We do not consider V2I communications for now to assist

positioning but more generic V2V configurations, since RSUs shall be mostly deployed

in the most critical areas/environments as seen in Chapter 6 within a tunnel scenario.

A major benefit of CLoc in comparison with noncooperative approaches is that it does

not need any prior map containing predefined anchor nodes’ locations. It shall also ben-

efit from other vehicles’ data and communications, and more generally, from information

redundancy and diversity.

Despite the significant localization improvements expected with CLoc (in particular

in GNSS denied environments), the intrinsic mobile nature of both “virtual anchors” and

vehicular wireless channels makes that the indicated GNSS positions, as well as the re-

ceived power over V2V links, are still conditionally subject to strong errors and harmful
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fading conditions respectively, as it will be seen in more details in Chapter 4. Beyond,

CLoc is also prone to even more specific challenges. On the one hand, the transmission in-

tervals between CAMs are constrained by channel load conditions, leading to non periodic

transmissions and accordingly, non synchronous data reception from “virtual anchors”

(see Figure 3.1). If not appropriately addressed by advanced filter designs in charge of

performing data fusion [79], this can lead to severe localization errors and hence, coopera-

tion is less beneficial or even harmful. On the other hand, there exists a trade-off between

localization accuracy and complexity (under limited embedded capabilities, latency, power

consumption, etc.), as well as communication impairments (e.g., increased network traf-

fic, channel congestion, packet loss, etc.). As an example, exhaustive cooperation, which

aims at integrating all the V2V links with respect to available neighbors (i.e., regard-

less of the link quality) can generate high computational complexity (in the fusion step)

and heavy communication loads (due to uncensored transmissions), while incorporating

uninformative (e.g., too redundant) or largely erroneous data.

Thus, in this first technical chapter, we propose to define a nominal flexible coopera-

tive GNSS/ITS-G5 fusion framework that addresses the previous specific challenges. The

chapter is organized as follows. In Section 3.2, we present the problem formulation and the

system model. The prediction-based data resynchronization is suggested in Section 3.3

while the general GNSS/ITS-G5 data fusion for V2V CLoc based on a nonparametric

filter is described in Section 3.4. Then Section 3.5 addresses computationally efficient

link selection algorithms employing theoretical performance bounds to integrate only the

most informative neighbors and measurements. Numerical results are presented in Sec-

tion 3.6. Finally, Section 3.7 gives a summary of related personal contributions, as well as

intermediary conclusions.

3.2 Problem Formulation and System Model

The state-space model is a mathematical abstraction of any localization and tracking

problem, from which many different model-based filtering techniques can be applied. It

is generally usual to consider models that are linear for state dynamics and nonlinear for
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observations [80,81]:

Xi,k = FiXi,k−1 + Biui,k + Giwi,k, (3.1a)

zi,k = hi(Xi,k, . . .) + ni,k, (3.1b)

where Xi,k is the state vector of vehicle i collecting the components of interest for the

system (e.g., position, velocity, heading, etc.) at its local discrete time k or ti,k
1, ui,k

the control inputs (e.g., steering, throttle settings, braking forces), Fi the state transi-

tion matrix, Bi the matrix that applies the effect of each control input component in

the vector ui,k on the state vector, Gi the matrix that applies the effects of each noise

component in the process noise vector wi,k, hi(Xi,k, . . .) the transformation matrix that

maps the state vector parameters Xi,k (and possibly other vehicles’ states) into the mea-

surement/observation zi,k, which is corrupted by a measurement noise term ni,k.

In general, the GNSS positions of different vehicles are collected asynchronously lead-

ing to asynchronous enhanced position estimates (i.e., after filtering/fusion), as shown in

Figure 3.2. For ease of notations, we consider a global timeline divided into time windows

indexed by k so that all the events of position estimates occurring within this time slot

granularity share the same index k (see Figure 3.2). Throughout this dissertation, we will

use the notations in Table 3.1, some of them being also illustrated in Figure 3.2.

At time instant k, the “ego” vehicle i has the setN→i,k, i /∈ N→i,k of vehicles in commu-

nication range in the time interval (k−1, k] and the set S→i,k ⊆ N→i,k of selected “virtual

anchors” for CLoc. Also at this vehicle i’s instant, a vehicle j, j ∈ N→i,k has the state vec-

tor Xj,ki 6= Xj,k which is sampled according to its own time schedule. We also introduce the

following set of notations to gather different vehicles’ states: XN→i,k<ki = {Xj,k}j∈N→i,k
,

XN→i,0:k<ki = {XN→i,0<0i , . . . ,XN→i,k<ki}, XN→i,k = {Xj,ki}j∈N→i,k
, and XN→i,0:k =

{XN→i,0, . . . ,XN→i,k}. Given all the available measurements zi,1:k and the set of neigh-

bors’ self-perceived beliefs bel(XN→i,0:k<ki) communicated to vehicle i (cooperative aware-

ness), the goal of vehicle i is to track its own belief bel(Xi,0:k), as well as to build and

update a LDM of its immediate neighbors’ beliefs bel(XN→i,0:k). Then we can obtain from

the beliefs any 2D position, along with its associated confidence interval. The following

1Due to asynchronously sampled time instants (i.e., ti,k 6= tj,k if i 6= j), the index k is meaningful only
locally. For notation brevity, the subscript indicating the “ego” vehicle is deliberately omitted hereafter
in some cases (e.g., Xi,k instead of Xi,ki). If, however, it is included, the associated variable is strictly
considered with respect to the timeline of the stated vehicle index (see Xj,ki in Table 3.1).
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Figure 3.2: Example of space-time schematic managed by the “ego” i whose neighbors are
vehicles j and l. Due to asynchronous estimates, the “ego” i needs to perform prediction
of received information at its time of interest ti,k.

sections describe in detail the two main components for implementing the filter, namely

mobility and observation models.

3.2.1 Gauss–Markov Mobility Model

To make use of Bayesian filtering techniques later on, we adopt the so-called Gauss–Markov

mobility model (GMM), which is a stochastic mobility model suitable for the vehicular

context [81]. It describes well the correlated velocity of the vehicle as a Gauss–Markovian

process and enables good predictions of the vehicle’s position and velocity [82], while

remaining still analytically tractable2. In discrete time, the predicted velocity in 2-D is

computed based on its previous value and a random Gaussian process [81,82], as follows:

v
(·)
i,k+1 = αiv

(·)
i,k + (1− αi)v̄(·)

i,k + ∆T
√

1− α2
iw

(·)
i,k, (3.2)

where (·) can be either x- or y-coordinate, αi is the memory level, ∆T the time step,

v̄
(·)
i,k the asymptotic 1-D cruising velocity which evolves slower than ∆T , and a

(·)
i,k =√

1− α2
iw

(·)
i,k the 1-D temporally uncorrelated centered Gaussian (acceleration) noise.

However, note that vehicles usually move along the lanes on the roads. Intuitively, the

uncertainty along the road direction is much higher than that along the dimension orthog-

2The evaluation of this work over real or synthetic mobility traces are left to Chapter 7.
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onal to the road [59]. If (σai )2 and (σoi )
2 represent the variances of the uncertainties along

and perpendicular to the road respectively, therefore (σai )2 � (σoi )
2. As a road runs in a

direction with an angle Ω counterclockwise from x-axis, a transformation must be applied

to account for the high uncertainty in the along-track direction, providing information

on road geometry within the prediction model (3.1a) to reduce uncertainty and achieve

better predictions. Thus, the process noise covariance matrix expressed in a 2-D Cartesian

coordinates is no longer diagonal, as follows:

E{wi,kw
†
i,k} = E


wxi,kwx†i,k wxi,kw

y†
i,k

wyi,kw
x†
i,k wyi,kw

y†
i,k




=

cos Ω − sin Ω

sin Ω cos Ω


(σai )2 0

0 (σoi )
2


cos Ω − sin Ω

sin Ω cos Ω


†

.

(3.3)

Therefore, the resulting mobility model (3.1a) has the following form:

xi,k

vi,k


︸ ︷︷ ︸

Xi,k

=

I2 αi∆T · I2

02 αi · I2


︸ ︷︷ ︸

Fi

xi,k−1

vi,k−1


︸ ︷︷ ︸

Xi,k−1

+ (1− αi)

∆T · I2

I2


︸ ︷︷ ︸

Bi

v̄i,k

+
√

1− α2
i

∆T 2 · I2

∆T · I2


︸ ︷︷ ︸

Gi

wi,k,

(3.4)

where v̄i,k ≡ ui,k and I2 is the identity matrix of size 2. Note that the memory level αi

can be tuned to account for various mobility behaviors in many scenarios [83].

From a traffic simulation point of view, we utilize this model to generate vehicular

mobility traces. From the tracking point of view, we use this model to perform the

prediction of the “ego” position3. We first assume that each vehicle has perfect knowledge

about its own mobility model i.e., GMM parameters or more generally, a conditional

transition probability density function (pdf) p(Xi,k|Xi,k−1) (known a priori for highly

controlled mobility regimes or possibly self-calibrated on the wing based on previous state

estimates). However, this perception is usually an approximation of the true mobility

statistics. Mismatch models as well as more realistic/synthetic mobility traces are left to

3In the following section, it will also be employed to predict the neighboring positions to resynchronize
related data before fusion.
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Chapter 6 and Chapter 7, respectively. Finally, it is reasonable to assume the vehicles’

mobilities and their a priori states are mutually independent [84,85].

3.2.2 Observation Model

GNSS Absolute Position

The 2-D position xi,k is first determined by a GNSS receiver and the corresponding mea-

surement zGNSS
i,k = (zxi,k, z

y
i,k)
† is contaminated by additive noise nGNSS

i,k = (nxi,k, n
y
i,k)
†, as

follows:

zxi,k = xi,k + nxi,k, (3.5a)

zyi,k = yi,k + nyi,k. (3.5b)

The latter errors affecting 2-D coordinates, nxi,k and nyi,k, are firstly supposed to be indepen-

dent and identically distributed (i.i.d.) centered Gaussian and mutually independent with

known variances σxGNSS and σyGNSS respectively, for the sake of simplicity [59,61,64,65].

V2V Received Power

The RSSI measurements are directly performed out of the received CAMs, originally used

to encapsulate and share geographical awareness information over V2V channels. The

approximated/extrapolated RSSI zRSSI
j→i,k (on a dB scale) at vehicle i at local time ti,k (i.e.,

while occupying position xi,k) with respect to vehicle j (i.e., occupying position xj,ki),

is assumed to be measured in LOS and to follow the widely used log-distance path loss

model4:

zRSSI
j→i,k = P0(d0)− 10np log10

(
‖xi,k − xj,ki‖

d0

)
+ sj→i,k, (3.6)

where P0(d0) [dBm] is the averaged received power at a reference distance d0 = 1 m,

np the path loss exponent, ‖·‖ the Euclidean distance, and finally sj→i,k, a shadowing

component that is assumed i.i.d. centered Gaussian with standard deviation σSh in a

specific environment.

In the following filtering schemes, observation vectors will be composed of GNSS and/or

4Without loss of generality, we assume a simplified log-distance model in this work, but the proposed
core data fusion engine is not restricted to it. In Chapter 7, we will consider real experimental data
to calibrate the corresponding model parameters. Beyond, we shall mention the necessity/difficulty of
pre-calibrating this kind of path loss model in real systems.
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V2V RSSI measurements, depending on the cooperation level and the available measure-

ments.

3.3 Resynchronization of Cooperative Information

To perform data fusion, the related inputs have to be meaningful at the desired fu-

sion/filtering time. Specifically, the related inputs, namely the positional data received

from neighboring vehicles, the associated RSSIs, and the positional observation from on-

board GNSS, have to be made consistent (i.e., spatially coherent) and meaningful at a

common point in time. Nevertheless, as these available sources of information are ad-

versely asynchronous in the high speed vehicular context due to channel load conditions

leading to irregular messages brodcast and temporal misalignment between vehicles’ po-

sitional sample instants. Data resynchronization can be then naturally achieved via an

early prediction step applied to the neighboring beliefs (accounted in received CAMs) and

similarly to that of the “ego” vehicle. Particularly, an “ego” vehicle i predicts the beliefs

of its “virtual anchors” in order to perform fusion at its time k, as follows:

bel(Xj,ki) =

∫
p(Xj,ki |Xj,k<ki)bel(Xj,k<ki)dXj,k<ki , j ∈ N→i,k. (3.7)

Note that vehicle i must make assumptions about the mobility of its neighbors, i.e.,

p(Xj,ki |Xj,k<ki), typically assuming the same model as in (3.4) (under the same nota-

tions). Intuitively, it yields:

Xj,ki =

I2 αj(ti,k − tj,k<ki)I2

02 αjI2


︸ ︷︷ ︸

Fj(ti,k−tj,k<ki
)

Xj,k<ki + (1− αj)

(ti,k − tj,k<ki)I2

I2


︸ ︷︷ ︸

Bj(ti,k−tj,k<ki
)

v̄j,k

+
√

1− α2
j

(ti,k − tj,k<ki)2I2

(ti,k − tj,k<ki)I2


︸ ︷︷ ︸

Gj(ti,k−tj,k<ki
)

wj,k, j ∈ N→i,k.

(3.8)

Note that the parameters αj , v̄j,k, and E{wj,kw
†
j,k} can be either communicated to the

recipient through a CAM or estimated from the previous trajectory or assumed to be

known for a particular mobility pattern.
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Figure 3.3: Example of CLoc space-time data management at the “ego” vehicle i with
respect to its neighboring vehicle j. Due to asynchronous sampled time instants ti,k 6= tj,k,
vehicle i needs to perform a prediction of the received information i.e., bel(Xj,k) at any
fusion time of interest ti,k i.e., bel(Xj,ki).

So far, we have just resynchronized both “ego” and neighboring position estimates.

But RSSI readings are also not perfectly synchronous (e.g., the CAM broadcasts may

occur at different rates and/or they can be event-driven) neither with estimation times,

nor with each other. However, we claim that these RSSIs can still be used at the estimation

time for some reasons: first, with 100-ms refresh rate, the average elapsed time between

the measured RSSI and the estimation time is about 50 ms, leading to a distance error

of about 1.5 m in the worst case when a vehicle is static and the other runs at about

110 km/h5. This distance is too small to cause a remarkable change in the RSSI (e.g.,

see Figure 7.7 in our small-scale field measurement campaigns, given a single RSSI value,

the distance can vary up to ±20 m); second, as the shadowing is correlated over space

and time, as discussed in Chapter 4, the ideal RSSI value at the desired time is not so

different from the ones measured in the last 50 ms; and last, the GNSS data can also

be extrapolated at the measured RSSI time, even if it is quite problematic in our case.

Since we receive much more CAMs (and thus RSSIs) than GNSS positions, it turns out

that the fusion is performed at very high rate (CAM rate × number of neighbors) and

there are not enough GNSS measurements for all the fusion iterations although reusing

the same GNSS information may cause overconfidence issues. Even more importantly,

with inaccurate RSSIs, it is worth collecting several measurements to improve the GDOP.

5In most common platooning cases or highly correlated mobility (e.g., highways), stable V2V distances
between vehicles are usually observable.
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3.4 GNSS/ITS-G5 Data Fusion Based on Particle Filter

As the observation model of interest linking the state vector to the measurements is non-

linear here (e.g., see (3.6)), nonparametric filters relying on numerical approximations

(e.g., the PF) are expected to outperform the KF-based methods in terms of accuracy, at

the price of higher computational load [80,86–88]. However, in the vehicular context, the

relative extra-cost to supply adequate powerful hardware and software capabilities looks

still reasonable (comparing with the cost of the whole car). The PF approximates the

posterior6 by a set of random samples with associated weights and to compute the MMSE

estimates based on these samples and weights. Accordingly, the optimal solution

X̂i,k =

∫
Xi,kp

(
Xi,k,XS→i,k

∣∣Zki ,Zk<kiS→i
)
dXi,kdXS→i,k (3.9)

is approximated by

X̂i,k ≈
P∑
p=1

w
(p)
i,kX

(p)
i,k , (3.10)

where {X(p)
i,k }

P
p=1 is a set of particles (samples of the state vector) with associated weights

{w(p)
i,k }

P
p=1, w

(p)
i,k ∝ p(X

(p)
i,k ,X

(p)
S→i,k|Z

k
i ,Z

k<ki
S→i )

/
q(X

(p)
i,k ,X

(p)
S→i,k|X

(p)
i,k−1,X

(p)
S→i,k<ki , zi,k) with

the importance distribution q(·), which is chosen to easily draw samples. Otherwise, it is

challenging and expensive from the computation point of view to samples directly from

the posterior due to its complex functional form [86–89].

A classical and intuitive choice for computing these weights involves the measurement

likelihood function [80,87]. Typically, the importance distribution can be chosen as follows:

q(Xi,k,XS→i,k|X
(p)
i,k−1,X

(p)
S→i,k<ki , zi,k) = p(Xi,k|X

(p)
i,k−1)

∏
j∈S→i,k

p(Xj,ki |X
(p)
j,k<ki

). (3.11)

This PF is called bootstrap PF. To the best of our knowledge, most PFs are practically

implemented in a bootstrap manner due to its simplicity. We then propose to apply the

PF described in Algorithm 1 as the nominal filter/fusion engine of our CLoc framework.

6In this first proof of concept, we assume that CAMs encapsulate the particles cloud to account for
local estimates uncertainty, what could result in prohibitive overhead under current standard specifications.
However, this issue has been investigated and reported in Chapter 4 without contradicting the first findings
exposed herein.
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Algorithm 1 Bootstrap PF for GNSS/ITS-G5 data fusion (iteration k, “ego” vehicle i)

1: Collection of CAMs: Receive CAMs from the set N→i,k of local neighbors, read the RSSI values,

extract the particle beliefs {X(p)
j,k<ki

, w
(p)
j,k<ki

}Pp=1, j ∈ N→i,k.
2: Data Resynchronization: Perform prediction of both “ego” and neighboring particle beliefs based

on mobility models at the “ego” estimation instant k (i.e., ti,k)

X
(p)
i,k ∼ p(Xi,k|X(p)

i,k−1), w
(p)

i,k|k−1 = 1/P, p = 1, . . . , P,

X
(p)
j,ki
∼ p(Xj,ki |X

(p)
j,k<ki

), w
(p)

j,ki|k<ki
= 1/P, p = 1, . . . , P, j ∈ N→i,k,

and build the LDM of vehicle i’s neighbors (as another possible output of the algorithm)

X̂j,ki|k<ki
≈ 1

P

P∑
p=1

X
(p)
j,ki

, Σj,ki|k<ki
≈ 1

P

P∑
p=1

(X
(p)
j,ki
− X̂j,ki|k<ki

)(X
(p)
j,ki
− X̂j,ki|k<ki

)†, j ∈ N→i,k.

3: Link Selection: Select the subset S→i,k ⊂ N→i,k of appropriate links.
4: Observation Update: Calculate the new weights according to the likelihood7 (by using the proposal

distribution in (3.11))

w
(p)
i,k ∝ p(zi,k|X(p)

i,k ,X
(p)
S→i,k)

= p(zxi,k|x
(p)
i,k )p(zyi,k|y

(p)
i,k )

∏
j∈S→i,k

p(zRSSI
j→i,k|x

(p)
j,ki

,x
(p)
i,k ), p = 1, . . . , P,

normalize them to sum to unity, and compute the approximate MMSE estimator and its empirical
covariance as the main filter outputs

X̂i,k ≈
P∑

p=1

w
(p)
i,kX

(p)
i,k , Σi,k ≈

P∑
p=1

w
(p)
i,k (X

(p)
i,k − X̂i,k)(X

(p)
i,k − X̂i,k)†.

5: Resampling: Generate a new set {X(p∗)
i,k }

P
p=1 by resampling with replacement P times.

6: Broadcast: Encapsulate the posterior belief {X(p∗)
i,k }

P
p=1 in a CAM and broadcast.

3.5 Low-Complexity Link Selection

Actually CLoc performance is strongly affected by the number of neighbors and their ge-

ometric configuration while processing and fusing all incoming information. On the other

hand integrating fusion-oriented data from numerous neighbors generates high computa-

tional complexity and requires significant overhead (and possibly, extra channel load) at

the network level in comparison with more conventional CAM usage. Thus relevant op-

erating trade-offs (e.g., in terms of required number of packets, CAM payload occupancy,

refresh rates) must still be found for a better exploitation of cooperation potential, while

complying with practical protocol constraints. Regarding the link selection itself, previ-

ous works relying on the approximated Cramér-Rao Lower Bound (CRLB) of cooperative

position estimates as criterion (e.g., [90,91] or more recently, a combination of this bound

and a pre-validation step through innovation monitoring in the V2V context [92]). In this

case, the selection is simply based on a comparison of the best positioning errors expected

for given sub-sets of the available neighbors. The best sub-set leading to the presumed
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Figure 3.4: Sets of selected cooperative neighbors (green) with respect to the ”ego” vehicle
(red), following (a) non-Bayesian and (b) Bayesian CRLB criteria. In this example, the
wrongly positioned vehicle 5 could trick the non-Bayesian selection scheme (and thus, be
included in the selected fusion set), whereas the Bayesian version would account for its
location uncertainty (and reject it as unreliable neighbor).

minimum error is selected. It is approximated in the sense that the theoretical bounds

calculation, which would require the knowledge of all exact positions, admits erroneous

positions as inputs (e.g., estimated or predicted), while considering that the latter would

not fundamentally change the aspect of the relative VANET topology (i.e., in comparison

with the true topology)8. However, they cannot properly account for mobile neighbors

uncertainty, whereas more recent Bayesian formulations of such bounds [93], which can

account for the prior uncertainty of all estimated positions. Figure 3.4 illustrates the dif-

ference between them. And most of them have not yet been applied into the V2V context.

Besides, the simpler but complementary filter innovation monitoring approach in [92] is

used to detect link-wise inconsistent measurements and thus, reject harmful ones.

We thus propose new link selection algorithms that aim at more efficient CLoc proce-

dures under various GNSS conditions, by enabling lower footprint with respect to com-

munication means and lower computational complexity. More specifically, we propose

a couple of low complexity link selection criteria based on non-Bayesian and Bayesian

versions of the CRLB characterizing cooperative location estimates given a subset of the

available neighbors, in conjunction with a fast sub-optimal closest search instead of per-

forming a computationally greedy exhaustive search (i.e., by restricting heuristically the

CRLB-based comparison to a subset of the geographically nearest neighbors).

8This may be sufficient already in non-CLoc, when considering only a selection of V2I links and mea-
surements with respect to known static anchors (i.e., RSUs).
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3.5.1 Link Selection Criteria

Non-Bayesian Cramér-Rao Lower Bound

The non-Bayesian CRLB or CRLB characterizes here the best achievable performance (in

the minimum expected mean squared error (MSE) sense) for any non-biased (position)

estimator (i.e., conditioned on a given set of reference neighbors). From the positioning

point of view, this criterion reflects both the pair-wise radio link quality and the geometry

of the reference vehicles relatively to the “ego” one or GDOP. The bound is determined

by processing an inverse of the Fisher information matrix (FIM) [94,95]. Consider at the

“ego” estimation instant k, xi,k, the position of the “ego” vehicle i and {xj,ki}j∈S→i,k
, the

positions of its selected reference vehicles, the FIM is defined as

Ji,k =
∑

j∈S→i,k

Esj→i,k

{
−∆

xi,k
xi,k log p(zRSSI

j→i,k|xi,k,xj,ki)
}
, (3.12)

where ∆x
xf(x) denotes the Laplacian of f(x). Note that as its name suggests, the non-

Bayesian CRLB treats both xi,k and {xj,ki}j∈S→i,k
as deterministic variables even though

they are actually random (i.e., affected by estimation noise). Accordingly, the expectation

in (3.12) is taken with respect to the measurement noise only (i.e., over the shadowing).

Under the assumption of centered Gaussian shadowing in (3.6), the expectation can be

computed in closed-form solution [94]:

Ji,k =
∑

j∈S→i,k

1

σ̃2
Sh

(xi,k − xj,ki)(xi,k − xj,ki)
†

‖xi,k − xj,ki‖4
, (3.13)

where σ̃Sh = σSh log 10/(10np). Nevertheless, neither the true position xi,k of the “ego”

vehicle nor that of its neighbors {xj,ki}j∈S→i,k
are known, thus, the approximate FIM

Ĵi,k can be computed with the predicted positions instead i.e., x̂i,k|k−1, {x̂j,ki}j∈S→i,k
as

follows:

Ĵi,k =
∑

j∈S→i,k

1

σ̃2
Sh

(x̂i,k|k−1 − x̂j,ki)(x̂i,k|k−1 − x̂j,ki)
†

‖x̂i,k|k−1 − x̂j,ki‖4
. (3.14)

Thus, the bound on the location MSE can be expressed in terms of the FIM as follows:

MSE(x̂i,k) ≥ tr
(
Ĵ−1
i,k

)
. (3.15)
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This expression shows the expected MSE conditioned on a particular subset S→i,k ⊆ N→i,k

of neighbors, as the cost function to be minimized by the link selection algorithm (i.e.,

with the subset as optimization variable).

Bayesian Cramér-Rao Lower Bound

The Bayesian CRLB (BCRLB) considers the positions as realizations of random vari-

ables [90, 95]. Therefore, besides the radio link quality and the geometry of the reference

neighbors relatively to the “ego” vehicle, this criterion also captures the uncertainties of the

“ego” and neighbors’ estimated positions. Assume that at “ego” estimation time epoch k,

xi,k ∼ p(xi,k|zi,1:k−1), the position of the “ego” i and {xj,ki ∼ p(xj,ki |zj,1:k)}j∈S→i,k
, the

positions of its selected reference vehicles, the Bayesian FIM (BFIM) is now expressed

as [93]

JBi,k = JPi,k +
∑

j∈S→i,k

[
(JPj,ki)

−1 + (JMj→i,k)
−1
]−1

, (3.16)

where JPi,k, JPj,ki are the a priori FIMs of the positions of the “ego” i and its reference

neighbors j ∈ S→i,k respectively, while JMj→i,k denotes the FIM obtained from the link

measurement (j → i). In particular, the prior FIMs are defined as

JPi,k = Exi,k

{
−∆

xi,k
xi,k log p(xi,k|Zk−1

i )
}
, (3.17)

and

JPj,ki = Exj,ki

{
−∆

xj,ki
xj,ki

log p(xj,ki |Z
k<ki
j )

}
. (3.18)

Assuming p(xi,k|Zk−1
i ) ∼ N (E{xi,k},Σ−1

i,k|k−1) and p(xj,ki |Z
k<ki
j ) ∼ N (E{xj,ki},Σ

−1
j,ki

) in

first approximation, thus JPi,k = Σ−1
j,k|k−1 and JPj,ki = Σ−1

j,ki
. On the other hand, the term

related to the measurements is now calculated as follows:

JMj→i,k = Esj→i,k,xi,k,xj,ki

{
−∆

xi,k
xi,k log p(zRSSI

j→i,k|xi,k,xj,ki)
}

=
1

σ̃2
Sh

Exi,k,xj,ki

{
(xi,k − xj,ki)(xi,k − xj,ki)

†

‖xi,k − xj,ki‖4

}
.

(3.19)

Note that the expectation over the measurement noise is performed analytically in (3.19)

still considering the Gaussian shadowing (in dB). Besides, as the expectation with respect

to xi,k and xj,ki is tedious to derive analytically, we propose to use numerical integration

instead, following a Monte Carlo approach. Accordingly, we draw P samples {x(p)
i,k }

P
p=1
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and {x(p)
j,ki
}Pp=1 from p(xi,k|Zk−1

i ) and p(xj,ki |Z
k<ki
j ), j ∈ S→i,k respectively, leading to

JMj→i,k =
1

σ̃2
Sh

∫
(xi,k − xj,ki)(xi,k − xj,ki)

†

‖xi,k − xj,ki‖4
p(xi,k|Zk−1

i )p(xj,ki |Z
k<ki
j )dxi,kdxj,ki

≈ 1

σ̃2
Sh

1

P

P∑
p=1

(x
(p)
i,k − x

(p)
j,ki

)(x
(p)
i,k − x

(p)
j,ki

)†

‖x(p)
i,k − x

(p)
j,ki
‖4

.

(3.20)

Note that this Monte Carlo integration is still in compliance with the claimed low com-

plexity link selection for two reasons: (i) we only calculate (3.20) for a smaller subset

of potential neighbors, which will be presented in the next section and (ii) part of this

calculation can be reused later on when updating the weights of the PF (e.g., particle-

based V2V distance in the denominator). Finally, similarly to the non-Bayesian CRLB,

the final bound on the MSE can be calculated by replacing the FIM Ĵi,k in (3.15) with

the BFIM JBj→i,k

MSE(xi,k) ≥ tr
{

(ĴBi,k)
−1
}
. (3.21)

The goal is again to identify the best subset S→i,k ⊆ N→i,k that minimizes the best

conditional positioning MSE.

3.5.2 Link Selection Algorithm

Previously, we have derived the cost functions to be minimized (in the MSE sense) for the

link selection problem. Particularly, considering the “ego” vehicle i at time k and given the

set N→i,k of perceived neighboring vehicles, we are now interested in solutions to search

for the minimum MSE conditioned on all possible subsets of length S of N→i,k denoted by

PS (N→i,k) to find S∗→i,k yielding the best contribution to the CLoc problem resolution.

The optimal link selection would result from an exhaustive search, which is by far too

complex in case of high V2V connectivity and thus, not really intended for implementation

in a real system. This exhaustive search simply evaluates the cost functions for CRLB or

BCRLB, for all the possible combinations listed by PS (N→i,k). For instance, choosing 4

links out of 10 leads to 210 combinations, what seems still reasonable but evaluating 4845

combinations in case of 20 neighbors appears much more challenging. Therefore, in order

to reduce the computational burden, one straightforward approach is to develop a search

algorithm that hopefully yields the same solution as that of the exhaustive approach (or at

least an equivalent solution). A closer look at the (B)FIMs in both criteria (e.g., in (3.13)
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Algorithm 2 Sup-optimal closest search of S most informative links among C most
potential ones (iteration k, “ego” car i)

1: if |N→i,k| > C then
2: estimate d̄j→i,k =

∥∥x̂j,ki|k<ki
− x̂i,k|k−1

∥∥ with respect to j ∈ N→i,k

3: sort the set {d̄j→i,k}j∈N→i,k

4: get C nearest neighbors from N→i,k to build C→i,k

5: else
6: C→i,k = N→i,k

7: end if
8: if |C→i,k| > S then
9: create the set PS (C→i,k) of all subsets of C→i,k of size S

10: for s = 1 to |PS (C→i,k) | do . subset index
11: let PS (C→i,k) [s] be the s-th subset in PS (C→i,k)
12: determine the bound on the MSE

MMSE (x̂i,k) [s] =

 tr
{

(Ĵi,k[s])−1
}
, if non-Bayes,

tr
{

(ĴB
i,k[s])−1

}
, if Bayes,

where Ĵi,k[s], ĴB
i,k[s] are with the set PS (C→i,k) [s]

13: end for
14: select the best subset s∗ = arg mins

{
MMSE (x̂i,k) [s]

}
15: S∗→i,k = PS (C→i,k) [s∗]
16: else
17: S∗→i,k = C→i,k

18: end if

and (3.19)) reveals that its link-dependent sub-components are inversely proportional to

the squared distances between the nodes. Intuitively, this means that performing CLoc

with more distant neighbors leads to suffer from larger MSE or in other heuristic words,

the optimal subset of neighbors is expected to be formed among the nearest ones (say, the

8–10 closest neighbors are expected sufficient on most common European highways having

3 lanes). Of course, this intuitive interpretation could be applied with other kinds of V2V

metrics but it is all the more noticeable within CLoc based on RSSI measurements due to

the considered log-normal path loss model. Thus, we search the best combination among

a subset of the physically closest neighbors only, as shown on Algorithm 2 (lines 2–4).

3.6 Numerical Results

3.6.1 Simulation Settings

All the simulations carried out for performance evaluation are based on MATLAB, which

are more flexible and suitable in the specific wireless localization context (estimation al-

gorithms) than network simulators, which are more devoted to communication aspects.

In particular, as illustrated in Figure 3.5, we model a three-lane road (of most common

kind in Europe), where 15 connected cars are driving steadily (in the same north-east
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direction) and exchanging CAMs over ITS-G5 technology. The vehicles establish a pure

VANET with uniquely V2V links and may benefit from GNSS signals depending on op-

erating environments. We systematically consider a group of 15 vehicles, focusing our

analysis on a segment of the entire vehicles flow. CAMs could indeed be received up to

practical transmission ranges of 1000 m. However we consider a nominal selective CLoc

scheme that incorporates only the messages from its nearest neighbors, which are assumed

more reliable and informative due to lower possibility to get NLOS and higher quality of

the range-dependent measurement [96, 97]). Accordingly, we consider that simulating 15

vehicles is enough to avoid border effects or artifacts, while preserving the generality of

the obtained CLoc results.

As for the CAM transmission policy, we assume that each vehicle periodically broad-

casts its position every 100 ms corresponding to the critical CAM rate of 10 Hz (equal to

the “core” BSM rate in the U.S. [98]) for several reasons: first, this assumption is valid

on high speed mobility scenarios (e.g., highways) where dynamic-related conditions in [19]

(e.g., traveling distance to send a message) are used to trigger to get critical rates; second,

the positions can be collected up to 10 Hz thanks to the high-rate GNSS receivers; third,

we are interested in how the cooperative information can improve the CLoc accuracy9.

Besides, the random CAM generation time between the instant at which CAM generation

is triggered (typically, when the GNSS position is sampled) and the instant at which the

message is delivered to the transport layer is uniformly drawn in the interval [0, 50] ms

(complying with [19]) to minimize the probability of simultaneous transmissions and tem-

poral correlated packet collisions10. Table 3.2 summarizes the other important parameters

used for our simulations.

We have claimed that the BCRLB-based link selection criterion is able to capture

the uncertainties of the “ego” and the neighboring position estimates, contrarily to the

standard CRLB-based criterion. Accordingly, two scenarios are investigated to emphasize

the pros and cons of each solution.

In the first evaluation scenario (S1), we consider vehicles traveling through a urban

canyon (see Figure 3.5). GNSS estimates at each vehicle are affected by varying stan-

9Injecting too many packets to the channel with limited capacity causes traffic congestion. As this work
is positioning-oriented, communication behavior is not examined to the fullest but left for further studies,
for instance in Chapter 4.

10Collision may recur for several subsequent transmissions due to the quasi-periodic nature of CAM
transmissions [99].
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Table 3.2: Other important simulation parameters considered for the evaluation of links
selection algorithms.

Parameter Description

Mobility model Gauss-Markov mobility model
Memory level α 0.95
Sampling period ∆T 0.1 [s]
GNSS/CAM rate 10 [Hz] (critical) [19]
CAM generation time U(0, 50) [ms] (complying with [19])
Path loss exponent np 1.9 (V2V in highways) [100]
Standard deviation of shadowing σSh 2.5 [dB] (V2V in highways) [100]
Number of particles 500
Number of selected links 4a

a For extra diversity from the minimum number required for non-
ambiguous 2-D positioning.

dard deviations with large spatial correlation as depicted in Figure 3.5(a) whereas the

V2V RSSI-based measurement quality is assumed to remain unchanged. Four different

positioning schemes are then compared in terms of accuracy and service continuity i.e.,

stand-alone filtered GNSS, exhaustive CLoc, CRLB-based selective CLoc, and BCRLB-

based selective CLoc.

In the second evaluation scenario (S2), we consider a heterogeneous configuration where

vehicles have the same visibility to satellites, but suffer from disperse and independent

GNSS precision levels due to different receiver capabilities (e.g., high-class or basic re-

ceivers) as illustrated in Figure 3.5(b).

These two scenarios are complementary and cumulative, as S1 describes the degra-

dation from GNSS signals, whereas S2 considers the degradation from GNSS receiver

capabilities, both being common in real conditions.

3.6.2 Scenario Evaluation

Homogeneous GNSS (S1)

Figure 3.6 shows the RMSEs of the position estimates of all vehicles as a function of time.

Note that the 15 vehicles need approximately 8 s to completely enter/leave the different

areas (due to its length of 60× 4 = 240 m and speed of about 30 m/s) causing some tran-

sitions in GNSS precision levels, as depicted on the same figure. As expected, the CLoc

outperforms the non-CLoc (i.e., stand-alone filtered GNSS) in terms of accuracy and ser-

vice continuity (i.e., preventing the error from flourishing in harsh/lost conditions). In

favorable GNSS conditions, the gains yielded by CLoc over non-CLoc are modest (rela-
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algorithms.
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Figure 3.6: Localization RMSEs (over vehicles) as a function of time for non-CLoc, CLoc
with exhaustive fusion, and CLoc with selective fusion when GNSS quality varies depend-
ing on the geographic area (S1).

tive drop in RMSE of about 9% by exhaustive CLoc and no drop by selective approaches)

whereas in harsh or lost GNSS environments, huge improvements in accuracy are observed.

In particular, in comparison with non-CLoc, a relative fall in RMSE of 33% is experienced

by exhaustive CLoc and of about 21% by both selective schemes in harsh areas whereas

in GNSS-denied periods, relative drops of 30% and of 21% are reported respectively. The

reason can be understood as follows: in comparison with the GNSS position, RSSI mea-

surements to “virtual anchors” can contribute to the positioning performance but in a

modest way due to the non-linear relationship between received power and state (derived

from the distance to the known “virtual anchors”), the uncertainties of “virtual anchors”
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RMSE (over vehicles and time) with or without selective cooperation in different GNSS
conditions (S1).

and the GDOP, the extrapolated/approximate RSSI values at fusion time, the RSSI shad-

owing dispersion, etc. In other words, when the accuracy of the filtered GNSS remains

high enough, there is little room for improvement by fusing with ITS-G5 as a source of

range-dependent information through RSSI and vice versa, when GNSS performance is

degraded, the accuracy gain through ITS-G5 is more noticeable.

Quantitatively, both CRLB and BCRLB-based selective fusion schemes are quasi

equivalent, and suffer both from a RMSE increase of 10%, 18%, and 14% in normal,

harsh, and lost GNSS respectively in comparison with exhaustive CLoc due to the infor-

mation loss. Note that in our scenario, the positioning error in harsh GNSS conditions

is superior than that in lost GNSS. This is not really contradictory since the “harsh”

zone is composed of 2 distinct areas (see again Figure 3.5) and the latter (i.e., that after

the “lost” period) is more severe due to errors accumulation during the “lost” interval

(i.e., reflecting the memory effect pointed out in [65]). From the communication point

of view, selective CLoc dramatically reduces the number of required packets (more than

70% shown in Figure 3.7) considering an error increase of 14–18% in worst cases and of

10% in normal cases. Last but not least, from the processing and fusion points of view,

the complexity of the particle-based core engine is mainly related to the weights update

(see line 4 in Algorithm 1). Particularly, the complexity scales as O (P |S→i,k|) where the

number of particles P can be large (typically 500–5000). In our scenario, without link

selection, |S→i,k| = 14, whereas with link selection |S→i,k| ≤ 4.
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Figure 3.8: Localization RMSEs (over the full trajectory) for different fusion schemes with
and without selective cooperation at each vehicle (S2).

In summary, link selection is critical to significantly reduce the computational com-

plexity and also network traffic (if coupled with Tx censorship mechanisms) without losing

significant accuracy. In this specific scenario, BCRLB based selection (i.e., by design more

adapted to heterogeneous GNSS conditions) can just match the selection scheme based

on classical CRLB, as expected. In other words, all the vehicles experience approximately

the same GNSS error regime so that the injected prior uncertainty information regarding

their estimated positions is quite neutral from a selection perspective.

Heterogeneous GNSS (S2)

While matching the classic CRLB in scenarios considering homogeneous neighboring ve-

hicles uncertainties (as in scenario S1), the BCRLB criterion shows its efficiency when

considering more realistic heterogeneous large dispersion of neighboring vehicles uncer-

tainties. Considering our illustrative example, one can classify vehicles into four classes of

dispersion: (i) full topology (i.e., cars fully surrounded by neighbors) versus partial topol-

ogy (i.e., cars on outside lanes); and (ii) clear GNSS (i.e., cars whose nearest neighbors

have good GNSS/estimates) versus degraded GNSS (i.e., cars whose closest neighbors have

poor GNSS/estimates), as reported in Table 3.3 (the remaining are not classified due to

strong border effects).

Figure 3.8 shows the positioning performance in terms of RMSE (over the full trajec-

tory) for each vehicle whereas Figure 3.9 exhibits the empirical CDFs for one representative

vehicle of each class. Both confirm that in 2 degraded classes, when the nearest neighbors
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Table 3.3: Classification of vehicles in Figure 3.5(b) with respect to the uncertainty dis-
persion.

Criterion Full topology Partial topology

Clear GNSS 5, 11 4, 6, 10, 12
Degraded GNSS 8 7, 9

experience poor GNSS positions or estimates, the classic CRLB criterion neglecting the

anchor uncertainties fails to capture the optimal set of neighbors (See the two top sub

plots in Figure 3.9). In other words, the strong dependency of RSSI measurements onto

distances to the neighbors in the FIM tricks the CRLB to choose among a small subset of

the nearest candidates, regardless of their dispersion. As expected, in the 2 clear classes

when the nearest neighbors have good GNSS or estimates, the selections are likely to be

very similar leading to equivalent performance (See the two bottom sub plots in Fig. 3.9).

In brief, the second scenario accounts for more realistic heterogeneous conditions (at

a smaller scale), where the proposed BCRLB solution would be definitely more helpful.

Note that we can also assume some vehicles with more advanced sensor package (e.g.,

lidar, camera, etc.) leading to more accurate estimated positions, thus contributing to

achieve even better heterogeneous localization accuracy among vehicles. However, since
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we have considered only the fusion of GNSS and V2V information at this stage of the

study in this chapter, we simply manipulate the GNSS capabilities.

Preliminary Cooperative Application Impact

Although a larger application evaluation is left to future work, we confront here the link

selection performance with tangible application needs. Considering the Highway Capacity

Manual (HCM) recommendation of a 2-second time between two successive vehicle in free

flow traffic, a typical cooperative traffic safety application would need to have a clear

position awareness corresponding to at least the distance between two successive vehicles.

This translates to about 30 m and 60 m inter-distance considering a speed of 50 km/h in

urban and 100 km/h on highways respectively. In the worst case, exhaustive CLoc yields

an error of about 0.85 m (see Figure 3.6). Even while loosing 14–18% of accuracy through

selective fusion, one would still get relative longitudinal error of 1.6% (respectively 3%)

at 60 m (respectively 30 m)11, and a fully acceptable increased error of 0.2% between an

exhaustive and selective fusion.

3.7 Summary

In this chapter, we have proposed and evaluated elementary functions and building blocks

of a data fusion framework for V2V CLoc in the very specific context of GNSS-aided ITS-

G5. Our evaluations take account of ad hoc communication and positioning aspects, such

as distributed and asynchronous position estimates or random CAM transmissions.

On the one hand, we have pointed out that the transmission intervals between CAMs

are constrained by channel load conditions, leading to non-periodic transmissions and as

such, asynchronous data reception from “virtual anchors”. Accordingly, we have presented

a prediction-based data resynchronization mechanism to properly incorporate cooperative

information incoming from asynchronous neighboring cars relying on an a priori mobility

model.

On the other hand, we have stated and solved the link selection problem, as perform-

ing exhaustively cooperative schemes is questionable due to heavy required communication

traffic and computational processing. Both classic non-Bayesian and Bayesian CRLB crite-

11Lateral errors might yet remain high regardless of the strategy, as it will be discussed with more details
in Chapter 6.
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ria have been investigated and incorporated in a computationally efficient search algorithm

to reach the subset of the most informative neighbors, while minimizing the performance

degradation caused by information loss. We have found that: (i) it is worth employing se-

lective fusion in vehicular CLoc owing to the aforementioned benefits; (ii) the uncertainties

of the “virtual anchors” should be monitored to prevent from having wrong cooperative

neighbors in some special but common situations.

While considering link selection on the “ego” receiving side, we have also seen that the

tolerance regarding the number of packets required in the fusion could induce/inspire more

advanced transmission policies (see Chapter 4). Finally, we have illustrated that the use

of RSSI over V2V communication link (as direct source of range information) may bring

rather limited localization gains whenever the GNSS means already performs reasonably

well, thus suggesting the use of more accurate V2V ranging technologies (see Chapter 5).



Chapter 4

Wireless Channel Impacts on V2V

Cooperative Localization

4.1 Introduction and Related Works

In Chapter 3, we have shown the promising potential of V2V CLoc to enhance the GNSS

solutions in various environments and in different network settings. Nevertheless, in our

initial evaluation framework, several simplistic assumptions have been made regarding the

V2V wireless channel, which will be relaxed in this chapter.

On the one hand, it has been assumed that the GNSS and the RSSI readings inte-

grated as observations are affected by white error processes (see Section 3.2.2). In practice

however, they are strongly correlated over both space and time [26, 30, 79, 101–103], as a

result from the combination of locally continuous physical propagation phenomena, highly

specific vehicular mobility patterns and constrained refreshment rates. Such spatial corre-

lations are viewed as a drastic limitation of current state of the art CLoc approaches (e.g.,

degrading fusion filters optimality). Thus, this chapter first concerns the observation noise

correlations that may be specifically found under vehicular mobility. Practically speaking,

the spatial correlations of observed measurement processes (and thus, their temporal cor-

relations under vehicles mobility) result indeed from the conjunction of different factors

triggered by constrained vehicular mobility. First of all, GNSS conditions (good or bad)

may not change much over multiple samples and between neighboring vehicles (given a

common class of equipment). Similarly, the channel fading conditions (obstructed or not)

may not change much between two consecutive CAM transmissions (e.g., every 100 ms) by

60
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neighboring vehicles. Jointly or independently, these effects lead to correlated GNSS/RSSI

measurements. A major issue when integrating such correlated measures into fusion fil-

ters is that they are no longer affected by white Gaussian noise terms (but hence, by

dependent contributions) and as such, they break a core assumption of most CLoc fu-

sion approaches [86, 87, 89, 104] leading to inconsistent estimates with large fluctuations.

Thus, solutions need to be figured out or adapted to mitigate -or even benefit from- these

correlation phenomena in our CLoc context.

On the other hand, CLoc based on PF induces not only high computational complexity

but also extra communication cost (e.g., while exchanging particle clouds through message

passing [105]) to achieve optimal performance levels. This limitation can be alleviated by

adopting parametric message representations (e.g., well-known Gaussian mixture mod-

els (GMMs)) instead of propagating explicit particle clouds. In the literature, this has

been considered mostly in iterative message passing localization algorithms for generic,

static wireless networks so far (typically within WSNs), thus enjoying more stable net-

work connectivity and topology than in VANET scenarios [90, 106, 107]. Alternatively,

localization based on variational message passing (VMP) can propagate and multiply

circular symmetric Gaussian distributions to produce estimated locations instead of re-

drawing samples out of explicit distributions received from neighboring nodes, and thus

features significantly lower communication overhead [108, 109]. However, the latter solu-

tions also rely on intermediary message approximation steps. All in all, to the best of

our knowledge in the vehicular context, no in-depth investigation has been yet carried

out in the literature to compare the various parameterization approaches and their per-

formance trade-offs in terms of localization accuracy, communication traffic, channel load,

computational complexity, latency, etc., whereas these metrics are expected to strongly

impact the practicability and the implementability of PF-based CLoc. Moreover, in case

of channel congestion, DCC mechanisms specified by the ETSI recommend to scale the

CAM transmission rate from 10 Hz down to 2 Hz (in order not to exceed 60–70% channel

load), what is expected to degrade CLoc accuracy accordingly.

This chapter is structured as follows. Section 4.2 formulates the aforementioned prob-

lems, namely the space-time correlation of input observation noises and the limited com-

munication channel (in terms of both rate and capacity). In Section 4.3, new methods are

proposed at both signal processing and protocol/fusion rate levels so as to mitigate the
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harmful impact of observations correlations. On this occasion, the achieved performance

is compared with that of initial/nominal CLoc approaches by means of simulations (under

both correlated and uncorrelated observation assumptions). Next, Section 4.4 presents

and combines message approximation techniques with a new transmission control strategy

so as to limit dramatically the channel load. Finally, Section 4.5 provides a summary for

the chapter.

4.2 Problem Formulation

4.2.1 Correlations in Observation Noises

In GNSS-aided VANETs, GNSS positions and V2V power measurements (or RSSI read-

ings) used for localization are measured over noisy propagation channels. Generally speak-

ing, these noises are both time-variant and space-variant under typical vehicular mobility

(on highways or in urban areas).

On the one hand, time-variant noise can be filtered out by averaging the signal in

time or frequency domains (e.g. small-scale fading in RSSI measurements) [30] or using

correction models at receivers and information broadcast by transmitters (GNSS satellite

clock errors or atmospheric errors) [26].

On the other hand, location-dependent measurements are more challenging as they

are significantly impacted by the physical arrangement of surrounding objects in the en-

vironment (e.g., buildings, trees, hills, etc.) [97]. More specifically, the spatial correlations

of observed measurement processes and thus, their time correlations under car mobility,

partly result from the local continuity of electromagnetic interactions in the environment.

For GNSS position estimate and V2V range-dependent power respectively, multipath (of-

ten dominating the error budgets) [26] and shadowing (i.e., large-scale or slow fading) [30]

are major sources of the spatial correlations, especially under constrained mobility patterns

and/or constrained acquisition time intervals.

Correlated GNSS Position Errors

A GNSS receiver can experience very large 2-D positioning errors in a narrow street, due

to its limited visibility to satellites (i.e., few available satellites causing poor GDOP, biased

pseudo-range measurements due to GNSS signal diffraction on building edges, etc.). Intu-
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itively, while moving along the street, these GNSS errors will remain of the same order of

magnitude for a few tens or even hundreds of meters and as such, will be spatially corre-

lated. The extent of this correlation depends on the environment. In urban canyons, both

the number of available satellites and the multipath propagation conditions shall remain

unchanged over a distance equivalent to the width of a typical building. In more open-sky

environments (e.g., on highways), these conditions remain unchanged over much larger

distances. Generally speaking and regardless of the environment, such spatial correlation

is always present in VANETs and definitely impacts the use of GNSS data. Motivated by

the common idea of modeling the spatial correlation of shadowing with the exponentially

decreasing autocorrelation function (ACF) (Gudmundson’s model) [102], we adapt it for

GNSS residual errors too. This is a fairly reasonable model since its ACF fits well the

first order Gauss–Markov process recommended by [110] to model GNSS errors. More

particularly, this yields:

R
(·)
GNSS(τ) =

(
σ

(·)
GNSS

)2
r

(·)
GNSS(τ) =

(
σ

(·)
GNSS

)2
exp

(
−v |τ | log 2

d
(·)
cor

)
, (4.1)

where (·) can be either x- or y-coordinate, σ
(·)
GNSS the standard deviation of residual noise

in one direction, v the mobile speed, τ the time lag between measurements, and finally d
(·)
cor

the equivalent correlation distance at which the corresponding normalized ACF is equal

to 50%. These correlation distances are of critical importance and can be determined by

a prior calibration procedure [30].

Correlated V2V Shadow Process

Spatial correlation also exists for V2V propagation channels (i.e., in terms of slow fading

characteristics). They may be intuitively explained by both the relative network topology

and the local link obstruction conditions (e.g., generated by the transmitting/receiving

cars’ bodies themselves, by non-cooperative trucks, by pieces of urban furniture, etc.),

which evolve slower under constrained mobility patterns (e.g., platooning on highways,

queuing vehicles during rush hours in urban canyons, etc.) than the time intervals be-

tween successive transmissions (i.e., 1–10 Hz [19, 98]). Regardless of the environment,

spatial correlations in V2V propagation channels thus impact all the vehicles involved in

range-dependent information estimation (i.e., based on RSSI readings). An illustration is
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Figure 4.1: Possible shadowing autocorrelations/cross-correlations on/between V2V
link(s) having dual mobility in VANETs.

provided on Figure 4.1. Considering the V2V link between the “ego” car and “car 1”, suc-

cessive RSSI readings are auto-correlated if the inter-transmit times between packets are

larger than the period change of their mobility patterns and fading conditions. Similarly,

considering the two V2V links between “ego” car and “car 1” and “car 2”, successive RSSI

readings are cross-correlated if the inter-transmit times between packets are larger than

the period change between the mobility patterns of “car 1” and “car 2” 1. The correlated

V2V RSSI shadowing properties are again modeled by an exponential ACF [102]

RSh(τ) = σ2
ShrSh(τ) = σ2

Sh exp

(
−v |τ | log 2

dSh
cor

)
, (4.2)

where, similarly to (4.1), v indicates the speed of the vehicle, τ the time lag, and dSh
cor the

correlation distance at which the shadowing effect is half of its maximum value.

Gudmundson’s model shown above was originally proposed to predict shadowing cor-

relations in cellular networks, that is, for radio links between base stations and mobile

stations [102]. Accordingly, in the vehicular context, it could be applied as it is uniquely

for links with common end points (e.g., V2I links) but not for links involving two mobile

extremities (i.e., V2V links). In other words, a suitable shadowing model dedicated for

V2V links has to account for the mobility of both end points and thus, lies beyond the

scope of Gudmundson’s model. To cope with this problem, an extension of the previous

model i.e., the model of Wang et al. [111], which generalizes the setting of V2V links

with dual mobility, is chosen to model the correlated shadowing map hereafter. Based

1Cross-correlations and autocorrelation also impact the use of GNSS information at the “ego” car.
Successive CAM transmissions of the GNSS information from “car 1” and from “car 2” will indeed integrate
also GNSS spatial correlation (as previously described) if their inter-transmit time is higher than the time
to move over the GNSS decorrelation distance.
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on the assumption that the displacements of the two mobile nodes introduce independent

but equivalent contributions onto correlation coefficients, the normalized joint ACF when

both the Tx and the Rx are in motion can be approximated by the product of the two

normalized ACFs when either the Tx or the Rx moves [111], as follows:

RSh(∆xt,∆xr) = σ2
ShrSh(∆xt,∆xr)

= σ2
ShrSh(∆xt, 0)rSh(0,∆xr)

= σ2
Sh exp

(
−‖∆xt‖

dSh
cor

log 2

)
exp

(
−‖∆xr‖

dSh
cor

log 2

)
= σ2

Sh exp

(
−vt + vr

dSh
cor

τ log 2

)
= σ2

ShrSh(τ) = RSh(τ),

(4.3)

where ∆xt = (∆xt,∆yt)
† and ∆xr = (∆xr,∆yr)

† represent the 2-D displacements of

the Tx and the Rx respectively within a time interval τ . The correlation coefficient RSh

can also be represented as a function of the time lag τ given the knowledge of Tx’s and

Rx’s speeds i.e., vt and vr, respectively. From (4.3), one can notice that the joint ACF is

now affected by mobility on both extremities of the link, in compliance with generic V2V

shadowing needs.

Summarizing, widely observed and reported in GNSS and V2V fading literature [26,

30,79,101–103,112], spatial correlations are yet hardly addressed in previous works dealing

with distributed and/or CLoc in the vehicular context. It is however essential to consider

a realistic observation model with correlated noises (on both GNSS and V2V RSSI ob-

servation ingredients) in order to avoid producing biased and/or unreliable results while

assessing CLoc performance.

4.2.2 Limited V2V Message Payload and Channel Capacity

On top of the previous physical aspects related to propagation, the V2X wireless channel

is also structurally limited on its own due to standard constraints and limitations. For

instance, in the context of a PF-based CLoc, the particle cloud has to be simplified to a

few scalars that can be practically conveyed by the CAMs. In addition, the neighboring

vehicles receiving these CAMs must be able to simply reconstruct the initial particle cloud

out of these scalars, without losing too much information. Each particle cloud can be ap-

proximated by a known a priori distribution, which is commonly a Gaussian or a mixture

of Gaussians. The motivation for choosing a single Gaussian lies in its fine analytical
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Figure 4.2: Example of awareness data flow in PF-based CLoc framework for two vehicles i

and j. Vehicle i first approximates its particle-based state {X(p)
i , w

(p)
i }Pp=1 by a Gaussian

(mixture) distribution, then encapsulates the parameters {πmi ,µmi ,Σm
i }Mm=1 in a CAM to

broadcast. Receiving vehicle j extracts these parameters to identify the distribution and

draw samples from it to reconstruct the approximated {X̃(p)
i , w̃

(p)
i }Pp=1.

(a) (b) (c) (d)

Figure 4.3: Simplified 2-D position representations including nonparametric (i.e., particles
as dots) and parametric (i.e., diagonal Gaussian modes as solid ellipses and full Gaussian
modes as dashed ellipses) approaches. Unimodal data can be approximated by either uni-
modal Gaussian in (a) or bimodal Gaussian in (b) and bimodal data can be approximated
by either unimodal Gaussian in (c) or bimodal Gaussian in (d). Each explicit particle rep-
resentation costs two scalars, each diagonal Gaussian mode occupies 4 scalars, and each
full Gaussian mode requires 5 scalars. One more scalar is needed for the weight in case of
bimodal distribution.

properties (making calculations more tractable) whereas mixtures of Gaussians can usu-

ally approximate more complex densities, by tuning the means, covariance matrices, and

mixture weights of the Gaussian components involved in the linear combination [113]. Fig-

ure 4.2 provides a simplified illustration of the awareness information exchanges enabling

CLoc between two vehicles i and j while Figure 4.3 illustrates how 2-D particle-based po-

sitions can be approximated by the previous representations in both non-ambiguous and

ambiguous geometric cases (see Figure 4.3(a)-(b) and Figure 4.3(a)(c)-(d), respectively).

If location-oriented packets are heavy, only a few could transit over the air per unit of

time and thus accuracy would be degraded (i.e., even regardless of ETSI DCC) Moreover,

if broadcast rates are deliberately reduced, then accuracy is also expected to be degraded.
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To compensate for the information loss, on top of the message approximation, transmission

policies enabling adaptive transmit payload, power, and rate need revisions to maintain

high accuracy CLoc.

4.3 Mitigation of Observation Noise Correlations

4.3.1 Signal Level Mitigation

Empirical Estimation of Cross-Measurement Correlations

This technique relies on the intuition that the knowledge of cross-correlations between

the components of the measurement vector provides relevant information to CLoc [103].

Recalling that, although the x-to-y correlation in GNSS position is commonly assumed

to be null, the cross-correlations between links’ fading measurements are accounted in

the 4-D shadowing map and can be determined. More particularly, an “ego” vehicle can

infer from its “ego” position and the constellation of its “virtual anchors” the correlations

between links’ fading measurements. From the aforementioned 4-D correlated shadowing

model, we therefore derive the cross-correlation between two separate links a = (i → j)

and b = (l→ m) as follows:

RSh(a, b) = σ2
Sh exp

(
−‖xi − xl‖+ ‖xj − xm‖

dSh
cor

log 2

)
, (4.4)

where ‖xi − xl‖ and ‖xj − xm‖ are the Euclidean distances between the transmitters i

and l and between the receivers j and m, respectively.

For illustration, we consider a simplified example where the “ego” car i moving at

speed vi collects three asynchronous RSSI readings with respect to the three neighbors 1,

2, and 3 during the time interval ∆T (e.g., every 100 ms or equivalently, at the fusion rate

of 10 Hz). The covariance matrix for the shadowing experienced over these three links is

thus inferred from (4.4) as

RSh(1, 2, 3→ i) =


σ2

Sh RSh(1, 2→ i) RSh(1, 3→ i)

RSh(2, 1→ i) σ2
Sh RSh(2, 3→ i)

RSh(3, 1→ i) RSh(3, 2→ i) σ2
Sh

 , (4.5)
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with

RSh(j, l→ i) = σ2
Sh exp

(
−‖xj − xl‖+ vi|tj − tl|

dSh
cor

log 2

)
, j, l ∈ {1, 2, 3}, (4.6)

where tj and tl represent the time instants at which vehicle i receives the CAMs from its

neighbors j and l, respectively.

Note that (4.6) is deduced after applying (4.4) to a pair of links that has a common end

point (i.e., “ego” vehicle i). As vehicle i collects data while moving, cross-link correlation

depends on the traveling distance between two corresponding CAMs. Hence, this distance

varies from one pair of links to the others. In practice, the true positions (e.g., xj , xl

in (4.4)) cannot be perfectly known. Accordingly, a possible and reasonable approximation

R̂Sh(j, l → i), j, l ∈ {1, 2, 3} leading to R̂Sh(1, 2, 3 → i) can be estimated as a function

of the estimated positions x̂j , x̂l, j, l ∈ {1, 2, 3}, which are included in/derived from the

received CAM payloads. In practice, when the “ego” vehicle has more reference neighbors,

the generalization is straightforward.

Differential Measurements

In the literature, there exists a couple of techniques to deal with correlated/colored ob-

servation noise. One first approach is to augment the state with the observation noise

components [86, 101]. However, this causes a singular measurement noise covariance,

which often results in numerical problems [86]. Hence, we concentrate in our work on the

second option, referred to as differential measurement (DM). As suggested by its name,

the key idea is to whiten the noise by subtracting the correlated part. This problem is

solved by building a noise prediction model (from its correlation properties). Being both

characterized by the exponential ACF, GNSS residual error and shadowing can be pre-

dicted by a Gauss–Markov model. In addition, the most dominant mobility pattern in the

vehicular context is platooning-like when vehicles move in groups (coordinated or not).

Accordingly, their velocities become highly correlated and thus, the memory levels in the

prediction model are almost time-invariant in first approximation2. For the GNSS x- and

2The technique is not limited to highly correlated mobility. In a general case, the memory levels become
time-variant i.e., depending on the last known speeds of the participants, leading to prediction noises that
are statistically independent but not identically distributed (i.e., varying standard deviation).
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y-residual errors nxi,k and nyi,k respectively, this yields

nxi,k = λxGNSSn
x
i,k−1 + ñxi,k, nyi,k = λyGNSSn

y
i,k−1 + ñyi,k, (4.7)

and for the shadow fading of the link (j → i), denoted by sj→i,k, this leads to

sj→i,k = λShsj→i,k−1 + s̃j→i,k, (4.8)

where ñxi,k, ñ
y
i,k, and s̃j→i,k are zero mean white Gaussian processes with small variances

of (1− (λxGNSS)2)(σxGNSS)2, (1− (λyGNSS)2)(σyGNSS)2, and (1− λ2
Sh)σ2

Sh, respectively.

The memory levels are λxGNSS ≈ exp (−vi∆T/dxcor), λ
y
GNSS ≈ exp (−vi∆T/dycor), and

λSh ≈ exp
(
−(vi + vj)∆T/d

Sh
cor

)
≈ exp

(
−2vi∆T/d

Sh
cor

)
3, where ∆T is the measurement

sampling period, vj and vi the asymptotic mean speeds of the Tx j and the Rx i, respec-

tively. In the time interval ∆T till the next fusion time k, the “ego” car i communicates

with its set N→i,k of “virtual anchors” whose cardinality |N→i,k| is denoted by ¯̄Ni,k for

simpler notations. Hence, the prediction model in the vector form is

ni,k = λni,k−1 + ñi,k, (4.9)

where λ = diag(λxGNSS, λ
y
GNSS, . . . , λSh, . . .), λ : R ¯̄Ni,k+2 → R ¯̄Ni,k+2 represents the diagonal

memory matrix, ni,k = (nxi,k, n
y
i,k, . . . , sj→i,k, . . .)

† ∈ R ¯̄Ni,k+2 represents the observation

noise vector, and finally, ñi,k = (ñxi,k, ñ
y
i,k, . . . , s̃j→i,k, . . .)

† ∈ R ¯̄Ni,k+2 is the whitened noise

vector.

Now, the so-called auxiliary measurement z̃i,k can be expressed as

z̃i,k = zi,k − λzi,k−1 = h̃(Xi,k,XS→i,k) + ñi,k (4.10)

with

h̃(Xi,k,XS→i,k) = h(Xi,k,XS→i,k)− λh (Xi,k−1,XSk→i,k−1)

and

ñi,k = ni,k − λni,k−1,

3We consider here the fusion/filter rate equal to the GNSS rate i.e., 1/∆T , therefore, only vehicles that
send CAMs at this rate (or higher) can become “virtual anchors”. If so, the time interval between two
consecutive received CAMs/RSSI readings is more or less ∆T due to random CAM generation time and/or
congestion control.
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where Xi,k ∈ Rnx , XS→i,k ∈ R ¯̄Ni,k×nx are the state vector of “ego” vehicle i and the ag-

gregated state vector of its cooperative neighbors as “virtual anchors” (i.e., the set N→i,k)

respectively, nx the dimension of the state vector Xi,k, zi,k = (xi,k, yi,k, . . . , z
RSSI
j→i,k, . . .)

† ∈

R ¯̄Ni,k+2 the aggregated measurement vector, h̃ : Rnx × R ¯̄Ni,k×nx → R ¯̄Ni,k+2 the corre-

sponding model for the new measurement vector z̃i,k ∈ R ¯̄Ni,k+2, and ñi,k ∈ R ¯̄Ni,k+2 the

prediction noise vector, which is assumed white with a diagonal covariance matrix but

cross-correlated with the process noise [86, 101], although this cross-correlation can be

neglected at the price of marginal accuracy degradation [101].

Accordingly, our new equivalent observation model can now be written in the same

form as (4.10). Note that contrarily to our proposal, the initial differential measurement

technique relies on a new measurement z̃i,k = zi,k+1 − λzi,k, which uses the future mea-

surement zi,k+1. This technique is somehow equivalent to 1-lag smoothing [86], thus likely

yielding better accuracy gains. Nevertheless, it is inappropriate for real-time tracking in

high-mobility contexts such as VANETs.

In addition, in realistic settings, the use of random CAM transmissions introduces

specific challenges that should be accounted carefully. Even in case of periodic CAMs,

the transmissions are still random due to a so-called CAM generation time between the

instant when CAM generation is triggered and the instant when the CAM is delivered to

the networking transport layer [19], as illustrated in Figure 4.4. Assume that the CAMs

are triggered right after estimating the position, it is possible that the CAM is transmitted

and thus received too late with respect to the “ego” estimation time, causing 1) a lack

of up-to-date CAMs (e.g., time window k − 1 in Figure 4.4) and 2) redundant CAMs

afterwards (e.g., time window k in Figure 4.4). In the former subcase, the solution is to

simply exclude this neighbor j from the list of “virtual anchors” since there is no RSSI

measurement with respect to j available at the estimation time (i.e., ti,k−1). In the latter

subcase, it is reasonable to retain the latest CAM and to drop the oldest CAMs (e.g., the

late CAM in Figure 4.4). We observe that this scenario usually occurs as a result of late

CAMs. Since there was no observation associated with j at time ti,k−1, the DM can not

be performed at time ti,k. In other words, a late CAM can prevent its transmitter from

becoming a “virtual anchor” up to two consecutive “ego” estimates when adopting the

DM technique.
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Figure 4.4: Impacts of asynchronous position estimates and CAM transmissions on the
information fusion.

4.3.2 Adaptive Fusion Rate

Unlike signal level mitigation approaches, this protocol level solution eliminates correla-

tions by artificially decreasing the cooperative fusion rate (in comparison with the available

rate) without manipulating the observations. For each source of information (i.e., GNSS

positions and RSSI readings), as the observations are correlated in space with a limited

decorrelation distance dcor, a vehicle moving over a distance D along a straight line can

temporally collect up to 1 + bD/ (γdcor)c uncorrelated measurements, where γ ≥ 1 mea-

sures the quality of independent instantiations (e.g., γ1 = 1 and γ2 = 2 correspond to 50%

and 75% reduction in the correlation respectively), as shown in Figure 4.5. This simple

technique may not be appropriate for GNSS collection because GNSS decorrelation dis-

tance can be up to hundreds of meters and GNSS-assisted DR accumulates errors over

time and distance. However, it can be more beneficial for RSSIs due to the short shad-

owing correlation distance in urban environments (e.g. typically 10–20 m [101,102,111]).

Moreover, recalling that in V2V channels, the decay of the correlation coefficient is affected

by both Tx and Rx’s displacements (see (4.3)), hence, Rx vehicles can obtain uncorrelated

measurements before completing dSh
cor or experience more modest correlation effects at the

same distance. Thus, an option is to primarily rely on the DM technique for the correlated

GNSS sources. The CLoc may be activated to improve the accuracy only if uncorrelated

RSSIs are available, leading to reduced fusion rates (in comparison with the standalone

GNSS-based filter rate). One advantage of this hybrid scheme is to cut down on com-

putations by avoiding unnecessary fusion steps while maintaining an equivalent tracking

performance. Another benefit lies in the ability to adopt the first proposed technique

(i.e., empirical estimation of cross-link correlations) to minimize the effects of correlated
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Figure 4.6: Topology of the evaluated VANETs and related attributes in (a) high-
way/tunnel and (b) urban canyon scenarios.

noises or to approach the standard filtering performance with i.i.d. noises. Additionally,

the scenario depicted in Figure 4.4 (i.e., late CAMs) is also interestingly supported with

this technique. Remarkably, the strategy (and thus, the impact) is similar to that of

DM techniques. In other words, one neighbor sending a late CAM cannot be a reference

vehicle.

Finally, in case of channel congestion, the ETSI DCC rules recommend to scale the

transmission rate down to 2 Hz, what is still higher than the slowest proposed fusion rate

(e.g., 1.43 Hz on Figure 4.9). Accordingly, we do not expect any negative impact from

channel congestion cases4. We even claim that the system is perfectly resilient to channel

congestion situations, besides its clear advantage in terms of overhead.

4.3.3 Numerical Results

Simulation Settings

Our Monte Carlo trials are performed in three representative environments and scenarios,

namely the highway, the urban canyon, and the tunnel, which naturally provide contrasted

vehicular propagation channels and mobility conditions. In particular, as illustrated in

4More generally, regardless of correlation mitigation considerations, the actual impact of channel con-
gestion control mechanisms and transmit policies will be investigate in the following (see Section 4.4).
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Table 4.1: Mobility model and traffic parameters used for the simulation-based evaluation
of techniques mitigating observation noise/dispersion correlations.

Parameter Highway Urban Canyon Tunnel

Memory level α 0.95
Asymptotic mean speed ‖v̄i,k‖ 30 [m/s] 15 [m/s] 15 [m/s]

Standard deviation of the noise σd
i 1 [m/s2] 3 [m/s2] 1 [m/s2]

Standard deviation of the noise σo
i 0.1 [m/s2] 0.95 [m/s2] 0.1 [m/s2]

Sampling period ∆T 0.1 [s]
Simulation time 100 [s] 12 [s] 100 [s]
Number of lanes 3 2 3

Traffic direction(s) 1 (Common) 2 (Opposite) 1 (Common)
Simulated track length 3,000 [m] 300 [m] 1,500 [m]

Figure 4.6, we first model a three-lane highway (of most common kind in Europe), where

15 ITS-G5 connected cars are driving steadily (in the same north-east direction) at the

average speed of 110 km/h (i.e., about 30 m/s) for 3000 m. The latter vehicles establish

a pure VANET and can benefit from relatively favorable GNSS signals due to the open

sky operating environment. Secondly, we focus on a more critical GNSS-denied scenario.

Specifically, the aforementioned VANET goes through a three-lane straight portion of

urban tunnel at the average speed of 50 km/h (i.e., about 15 m/s) for 1500 m. Finally,

we consider a short urban canyon of 300 m in the form of a two-lane narrow street with

opposite traffic directions (i.e., one direction per lane). The related mobility and traffic

model parameters are summarized in Table 4.1.

Besides, depending on each scenario configuration and on generated mobility traces,

conditional models are applied in terms of both GNSS and V2V RSSI observations based

on measurement-based parameters from the recent literature (whenever available), as re-

ported in Table 4.2. To generate spatially correlated GNSS error components nx(x) and

ny(x), with x = (x, y)† indicating 2-D GNSS receiver’s position, whose ACF has the same

exponential decay as in (4.1), the 2-D correlated GNSS error maps n̂x(x) and n̂y(x) can be

approximated by generating a finite sum of sinusoids (SOS) (e.g., 100) whose periodicity

depends on the GNSS receiver’s x- and y-coordinates [114]. It is worth noticing that these

two spatially correlated GNSS errors affecting x- and y-coordinates are generated inde-

pendently hereafter for simplicity. On the other hand, since the spatial joint correlation

property of the V2V shadowing is characterized, given both Tx’s and Rx’s 2-D locations

as inputs variables (i.e., xt = (xt, yt)
† and xr = (xr, yr)

† respectively), we can simply gen-

erate a 4-D spatially correlated shadowing map ŝ(xt,xr) for mobile transceivers by using

the SOS-based joint shadowing model in [111]. The details are presented in Appendix F.
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Table 4.2: Correlated observation error (GNSS) and/or dispersion (V2V RSSI shadowing)
model parameters.

Modality Parameter Urban Canyon Tunnela Highway

V2V RSSI
np low (1.6 [115]) id. low (1.9 [100])
σdB large (3.4 dB [115]) id. medium (2.5 dB [100])
dSh

cor very short (3 m [112]) id. large (20 m [112])

GNSS position
σGNSS large (10–30 m [65,116]) N/A (no GNSS) medium (3-10 m [59,65,116])
dGNSS

cor medium/building-dependent (50–100 m) N/A (no GNSS) very large/open sky (100–500 m)

a In lack of representative figure/information available for this scenario in the recent literature (to the best of our knowledge),
we assume in first approximation 1) rather similar conditions than that of the urban canyon scenario (due to the confined
propagation medium, and rather similar conditions in terms of car density and speed) but 2) no GNSS at all and a larger
number of lanes having the same traffic direction (see Table 4.1).

Table 4.3 summarizes the remaining common simulation parameters and settings used in

the three simulated scenarios, regarding the CAM transmission rate and times, the GNSS

refresh rate and the generation of correlated processes.

Table 4.3: Parameters used for the simulation-based evaluation of techniques mitigating
observation noise/dispersion correlations.

Parameter Description

GNSS refresh rate 10 [Hz]
CAM rate 10 [Hz] (critical) [19,98]

CAM generation time U(0, 50) [ms] [19]
Number of cosines for correlation models 100–1000 [111,114]

Number of particles in PF 1000

In our comparative study, we consider two different positioning contexts, i.e., the

filtered standalone GNSS (non-CLoc solution) and the exhaustively fused GNSS+ITS-G5

(CLoc solution), both running at the filter/fusion rate of 10 Hz (i.e., the rate of GNSS

refreshment and critical CAM generation). First, we analyze them in unrealistic i.i.d.

noise environments, which are widely considered in literature so far, as two benchmark

approaches. Second, we test them under realistic correlated conditions. Last, we add

two proposed methods to decorrelate the noises, i.e., DM and decreased fusion rate (or

adaptive sampling). More specifically, we obtain three solutions including the filtered

GNSS with DM (at 10 Hz), the exhaustively fused GNSS+ITS-G5 with DM (at 10 Hz),

and the hybrid fused GNSS+ITS-G5 incorporating the filtered GNSS with DM at 10 Hz

and ITS-G5 at lower rate.

Regarding the hybrid option, the RSSIs are collected over each traveling distance

equivalent to the shadowing correlation length. Thus, the normalized joint ACF (i.e., (4.3))

reduces by 1/2 × 1/2 = 1/4 due to dual mobility at both “ego” and neighboring cars.

Mathematically, considering 10-Hz refresh rate of the filter/fusion, the decreased fusion
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rate can be computed by rx = 10
⌈
10−d

Sh
cor log2 x

2v

⌉−1
, where rx [Hz] aims at x% in the

normalized joint ACF, and v is the vehicle’s average speed. For example, in the highway

scenario, 20-m correlation length and 30-m/s speed yield a rate of about 1.43 Hz while in

the urban case, 3-m correlation length and 15-m/s speed give a rate of 5 Hz.

Besides, cross-link correlation information is added to the hybrid solution but not with

the DM technique, whose differential noise vector is by design white (i.e., having diagonal

covariance matrix).

Scenario Evaluation

Highway Scenarios We now analyze the effects of measurement correlation on filter-

ing/fusion performance and evaluate the gains from the proposed techniques by undertak-

ing “step-by-step” investigations. We first consider either GNSS noise or shadowing to be

correlated (while assuming the other process to be i.i.d.) and ultimately, we assume both

processes to be correlated.

Correlated GNSS noise and i.i.d. shadowing scenario (S1) In this first ex-

ample, we deal with GNSS noise correlation by applying the DM technique. The results

are summarized in Figure 4.7 by means of empirical CDFs. As expected, when the GNSS

position noise is decorrelated by DM, huge accuracy improvements are observed in both

non-CLoc (i.e., single GNSS) and CLoc (i.e., GNSS+ITS-G5) solutions. More specifi-

cally, for the filtered standalone GNSS, the position estimates accounting for the noise

correlation experience significant relative drops by 58% in median error and 37% in worst-

case (WC) error (defined for a CDF of 90%) from those neglecting the noise correlation.

Similarly, massive relative decreases by 75% in median error and 63% in WC error are

noticeable after integrating the DM technique in the exhaustively fused GNSS+ITS-G5.

On the other hand, Figure 4.7 confirms the advantage of CLoc over non-CLoc regardless

of noise decorrelation. A closer look reveals that the filtered GNSS without DM draws

less significant accuracy gains from the ITS-G5 than that with DM as correlated noise is a

threat to the effectiveness of data fusion. Besides, the positioning performance delivered by

the filtered GNSS after whitening the correlated noise remains quite below that achieved in

the i.i.d. noise case. Three main reasons can be invoked: first, error transfer from the pre-

vious estimate to the current estimate via the new observation model (i.e., h̃(·) in (4.10))
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after performing DM between the current and the previous measurements; second, model

mismatch (i.e., simulating finite SOS based on an exponential ACF versus assuming first

order Gauss–Markov noise prediction model); third, possible cross-correlation between

the whitened measurement noise and the process noise claimed in [86,101]. Nevertheless,

this problem can be solved by enabling CLoc (i.e., exhaustively fused GNSS (DM) and

ITS-G5), which approaches the i.i.d. case, as shown in Figure 4.7.

i.i.d. GNSS noise and correlated shadowing scenario (S2) In case of corre-

lated shadowing, both DM and decreased fusion rate can be employed for RSSI measure-
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ments. Note that when GNSS error is assumed i.i.d., the filtered GNSS achieves very high

accuracy (see the second top curve in Figure 4.8). This is challenging to our fusion scheme

since RSSI-based positioning is not considered as a high precision solution and as such,

may deteriorate the performance of nominal GNSS-based localization [97]. It can be seen

clearly from Figure 4.8 that the cooperative GNSS+ITS-G5 solution neglecting shadowing

correlation produces erroneous estimates in comparison with the non-cooperative filtered

GNSS, confirming that the careless handling of shadowing correlation incurs convergence

issues. When the shadowing is decorrelated by either the DM method or by a decreased

fusion rate (from 10 Hz to 1.43 Hz), the cooperative GNSS+ITS-G5 option now slightly

outperforms the standalone filtered GNSS and closely approaches the GNSS+ITS-G5 fu-

sion option in the i.i.d. case. The reason can be understood as follows. In comparison with

GNSS positions, RSSI measurements with respect to “virtual anchors” can contribute to

the positioning performance but to a rather modest extent due to the log-distance behavior

(in relation to the underlying path loss model). Finally, both extrapolated/approximate

RSSI values at the fusion time instant and virtual anchors’ uncertainties may alter the

positioning performance. In other words, when the accuracy of the filtered GNSS remains

high enough (e.g., under i.i.d. assumption and low GNSS noise), there is little room for

improvement by fusing with ITS-G5.
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Correlated GNSS noise and correlated shadowing scenario (S3) In this ex-

periment, we let both GNSS position error and shadowing correlated to examine the

performance of the proposed algorithms. The results summarized in Figure 4.9 are com-

pliant with that of the previous case (S1) for the filtered standalone GNSS with/without

DM. As we have already noted accuracy improvements from noise decorrelation in the fil-

tered standalone GNSS, it is worth verifying how the performance can be further boosted

under correlated RSSIs too. The corresponding performance will be seen as a reference.

As expected, the cooperative fused GNSS+ITS-G5 with DM yields similar performance

improvement (relative drops of 23% in median error and 26% in WC error) over the filtered

GNSS with DM. However, this scheme does not approach the corresponding i.i.d. case as

in (S1) (see again Figure 4.7) due to the fact that the DM method for RSSIs has the same

drawbacks as for GNSS positions (as pointed out in (S1)). Hence, differential RSSIs are

less beneficial than i.i.d. RSSIs in (S1). On the other hand, the hybrid fused GNSS+ITS-

G5 (i.e., combining the filtered GNSS with DM at 10 Hz and ITS-G5 at 1.43 Hz) enables

very favorable positioning results in consideration of collecting temporally uncorrelated

RSSI measurements and exploiting the cross-link correlation, thus compensating for the

information loss in the fusion model. Quantitatively, the accuracy improvement matches

by less than 10% the performance of optimal CLoc when considered under i.i.d. measure-

ments. In comparison with cooperative GNSS+ITS-G5 under the same decreased fusion

rate as in (S2) (see Figure 4.8), we observe that the hybrid scheme in (S3) suffers from

slightly degraded positioning performance due to GNSS noise correlation.

Finally, Figure 4.10 illustrates the RMSE of the whole VANET’s position estimates

(i.e., over all vehicles) as a function of time. In addition to confirm again the perfor-

mance order of the considered algorithms, it shows that the schemes neglecting the noise

correlation (see Figure 4.10 (top)) result in inconsistent estimates with large fluctuations

whereas the schemes accounting for this correlation bring more stable results (see Fig-

ure 4.10 (middle)). Obviously, the most steady position estimates belong to the two i.i.d.

cases in Figure 4.10 (bottom). For spatially correlated noise environments, if the corre-

lation information is not taken into account, the filter/fusion will react in the same way

to low noise regions as to high noise regions5. Furthermore, reminding that Bayesian fil-

ter/fusion schemes such as PF produce estimates by incorporating all the measurements

5In i.i.d. noise environments, the noise terms have the same standard deviation regardless of the regions.
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Figure 4.10: RMSE comparison of different filter/fusion strategies divided into three
groups: conventional approaches (top), proposed approaches (middle), and optimal (un-
realistic) approaches (bottom) in the highway scenario.
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Figure 4.11: Localization performance comparison of different schemes assuming correlated
GNSS noise and correlated shadowing, except the two dotted curves corresponding to both
i.i.d. GNSS noise and RSSI shadowing cases in the urban canyon scenario.

from the past to (and including) the current instants, increased noise correlation is related

to increased noise level as the standard Bayesian filter/fusion cannot average out the error,

resulting either in the fast convergence to erroneous values or even in severe divergence.

Urban Canyon Scenario Just like in the highway environment, we now evaluate the

different solutions in the urban canyon scenario. Figure 4.11 shows the performance com-

parison. We note again the adverse effects of correlated noises on the filtering performance

(the two dash curves versus the two dotted curves). From this figure, we also remark that
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CLoc provides lower performance gains in comparison with standalone GNSS than in the

highway scenario. This can be explained as follows. First, the two platoons traveling

in opposite directions along the narrow street (i.e., one single lane per traffic direction)

introduce poorer GDOP conditions that tend to spoil the RSSI-based positioning result.

That can be even more severe since neighboring vehicles (i.e., considered as “virtual an-

chors”) experience equivalent dispersion of their respective positioning errors. Second,

shadowing in urban environments is usually stronger than on highways, leading to higher

observation noise in the fusion filter [102]. Interestingly, the three proposed techniques

(i.e., the filtered GNSS with DM, the fused GNSS+ITS-G5 with DM, and the hybrid fused

GNSS+ITS-G5) now approach closely the ideal i.i.d. cases. This is due to the specificities

of the tested urban canyon scenario. It is commonly admitted that urban canyons belong

to the most problematic situations with respect to vehicular localization. We reasonably

assume that the vehicles entering the urban canyons from other areas would have prelim-

inary produced rather good state estimates, e.g., in open sky areas, along wider avenues

or roads with smaller buildings, etc. (see Figure 4.1). Hence, in the short term, the noise

prediction model depending on velocity estimation is beneficial to effectively decorrelate

the noises. However, in the long term, larger state errors would appear, thus jeopardizing

the prediction and further impairing accuracy in comparison with the i.i.d. schemes. This

happens in the highway scenario with a simulated track length of 3000 m but not within

our short urban canyon scenario of 300 m since the vehicles soon escape from this canyon.

A closer look at Figure 4.11 reveals that GNSS+ITS-G5 with DM marginally outperforms

the hybrid fused GNSS+ITS-G5 scheme. This is due to the short decorrelation length in

urban environments (i.e., 3 m in this case). Accordingly, the correlation between two con-

secutive RSSI measurements becomes weak. Quantitatively, 10-Hz RSSI measurements, 15

m/s mobility, and a 3-m correlation distance would lead to a normalized joint ACF value

of 50%, which can already be considered as a successful decorrelation without decreasing

further the fusion rate. However, weakly correlated measurements imply new information

contained in each new measurement. As a result, reducing the fusion rate leads to miss

such information and hence, to lower accuracy.

Tunnel Scenario Finally, we are interested in the even more specific GNSS-denied

tunnel environment. In this case, we only rely on one single modality, namely RSSI



4.3. Mitigation of Observation Noise Correlations 81

0 0.5 1 1.5 2 2.5 3 3.5 4

localization error [m]

0

0.2

0.4

0.6

0.8

1

e
m

p
ir
ic

a
l 
C

D
F

(e
rr

o
r)

filtered ITS-G5 @ 10 Hz

filtered ITS-G5 (DM) @ 10 Hz

filtered ITS-G5 @ 5 Hz

filtered ITS-G5 (i.i.d.) @ 10 Hz

correlated shadowing

i.i.d. shadowing

Figure 4.12: Localization performance comparison of different schemes assuming loss of
GNSS signal and correlated shadowing, except the top curve corresponding to i.i.d. RSSI
shadowing case in the tunnel scenario.

measurements, to perform ad-hoc-based trilateration with respect to neighboring vehicles.

Figure 4.12 shows the performance comparison. Once again, we remark that the DM

technique decorrelates the shadowing noises to improve accuracy close to that of the ideal

i.i.d. case. Considering the filtered ITS-G5 without DM as reference for benchmark

purposes, relative accuracy gains of, respectively, 36% on the median error and 27% in

the WC error regime are reported. Moreover, it matches by less than 20% the ideal

scheme under i.i.d. shadowing. Interestingly, from Figure 4.12, we can see that decreasing

the fusion rate provides the poorest performance, which is even worse than that of the

original filtered ITS-G5. It can be explained as follows. First, this is again due to very

short correlation length, which leads to loose information from naturally decorrelated RSSI

measurements while decreasing the fusion rate, as already mentioned in the urban canyon

scheme. Second, with a 5-Hz RSSI fusion rate, we need to use prediction (i.e., DR) in

order to deliver 10-Hz position estimates because of the GNSS loss. Thus, the positioning

error tends to accumulate more easily over time.

Discussion on Practical Context-Aware Correlation Mitigation

We have evaluated our proposed methods in different kinds of environments and scenarios.

We have found that the characteristics of the environment, including correlation lengths,

mobility patterns, GNSS availability, etc., strongly influence how the CLoc data fusion

processes the different input measurements to mitigate the noise correlation. A technique
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Table 4.4: Inputs for context-aware correlation mitigation.

Scenario
Modality

V2V RSSI GNSS position

Highway adaptive fusion rate DM
Urban canyon optional DM
Tunnel DM N/A

can be very favorable in one environment but may be less effective in the others. Thus,

we suggest a context-aware correlation mitigation strategy that assists the CLoc engine

to achieve the best accuracy regardless of the operating conditions. Learning from the

previous results, in Table 4.4, we summarize the recommended technique regarding each

modality in each environment. When the vehicle enters a specific environment (e.g., based

on the a priori knowledge of the map), the system could determine the most suitable

technique and the associated attributes, before feeding them into the positioning engine

to perform correlation mitigation. The aim is to match as close as possible to the accuracy

of the optimal schemes under i.i.d. measurements and, accordingly, to provide a constant

quality (i.e., highest accuracy) of the navigation service.

4.4 Message Approximation and Transmission Control Strat-

egy

In this new section, we address another major challenge associated with V2X wireless

connectivity, namely the reduction of the localization footprint onto data communication

channels and vice versa, the compliance of cooperative localization with V2X commu-

nication constraints and standardized mechanisms (e.g., in terms of CAM payload and

transmission control).

4.4.1 Parametric Message Approximation

Sticking with the PF-based fusion strategy, one first goal is to approximate the heavy par-

ticle cloud {X(p), w(p)}Pp=1 to facilitate its broadcast to neighboring vehicles using Gaussian

or Gaussian mixture distributions, without loosing too much information so as to enable

a reliable reconstruction of the related density at the receiving vehicles. The main moti-

vation for using Gaussian representations lies in their tractable analytical properties and

mixtures of Gaussians are convenient to approximate very complex densities by using a
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sufficient number of Gaussian components, while tuning their means, covariance matrices

and weights. Mathematically, a Gaussian mixture distribution is indeed expressed by a

linear combination [113] of the form p(X) =
∑M

m=1 π
mN (X|µm,Σm), where M ∈ Z+

denotes the number of Gaussian components, {µm,Σm, πm} are the mean, the covariance

matrix and the normalized mixture weight of each multivariate normal density compo-

nent m = 1, . . . ,M , respectively.

Given uniformly weighted particles {X(p), 1/P}Pp=1 (thanks to resampling) as input

data, one wishes to model these data using a mixture of Gaussians. This data set can be

represented as a P × nx matrix X in which the pth row is given by X(p)†. The Gaussian

mixture distribution is fully determined by the parameters π = {πm}Mm=1, µ = {µm}Mm=1,

and Σ = {Σm}Mm=1. To determine the latter, we employ a ML estimator, assuming

that the particles are drawn independently from the true distribution. The log-likelihood

function is then determined as log p(X|π,µ,Σ) =
∑P

p=1 log
{∑M

m=1 π
mN (X(p)|µm,Σm)

}
.

Denoting the set of unknown parameters as α = {µ,Σ,π}, the ML estimate is defined by

α̂ML = arg maxα p(X|α). This solution cannot be analytically determined in closed form

for M > 1 [113]. However, numerical iterative techniques such as the gradient descent or

the expectation maximization (EM) [113] algorithms, can be used to optimize the previous

likelihood function.

This message approximation procedure must be computationally efficient from the la-

tency point of view so as to cope with high CAM rates up to 10 Hz. Accordingly, unimodal

and bimodal Gaussians are assumed sufficient to capture the salient properties of the true

message, whereas multimodal Gaussians (i.e., involving more than 2 modes) are deliber-

ately not considered to avoid solving out too complex optimization problems. Actually,

when one cannot rely on enough neighbors (e.g., in sparsely connected networks), the

RSSI likelihood function may be multimodal and so is the posterior location distribution.

However, this information shall be discarded by simply censoring the CAM transmission.

Indeed, a too poorly localized vehicle shall not provide unreliable information to its neigh-

bors for CLoc purposes. In contrast, as we expect to benefit from numerous cooperative

neighbors in reasonably dense VANETs, the RSSI likelihood function is more prone to be

unimodal, as suggested by previous studies like in [117]. Besides, GNSS observation can

also help to resolve geometrical ambiguities occurring in such multimodal circumstances.

Note that since the absolute position and the velocity are weakly correlated (e.g., x-
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to-vx and y-to-vy cross-correlations) in comparison with the internal correlations between

their components (i.e., x-to-y and vx-to-vy cross-correlations), they can be separated and

approximated independently in order to ease the optimization problem (e.g., specifying

a 4-D Gaussian distribution for 2-D coordinate and 2-D velocity requires determining

14 parameters). Furthermore, the velocity is naturally unimodal so a Gaussian is sufficient.

4.4.2 Jointly Payload, Rate, and Power Control

Basically, ITS-G5 standard supports critical 10-Hz CAM to provide and maintain a supe-

rior quality of position awareness (see Figure 4.13(a)). However, the ITS-G5 channels are

vulnerable to such critical broadcast, especially in dense traffic conditions. In this case, the

ETSI DCC scales the CAM rate to 2 Hz to avoid congestion, thus loosing four fifth amount

of the cooperative information for CLoc6 (i.e., neighbors’ positions and RSSIs). Thus the

idea is to design a transmission protocol coping with the ETSI DCC to compensate for

such information loss.

Again, CLoc performance strongly relies on neighboring position awareness, as well as

on associated range-dependent measurements. Using a single kind of messages for both

purposes does not appear fully efficient because the former position can be predicted quite

reliably in the short term (e.g., within the sub-second horizon). Hence, we can contextually

select what we need to transmit at any instant. More particularly, we propose to mix

“tiny” CAMs with reduced payload (i.e., containing only vehicle’s ID without estimated

state and associated uncertainty parameters) at the critical rate of 10 Hz to provide

range-dependent information (i.e., RSSI) and normal CAMs at the lower rate of 2 Hz (in

compliance with ETSI DCC). Figure 4.13(b) represents this joint transmission payload

and rate adaptation. Accordingly, we let the “ego” vehicle predict the neighbors’ states

and we reduce the burden of broadcasting critical CAMs. Although additional “tiny”

CAMs are required, Table 4.8 shows that they do not increase traffic.

Finally, the objective of “tiny” CAMs is to provide RSSI measurements for CLoc,

which is usually restricted to the closest ring of neighboring vehicles (in compliance with

the link selection strategies described in Section 3.5.2) due to several reasons (e.g., signifi-

cantly larger relative RSSI dispersion at large distances, high probability of non-visibility

configurations, etc.). Accordingly, it is wasteful to broadcast the “tiny” CAMs at critical

6This is a general statement, regardless of the observation noise correlation aspects developed in the
previous section.
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Figure 4.13: Standard CAM transmission policy (10 Hz) in (a) vs. adjusted mixed CAM
traffic (including tiny/frequent CAMs at 10 Hz and nominal/infrequent CAMs at 2 Hz)
in (b).

transmission power (i.e., 33 dBm to reach the maximum range). In addition to CAM

payload and transmission rate control, we thus also propose power control to adaptively

manage different ranges (say, 50–100-m for “tiny” CAMs, 800–1,000-m for normal CAMs)

to save even more communication traffic. Once a desired transmission range is set a priori

for each type of CAM, one can roughly determine the corresponding transmission power,

assuming the knowledge of the log-distance path loss model in (3.6) and receiver sensitivity

(e.g., known by calibration).

4.4.3 Numerical Results

Simulation Settings

We reuse the highway scenario in Section 4.3 for this evaluation, though under an i.i.d.

observation noise assumption, as we first need a proof of concept to determine the main

trends/results without being interfered by other phenomena, The main simulation param-

eters are summarized in Table 4.5.

While evaluating the performance of the proposed approaches, we aim at assessing

practical operating trade-offs between localization accuracy, communication impairments,

and complexity, by undertaking “factor-by-factor” investigations. More particularly, we

firstly analyze the effects of parametric message approximation on localization accuracy

while assuming a default critical 10-Hz CAM rate. Then we evaluate the effects of ETSI
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Table 4.5: Main simulation parameters used to evaluate CAMs transmission control poli-
cies.

Parameter Value

CAM rate 10 [Hz] (critical), 2 [Hz] (congestion)
CAM size 300 [bytes]
“Tiny” CAM size 30 [bytes] (hypothesis)

Transmit power
33 [dBm] (critical, 1,000-m range)
-5 [dBm] (adaptive, 50–100-m range)

Receiver sensitivity -87 [dBm] [118]
Number of particles 1000

Table 4.6: Performance comparison of different message representations with respect to
communication requirement and localization accuracy.

2-D position 2-D velocity 50th [m] 90th [m] No. scalarsa Payload [bytes] Broadcast

Particles Particles 0.3222 0.7573 4000 32000 No
Uni. Gauss. (diag.) Uni. Gauss. (diag.) 0.3268 0.7628 8 64 Yes
Uni. Gauss. (full) Uni. Gauss. (full) 0.3253 0.7652 10 80 Yes
Bi. Gauss. (diag.) Uni. Gauss. (diag.) 0.3255 0.7628 13 104 Yes

a Number of scalars that need to be encapsulated in a CAM. Each scalar costs 8 bytes (binary64).

DCC and the proposed transmission control strategy on CLoc performance without any

message approximation. Finally, we consider combining both signal-level (i.e., message

approximation) and protocol-level (i.e., transmission control) techniques into a single so-

lution.

Performance Evaluation

Signal-Level Message Approximation Table 4.6 shows the achieved positioning ac-

curacy over 100 Monte Carlo runs in terms of both median and WC (CDF of 90%) local-

ization errors. Table 4.6 also summarizes the CAM overhead associated with each message

approximation strategy. While identifying the density modes, the bimodal Gaussian ap-

proximation with full covariance matrix does not converge within a few Monte Carlo runs

due to the higher-dimensional optimization problem. We thus deliberately ignore them

in the performance evaluation. One can remark the modest accuracy degradation caused

by parametric message approximations in comparison with the nonparametric approach.

This means that, in our localization problem, the posterior distribution is rather simple

under practical deployment/connectivity conditions. It can thus be approximated with

either unimodal or bimodal Gaussian. More importantly, Table 4.6 shows the minimum

awareness payload that needs to be carried by the 300–800-byte CAMs and then trans-

mitted over 6-Mbps ITS-G5 channels with 2312-byte maximum transmission unit (MTU).
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Table 4.7: x-Dimensional optimization versus number of iterations.

Representation x-D optimization Number of iterations

Bimodal Gaussian (diagonal) 9 45
Bimodal Gaussian (full) 11 187
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Figure 4.14: Empirical CDFs of localization errors for different schemes with respect to
fused modalities, message approximation and transmission control.

Thus, without message approximations, it is almost impossible to perform PF-based CLoc

in VANETs using explicit cloud disclosure and passing, as expected.

Since message approximation is solved by iterative methods such as EM in case the

closed form solution does not exist, computational complexity and latency are also im-

portant factors besides the accuracy performance indicator. Table 4.7 shows an example

regarding the number of iterations required to achieve convergence over 1 trial run, given

a number of estimated variables (i.e., a problem dimension). As expected, we observe

that this number increases dramatically within high-dimensional optimization problems.

Based on the previous results, considering a Gaussian mixture distribution provides too

marginal accuracy gain but leads to high computation/latency. Thus, unimodal Gaussian

with full covariance matrix is advantageous.

Protocol-Level Transmission Control We now study the impact on both localization

accuracy and local channel congestion of different transmission and fusion rate policies,

possibly in conjunction with unimodal message approximations. The corresponding em-

pirical CDFs of localization errors are first summarized in Figure 4.14. Note that the red-

straight-rectangular curve here on Figure 4.14 is equivalent to the green-straight-triangle
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curve Figure 4.9 and the green-dash-diamond curve here on Figure 4.14 is equivalent to

the red-dotted-triangle curve on Figure 4.9. Slight differences are mostly due to unimodal

Gaussian message approximations. As already illustrated in Chapter 3 and recently in

Section 4.3.3, we still observe here that the fusion of several modalities (i.e., GNSS and

V2V RSSIs) outperforms the standalone filtered GNSS solution. Interestingly, in case

of either triggered ETSI DCC or reduced CAM rate, the fused GNSS and 2-Hz RSSI

scheme only yields modest gain in case of high errors (i.e., larger than 1.2 m). This can

be explained by the fact that CLoc suffers from a loss of cooperative information (neigh-

boring positions and associated RSSIs). This information loss can be either a temporal

loss (from a specific neighbor) or a spatial loss (from the number of cooperative neigh-

bors due to their asynchronous 2-Hz CAM transmissions7). Then we observe that the

proposed method relying on “tiny” CAMs (still without message approximation i.e., 1000

particles) improves accuracy at a level equivalent to that of fused GNSS with 10-Hz CAM.

The observed slight accuracy degradation is due to accumulated prediction errors (see

again Figure 4.13(b)) and local cooperation with nearby neighbors only (in a 100-m ra-

dius coverage), as constrained by power control with “tiny” CAMs transmissions. In brief,

our transmission control strategy intentionally avoids critical CAM exchange but ensures

comparable localization accuracy.

Cross-Signal-Protocol-Level Transmission Control We now combine both signal

level and protocol level techniques to achieve simultaneously high precision and communication-

efficient CLoc. Specifically, in addition to transmission control, we integrate message ap-

proximation with a unimodal Gaussian (shown to be sufficient from previous simulations)

when broadcasting CAMs at 2 Hz. Note that the 10-Hz “tiny” CAMs do not include any

state awareness. Thus, they do not require message approximation and contribute to save

further computations. The result is also shown in Figure 4.14. As expected, we observe

marginal accuracy degradation caused by message approximation when considering also

transmission control.

Finally, we assess the impact of our proposed transmission control on the channel

load. Approximately, with our simulation settings and scenario (i.e., 3-lane highway, 30-

m/s speed, 2-s safety rule, steady vehicle movement, etc.), the number of 1-hop neighbors

7With 10-Hz fusion and asynchronous 2-Hz CAM reception, the sufficient number of cooperative neigh-
bors is not always guaranteed.
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Table 4.8: Channel load comparison between different strategies.

Scheme Channel load

10-Hz CAM 40%
2-Hz CAM 8%

Mixed 2-Hz CAM and 10-Hz “tiny” CAM 8.4%

in normal CAM’s range (i.e., 1,000 m) and in “tiny” CAM’s range can be up to 100

vehicles (worst case) and 10 vehicles respectively8. The channel load is roughly given in

Table 4.89. We remark that transmitting critical 10-Hz “tiny” CAMs does not congest the

channel (only cost 0.4% channel load) but improves the accuracy gain (relative drop of

13%, 22% respectively and in median and WC errors in comparison with the fused GNSS

and 2-Hz CAM). Last but not least, our proposed approach is not limited to the case of

triggered ETSI DCC but also applicable to the case of no congestion in order to enable

communication-efficient CLoc. In other words, it may be a waste to broadcast full CAMs

at 10 Hz while prediction can contribute to save a significant amount of resources.

4.5 Summary

This chapter contributes to the evaluation of CLoc in GNSS-aided VANETs including

more realistic V2X constraints, namely correlation effects inherent to the vehicular mo-

bility on the one hand and stringent limitations related to the wireless communication

channel and related standardized specifications (e.g., in terms of authorized messages

payload, congestion control, etc.) on the other hand. First, simulation models for the

GNSS residual errors (i.e., 2-D error maps) and the shadowing process over V2V links

(i.e., 4-D shadowing map) have been considered to capture the real-world spatial corre-

lation of practical operating environments. On this occasion, we have first shown that

this measurement noise correlation, if not handled carefully, is a threat to Bayesian fil-

ters/fusions. Then, two signal level and a protocol level approaches have been proposed

and can be combined to almost completely mitigate the deleterious correlation effects,

including estimation of cross-link correlations (compensating for information loss), differ-

ential measurements (subtracting autocorrelations), and decreased fusion rate (collecting

8It does not contradict the 15-vehicle scenario (i.e., 250-m road segment) because CLoc only uses nearby
neighbors in the range of 200–300 m (where the path loss model is still reliable) though vehicles can receive
CAMs from isolated neighbors (up to 800–1,000 m) for maximizing awareness.

9The channel load L[%] may be roughly computed as L = N × R × P/C, where N is the number of
vehicles in range, R the Tx rate, P the packet size, and C the maximum channel capacity (i.e., 6 Mbps).
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uncorrelated measurements) respectively. Simulation experiments in canonical vehicular

scenarios (urban canyon, tunnel, highway) have shown that the previous noise decorrela-

tion techniques exhibit convincing performance gains over standard approaches that would

neglect correlation. Apart from the specific tunnel environment, where decreasing the fu-

sion rate does not seem appropriate, all the other cases lead to very high position accuracy.

Beyond, the obtained results also highlight that there exists an optimal combination of

correlation mitigation techniques depending on the operating environment and conditions,

thus paving the way to context-aware solutions.

This chapter has also addressed the problem of V2V overhead and channel congestion

inherent to PF-based CLoc in GNSS-aided VANETs. On the one hand, results show that

a significant amount of the CAM payloads could already be saved under standard protocol

constraints (i.e., under normal transmission rates and packet sizes) through parametric

messages approximation. This comes with almost no accuracy degradation in comparison

with impractical solutions that would explicitly send each particles cloud to neighboring

cars. Simulations also show that unimodal Gaussian approximations of the local estimates’

probability densities are fairly sufficient to achieve the required localization accuracy with

much lower computational complexity, while being still robust to occasional geometric

ambiguities caused by sparse VANET connectivity. On the other hand, on top of mes-

sage approximation, the proposed jointly adaptive transmission payload, rate, and power

control contributes to maintain the continuity of high-precision location service in channel

congestion while reducing significantly communication traffic as well as computation load

in congestion-free conditions without trading much accuracy.

In the following chapters, as long as the GNSS measurements take part in the fusion-

based CLoc, the decorrelation techniques can always be applied. While the ITS-G5 is

the main communication technology throughout this thesis, the message approximation

has to be included in the PF-based CLoc. Finally, recalling that we keep on investigating

CLoc with gradual complexity, the limitations of ITS-G5 RSSI (as direct V2V observation)

suggest to consider evaluating equivalent fusion frameworks with more accurate ranging

technologies, which will be investigated in Chapter 5.



Chapter 5

Hybrid V2V Cooperative

Localization

5.1 Introduction and Related Works

In the two previous chapters, CLoc has been applied to VANETs to fuse on-board GNSS

positions with opportunistic V2V RSSIs out of CAM messages, relying on the V2X ITS-

G5 technology. A major advantage of using V2V RSSI lies in the full compliance with

future ITS-G5 connected vehicles. Yet, V2V RSSI measurement is a highly parametric

technique that requires precise model calibration. Even if performance gains have been

conditionally illustrated in comparison with standard GNSS baseline, RSSI-based CLoc

still offers rather limited accuracy (with median and worst case errors respectively on

the order of 0.3–0.5 m and 0.75–1 m, at most, depending on the operating environment

and processing). It can also suffer mostly from limited reliability, especially in non-static

multipath environments whose channel parameters (i.e., path loss exponent, shadowing

standard deviation, etc.) may fluctuate significantly [30, 59,96,97, 100,112,115]. Thus, in

this chapter, we propose to replace ITS-G5 RSSI readings by new V2V measurements ob-

tained by a more accurate ranging-oriented radio technology, namely TOF measurements

based on the impulse radio ultra-wide bandwidth (IR-UWB) technology1. Compared to

ITS-G5, the latter technology is indeed known to provide centimeter-level distance resolu-

tions at the price of one additional radio transceiver at each vehicle (i.e., in parallel to the

ITS-G5 transceiver) and specific cooperative protocols, as seen before (see Section C.2).

1Other short-range V2V ranging technologies could have been considered too without changing much
the outcomes of the study (e.g., ZigBee relying on PDOA measurements [18]).
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A comparison is summarized in Table 5.1.

The IR-UWB technology has already been considered extensively for tag, robot, asset,

or person localization in indoor environments [21,84,96,119,120], but only rarely for vehi-

cle localization. For instance, Ko el al. [121] use V2V UWB ranging in their GNSS-based

CLoc system. However, the main contributions consist in integrating a NLOS GNSS signal

detection algorithm to develop multipath-resistant CLoc solutions based on belief propa-

gation and EKF. In VANETs, communication aspects (e.g., specific scheduling to reduce

collisions, ranging acquisition latency or overhead and extra-traffic due to beliefs propa-

gation) are absolutely critical and may represent major limitations in the CLoc context,

although they remain still unaddressed. In addition, lane-level localization accuracy is not

achieved in this work. Petovello el al. [122] conduct a field demonstration of V2V IR-UWB

ranging to enhance differential GPS (DGPS) relative positioning with three moving vehi-

cles in a test in Calgary, Canada. Specifically, they combine GPS pseudoranges, IR-UWB

ranges, and bearing measurements using an EKF to improve the horizontal positioning

accuracy in various scenarios. The authors have shown that the combination of DGPS

and IR-UWB could be worse than stand-alone DGPS, incriminating timing errors cor-

rupting the IR-UWB data. Besides, the DGPS technology (providing natively accuracy

levels on the order of 0.1-0.2 m in optimal operating conditions) challenges IR-UWB to

further improve performance, whereas the fusion between standard GPS and IR-UWB is

not investigated at all (although the benefits from fusion would be likely more obvious

in this case). Another limitation of this study lies in the considered scenario, which sim-

ply involves 3 vehicles, thus leading to bad geometry and relative positioning capability.

This may not be suitable to key C-ITS applications that shall require absolute positioning

information.

In contrast, our approach updates predicted position by combining on-board GNSS

absolute position, neighboring fusion-based absolute positions (still broadcast over V2V

communications based on ITS-G5), and relative distance measurements via IR-UWB TOF

estimation (see Figure 5.1) within a PF. We illustrate that such hybrid CLoc yet cannot

fully benefit from IR-UWB ranging accuracy due to the disparity between observation

noises affecting GNSS positions and IR-UWB ranges, leading to filter overconfidence (i.e.,

in badly estimated positions), as well as to bias propagation problems (adversely induced

by cooperation). We first investigate the sources of such counter-intuitive effects. Then
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Figure 5.1: “Ego” car receiving CAMs and exchanging ranging frames RFRAME
from/with single-hop “virtual anchors” to perform distributed CLoc. The CLoc posi-
tion belief (i.e., after fusing GNSS positions with ITS-G5 RSSIs or IR-UWB ranges) are
expected to be more concentrated than that of non-CLoc (i.e., with standalone GNSS
only). The GNSS/ITS-G5 CLoc scheme in Chapter 3 uses ITS-G5 for both communi-
cation and localization (distance-dependent RSSI) whereas the GNSS/ITS-G5/IR-UWB
scheme in this chapter uses ITS-G5 for communication only and IR-UWB for ranging.

Table 5.1: Comparison of two V2V measurement kinds incorporated in the CLoc problem.

Metric ITG-G5 RSSI IR-UWB TOF

Pros • Full compliance with ITS-G5 V2X • Theoretical cm-to-tens cm level accuracy
• Cheap and simple hardware
• No extra specific synchronization (or clock)
requirement except that for V2X data commu-
nications

Cons • Limited distance-dependent information accu-
racy and reliability depending on channel pa-
rameters and transmission range

• Required perfect synchronization and clock
precision (one-way ranging)

• Required calibrated behavioral channel model
(power path loss) and parameters

• Complex ranging protocols, requiring local co-
ordination and possibly inducing extra acquisi-
tion latency

• Sensitivity to large fluctuations (shadowing
and/or small-scale fading), radio irregularities
(uncalibrated Tx power, varying radiating dia-
gram as a function of device attitude, etc.)

• Extra hardware in addition to ITS-G5 com-
munication device

we describe a unified GNSS/ITS-G5/IR-UWB data fusion scheme coupling different tech-

niques at both protocol and signal processing levels so as to mitigate error propagation and

thus, to improve the effectiveness of fusion-based CLoc under typical GNSS and IR-UWB

observation noises.

This chapter is organized as follows. In Section 5.2, we briefly present the IR-UWB

ranging protocol and model, the PF-based GNSS/ITS-G5/IR-UWB hybrid data fusion

problem, as well as inherent filter overconfidence and error propagation issues. In Sec-

tion 5.3, we solve out these problems by means of a specific fusion scheduling protocol,
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while assuming heterogeneous GNSS capabilities among the cooperating vehicles, where

more advanced GNSS receivers must be available at a few vehicles. Then we investigate

less restrictive scenarios that would not require accurately pre-positioned vehicles (i.e.,

without making any assumption about GNSS/GPS on-board quality), by developing an

adaptive Bayesian dithering technique in Section 5.4. Numerical results are provided in

Section 5.5, and a summary of related contributions and outcomes is given in the last

section.

5.2 Problem Formulation

Throughout this chapter, we still assume perfect knowledge of the mobility model (Gauss–

Markov mobility model), similarly to Chapter 3 and Chapter 4. In addition, a white

noise model assumption is retained for both GNSS absolute position and measured V2V

received power (for benchmark only), for several reasons: first, correlated measurements

can be transformed into independent data using the proposed techniques in Chapter 4

with some accuracy degradation; second, the goal is to evaluate how much gain the IR-

UWB technology can bring in comparison with the best performance achieved through

nominal GNSS/ITS-G5 data fusion (so obviously, in white noise environments or under

very short decorrelation distances). In the following, we briefly present the V2V IR-UWB

range measurement model, as well as the corresponding acquisition protocol.

5.2.1 IR-UWB Ranging Protocol and Model

To obtain IR-UWB ranges, vehicles need to perform a ranging protocol which may be

challenging in VANETs. We have identified the following problems:

• One-way ranging protocol is not suitable as vehicles might not be perfectly synchro-

nized due to many reasons (e.g., GNSS-denied environments, insufficient millisecond

accuracy provided by Network Time Protocol (NTP)).

• Multiple-way ranging protocols must mitigate clock frequency offset-induced range

errors and minimize the number of exchanged ranging frames. Numerous variants

are detailed and benchmarked in [123] including: two-way ranging [124], symmetri-

cal double-sided two-way ranging [125], asymmetrical doubled-sided two-way rang-

ing [126], double two-way ranging [127], and burst-mode symmetrical double-sided
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Figure 5.2: Beacon-aided TDMA MAC SF format supporting the localization functionality
(SF duration of 200 ms).

two-way ranging [128]. Besides clock drift and clock offset issues, it is indeed im-

portant to shorten ranging transactions (and thus reduce acquisition latency, for

instance through ranging data aggregation and broadcast), which may cause mea-

surement biases in high mobility contexts (resulting from a lack of spatial coherence

as vehicles are moving, between the moments when the first transaction is initiated

and the moment when it ends).

• Each vehicle performs ranging with multiple neighbors requiring careful and efficient

scheduling to avoid packet collision.

So as to support the previous ranging transactions (initially, not in the vehicular domain),

the standard IEEE 802.15.4 beacon-enabled time division multiple access (TDMA) MAC

superframe (SF) has been initially modified, as depicted in Figure 5.2. Note that several

variants, directly inheriting from the latter MAC structure, have been proposed, leading

to different trade-offs in terms of ranging accuracy versus acquisition latency (e.g., [129–

132]). In our specific vehicular context, we assume that a vehicle (e.g., temporarily self-

elected as local coordinator, if no other coordinator is already detected as active in the

area) periodically transmits beacons to synchronize the vehicles in the vicinity in order to

indicate the beginning of the SF and allocate time slot (TSs) for ranging. Paired vehicles

demand the coordinator for ranging TSs in the contention access period (CAP) and are

allocated guarantee time slots (GTSs) in the contention free period (CFP).

Besides, we use a three-way ranging procedure to compensate for the asynchronous

vehicles’ clocks (i.e., clock drifts and offsets), thus requiring at least 3 adjacent GTS to

complete a ranging transaction between two given nodes in the most basic allocation

schemes (i.e, with no data aggregation and broadcast). Generally speaking, for a N -

node VANET, each vehicle needs 3(N − 1) GTSs (star configuration) for one estimates
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with respect to its one-hop neighbors and the full VANET would require accordingly

3N(N − 1) GTSs (mesh configuration). This situation may lead to an extremely long SF

(or alternatively to multiple SFs) to complete the ranging procedures, which is harmful to

CLoc under high mobility, as already highlighted (i.e., resulting in biased and/or severely

asynchronous range measurements, low-rate CLoc, etc.). Thus, we assume that a classical

aggregate and broadcast (A-B) scheme is applied to minimize the amount of overhead or

the number of required GTSs to perform all the possible pairwise measurements in a mesh

configuration, similarly to [129–131]. Specifically, such A-B scheme enables to share time

resource in such a way that each node initiates specific ranging transactions with all the

other nodes, and each transmitted packets can play multiple roles e.g., either a request or

a response or even a drift correction packet, depending on the receiving neighbor status

and on the current step in the three-way ranging protocol [129,130]. Quantitatively, under

full connectivity 3N GTSs are needed to guarantee ranging transactions between any pair

of nodes, instead of 3N(N−1) GTSs. Figure 5.3 illustrates an example of A-B scheme in a

SF for 3 vehicles. The extension to more numerous vehicles is straightforward. Although

the IR-UWB penetration is out the scope of this study, we hint in Figure 5.3 the fact

that several TSs after the first and the second transmission rounds of all vehicles should

be reserved for new vehicles to join. Finally, when the ranging/SF is completed, each

vehicle is aware of the full distance matrix where d̂j→i and d̂i→j are different estimates

produced by vehicles i and j, respectively of the relative distance between them. So

different schemes can be applied to obtain the refined range d̄j→i (by vehicle i) by either

averaging 1/2(d̂j→i + d̂i→j) or considering only the latest estimate between them or the

nearest estimate based on innovation monitoring to reject outliers2. These measurement

redundancies may also be beneficial in case some transactions are incomplete (due to the

loss of at least one packet over the three required ones), and thus, related range estimates

are missing.

Thus far, through a cooperative ranging protocol (e.g., based on the TOF estimation

of transmitted packets involved in multiple-way handshake transactions), vehicle i at time

2Performing marginal innovation monitoring in a tracking filter at the system level (i.e., while integrating
multiple links and thus, multiple range measurements with respect to neighbors) can indeed be used to
detect link-wise inconsistent measurements and hence, discard outliers.
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Figure 5.3: Example of the A-B protocol scheme in a SF for ranging within a VANET of
3 vehicles.

ti,k estimates the V2V distance d̂j→i,k to node j, j ∈ S→i,k in position xj,ki :

d̂j→i,k = ‖xi,k − xj,ki‖+ nj→i,k, (5.1)

where ranging noise nj→i,k ∼ N (0, σ2
UWB) with σUWB the ranging standard deviation. At

the protocol level at least since the clock drift compensation mechanisms are expected to

remove measurement biases so that noise is assumed to be zero-mean in first approximation

(at least in LOS). Accordingly, the standard deviation accounts for both the arrival time

uncertainty of each unitary packet involved in a ranging transaction and the residual noise

resulting from clock drift compensation mechanisms (i.e., after combining several of these

times of arrival).

5.2.2 Fusion Filter Overconfidence and Error Propagation

After presenting the IR-UWB TOF-based range observation model, we rely on a similar

PF framework to that used in Chapter 3 for GNSS/ITS-G5 data fusion (see Algorithm 1),

while benefiting from more accurate V2V range-dependent measurements and keeping on

using ITS-G5 to broadcast fusion results. The new V2V measurements are also nonlinear

with respect to the vehicles’ positions, thus somehow justifying the choice of a PF as core

fusion engine. Our GNSS/ITS-G5/IR-UWB data fusion scheme is based on a (bootstrap)



98 Chapter 5. Hybrid V2V Cooperative Localization

Algorithm 3 Bootstrap PF for GNSS/ITS-G5/IR-UWB data fusion (iteration k, “ego”
vehicle i)

1: CAM Collection: Receive CAMs from the set N→i,k of perceived neighbors, extract the parametric

beliefs, and draw samples to reconstruct the particle approximate beliefs {X̃(p)
j,k , 1/P}

P
p=1, j ∈ N→i,k.

2: Data Resynchronization: Perform prediction of both “ego” and neighboring particle beliefs based
on mobility models at the “ego” estimation instant k (i.e., ti,k):

X
(p)
i,k ∼ p(Xi,k|X(p)

i,k−1), w
(p)
i,k = 1/P, p = 1, . . . , P,

X
(p)
j,ki
∼ p(Xj,ki |X̃

(p)
j,k), w

−(p)
j,ki

= 1/P, p = 1, . . . , P, j ∈ N→i,k,

and build the LDM of vehicle i’s neighbors (as another possible output of the algorithm):

X̂−j,ki
≈ 1

P

P∑
p=1

X
(p)
j,ki

, Σ−j,ki
≈ 1

P

P∑
p=1

(X
(p)
j,ki
− X̂−j,ki

)(X
(p)
j,ki
− X̂−j,ki

)†, j ∈ N→i,k.

3: Observation Query and Aggregation: Check whether the TDMA MAC superframe or the ranging
handshakes with the subset S→i,k ⊂ N→i,k of IR-UWB paired “virtual anchors” are completed to
perform fusion-based CLoc:

zi,k =

{
(zxi,k, z

y
i,k)†, if non-fusion instant k,

(zxi,k, z
y
i,k, . . . , d̂j→i,k, . . .)

†, j ∈ S→i,k, if fusion instant k.

4: Observation Update: Calculate the new weights according to the likelihood:

w
(p)
i,k ∝

{
p(zi,k|X(p)

i,k ), if non-fusion instant k,

p(zi,k|X(p)
i,k ,X

(p)
S→i,k), if fusion instant k

=


p(zxi,k|x

(p)
i,k )p(zyi,k|y

(p)
i,k ), if non-fusion instant k,

p(zxi,k|x
(p)
i,k )p(zyi,k|y

(p)
i,k )

∏
j∈S→i,k

p(d̂j→i,k|x(p)
j,ki

,x
(p)
i,k ), if fusion instant k.

normalize them to sum to unity, and compute the approximate MMSE estimator and its empirical
covariance as the second filter outputs:

X̂i,k ≈
P∑

p=1

w
(p)
i,kX

(p)
i,k , Σi,k ≈

P∑
p=1

w
(p)
i,k (X

(p)
i,k − X̂i,k)(X

(p)
i,k − X̂i,k)†.

5: Resampling
6: Message Approximation and Broadcast: Use parametric unimodal Gaussian to approximate the

particle “ego” belief and thus broadcast {X̂i,k,Σi,k}.

PF, as described in Algorithm 3.

This algorithm uses the (joint) mobility model as sequential importance distribution,

which does not account for the most recent observation. Hence, particles are generated

from the mobility models (Algorithm 3, Step 2), whereas the corresponding weights are

updated by simply computing the measurement likelihood given the current observation

and the states of these predicted particles (Algorithm 3, Step 4). This suboptimal choice,

unfortunately, can lead to specific problems as described below.

First, the efficiency of the bootstrap PF relies critically on the “match” between the

prior distribution and the observation likelihood [87, 88]. Since the mobility model is not

binded to the observation (and thus, to the likelihood), there might exist a “mismatch”

between them. For instance, if the ranging technology is highly accurate leading to concen-
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Figure 5.4: Illustration of particles depletion when fusing accurate IR-UWB ranges with
GNSS (top subfigures) and no depletion when using inaccurate RSSIs and GNSS (bottom
subfigures) in a bootstrap PF. In this scenario, the “ego” vehicle in the center cooperates
with its eight nearest neighbors, as shown in Figure 5.7 in one snapshot. Left top/bottom
subfigures illustrate the position estimate and the corresponding confidence ellipse at the
“ego” car, when fusing 8 IR-UWB ranges/RSSIs with respect to other cars with “ego”
and neighboring prior beliefs in comparison with theoretical BCRLB. Right top/bottom
subfigures show the updated weights accounting for the collapsed/distributed particle
cloud approximating the “ego” posterior density. Main simulation parameters include:
prior bias ∼ U(0, 0.5) [m] to account for poor initialization, prior 1-σ uncertainty of 1 [m]
on both x- and y-axes independently, σUWB = 0.2 [m], σSh = 2.5 [dB], and 1000 particles.

trated (joint) likelihood but the mobility is not (due to either imperfect prediction model

or poor initialization3), then only a few particles close to the true state are assigned sig-

nificant weights, resulting in particle depletion. As a result, the posterior density support

is concentrated to a submanifold of the state space, leading possibly to be overconfident

in biased location estimates. Figure 5.4 illustrates this phenomenon with a single snap-

shot simulation. If, on the one hand, the neighbors’ positions are perfectly known, which

may not be reasonable in a pure VANET case, the “ego” posterior density is concentrated

but located close to the true position. However such estimation is unstable since it does

not fix the particle depletion. If, on the other hand, the neighbors’ positions are biased

(either strongly or weakly), the corresponding error terms are propagated to the “ego”

3In general, it is reasonable to assume rather poor initial guess. For example, in order to perform V2V
IR-UWB ranges, vehicles need to be paired. During this period, they can only rely on GNSS, which does
not always provide accurate location beliefs.
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Figure 5.5: Illustration of bias propagation while fusing accurate IR-UWB ranges with
GNSS in a bootstrap PF. In spite of the accurate ranges, the GNSS+IR-UWB only gives
similar accuracy performance as that of the GNSS+ITS-G5. In addition, its accuracy is
the worst in low error regime due to marked biases. The simulation parameters are taken
from the heterogeneous GNSS scenario detailed in Section 5.5.

position estimate, which thus quickly converges to an inaccurate value, whereas extremely

high confidence is still given to the result (see Figure 5.4 (left top)). Such a situation can

be fatal: this malicious information is then broadcast over the network and degrades the

position accuracy of all neighbors. Note that the particle depletion does not occur when

fusing inaccurate RSSIs because their (joint) likelihood is a broad distribution, indicating

that most particles retain a meaningful weight (Figure 5.4 (bottom)).

Second, though the bootstrap PF is implemented in a distributed manner, in the

VANET context, the state must be augmented to account for uncertain “virtual anchors”

positions i.e., neighboring beliefs (see Algorithm 3, Step 2 and 4). Said differently, the

position estimation is performed in high-dimensional space. In this case, there might be

no particle in the vicinity to the correct augmented state because the number of particles

cannot be sufficiently high to cover all relevant regions concerned by the concentrated

(joint) likelihood density [88].

Hence, jointly or separately, the compact distribution of the measurements (e.g., using

accurate IR-UWB ranges) and the high dimensionality of the state space both lead to

the inefficiency of the bootstrap PF in the very fusion context. Figure 5.5 illustrates this

counter-intuitive observation.

To avoid particle depletion, we aim at having more particles with significant weights

in order to maintain particle diversity and therefore, to avoid overconfidence issues. One
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immediate and intuitive approach is to increase the number of particles. Such a solution

can solve the problem at the expense of extremely high computation load, as shown in

Figure 5.6 (top). However, it is unsuitable to real-time vehicular tracking under high

mobility. Thus, we solve the problem without increasing the number of particles in the

following sections.

5.3 Selective and Refined Cooperative Localization

In this section, we present an intuitive data fusion scheduling scheme mostly applicable

in restrictive heterogeneous scenarios where several high-quality GNSS devices must be

available in the VANETs. In particular, this technique (2-phase CLoc) relies on two main

steps, as follows.

5.3.1 Bias Mitigation Phase

In the first phase, each vehicle only cooperates only with the neighbors that have pre-

sumably the best position estimates. The reasons behind the selective cooperation are

not only to alleviate error/bias propagation but also to keep the joint state (i.e., states of

both “ego” vehicle and its “virtual anchors”) concentrated4 and not too high dimensional

to be well represented by a finite number of particles without severe particle depletion.

Interestingly, it is achieved by extracting the GNSS confidence level (e.g., covariance ma-

trix of GNSS position, besides the uncertainty of the posterior estimate) in the CAMs5.

Instead of relying uniquely on the posterior belief (which may be overconfident in the

context), the underlying GNSS uncertainty -i.e., before fusion/filtering- is expected to

be more representative of the possibility to be (still) biased after fusion. In particular,

high accuracy GNSS position as absolute information can correct possible bias caused

by relative accurate IR-UWB ranges to imperfect anchors by dominating the weights in

the observation update (see Step 4 in Algorithm 3) and producing good prior belief (in

the next iteration) to improve the “match” with the high (joint) likelihood of IR-UWB

ranges. In the approach followed here, vehicles equipped with high-class GNSS receivers

(e.g., SBAS, RTK, PPP, etc.) inform their neighbors about their high reliability through

4For instance, uniform densities require many more particles than that focused on a small region of the
state space.

5GNSS position and its confidence level are included in the CAMs according to the standard.
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CAMs so that the others can avoid integrating so-called malicious “virtual anchors” in

their own CLoc calculations.

One may think about the BCRLB-based link selection in Section 3.5 as a relevant solu-

tion. Nevertheless, we do not consider this approach for two reasons: first, the aforemen-

tioned concentrated beliefs (with presumably unbiased estimate) is essential to alleviate

particle depletion problems whereas vehicles with low uncertainties are not always selected

by such theoretical bound (see Section 3.6); second, it cannot handle most pathological

cases, where neighbors’ positional beliefs can be concentrated but biased. A link selection

based on a theoretical bound accounting only for the variance would thus fail in removing

wrong cooperative neighbors. Note that the selective CLoc eases the particle depletion but

does not completely resolve this problem as the (joint) state still remains high dimensional

in V2V CLoc. With minimized biases, more survived samples can cover the regions in

the vicinity to the correct state thus yielding good estimates while a reasonable loss of

diversity in particle population can be recovered after regularization.

Then after a few iterations, by integrating only contributions from the best neighbors

(with concentrated beliefs and presumably bias-free position estimates) and thus by avoid-

ing filter overconfidence and bias propagation, poorly positioned vehicles are expected to

improve their estimates.

5.3.2 Accuracy Refinement Phase

Once the biases and overconfidence affecting the position estimates of all vehicles have been

minimized, each vehicle then benefits from its neighbors as accurately localized “virtual

anchors”, thus enabling to draw maximum benefits from IR-UWB ranging accuracy. Said

differently, exhaustive cooperation can now be performed to boost the localization accuracy

to its best achievable level.

5.4 Adaptive Bayesian Dithering

In this section, we continue investigating the same problems under homogeneous GNSS

operating conditions (e.g., a group of vehicles entering the same highway) and/or capa-

bilities (e.g., a group of vehicles using GNSS devices from the same class). In comparison

with the heterogeneous GNSS scenario, these new cases are more challenging, without
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Figure 5.6: Illustration of 2 solutions for particles depletion when fusing accurate IR-
UWB ranges with GNSS positions in a bootstrap PF. The two left subfigures illustrate the
position estimates and the corresponding confidence ellipses in comparison with theoretical
bounds when using a conventional approach with 106 particles (top) or the proposed
adaptive dithering technique with 1000 particles only (bottom). Right top and bottom
subfigures show the updated weights yielding meaningful particle clouds. Except the
number of particles and the adaptive dithering technique, the considered scenario and
simulation parameters are the same as that in Figure 5.4.

making any assumption about the availability of highly reliable vehicles’ positions in the

VANETs.

We now rely on a simple but efficient solution called dithering which uses a smoothed

(joint) likelihood i.e., assuming deliberately more noise in the observation model than the

actual noise affecting real measurements [87, 88]. As a result, more particles are given

meaningful weights to maintain particle diversity in order to avoid overconfidence and

bias propagation issues. Nevertheless, if performed systematically, accurate measurement

information is partly lost and the extent to which noise must be increased in the observa-

tion model is questionable. Moreover, as the (joint) likelihood depends on the number of

cooperative “virtual anchors”, the more numerous the cooperative neighbors, the sharper

the (joint) likelihood. Said differently, an excessively smoothed (joint) likelihood in case

of a few neighbors tends to loose information whereas a too slightly smoothed likelihood

with a high number of neighbors does not solve the depletion problem. Thus, we propose

a novel adaptive dithering technique. The idea is to predict the actual performance of the
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IR-UWB range-based fusion based on BCRLB, which in first approximation can capture

both “ego” and anchors’ uncertainties (see Section 3.5) for a given snapshot, without inte-

grating information from previous estimates6. Thus far, we can rely on this performance

bound to adjust the minimum required amount of added noise in the perception model

by manipulating the assumed ranging standard deviation. In this paper, adaptive dither-

ing is implemented in an iterative way, where we start with an a priori nominal ranging

standard deviation (i.e., corresponding to the best expected technology potential). In

every iteration, we gradually increase this standard deviation until the posterior density

becomes meaningful and reliable i.e., its empirical covariance is no more smaller than the

predicted BCRLB, avoiding overconfidence without spoiling too much the benefits from

high accuracy IR-UWB range measurements. The BCRLB for IR-UWB range-based CLoc

is calculated similarly to RSSI-based CLoc in Section 3.5.1, except the term related to the

new measurements as follows:

JMj→i,k = E
d̂j→i,k,xi,k,xj,ki

{
−∆

xi,k
xi,k log p(d̂j→i,k|xi,k,xj,ki)

}
=

1

σ2
UWB

Exi,k,xj,ki

{
(xi,k − xj,ki)(xi,k − xj,ki)

†

‖xi,k − xj,ki‖2

}

≈ 1

σ2
UWB

1

P

P∑
p=1

(x
(p)
i,k − x

(p)
j,ki

)(x
(p)
i,k − x

(p)
j,ki

)†

‖x(p)
i,k − x

(p)
j,ki
‖2

.

The overall adaptive dithering technique is summarized in Algorithm 4 and should be

triggered before Step 4 in Algorithm 3. Note that {d1, d2} in line 10 of Algorithm 4 are

tuning parameters indicating how close the estimation approaches the theoretical perfor-

mance bound and can be set to small arbitrary values between [0, 0.5].

5.5 Numerical Results

5.5.1 Simulation Settings

We now evaluate the localization performance of the previous solutions proposed to miti-

gate filter overconfidence and error propagation, considering the same scenario as in Chap-

ters 3 and 4 i.e., a common 3-lane highway, where a fleet of ITS-G5-connected vehicles

(a segment of a larger flow of vehicles) are driving steadily in a common direction at the

6Note that this static bound is thus deliberately pessimistic in comparison with the best expected
tracking performance.
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Algorithm 4 BCRLB-based Adaptive Dithering (iteration k, “ego” vehicle i)

1: Compute the Bayesian FIM JB
i,k for IR-UWB-based CLoc

2: Compute the principal components {λ(1), λ(2)} by finding the eigenvalues of [JB
i,k]−1, λ(1) ≤ λ(2)

3: Begin with the actual ranging standard deviation σ̃UWB = σUWB

4: do
5: Update the weights w̃

(p)
i,k ∝ p(zS→i,k|x(p)

i,k ,x
(p)
S→i,k, σ̃UWB)

6: Normalize the weights to sum to unity
7: Compute the mean E {xi,k|zS→i,k, σ̃UWB} =

∑P
p=1 w̃

(p)
i,kx

(p)
i,k

8: Compute the empirical covariance cov (xi,k|zS→i,k, σ̃UWB) =
∑P

p=1 w̃
(p)
i,k (x

(p)
i,k − E{xi,k|·})(x(p)

i,k −
E{xi,k|·})†

9: Compute the principal components {λ′(1), λ
′
(2)} by the eigenvalues of cov (xi,k|zS→i,k, σ̃UWB),

λ′(1) ≤ λ′(2)

10: Add dither noise ∆ to perception model σ̃UWB = σ̃UWB + ∆

11: while
√
λ′(1) ≤ (1 + d1)

√
λ(1) or

√
λ′(2) ≤ (1 + d2)

√
λ(2)

12: return σ̃UWB

110 km/h

3.5 m

> 60 m

Figure 5.7: VANET scenario evaluated in highway scenario for the mitigation of filter
overconfidence and error propagation. For CLoc based on V2V IR-UWB ranging, a ve-
hicle (self-elected as coordinator) periodically transmits beacons to synchronize IR-UWB
vehicles in the vicinity (i.e., indicating the beginning of the SF and allocating TSs for
ranging). The IR-UWB local network consists of less than 10 vehicles to achieve 5 SF/s.

average speed of 110 km/h (i.e., about 30 m/s), as depicted in Figure 5.7. Furthermore,

each vehicle is endowed with IR-UWB ranging capabilities. Table 5.2 summaries main

parameters for the simulation framework.

To perform V2V IR-UWB ranging, vehicles are locally synchronized to exchange rang-

ing frames in allocated TSs 7. For 10-Hz position estimation, we utilize 200-ms SFs (i.e.,

5-Hz SFs) leading to 5-Hz fusion rate. Note that vehicles use the stand-alone GNSS po-

sitions to input the filter engine when the ranging procedure is ongoing. Due to the 5-ms

TSs considered for UWB packets, 100-ms SFs aiming at a critical 10-Hz fusion rate can

only synchronize a maximum of 5 vehicles including the coordinator. Thus, with only 4

neighbors, it may be first challenging to have enough accurately positioned neighbors for

scheduling and second, it limits the change to boost the CLoc accuracy8. We investigate

7We leave the study of a partial penetration of IR-UWB to future work.
8It is not contradictory with our claim about link selection to reduce complexity in Chapter 3. It
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Table 5.2: Main simulation parameters for the mitigation of filter overconfidence and error
propagation.

Parameter Value

Memory level α 0.95
Tangential acceleration uncertainty 1 [m/s2]
Perpendicular acceleration uncertainty 0.1 [m/s2] (to satisfy road constraints)
Sampling period ∆T 0.1 [s]
Standard deviation of GNSS errors in x- and y-axes 1.5 [m] (SBAS)
GNSS refresh rate 10 [Hz]
CAM rate 10 [Hz] (critical)
SF length 200 ms
TS duration 5 ms
Number of TSs 40 (1 beacon, 9 TSs for CAP, 30 GTSs for CFP)
Ranging protocol three-way ranging, A-B
Standard deviation of IR-UWB ranging noise 0.2 [m]
Path loss exponent np 1.9 (V2V in highways) [100]
Standard deviation of shadowing σSh 2.5 [dB] (V2V in highways) [100]
Number of particles 1000
Initial positional error in x- and y-axes 1 [m] (rms) (plausible hypothesis)
Initial velocity errors in x- and y-axes 0.1 [m] (rms) (plausible hypothesis)

two complementary and cumulative scenarios as follows.

In the first heterogeneous scenario, we consider a realistic heterogeneous case where

all vehicles are supposed to have the same visibility to the satellite constellation, but

suffer from disperse and independent GNSS levels due to different receiver capabilities

(e.g., 1.5-m error of SBAS versus 9-m error of degraded basic receivers). The latter GNSS

accuracy is intentionally chosen to illustrate the effect of large state prior uncertainty under

unbalanced observation noises. Table 5.3 recalls the different tested algorithms including

a semi-CLoc variant, as a lighter alternative to the full-CLoc scheme already described in

Section 5.3.

In the second homogeneous scenario, we study the case of heterogeneous visibility

conditions with respect to satellites. In our comparative study, we consider the filtered

standalone GNSS (non-CLoc scheme), the fused GNSS+RSSI, and the GNSS+IR-UWB.

In the GNSS+IR-UWB scheme, we compare the localization performance of bootstrap

PF with and without adaptive dithering. We also benchmark our proposal with the well-

known EKF to verify that the solved problem is not uniquely PF-dependent.
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Table 5.3: Description of different CLoc schemes for the mitigation of filter overconfidence
and error propagation.

Scheme Degraded GNSS node Non-degraded GNSS node

Conventional CLoc Exhaustive CLoc Exhaustive CLoc

2-step semi-CLoc
Selective CLoc (first)

Non-CLoc (all)
Exhaustive CLoc (second)

2-step full-CLoc
Selective CLoc (first) Non-CLoc (first)

Exhaustive CLoc (second) Exhaustive CLoc (second)
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Figure 5.8: Empirical CDFs of localization errors considering degraded GNSS vehicles for
different PF fusion schemes and different measurements/technologies for the mitigation of
filter overconfidence and error propagation.
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Table 5.4: Overall performance comparison of different localization schemes for the miti-
gation of filter overconfidence and error propagation.

Scheme
Degraded GNSS vehicles

50th [m] 90th [m] Pr(0.2 m) Pr(0.4 m) Gainb

Filtered GNSS 0.63 1.27 8.9% 29.9% -
CLoc (GNSS+RSSI) 0.48 0.91 14.4% 38.8% 23.8%

CLoc (GNSS+IR-UWB) (bias propagation) 0.53 0.92 4.0% 24.8% 15.9%
2-phase semi-CLoc (GNSS+IR-UWB) 0.41 0.64 5.1% 45.7% 34.9%
2-phase full-CLoc (GNSS+IR-UWB) 0.24 0.34 36.17% 95.7% 61.9%

Scheme
Non-degraded GNSS vehiclesa

50th [m] 90th [m] Pr(0.2 m) Pr(0.4 m) Gainb

Filtered GNSS 0.22 0.43 46.6% 86.0% -
CLoc (GNSS+RSSI) 0.20 0.42 49.1% 87.7% 9.1%

CLoc (GNSS+IR-UWB) (bias propagation) 0.23 0.37 42.6% 94.8% -4.5%
2-phase semi-CLoc (GNSS+IR-UWB) 0.22 0.43 46.6% 86.0% 0.0%
2-phase full-CLoc (GNSS+IR-UWB) 0.18 0.29 57.7% 99.7% 18.2%

a Non-degraded GNSS vehicles do not cooperate in the 2-phase semi-CLoc, hence, the accuracy
performance is the same as that of the standalone filtered GNSS approach.

b Gain in terms of localization accuracy (negative value in case of degradation) with respect to
filtered standalone GNSS solution in median error (i.e., CDF = 50%).

5.5.2 Performances of Fusion Scheduling with Heterogeneous GNSS Ca-

pabilities

Figure 5.8 and Figure 5.9 compare the localization performances at vehicles with degraded

GNSS capabilities in terms of empirical CDFs of location errors and dynamic RMSEs as

a function of time, respectively. Figure 5.10 shows similar comparisons at vehicles with

non-degraded GNSS capabilities, by means of empirical CDFs only. As expected and in

depends on the target applications with their specific requirements.
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line with previous results in Chapter 3 and 4, the fusion of several modalities (e.g., on-

board GNSS position and ITS-G5 RSSIs/IR-UWB TOF-based ranges) yields localization

accuracy gains in comparison with standalone solutions (e.g., filtered GNSS only). At first

sight, one could expect that accurate IR-UWB TOF-based range measurements would

considerably boost the localization accuracy, far beyond what unreliable ITS-G5 RSSIs

could initially offer. However, as shown in the three figures (e.g., Figure 5.8, Figure 5.9,

and Figure 5.10), when considering conventional PF-based CLoc, fusing GNSS and IR-

UWB only provides comparable accuracy with that resulting from fusing GNSS and ITS-

G5. Actually, biased location estimates at “virtual anchors” strongly alter the correction

potential of IR-UWB ranges. Under degraded GNSS conditions, no gain is observed in

comparison with a GNSS+ITS-G5 fusion scheme whereas, at vehicles with non-degraded

GNSS, only modest improvements are noted. This can be explained as follows. Our PF

fuses three source of information i.e., predicted positions (both “ego” and neighboring

vehicles), GNSS positions, and measured distances to the imperfect “virtual anchors”.

The PF is thus tricked to put exaggerated confidence on IR-UWB-based trilateration due

to the small ranging noise variance assumed in the observation model. Accordingly, after

integrating biased neighbors estimates, the fusion-based position estimate also becomes

biased, but still associated with a high confidence. This effect would be even worse under

strong spatial correlation of the GNSS errors when all neighbors might be affected by

approximately the same 2-D bias, thus leading in the shift of the overall estimated VANET.

In case of non-degraded GNSS (see Figure 5.10), the bias effect does not seem to be severe.

The GNSS uncertainty is concentrated so that the filter gives higher weight to the GNSS

estimate. Accordingly, it is able to correct the bias caused by the trilateration procedure.

However, the performance gain is limited due to the same reason as previously.

Now, when employing the proposed 2-phase CLoc, we observe that when the biases are

mitigated in the first step (see Figure 5.9 (top)), the fused GNSS+IR-UWB then yields to

remarkable performance in the “accuracy refinement” phase. In particular, we observe in

Figure 5.9 (top) that, due to wrong initialization, a conventional GNSS+IR-UWB scheme

performing exhaustive fusion gets biased after only 3 iterations, then converges to inac-

curate values but keeps on associating large confidence with these values. The proposed

CLoc, however, waits until all vehicles’ position estimates are improved by the bias re-

finement phase, before boosting the performance through exhaustive fusion. Comparing
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Table 5.5: Overall performance comparison and consistency analysis for the mitigation of
filter overconfidence and error propagation.

Scheme 50th [m] 68tha [m] 95th [m] 0.2 m Est. 1-σ [m] Overconfidence

PF (GNSS) 0.22 0.29 0.53 43% 0.34 No
PF (GNSS+ITS-G5) 0.23 0.28 0.51 42% 0.30 No

PF (GNSS+IR-UWB) (depletion) 0.20 0.32 0.49 48% 0.079 Yes
PF (GNSS+IR-UWB) (dithering) 0.10 0.13 0.24 90% 0.15 No

EKF (GNSS+IR-UWB) 0.17 0.33 0.41 60% 0.062 Yes

a It corresponds to standard deviation or 1-σ or rms.

semi-CLoc with full-CLoc, we also show that the latter solution provides much better

accuracy. In full-CLoc, degraded GNSS nodes benefit from even more accurate virtual

anchors (especially non-degraded GNSS nodes, which perform fusion too). Finally, Ta-

ble 5.4 summarizes the overall performance comparison. We show the probability to reach

a 20 cm and 40 cm position accuracy in case of degraded and non degraded GNSS. Next

to it, we provide the accuracy gain, with respect to the baseline standalone GNSS. We

draw the attention that the proposed CLoc approach provides a 40 cm position accuracy

(almost reaching 100% probability) in both degraded and non-degraded GNSS. It even

manages to provide a 20 cm position accuracy with 36% and 57% probability for degraded

and non-degraded GNSS respectively. This is a straight 61% and 18% accuracy gain in

degraded and non-degraded GNSS respectively.

5.5.3 Performances of Adaptive Bayesian Dithering with Homogeneous

GNSS Capabilities

Figure 5.11 depicts the empirical CDFs of localization errors while Figure 5.12 presents

the perceived 1-σ estimation errors in the filters, accounting for the (over-)confidence in

estimated values. The overall performance comparison and the filter consistency9 anal-

ysis are summarized in Table 5.5. The fused GNSS+ITS-G5 and the standalone GNSS

schemes produce comparable accuracy. Then, despite accurate IR-UWB ranges, the fused

GNSS+IR-UWB scheme relying on nominal bootstrap PF (without dithering) only yields

“local” gains in comparison with the GNSS (set as a reference), as shown in Figure 5.11.

For example, the performance is superior in terms of both the median and WC error

regimes, but degraded in the lowest error regime below 0.35 m. This multimodal CDF

shape indicates that some vehicles (i.e., a sub-group of the whole fleet) are rather poorly

9The consistency failure happens when the real error (measured by 68th percentile) is beyond the
perceived 1-σ estimation error.
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Figure 5.11: Empirical CDF of localization errors for different fusion techniques, schemes,
and measurements/technologies for the mitigation of filter overconfidence and error prop-
agation (including accurate V2V range measurements).
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Figure 5.12: Average 1-σ estimation errors perceived by fusion filters for different fusion
techniques, schemes, and measurements/technologies for the mitigation of filter overcon-
fidence and error propagation (including accurate V2V range measurements).

positioned. Such counter-intuitive effect mostly results from particles depletion again,

leading to overconfidence issues. Accordingly, estimates rapidly converge to inaccurate

values, while extremely high confidence is still granted to these estimates. Table 5.5 com-

pares the results from Figure 5.11 and Figure 5.12 to confirm this observation.

The bootstrap PF with adaptive dithering for GNSS+IR-UWB fusion provides the

best accuracy, as shown in Figure 5.11. Specifically, we observe significant relative drops

of 50% in median error and 51% in WC error (e.g., CDF of 95%) in comparison with a

similar fusion scheme without adaptive dithering. In addition, since the particles depletion
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Figure 5.13: 1-σ estimation errors perceived by fusion filters for each vehicle during the
first 2 seconds for the fused GNSS+IR-UWB ranges using EKF (top), conventional PF
(middle), and PF with adaptive dithering (bottom).

is completely solved by our technique, so is the overconfidence problem (See Table 5.5 and

the unimodal CDF shape in Figure 5.11). One can thus draw maximum benefits from

accurate IR-UWB range measurements. The corrected GNSS+IR-UWB fusion achieves

relative accuracy gains of 57% in median error and 53% in WC error over the GNSS+ITS-

G5 scheme.

Finally, Figure 5.11 depicts the failure of conventional EKF to efficiently fuse GNSS

and IR-UWB ranges. It also reveals the multimodal shape of the CDF of EKF estimation

errors, similarly to that of PF in case of particles depletion. This is due to the poor

but realistic initialization conditions (see Table 5.2), thus altering the goodness of the

EKF linearization, which depends on the degree of state uncertainty besides the degree

of nonlinearity of the models [27, 88]. Note that when the EKF converges to inaccurate

values, it also becomes somehow overconfident, as confirmed in Table 5.5. Figure 5.11

also shows that the EKF surprisingly outperforms the conventional bootstrap PF under

the chosen settings. Although Figure 5.12 shows that the fused GNSS+IR-UWB schemes

using bootstrap PF and EKF have equivalent average perceived 1-σ estimation errors

once convergence is achieved, Figure 5.13 (middle) depicts that extremely severe particles

depletion occurs at several vehicles leading to unintentionally malicious “virtual anchors”,

which become harmful to CLoc at other vehicles (i.e., perceived 1-σ estimation error

is almost null so that the vehicles are perceived as true reliable anchors whereas their

estimated positions are actually biased).
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5.6 Summary

In this chapter, we have presented a framework for CLoc based on accurate V2V IR-UWB

ranging which is considered as powerful strategy to improve the absolute localization

accuracy of future connected vehicles down to the centimeter level. However, that CLoc

ends up being inefficient to fuse information sources with significantly different levels of

uncertainty (e.g., standard GNSS and IR-UWB TOF) in a conventional PF. This prevents

from drawing maximum benefits from the IR-UWB technology, despite its high potential.

We have illustrated the harmful effects of overconfidence and bias propagation in such

PF-based fusion contexts, which mostly result from particle depletion phenomena. These

effects become even more severe in “virtual anchors”-based CLoc when high dimensional

belief states must be accounted so that conventionally, a huge number of particles would

be required.

On the one hand, we have proposed a fusion scheduling strategy that first selectively in-

corporates the best “virtual anchors” with the lowest GNSS uncertainties to break the bias

propagation, before performing exhaustively cooperative fusion position with all neighbors

once the biases have been presumably mitigated. We have compared our strategy with

various settings and illustrated the achievable gains under locally heterogeneous GNSS

conditions.

On the other hand, we proposed an adaptive Bayesian dithering technique relying

on the expected localization performance under nominal IR-UWB ranging accuracy by

means of theoretical bound calculations. Relying on these bounds, dither noise is iter-

atively/gradually added to the perception model assumed in the filter till the empirical

estimation covariance is relatively compatible with theoretical expectations. This enables

to maintain the particle diversity, avoid overconfidence in wrong estimates, and stop the

propagation of possible residual biases over the network.

Admittedly, two main limitations of the results lie in their working assumptions as

follows. First, simulations are performed in canonical vehicular scenarios where mobility

knowledge is assumed to be known. Second, biases in range estimate induced by the delay

of the three-way ranging in case of different vehicles’ speeds can be neglected due to highly

correlated mobility of highway traffic though they can be opportunistically accounted by

dithering noise. The former assumption will be relaxed in the next chapter considering
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model-mismatching and further in Chapter 7 exploiting erratic mobility traces from a

dataset calibrated in a real city, while using a specific vehicular mobility simulation tool

(rather than steady-state synthetic models). The latter will also be taken into account in

the extended CLoc including biases estimation for testing the simulated urban scenario,

where vehicular mobility changes more frequently due to traffic lights, congestion, etc.



Chapter 6

Hybrid V2X Multisensor

Cooperative Localization

6.1 Introduction and Related Works

We begin this chapter by reminding that in the VANET context, the performance of range-

based CLoc depends critically on three factors: (i) the uncertainties associated with the

estimated positions of both ego vehicle and virtual anchors, (ii) the quality of the V2V

range measurements (or more generally, of range-dependent radio measurements), and

(iii) the local geometric configuration of the latter anchors relatively to the “ego” vehicle

or GDOP. Addressing the two first factors in Chapter 5, we have replaced ITS-G5 RSSI

readings by IR-UWB TOF measurements, showing that the related hybrid V2V CLoc

scheme can improve greatly the stand-alone GNSS solutions when cooperates with up to

ten neighbors. Nevertheless, the last factor has not been investigated to the fullest extent

with more challenging network settings and environments.

On the one hand, in vehicular contexts, relative nodes positions are indeed strictly

constrained by the topology of occupied roads/lanes and accordingly, they are unequally

distributed along the road direction (along-track) and along the direction orthogonal to

the road (cross-track). Hence, the along-track location error can usually be significantly

reduced, whereas the cross-track error cannot leverage ranging accuracy but mostly reveals

poor GDOP.

On the other hand, in large-scale GNSS-denied environments like long tunnels, per-

forming CLoc over large time periods with respect to “virtual anchors” only is subject to

115
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divergence issues. This is due to errors propagation through cooperation in lack of ab-

solute re-calibration means (e.g., re-injecting unbounded biased neighbors’ positions from

vehicles to vehicles) and/or poor GDOP constrained by both vehicular mobility and road

width. Alternatively, in such pathological environments, conventional (non-cooperative)

GNSS-based solutions based on a high density of repeaters in the tunnel (e.g., typically,

one every 30–50 meters) are notoriously costly and necessitate huge deployment efforts

to retrieve just the nominal clear-sky GNSS accuracy conditions (at most, in optimistic

cases).

This chapter is structured as follows. In Section 6.2, we present the poor GDOP and

error propagation issues. We then solve out the first problem in Section 6.3 by integrat-

ing additional sensor measurements into the CLoc framework, while the second point is

addressed in Section 6.4 by mixing V2V and V2I measurements or using GNSS repeaters.

Simulation results and benchmarks are provided in Section 6.5. Finally, Section 6.6 pro-

vides a summary for the chapter.

6.2 Problem Formulation

6.2.1 Poor Relative Geometry Conditions along the Cross-Track Direc-

tion

Since mobility is strongly constrained by the roads/lanes and driving rules, the relative

vehicles’ geometry is rather poorly conditioned in this very context. Specifically, the

VANET topology is usually somehow distorted along the direction colinear to the road due

to the huge disparity between the longitudinal safety distances (e.g., 20–150 m1) and the

lateral lane width (e.g., 2.25–3.5 m). Accordingly, the GDOP is likely poor in the direction

orthogonal to the road; therefore, the cross-track location error remains high. The CLoc

performance is illustrated for a given VANET on Figure 6.1, where the expected positioning

error level before (prior) and after cooperation is theoretically predicted using the BCRLB

and represented by means of 95%-confidence ellipses. Figure 6.1 (right bottom) also

shows that vehicles maintaining safety distances to the “ego” (regardless of their lane

occupancy) mainly improve “ego” along-track positioning whereas vehicles at closer range

(obviously on different lanes) generally improve “ego” cross-track positioning. The latter

1The two-second (or three-second) rule is applied to maintain a safe following distance.
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Figure 6.1: Example of expected CLoc localization performance in a 4-node VANET. The
top subfigure shows the true vehicles positions. The left bottom subfigure illustrates how
a single range-based cooperative transaction mostly increases information (i.e., decreases
confidence ellipse) in the direction formed by the two involved nodes’ positions. The right
bottom subfigure shows the impact of each link separately and of all links on the final
“ego” localization performance. Other main parameters (for illustration only) include a
prior 1-σ uncertainty of 1 [m] on both x- and y-coordinates independently and a ranging
standard deviation σUWB = 0.2 [m].

are tightly constrained due to the limited number of lanes (2 or 3 in each direction for most

common European roadways), regardless of V2V communication range. Hence, additional

information having beneficial impact on the cross-track error should be incorporated into

the initial GNSS+UWB CLoc fusion framework.

6.2.2 Localization Error Accumulation and Propagation

In tunnels, all vehicles’ position estimates are subject to significant unbounded biases. Re-

gardless of V2V ranging accuracy, as the position estimated through CLoc at each “ego”

vehicle depends on the previous estimate (via the IMU/wheel speed sensor (WSS)-based

position prediction) and on the neighbors’ estimates (via cooperation), errors tend to ac-

cumulate over both time and space. Estimation is then subject to significant unbounded

biases unless absolute re-calibration is performed and/or much better GDOP conditions

can be achieved. Unfortunately, none of these conditions is usually met in standard tun-

nels. Since mobility is strongly constrained by the roads/lanes and driving rules, the

vehicles’ relative geometry is rather poorly conditioned in this context. Accordingly, the

GDOP is likely poor in the direction orthogonal to the road; therefore, the cross-track

location error remains high. Such situations can be fatal, since such malicious information
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Figure 6.2: 1-σ along-track (top) and cross-track (bottom) errors perceived by fusion
filters for each vehicle during the first 3 seconds for non-CLoc (IMU/WSS) and pure CLoc
(IMU/WSS/UWB) in a tunnel scenario. Simulation settings and scenarios are given in
Section 6.5.

cannot be re-calibrated by absolute means and then is propagated over the network and

degrades the position accuracy of all neighbors accordingly. Figure 6.2, which shows the

evolution of location error as a function of time in a typical tunnel scenario, illustrates

this phenomenon where CLoc uniquely based on V2V IR-UWB measurements yields worse

accuracy than IMU/WSS non-CLoc. Figure 6.2(a) confirms the advantage of CLoc to de-

crease the along-track error whereas Figure 6.2(b) shows that jointly or separately, poor

GDOP effects and neighbors’ unbounded biased position estimates lead to the faster di-

vergence of CLoc along the cross-track direction (which dominates the total localization

error) in comparison with non-CLoc.

6.3 Multisensor Fusion for Improved Cross-Track Localiza-

tion

6.3.1 Integration of Additional IMU and Wheel Odometry Sensors

Although one can assume that each vehicle knows its own mobility model (i.e., Gauss–

Markov mobility model in Section 3.2.1) or more generally, a conditional transition proba-

bility density function (pdf) p(Xi,k+1|Xi,k) (known a priori for highly controlled mobility

regimes or possibly self-calibrated on the fly based on previous state estimates), this per-

ception is usually an approximation of the true mobility statistics. To remain mobility-
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independent, the well-known kinematic bicycle model is employed as mobility prediction

model [88], as follows:

xi,k+1 ≈ xi,k + ∆Tsi,k cos(θi,k + 1/2∆Tωi,k), (6.1a)

yi,k+1 ≈ yi,k + ∆Tsi,k sin(θi,k + 1/2∆Tωi,k), (6.1b)

θi,k+1 = θi,k + ∆Tωi,k, (6.1c)

where xi,k = (xi,k, yi,k)
† is the 2-D position, θi,k the heading, ωi,k the yaw rate, and

si,k the speed. The signals si,k and ωi,k are considered as driving inputs to the mobility

prediction model. They can be provided by the gyroscope in the IMU and the WSS

respectively. Defining the new state as Xi,k = (xi,k, yi,k, θi,k)
† and the motion measurement

as ui,k = (si,k, ωi,k)
†, the model in (6.1) can now be represented in a more compact form

by a function f(·), as follows:

Xi,k+1 = f(Xi,k,ui,k). (6.2)

Assuming the measurements si,k and ωi,k are independent of each other and Gaussian

with variances (σsi )
2 and (σωi )2 respectively, ui,k is a 2-D Gaussian vector with covariance

matrix

Σu
i,k =

(σsi )
2 0

0 (σωi )2

 . (6.3)

In case of there is neither sensors nor mobility knowledge, one simple approach consists

in employing a very generic tracking model, e.g. a 2-D version of Newton’s force law [81],

as mobility prediction model. The corresponding discrete time model is

Xi,k+1 =

I2 ∆T I2

02 I2

Xi,k +

1/2∆T 2I2

∆T I2

w̃i,k, (6.4)

where w̃i,k ∼ N ((0, 0)†, Q̃i,k) is the 2-D process noise. It is important to keep the process

noise covariance Q̃i,k large enough so as to take into account the model’s prediction error

(or model mismatch) and preserve filtering stability accordingly [27]. In practice, vehicle’s

acceleration/deceleration capacity is used to fine-tune this process noise. This model is

considered as a baseline to evaluate the IMU/WSS integration while keeping the model-

mismatching with the Gauss–Markov model that is used to generate the mobility traffic.



120 Chapter 6. Hybrid V2X Multisensor Cooperative Localization

6.3.2 Integration of Additional Camera-based Lane Detection

As already mentioned, the mobility of land vehicles is tightly constrained by the road and

lane boundaries. Thus, such contextual information is constructive and can be contributed

into the localization problem [27]. We assume herein that lane detection can be performed

at each vehicle using for instance a vision-based system (e.g., monocular camera) and

a digital map [133]. The latest filtered/fused estimate is cross-checked with the side

digital map to identify the current road occupancy and its associated attributes (e.g., lanes

number and width). In addition, the camera system scans the road, detects the lanes and

the land markers [133]. As a result, the absolute positions of the lane boundaries can be

determined and used to constrain the filtered/fused outputs. Contrarily to most common

map matching approaches, which simply project the vehicle’s position on the center of the

road or lane [86], we consider a more realistic approach called density truncation. In this

method, the posterior density of location estimate is numerically truncated beyond the

lane boundaries, which are considered as constraints to restrict the valid state domain.

More precisely, particles lying outside a drivable area are removed. Finally, the constrained

density is constructed based on the remaining valid samples on the occupied lane. This

truncated density is subsequently used to calculate the filter MMSE output. Note that

this technique is not entirely appropriate when vehicle changes lanes and the new lane has

not been updated yet shortly after the transition. In other words, the error may increase

for a short period.

6.4 V2X Cooperative Localization in GNSS-Denied Envi-

ronments

6.4.1 V2I/V2V Cooperative Localization

We propose to apply the previous filter as the core fusion engine in our CLoc framework, as

described in Algorithm 5 (including also side CAM reception, message approximation and

CAM broadcast steps). Note that our PF-based data fusion combines V2X measurements

(i.e., V2V measurements with respect to mobile “virtual anchors” and V2I measurements

with respect to true anchors/RSUs) to give robust and accurate position estimates in Step

3 and 4.
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Algorithm 5 Bootstrap PF for hybrid V2X multisensor data fusion (iteration k, “ego”
vehicle i)

1: CAM Collection: Receive CAMs from the set N→i,k of perceived neighbors, exact the parametric

beliefs, and draw samples to reconstruct the approximated particle clouds {X̃(p)
j,k , 1/P}

P
p=1, j ∈ N→i,k.

2: Data Resynchronization: Perform prediction of both “ego” and neighboring particle clouds based
on mobility models in (6.2) at the “ego” estimation instant ti,k

X
(p)
i,k ∼ p(Xi,k|X(p)

i,k−1,ui,k−1), w
(p)
i,k = 1/P, p = 1, . . . , P,

X
(p)
j,ki
∼ p(Xj,ki |X̃

(p)
j,k ,uj,k), w

−(p)
j,ki

= 1/P, p = 1, . . . , P, j ∈ N→i,k,

and build the LDM of vehicle i’s neighbors (as another possible output of the algorithm):

X̂−j,ki
≈ 1

P

P∑
p=1

X
(p)
j,ki

, Σ−j,ki
≈ 1

P

P∑
p=1

(X
(p)
j,ki
− X̂−j,ki

)(X
(p)
j,ki
− X̂−j,ki

)†, j ∈ N→i,k.

3: Observation Query and Aggregation: Select the subset S→i,k ⊂ N→i,k of paired “virtual an-
chors” and the set T→i,k of paired true anchors. Aggregate the measurements (and the corresponding
observation model) zi,k = (z†S→i,k, z

†
T→i,k)†.

4: Correction: Calculate the new weights according to the likelihood

w
(p)
i,k ∝ p(zi,k|X(p)

i∪S∪T ,k) =
∏

j∈S→i,k

p(zj→i,k|X(p)
j,ki

,X
(p)
i,k )

∏
l∈T→i,k

p(zl→i,k|xl,X
(p)
i,k ), p = 1, . . . , P,

normalize them to sum to unity, and compute the approximate MMSE estimator as the second fil-
ter/fusion output X̂i,k ≈

∑P
p=1 w

(p)
i,kX

(p)
i,k .

5: Resampling, Message Approximation, Broadcast

In this algorithm, we remind that at local discrete time k, the “ego” vehicle i has the

set S→i,k, i /∈ S→i,k of “virtual anchors”, the set T→i,k of fixed anchors (i.e., RSUs), and

acquires an observation vector zi,k, which is related to its own state Xi,k, its neighboring

states Xj,ki , j ∈ S→i,k, and its connected RSUs’ positions Xl,ki = xl, l ∈ T→i,k via a

measurement model.

6.4.2 GNSS Repeater-Aided V2V Cooperative Localization

Another infrastructure-based solution to assist CLoc with absolute positioning capabilities

consists in deploying GNSS repeaters in tunnels instead of RSUs. From the localization

point of view, the Algorithm 5 is thus modified in Step 3 and Step 4 so as to integrate GNSS

observations pi,k = (pxi,k, p
y
i,k)
†, which is assumed to be affected by an i.i.d. Gaussian noise

vector ni,k = (nxi,k, n
y
i,k)
† ∼ N ((0, 0)†, σ2

GNSSI2). Accordingly, the measurement vector in

Step 3 becomes

zi,k = (p†i,k, z
†
S→i,k)

† (6.5)
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(a) (b)

Figure 6.3: Evaluated VANET and related attributes in (a) two-lane highway scenario
and (b) 1000-m straight tunnel scenario.

and the particle weights are now updated as follows:

w
(p)
i,k ∝ p(zi,k|X

(p)
i,k ,X

(p)
S→i,k)

= p(pi,k|X
(p)
i,k )

∏
j∈S→i,k

p(zj→i,k|X
(p)
j,ki
,X

(p)
i,k ), p = 1, . . . , P.

(6.6)

6.5 Numerical Results

6.5.1 Simulation Settings

We now evaluate the performance of the proposed solutions to mitigate the effects of poor

GDOP along the dimension orthogonal to the road as well as the divergence of position

estimates and error propagation in case of prolonged GNSS outages. We also consider a

fleet of ITS-G5-connected vehicles endowed with IR-UWB ranging capabilities. Then two

scenarios are investigated as follows.

In the first scenario, we model a horizontal two-lane highway, where 7 vehicles are

driving steadily in a common direction at the average speed of 110 km/h (i.e., about

30 m/s) for 60 seconds, as shown in Figure 6.3(a). In this scenario, along-track and

cross-track directions arbitrarily coincide with x- and y-axes respectively.

In the second scenario, we consider a 1000-m three-lane straight tunnel, where 10

vehicles are driving steadily in a common direction at the average speed of 70 km/h. In

addition, RSUs are deployed along the tunnel, with different inter-site intervals of 500,

200, and 100 meters either on one single side of the road or on both sides as shown in

Figure 6.3(b). These units support both ITS-G5 and IR-UWB technologies for both V2I

communication and V2I ranging with respect to mobile vehicles. The main simulation

parameters are summarized in Table 6.1.
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Table 6.1: Main simulation parameters used for the simulation-based evaluation of hybrid
V2X multisensor cooperative localization.

Parameter Value

Sampling period ∆T 0.1 [s]
Gyroscope signal noise 0.1 [deg/s] (rms) [133]
WSS noise 1% actual speed [133]
V2X IR-UWB ranging rate 5 [Hz] (V2V), 10 [Hz] (V2I)
V2X IR-UWB ranging noise 0.2 [m] (rms)
V2X IR-UWB communication range 600 [m]
V2X CAM rate 10 [Hz] (critical)
V2X CAM range 1000 [m] [19]
Path loss exponent np 1.6 (V2V in tunnels) [115]
Standard deviation of shadowing σSh 3.4 [dB] (V2V in tunnels) [115]
Inter-site RSU interval 500, 200, and 100 [m]
GNSS rate 10 [Hz]
GNSS noise 1.5 [m] (SBAS), 3.6 [m] (SPS) (rms) [134]
GNSS repeater noise 5–10 [m] (rms)
Number of particles 1000
Initial pos. errors in x- and y-axes 1 [m] (rms) (plausible hypothesis)
Initial heading error 4 [deg] (rms) (plausible hypothesis)

6.5.2 Two-Lane Highway Scenario

Figure 6.4 compares the errors along x- and y-axes for different fusion strategies by means

of empirical CDFs. Regarding x-axis location errors on Figure 6.4(a), as expected, us-

ing the LCs has no impact on the along-track positioning error. Specifically, GNSS

and GNSS+LC schemes yield comparable error levels. The GNSS+IMU+WSS option

gains significant accuracy over the standalone GNSS solution mostly thanks to the WSS

(but not to the IMU). As GDOP is usually good in the along-track direction, the co-

operative GNSS+IR-UWB scheme improves accuracy when compared to GNSS and to

GNSS+IMU+WSS. Note that the GNSS+IR-UWB solution outperforms GNSS+IMU+WSS

considering our simulation settings because the result depends on many parameters such

as CLoc conditions, the quality of the gyroscope, etc. To further enhance accuracy,

the IMU/WSS and the LC information are included on top of GNSS+IR-UWB. How-

ever, only the GNSS+IR-UWB+IMU+WSS scheme exhibits performance gains. The

GNSS+IR-UWB+LC scheme surprisingly suffers from accuracy degradation in compar-

ison with GNSS+IR-UWB. This observation can be explained by considering the effect

of y-axis errors on Figure 6.4(b). More particularly, due to large y-axis errors within

the GNSS+IR-UWB scheme, i.e., 0.53 m and 1.42 m of median and WC (defined for a

CDF of 90%) errors respectively, an “ego” vehicle may suffer from singular GDOP. In

this case, there exist several neighbors whose relative vectors from an “ego” vehicle are



124 Chapter 6. Hybrid V2X Multisensor Cooperative Localization

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x-axis (along-track) error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
m

p
ir
ic

a
l 
C

D
F

(e
rr

o
r)

GNSS

GNSS+IMU+WSS

GNSS+LC

GNSS+UWB

GNSS+UWB+IMU+WSS

GNSS+UWB+LC

all-in-one

(a) x-axis (along-track).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y-axis (cross-track) error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
m

p
ir
ic

a
l 
C

D
F

(e
rr

o
r)

GNSS

GNSS+IMU+WSS

GNSS+LC

GNSS+UWB

GNSS+UWB+IMU+WSS

GNSS+UWB+LC

all-in-one

(b) y-axis (cross-track).

Figure 6.4: Empirical CDFs of x-axis (along-track/left) and y-axis (cross-track/right)
localization errors for different fusion schemes in the two-lane highway scenario.

nearly aligned with the road. Accordingly, these misplaced anchors contribute to improve

performance on the along-track axis, whereas they tend to increase the error along the

cross-track direction (see again Section 6.2.1 or Figure 6.1). The all-in-one solution does

not outperform the GNSS+IR-UWB+IMU one simply because the LC information cannot

improve the along-track performance.

The performance along the critical y-axis is summarized in Figure 6.4(b). As expected,

IMU-based heading measurement and LC integration both contribute to dramatically

decrease the error. It also confirms the limited impact of range-based CLoc on the cross-

track error in poor GDOP VANETs i.e., with a relative drop by only 13% in terms of

median error (compared to GNSS) versus 61% and 46% with non-CLoc schemes such as

GNSS+IMU+WSS and GNSS+LC respectively. The integration of IMU yields higher

accuracy level than the LC-based solution when considered in non-CLoc schemes (with

relative drops by 69% and 46% in terms of median error respectively) and similarly within

CLoc schemes (with relative drops by 61% and 46% respectively). This observation is

mainly due to the settings e.g., the gyroscope signal noise, the initialization, and the lane

width... We can also see that the GNSS+IR-UWB+LC scheme and the GNSS+LC scheme

yield comparable y-axis accuracy. Besides, the all-in-one option remains still slightly

more accurate than GNSS+IR-UWB+IMU+WSS in terms of y-axis error thanks to the

additional LC information.

Finally, Figure 6.5 compares the performance of different schemes in terms of 2-D

localization (distance) error and confirms the significant accuracy gains offered by the
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Figure 6.5: Empirical CDFs of overall localization errors for different fusion schemes in
two-lane highway scenario.

IMU/WSS and the LC information. The overall performance comparison is also summa-

rized in Table 6.2 for critical error regimes.

6.5.3 Tunnel Scenario

Localization Performance Comparison

The localization performance achieved for different algorithmic and technological options

is summarized in Figures 6.6, 6.7, and 6.8 by means of empirical CDFs. DR based on IMU

and WSS is by default assumed available at each vehicle and thus considered in all the

tested scenarios (either as stand-alone solution or in combination with other technologies).

Figure 6.6 shows spectacular performance gains when using RSUs with accurate IR-

UWB ranging capabilities even under reasonably loose deployments i.e., with inter-site

RSUs intervals of 500 m on both sides of the tunnel. As aforementioned, conventional

DR provides relatively poor performance in the long-term due to error accumulation and

resulting drift effects, whereas pure ad hoc V2V cooperation based on both IR-UWB V2V

measurements and DR (thus, relying on ill-positioned “virtual anchors”) leads to mutual

contamination among vehicles and even worse localization performance in the end. The

capability to provide CLoc with reliable absolute information however strongly depends

on the V2I ranging technology available at RSUs. In particular, the addition of V2I range

measurements based on IR-UWB yields significant performance gain over DR (relative

drops of 88% in median error and 85% in WC error (defined for a CDF of 90%)) and
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Figure 6.6: Empirical CDFs of localization errors for DR (IMU+WSS), IR-UWB V2V
CLoc, and V2X CLoc (with IR-UWB V2V and ITS-G5 or IR-UWB V2I) in the tunnel
scenario.

pure ad hoc CLoc (relative drops of 94% and 90% in median and WC errors respectively),

while V2I RSSI measurements based on ITS-G5 are not sufficiently informative so that the

localization performance is equivalent to that of a pure ad hoc case relying on IR-UWB

V2V ranging and DR. RSSI-based positioning is indeed usually not considered as a high

precision solution. Thus its contribution to the position estimate correction (by updating

the weights in Step 4 of Algorithm 5) is relatively marginal in comparison with that of

accurate IR-UWB V2V ranges.

In Figure 6.7, we compare the proposed RSU-based solution with the use of LC (with

DR) or GNSS repeaters (with DR), assuming in the latter case systematic GNSS sig-

nal availability in the entire tunnel2 but various quality levels. It is indeed reasonable

to assume degraded accuracy in comparison with open-sky conditions due to multipath

propagation (e.g., SPS and SBAS accuracy of 1.5 m and 3.6 m respectively [134]). It is

thus observed that the absolute positional information provided by GNSS repeaters must

be accurate enough to be able to re-calibrate position estimates. However, this infor-

mation is always beneficial for fusion since it is assumed to be bounded and unbiased.

Besides, the non-CLoc scheme including LC and DR outperforms the solution based on

GNSS repeaters but still cannot reach the performance level of full V2X CLoc including

IR-UWB range measurements with respect to both mobile neighbors and RSUs, even if

the performance gap is not so significant (increased median and WC errors of 12 cm and

2This is usually achieved with typical inter-side intervals in the range of 30− 50 m.
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Figure 6.7: Empirical CDFs of localization errors for IR-UWB V2X CLoc, GNSS-repeater-
aided IR-UWB V2V CLoc, and lane constraints (with DR only) in the tunnel scenario.

8 cm respectively). Two main reasons can be invoked to explain this phenomenon. First,

we have considered a very accurate WSS sensor in our validations [133]. Thus LC natu-

rally tends to correct the only remaining accumulated errors affecting the input heading

measurements used in state predictions. Second, the tested RSU deployment (i.e., 500-m

inter-site interval) is rather sparse, leading to an average number of 4 connected anchors

(as shown in Figure 6.9), what contributes to sustain poor GDOP conditions.

In Figure 6.8, we are interested in more aggressive scenarios to boost localization

accuracy. In particular, we assume a denser RSU deployment (e.g., down to 100-meter

inter-site intervals) and more accurate GNSS repeaters reaching optimistically the open-

sky accuracy of SPS or even SBAS. Let us now consider the non-CLoc scheme with LC

and DR as a reference baseline. By using massive RSUs, the V2I RSSI now yields better

performance and at least outperforms the standalone DR solution (relative decreases of

67% and 24% in median and WC errors respectively) but still cannot be compared with the

proposed full CLoc scheme relying on both IR-UWB V2V and V2I range measurements.

Then, we verify if and to which extent it is possible to improve also the solution based

on ITS-G5 V2I RSSI measurements by integrating LC. However, it only gives comparable

performance levels with the solution combining DR and LC, due to inaccurate ITS-G5

V2I RSSIs again.

When assuming even more optimistic GNSS repeater accuracy to the level of open-sky

at the price of increased cost of deployment, only the solution combining SBAS and DR

yields performance gains over the solution combining LC and DR, even though yet the



6.5. Numerical Results 129

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

localization error [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
m

p
ir
ic

a
l 
C

D
F

(e
rr

o
r)

IMU+WSS only

V2V(UWB)+V2I(UWB, 100 m, double)

V2V(UWB)+V2I(ITS-G5, 100 m, double)

V2V(UWB)+V2I(ITS-G5, 100 m, double)+LC

V2V(UWB)+GNSS repeater(SPS  = 3.6 m)

V2V(UWB)+GNSS repeater(SBAS  = 1.5 m)

LC

Figure 6.8: Empirical CDFs of localization errors for V2X CLoc (with IR-UWB V2I or
ITS-G5 V2I (massive infrastructure) with and without lane constraints) and ideal GNSS-
repeater-aided IR-UWB V2V CLoc in the tunnel scenario.

gap is not so remarkable. Under denser IR-UWB RSUs deployment, much better accuracy

is achievable through full V2X CLoc (relative drops of 68% and 60% in median and WC

errors respectively with respect to the DR and LC).

Deployment Cost Analysis and Discussion

We confront here the trade-off between the accuracy gain and the associated deployment

cost. Particularly, we compare the use of IR-UWB RSUs and GNSS repeaters for tunnels.

We claim that the IR-UWB RSU approach is more favorable than the GNSS repeater

scheme in terms of both accuracy performance and deployment cost. As an illustration, in

the considered 1000-meter tunnel scenario, we would need to place about 20–35 repeaters

(i.e., one every 30–50 meters) to achieve the accuracy of 0.4–2 m whereas 6–20 IR-UWB

RSUs yield 0.2–0.1 m3. Motivated by the clear benefits from RSUs, we further compare

different RSU configurations, as depicted in Figure 6.9. A closer look at the figure reveals

that with a similar number of connected RSUs (as well as a total number of deployed

RSUs) (e.g., single-sided 200-meter inter-site RSUs interval vs. double-sided 500-meter and

double-sided 200-meter vs. single-sided 100-meter), the shorter inter-site RSUs interval,

the better accuracy. It is due to the fact that cross-track error is significantly reduced

when vehicles pass by the anchors. Thus, short inter-site RSUs interval shall be preferred

to looser double-sided deployment.

3We assume in first approximation that the deployment efforts -and thus costs/unit- of GNSS repeaters
and IR-UWB RSUs are comparable.
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Figure 6.9: Impact of the RSU deployment on IR-UWB V2X CLoc’s localization accuracy
in the tunnel scenario.

6.6 Summary

In this chapter, we have studied the problem of range-based CLoc in VANETs in the

presence of poor cross-track GDOP caused by constrained vehicular mobility. Simulation

results clearly indicate that cross-track positioning errors cannot be fully mitigated through

conventional range-based cooperation. We solve this problem by additionally integrating

the vehicle’s heading information issued at IMUs or contextual information such as lane

occupancy and boundaries.

We have also investigated the problem of range-based CLoc for VANETs specifically in

tunnel environments. Simulation results clearly indicate that in long tunnels, CLoc only

with respect to neighboring vehicles is prone to fast divergence and inaccurate position

estimates. We solve this problem by additionally integrating V2I measurements with

respect to RSUs, which are deployed along the tunnel, relying on an adapted PF-based

data fusion framework. By applying the proposed hybrid CLoc with generalized V2X

measurements (i.e., V2I on top of V2V), we have found that: (i) V2I IR-UWB range

measurements boost the CLoc accuracy even under sparse RSUs deployment; (ii) V2I

RSSI only slightly improves the CLoc accuracy in case of massive RSUs deployment; (iii)

V2X IR-UWB CLoc is more attractive than the CLoc assisted by GNSS repeaters in terms

of both accuracy performance and cost of deployment.

Up to this point, we have “theoretically” addressed and solved a variety of key chal-

lenges inherent to CLoc (mostly through canonical simulation scenarios), treating them
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somehow gradually or even sometimes independently. For this sake, we have considered

the integration of numerous additional modalities on top of the nominal scheme introduced

in Chapter 3, depending on the number of available sensors at the vehicles. We are now

prepared for further practical validations in Chapter 7.



Chapter 7

Validations through More

Realistic Simulations and

Experimental Data

7.1 Introduction

In this chapter, the ultimate goal is to validate some of the CLoc algorithms presented

in the previous chapters using even more realistic input data. Still following a gradually

complex approach, this objective is achieved in two steps, as follows.

First, evaluations are conducted using a specific traffic simulator called Simulation

of Urban Mobility (SUMO) [135]. The latter can account for long-term and/or erratic

vehicles mobility in complex scenarios (i.e., rather than considering only highly regular

mobility models in canonical scenarios, like in the previous chapters). As these mobility

traces are generated under varying traffic conditions in a representative urban environ-

ment, one can validate the benefits of context-dependent cooperative fusion approaches

over larger periods of time, in terms of service continuity and robustness. This first step is

also essential to anticipate optimal algorithmic settings and behavior for final field trials.

Second, the performance of the proposed algorithms is evaluated by means of experimental

data, which is collected at three real vehicles on a portion of road specifically equipped

for large-scale test purposes.

The chapter is organized as follows. In Section 7.2, simulation results are presented

using SUMO mobility traces in an urban scenario that offers mixed environmental char-
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acteristics in view of GNSS performance (i.e., spanning from open environments to urban

canyon). Then validations based on experimental data are provided in Section 7.3. Fi-

nally, Section 7.4 summarizes and discusses the achieved results, while suggesting a few

adjustments regarding future physical proof of concept evaluations and demonstrations.

7.2 Offline Validation Based on Mobility Traces

7.2.1 Simulation Settings

Using the SUMO traffic simulator, 10 vehicles’ trajectories have been extracted from a

wide-scale urban simulation scenario calibrated for the city of Bologna, Italy. A restricted

geographic area has been considered, including several pathological cases (including 1 por-

tion of urban canyon), simulating for 200 seconds (see Figure 7.1). This test environment

enables to show:

• The sensitivity to GNSS quality variations as a function of local environmental

conditions (e.g., road width and buildings height) (see Table 7.1);

• The sensitivity to erratic mobility while crossing several intersections (e.g., possibly

causing harmful mismatch between the mobility models assumed for prediction and

actual mobility patterns).

• The sensitivity to the relative topology (and number) of cooperating vehicles.

In the cooperating fleet, each vehicle is alternatively viewed as the “ego” vehicle under

testing, whereas the other(s) are viewed as assisting neighbors (or “virtual anchors”).

At each vehicle, the fusion engine relies on a PF with 1000 particles. Prediction is based

on the bicycle model, using inputs from WSS (i.e., speed) and IMU (i.e., heading). As for

data synchronization, “ego” prediction and neighboring prediction are slightly different.

Since we cannot instantly access the neighbors’ WSS and IMU measurements to perform

the corresponding prediction at the “ego”, we artificially add extra uncertainties (say,

10% of maximum speed of 15 m/s and 10% of typical heading change of 20◦) to the

speed and heading values contained in the latest CAMs received from these neighbors. In

the correction step, GNSS positions and IR-UWB ranges with respect to the neighbors

with informed positions (i.e., for which a CAM has been received) are used to update the
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Figure 7.1: Focused geographic area of Bologna city used in calibrated SUMO simulations,
with mixed urban environments.

predicted values in our CLoc solution. On the contrary, non-CLoc refers to the data fusion

of GNSS position, WSS speed, and IMU heading (i.e., using only local information).

The GNSS model and accuracy depend on both the portion of trajectory and the arbi-

trarily assigned GNSS kind/class (see tables 7.1 and 7.2), while the WSS and IMU models

are similar to that used in Chapter 6 (see Table 6.1). Besides, based on statistics reported

in [8, 136] in a urban environment and in systematic LOS, as well as experimental illus-

trations based on integrated IR-UWB modules taken from [133], the standard deviation

of V2V range measurements is assumed to be 0.122 m, whereas the bias has a mean of

0.21 m. Finally, we assume no packet loss for simplicity but still account for non-visibility

configurations caused by static building obstructions at intersections. In this case, some

ranging measurements become harmful for the fusion and are rejected.

7.2.2 Results

Figure 7.2 and Figure 7.3 show the localization performance of each individual vehicle

and over 10 vehicles in terms of empirical CDFs. Figure 7.2(a) shows that non-CLoc

yields rather good performance even when the vehicles are equipped with only GNSS

SPS receivers (i.e., about 0.8 m in median errors at vehicles 1, 5 and 9). Obviously,

with better GNSS receivers like SBAS, DGNSS, and RTK, the performance gets better as
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Table 7.1: GNSS quality associated to each portion of road of the Bologna scenario in
Figure 7.1.

Street Environment GNSS quality

Via Tolmino open urban environment, large road with 3 by 3
lanes, sparse and medium-size buildings

nominal → 1σ

Via Sabotino intermediary urban environment, narrow road,
3 lanes, sparse and medium-size buildings

slightly degraded → 2σ

Strada Statale Porrettana,
Viale Giovanni Vicini

open urban environment, large road with 3 by 3
lanes, sparse and medium-size buildings

nominal → 1σ

Viale Antonio Silvani Intermediary urban environment, large road
with 3 by 3 lanes, tall buildings

slightly degraded → 2σ

Via S. Felice (outer) urban canyon (close to intersections), ultra-
narrow road with 2 lanes, very dense and tall
buildings

severely degraded → 5σ

Via S. Felice (inner) urban canyon (inner part), ultra-narrow road
with 2 lanes, very dense and tall buildings

lost → N/A

Table 7.2: GNSS device kinds assigned to simulated vehicles in the city of Bologna.

GNSS device kind IDs of simulated vehicles

SPS 1, 5, 9
SBAS 2, 6, 10
DGNSS 3, 7
RTK 4, 8

depicted in Figures 7.2 (b), (c), and (d) respectively. Then, CLoc boosts further accuracy.

Particularly, for SPS vehicles (i.e., vehicles 1, 5, and 9), the gains are very impressive

(about 50% in median errors). For SBAS vehicles (i.e., vehicles 2, 6, and 10) and DGNSS

vehicle (i.e., vehicle 3), the gains are less significant but still high in the range 30–40% in

terms of median errors. For RTK vehicles (i.e., vehicles 4 and 8), the gains are more modest

because RTK is already extremely accurate. Note that we still observe an improvement

at vehicle 4 in its high error regime (CDF at 95%) because it goes through the urban

canyon with no GNSS signal at all during several seconds at the end of the simulation (see

Figure 7.1), so that accuracy is improved through cooperation in this pathological case.

A closer look at Figure 7.2 reveals that except RTK vehicles like 4 and 8, other vehicles

have rather different performance levels. It may due to the GNSS quality but via coop-

erative message exchanges, it is expected that they achieve approximately homogeneous

accuracy. One reason lies in the actual connectivity of the vehicles. Although we assume

perfect packet reception rate, as already mentioned, we still account for non-visibility con-

figurations. One tangible example is illustrated in Figure 7.4. When the vehicles change

their direction and turn from Via Sabotino to Viale Giovanni Vicini (see again Figure 7.1),

vehicle 2 is stopped and left behind due to traffic lights so it temporally loses connections
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Figure 7.2: Empirical CDFs of localization errors of each vehicle in case of CLoc
(GNSS+WSS+IMU+UWB) and non-CLoc (GNSS+WSS+IMU) for the Bologna scenario.
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Figure 7.3: Empirical CDFs of aggregated localization errors over all 10 vehicles in case
of CLoc (GNSS+WSS+IMU+UWB) and non-CLoc (GNSS+WSS+IMU) for the Bologna
scenario.

with respect to other vehicles belonging to the same cooperating group (see Figure 7.4).

Therefore, vehicle 2 has poorer accuracy in comparison with for example, vehicles 6 and

10 (see Figure 7.2(b)). In addition, regardless of their nominal GNSS capabilities, pe-

ripheral vehicles such as 2 and 7 are likely more penalized by poorer GDOP conditions in

comparison with vehicles in the convex hull formed by the piconet’s relative topology. In

realistic operating conditions however, each vehicle would benefit from cooperation with
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Figure 7.4: Relative geometry of the 10 simulated vehicles at t = 130 s and t = 145 s for
the Bologna scenario.

respect to vehicles belonging to different so-called piconet (including vehicles driving in

the opposite directions, even for a short period of time), unlike in our restrictive scenario.

Figure 7.3 shows the overall performance (i.e., over the 10 vehicles and over their

respective trajectories). It can be seen that CLoc yields rather good performance with a

median error of 0.18 m and a sub-meter worst-case accuracy at 95% of the empirical CDF.

Thus far, simulations show that CLoc could reach the required 25 cm accuracy. Note

that within the worst-case setup, we still achieve 18 cm accuracy with a probability of 50%.

Because we only exploit 10 mobility traces from SUMO, we are forced into cooperating

with the provided set of neighbors. However, in practice, each vehicle would select in a

dynamic -and thus, more optimal- way more optimal sets of neighbors as “virtual anchors”

over time, considering the relative problem geometry, as already discussed in Chapter 3.

7.3 Offline Validation Based on Experimental Data

7.3.1 Experimental Settings

To validate the proposed algorithms based on experimental data, one large-scale test event

took place on May 15th, 2017 at the TASS test facilities in Helmond, Netherlands. These

tests were relying on an early version of the integrated physical proof of concept demon-

strator developed in the HIGHTS project and involved a platoon consisting of 3 equipped

cars driving in a row: TASS’ Prius car (as lead vehicle), Objective’s BMW (as 2nd vehicle)
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Figure 7.5: Test vehicles involved in the first HIGHTS field trials carried out in Helmond:
Objective’s BMW, Tass’s Prius and Ibeo’s Passat (left to right).
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Figure 7.6: Test site and vehicles’ trajectory in Helmond, Netherlands (original photo
from Google Map).

and Ibeo’s Passat (as 3rd and last vehicle)(see Fig. 7.5). During these experiments, each

vehicle was equipped with a singe-band GPS receiver, a RTK GPS receiver, an ITS-G5

platform (i.e., Cohda MK5) and a central Blackhole data logging PC, making two full

rounds along the A270/N270 highway section. The followed route deliberately included

a combination of straight and curvy sections for better representativity and for realistic

assessment. The true positions of the vehicles were logged using a RTK GPS for reference

purposes (ground truth). Figure 7.6 shows the test site and the followed trajectories.

Due to some problems in the GPS measurements collected at Objective’s vehicle during

the trials, Ibeo’s vehicle has been selected as the “ego” vehicle under test (i.e., in charge of

performing cooperative data fusion). The latter receives CAMs encapsulating RTK GPS

data from both Objective and Tass’ vehicles, measures the corresponding RSSIs out of

the received messages (IR-UWB devices were not yet integrated for V2V ranging in the

demonstration platform by the time these first trials were conducted), and finally performs

fusion with its own on-board GPS position to improve its position accuracy. Furthermore,
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Figure 7.7: Pathloss measurements and approximate large-scale models. In the linear
regression, np = 2.5 (path loss exponent) and σSh = 3.7 dB (standard deviation of shad-
owing).

it also tracks (i.e., updates) the neighboring RTK GPS information received in CAMs using

mobility prediction since this information may be out-dated at the fusion time otherwise.

From a LDM perspective, this can also be viewed as an improvement in comparison with

basic position awareness (in the sense the “ego” perception about its neighbors does not

only rely on the CAMs but has been updated).

To calibrate the required large-scale path loss model, we have considered both the

RSSI using Cohda MK5 and the distance between the two involved vehicles using their

GPS RTK receivers. The result of the linear regression analysis is shown in Figure 7.7.

This path loss model will be used as the measurement model in the EKF-based fusion

engine for CLoc. We use the EKF but not PF herein for some reasons. For this first field

test followed by a real-time test later, we plan to implement the algorithm in a limited

processing unit inside the Cohda MK5 but not in a connected PC in the vehicle as a

starting point for the sake of simplicity. The Cohda MK5 has an integrated GPS inside

so the fusion-based CLoc algorithm can access directly the GPS data as well as the RSSIs

measured out of the received CAMs and the associated CAM data. On the other hand,

the PF version will be implemented in the connected PC as soon as integrated process

is optimized which is expected after this first test. Note that the fusion results based on

EKF herein is generalized and comparable with PF.
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7.3.2 Results

Figure 7.8(a) compares the performance of the CLoc method (i.e., fusing GPS and ITS-G5

RSSI) with that of both filtered and raw GPS positions. As it can be seen, the proposed

CLoc approach outperforms the filtered GPS even though the localization accuracy gain

is quite marginal and modest, as expected. This is likely due 1) to the very low number

cooperative neighbors available in the test case (only 2, at most), 2) to very poor GDOP

conditions, as the three vehicles were forming a “longitudinal” platoon most of the time

and the “ego” vehicle considered for fusion was the leading one, and 3) to the relatively

low CAM rate while providing RSSIs and neighboring positions, at approximately 3 Hz

(in average) whereas a maximum 10 Hz could be used (i.e., nominal rate considered in

most simulation-based evaluations of CLoc so far).

On the other hand, Figure 7.8(b) shows the performance associated with the LDM

maintained at the IBEO’s “ego” vehicle (i.e., the quality and validity of the presumed

neighbors’ positions). As expected, the prediction-based scheme achieves much higher

localization accuracy than that without prediction. Specifically, the former performs pre-

diction of neighboring vehicles based on their latest broadcast states (i.e., position and

velocity) and a mobility model, whereas the latter simply relies on their raw positional

information (i.e., communicated in the CAM). A closer look at this figure reveals that the

accuracy gain is huge. Without prediction, the error accumulates quickly, especially when

not receiving new CAMs due to too low CAM rate or simply packet loss. Moreover, higher

position estimation rate (i.e., 8 Hz, as the GPS rate) would require an equivalent CAM

rate to draw maximum benefits, which could not be met in these first experiments. Fig-

ure 7.9 illustrates this observation, showing the RMSE of the position awareness regarding

the 2 neighbors (Objective and Tass) over time. Note that the value on the right vertical

axis CAM update takes either 0 if not receiving any CAM or 1 if receiving a CAM at any

iteration. Overall, prediction globally improves position awareness about neighbors in the

LDM by a factor of 10.

As aforementioned, the CAM rate of about 3 Hz is relative low when compared to the

fusion rate of 8 Hz. Therefore, most of the iterations just correspond to filtered GPS but

not to a true CLoc fusion event, leading to modest accuracy gains. To avoid this, we have

performed other offline test, reducing the fusion rate down to 4 Hz, as shown in Figure 7.10.

The benefit of fusion-based CLoc over standalone GPS is thus more remarkable.
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Figure 7.8: Empirical CDFs of localization errors for the first trip of field trials in Helmond.
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Figure 7.9: Localization RMSEs of the LDM at IBEO’s “ego” vehicle as a function of
time for the first trip of field trials in Helmond. Cooperative awareness of Objective’s and
Tass’ vehicles positions without prediction (top left and top right, respectively) versus
with prediction (bottom left and bottom right, respectively).

The impact of GDOP on the CLoc accuracy has also been investigated. For this sake,

the localization error vector has been projected onto the cross-track and along-track axes.

Considering the GDOP conditions in this test case (i.e., a platoon in line), the along-

track errors are mostly improved by CLoc, as confirmed by Figure 7.11. The figure also

shows that the cross-track errors are marginally improved. This is due to the fact that a

“longitudinal” platoon was maintained during most of the test.

During the tests in Helmond, the 3 vehicles drove for a second time on the same route

(2nd trip). The results are summarized in Figure 7.12 and Figure 7.13. Interestingly,

the CLoc method now improves quite significantly accuracy, especially in the lower error

regime, as shown in Figure 7.12(a) and Figure 7.13. As the distances between the 3 vehicles
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Figure 7.10: Empirical CDFs of localization errors of the Ibeo’s “ego” vehicle for the first
trip of field trials in Helmond with reduced position estimation rates.
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Figure 7.11: Empirical CDFs of along-track and cross-track errors of the Ibeo’s “ego”
vehicle for the first trip of field trials in Helmond, with reduced position estimation rates.

were shorter during this second trip, RSSI measurements could contribute as more reliable

and meaningful distance-dependent information to the final position estimates1.

7.4 Summary

This chapter contributes to the validation of algorithms from our CLoc framework. On

the one hand, relying on simulated mobility traces and assuming V2V IR-UWB range

measurements, several observations can be made at the system level in view of the context-

aware localization strategy.

1Theoretically, RSSI-based range measurements have standard deviation proportional to the true dis-
tance.
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Figure 7.12: Empirical CDF of localization errors for the second trip of field trials in
Helmond.
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Figure 7.13: Empirical CDF of localization errors of the Ibeo’s “ego” vehicle for the second
trip of field trials in Helmond with reduced position estimation rates.

• Fusion with other on-board sensors (i.e., WSS and IMU) is always beneficial, con-

tributing mostly to control and stabilize the errors in the dimension along and or-

thogonal to the road direction, regardless of environmental conditions;

• V2V cooperation is systematically beneficial, leading to sub-meter accuracy in WC

error regimes and even 0.2 m accuracy in median error regimes, thus fulfilling the

claimed applicative target;

• V2V cooperation is not necessarily useful if vehicle is equipped with a high-class

GNSS by default (e.g., RTK and PPP), while operating in favorable conditions (i.e.,

open or intermediary urban environments);
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• V2V cooperation rather strongly depends on the relative geometric configuration

and connectivity conditions for isolated vehicles, for instance due to static NLOS

situations (thus, leading to loose cooperative links) and/or due to “accordion” mo-

bility pattern (e.g., when a peripheral node with respect to the rest of the VANET is

stuck alone at an intersection red traffic light, whereas other vehicles ahead belong-

ing to the same steady-state group have all turned already, thus leading to sparser

connectivity and even poorer GDOP conditions). However, this shall be also mit-

igated in real operating conditions. Especially, in dense urban environments (i.e.,

where the expected gain should be by the way larger in comparison with nominal

GNSS), each vehicle possibly relies on a plurality of vehicles around itself (not even

specifically belonging to a unique group moving in the same direction);

• Mobility-based prediction in CLoc, even when relying on simplistic model such as the

bicycle model, looks fairly robust enough with respect to possible model mismatch

in case of realistic urban mobility (e.g., with more erratic behavior than steady-state

mobility regimes for instance on highways).

On the other hand, offline experimental validations in a highway scenario, while re-

lying uniquely on GPS data and notoriously dispersed ITS-G5 V2V RSSI measurements

as input observations, show already interesting gains through V2V cooperation beyond

nominal GNSS/GPS performance. This is the case not only in terms of “ego” longitudinal

localization, but also (and even more significantly) in terms of position awareness regard-

ing neighboring vehicles through mobility-based predictions (i.e., enabling accurate LDM

updates). It has been shown that the observed performance gains mostly depends on the

rate of ITS-G5 messages broadcast (in average 3 Hz in the conducted tests, to be compared

with 10 Hz for the “ego” onboard GPS rate), as well as on a relatively unfavorable GDOP

(i.e., the three vehicles involved in the experiments being strictly aligned for the whole

experiments). Furthermore, the V2I RSSI information available in the collected data set

could not be fully exploitable, due to uncertain RSUs placement. Accordingly, higher V2X

ITS-G5 transmission rates (up to 10 Hz), a better geo-referencing of static RSUs serving

as anchors, a more realistic varying platoon topology over time, and finally the use of more

accurate ranging-enabled technologies such as IR-UWB should be recommended in future

field validations.



Chapter 8

Conclusions and Perspectives

8.1 Conclusions

In this thesis, we have presented a Cooperative Localization (CLoc) framework for con-

nected vehicles or vehicular ad hoc networks (VANETs), in which vehicles exploit the

positioning capabilities of their neighbors and accordingly, enhance their own location es-

timates. Due to its maturity (but also to its foreseen massive deployment in the short

term), we have primarily chosen ITS-G5/IEEE 802.11p as main supporting vehicular com-

munication technology 1. The general concept of CLoc, which has been covered rather ex-

tensively in the literature in a variety of applications, may look promising in this vehicular

context too at very first sight. However, as traditional CLoc techniques are adapted nei-

ther to the VANET connectivity conditions nor to the experienced mobility patterns, their

direct application is still non trivial and requires attention. Keeping these unprecedented

challenges in mind, the main goal of this research work was to reach resilient sub-meter

localization accuracy so as to meet the needs of Day-2 C-ITS applications. Our proposed

solution has been tested through various sophisticated simulations and partly validated

(offline) through experimental data from field tests. These validations have shown that

the required level of accuracy could indeed be conditionally achieved (even in particularly

pathological cases and in compliance with imposed standardization constraints), thanks

to selective V2X cooperation and to multi-sensor fusion. The main contributions of this

thesis can be summarized as follows.

1Note that our research methodology claims enough generality (e.g., aiming at the joint optimization of
fusion algorithms and V2X transmission policy). Accordingly, it could get easily adapted to other relevant
standards in turn (C-V2X such as LTE-V2X, 5G, etc.).

145
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In Chapter 3, we have established a generic cooperative fusion framework based on a

particle filter (PF) and adapted to the ITS-G5 communication technology. First, we have

proposed prediction-based data resynchronization mechanisms to properly incorporate co-

operative information incoming from asynchronous neighboring vehicles. This allows to

mitigate possible biases in the neighboring position awareness, which must be injected into

the fusion engine. We have also developed link selection mechanisms based on theoretical

performance bounds so as to reduce complexity and minimize traffic (e.g., whenever cou-

pled with a Tx censoring policy), without affecting significantly accuracy/latency. Results

show for instance that the amount of required packets can be reduced by 70%, while loosing

14–18% of accuracy through selective fusion (in comparison with exhaustive fusion).

Chapter 4 adopts the same nominal framework as in Chapter 3 but it focuses more

on the inherent specificities of V2V wireless connectivity (in terms of both propagation

channel and communication channel congestion), evaluating and mitigating their impact-

band (IR-UWB) ranging capabilities. On this occasion, we have shown that very poor

initial GNSS prior information and/or unwanted error propagation induced by V2V coop-

eration among vehicles could prevent from drawing maximum benefits from very accurate

ranging, or could even lead to filter overconfidence in biased results and thus, to global

divergence. Applying fusion scheduling and/or adaptive observation noise dithering to

our CLoc algorithms, we have observed that when the biases are correctly mitigated (i.e.,

avoiding error propagation between vehicles and avoiding filter overconfidence in too poor

estimates), the GNSS+IR-UWB fusion scheme then outperforms any other CLoc algo-

rithm and naturally, also the standalone GNSS receiver option. On the one hand, under

heterogeneous GNSS conditions/classes at the cooperating vehicles, fusion scheduling has

been shown to provide an accuracy of 0.4 cm with 95% probability (compared to 25%

for conventional GNSS+IR-UWB fusion schemes). On the other hand, adaptive dither-

ing achieves 0.2 m accuracy with 90% probability (compared to 48% for conventional

GNSS+IR-UWB fusion schemes) in homogeneous GNSS capabilities.

In Chapter 6, we have proposed a hybrid V2X multisensor CLoc scheme, which requires

additional on-board sensors (e.g., inertial or odometry sensors), camera-based lane detec-

tor, etc. and even possibly, fixed elements of infrastructure (e.g., road side units (RSUs)).

The fusion with other on-board sensors (typically, WSS and IMU) has been shown always

beneficial, contributing mostly to control and stabilize the error in the dimension orthog-
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onal to the road direction. In tunnel scenarios, facing even more critical problems of fast

divergence, we have proposed guidelines to apply hybrid CLoc with generalized V2X mea-

surements. Considering more particularly V2X IR-UWB measurements (i.e., with respect

to both mobile vehicles and RSUs), our CLoc solution can thus achieve median errors

of 0.2 m approximately. The latter is also more attractive than CLoc assisted by GNSS

repeaters in terms of both accuracy and cost of deployment. Finally, whenever ITS-G5

RSUs are used instead of IR-UWB enabled RSUs, we have shown they must be massively

deployed (say, with less than 100 m as inter-side RSU interval) and thus, become costly.

In Chapter 7, results are first presented using a large-scale urban scenario that offers

mixed environmental characteristics in view of GNSS performance (i.e., spanning from

open environments to urban canyon), considering realistic mobility traces generated by

a devoted traffic simulator (SUMO). We have also shown that, even in challenging se-

tups (e.g., occasionally poor connectivity conditions and poor relative geometry), it is

still possible to achieve 0.2 m accuracy with probability of 50%. One step ahead, we

have performed offline validations using experimental data from a small-scale field test

(3 vehicles only), relying uniquely on GPS data and notoriously dispersed IST-G5 V2V

RSSI measurements as input observations. On this occasion, despite a quite restrictive

scenario, we have already shown interesting gains through V2V cooperation, at least sig-

nificantly beyond nominal GPS performance. This is the case not only in terms of “ego”

longitudinal localization, but also (and even more significantly, by about 10x) in terms

of position awareness regarding neighboring vehicles through mobility-based predictions

(i.e., enabling accurate LDM updates).

To summarize, this comparative study has shown that a sub-meter accuracy is overall

possible through CLoc. We have also given practical guidelines for the design of future

CLoc systems, thus contributing to the development of reliable and accurate location-

based services for C-ITS.

8.2 Perspectives

Given the achieved results and the current limitations of the proposed fusion-based CLoc

solution, new axes of improvement and new research challenges have been identified, as

follows.
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Further validations with experimental data

• Investigating more complete scenarios in terms of deployment, scenario and mobility

patterns (e.g., additional cars involved -say more than 3-, variable fleet constellation

as a function of time so as to benefit from diverse GDOP conditions, challenging

environments such as round-abouts or urban intersections, addition RSUs providing

also support to CLoc, etc.);

• Using standard GNSS capabilities at side cooperating vehicles too (i.e., instead of

RTKs so far);

• Considering more accurate accurate V2X range-dependent measurements (typically,

IR-UWB TOF or ZigBee PDOA), while still possibly combining with RSSI measure-

ments over ITS-G5 data links in a globally heterogeneous context (i.e., over the same

links or over side links, thus providing further observation redundancy and diversity,

and providing additional means to solve out ambiguities or remove outliers, etc.);

• Implementing and testing an online version of the proposed CLoc algorithm, running

in real-time at the “ego” vehicle.

All the previous points are currently assessed (in progress) in the frame of the HIGHTS

project and shall be reported in [137]. On the one hand, the GNSS and V2V RSSI mea-

surements integrated as observations in the fusion filter are assumed to be affected by

correlated noises. Accordingly, their direct incorporation into conventional fusion filters

(i.e., assuming non-correlated measurement processes) would lead to inconsistent estimates

with large fluctuations. The two proposed approaches, at both signal processing and pro-

tocol levels, can be combined to almost completely mitigate these deleterious correlation

effects. The proposed solutions include the empirical estimation of crosslink correlations

(hence, compensating for information loss), the use of differential measurements (i.e., sub-

tracting the correlated part of the process), and decreased fusion rates (i.e., collecting

uncorrelated -or at least less correlated- measurements). On the other hand, we have

shown that combined cooperative message approximations and transmission power/rate

control strategies could reduce both V2V channel congestion and overhead for particle-

based cooperative fusion approaches, at almost no localization performance degradation

in comparison with the nominal (unoptimized) scheme.
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In Chapter 5, we have upgraded further the previous framework so as to perform hy-

brid V2V CLoc and integrate accurate impulse radio ultra-wide band (IR-UWB) ranging

capabilities. On this occasion, we have shown that very poor initial GNSS prior infor-

mation and/or unwanted error propagation induced by V2V cooperation among vehicles

could prevent from drawing maximum benefits from very accurate ranging, or could even

lead to filter overconfidence in biased results and thus, to global divergence. Applying

fusion scheduling and/or adaptive observation noise dithering to our CLoc algorithms,

we have observed that when the biases are correctly mitigated (i.e., avoiding error prop-

agation between vehicles and avoiding filter overconfidence in too poor estimates), the

GNSS+IR-UWB fusion scheme then outperforms any other CLoc algorithm and natu-

rally, also the standalone GNSS receiver option. On the one hand, under heterogeneous

GNSS conditions/classes at the cooperating vehicles, fusion scheduling has been shown to

provide an accuracy of 0.4 cm with 95% probability (compared to 25% for conventional

GNSS+IR-UWB fusion schemes). On the other hand, adaptive dithering achieves 0.2 m

accuracy with 90% probability (compared to 48% for conventional GNSS+IR-UWB fusion

schemes) in homogeneous GNSS capabilities.

In Chapter 6, we have proposed a hybrid V2X multisensor CLoc scheme, which requires

additional on-board sensors (e.g., inertial or odometry sensors), camera-based lane detec-

tor, etc. and even possibly, fixed elements of infrastructure (e.g., roadside units (RSUs)).

The fusion with other on-board sensors (typically, wheel speed sensor (WSS) and inertial

measurement unit (IMU)

Large-scale/long-term context-aware CLoc strategies

• Coupling the identified optimal fusion strategies and settings (as a function of speed,

road congestion, environment, etc.) to automatic context recognition to guarantee

seamless CLoc continuity and robustness along real long-term trajectories;

Better synergies with underlying V2V communication means

• Investigating alternative V2V messages broadcast strategies (in terms of transmis-

sion rate, formats, power, etc.) not only in view of the ongoing ETSI standardization

process (e.g., with the definition of so-called PoTi messages) but also with foreseen

C-V2X standards (e.g., 4G LTE V2X, 5G, etc.) so as to ensure even lower footprint



150 Chapter 8. Conclusions and Perspectives

and better reactivity of the CLoc, while still providing optimal position awareness;

• Finding dynamic and theoretically optimal trade-offs between cooperation potential

(e.g., playing on the transmission power, and thus, on both the transmission range

and the number of reachable neighbors) and V2X communication channel congestion

(leading to higher collision rates and thus, to a lower rate for exploitable incoming

messages feeding the fusion engine).

Related works have already been initiated and reported in conference paper [138].

Security and privacy of involved V2X cooperative links Even if it does not fall

directly into the scope of the Ph.D. investigations reported herein, one critical aspect for

future vehicular CLoc systems regards their robustness and immunity against service de-

nial (e.g., through jamming, injection of malicious messages, etc.) and/or eaves-dropping,

a fortiori whenever safety applications are in stake. Thus, adequate faults detection, as well

as end-to-end authentication and data encryption strategies should be defined (as overlays

complementing existing methods, or even as brand-new methods) in synergy with both

V2X communication and localization functionalities.

New location-enabled automotive applications and functionalities The great

potential of CLoc in terms of accurate and resilient positioning could be advantageously

exploited and extended into various emerging automotive domains (i.e., beyond navigation,

autonomous driving and advanced safety), thus opening virgin -or yet hardly covered-

research fields, such as

• Investigating cooperative LDMs fusion schemes (thus, not only restricting coopera-

tive exchanges to position awareness, but also to sensor-based perceptional informa-

tion, such as car-centric occupancy grids based on lidars, etc.);

• Enabling on-board sensor data geo-referencing for future automotive Internet of

Things (IoT) and related participative applications through crowd sensing;

• Considering cooperative and hybrid simultaneous localization and mapping (SLAM)

beyond radio channel-SLAM approaches, thus contributing to context awareness

and automated physical environment reconstruction/monitoring, which is essential

to highly autonomous driving (HAD) too;



Chapter 9

Résumé Etendu des Travaux de

Thèse

9.1 Introduction

La géolocalisation constitue une fonction critique, pour de pas dire un pré-reqquis en-

sentiel, des futurs systèmes coopératifs de transport intelligent (C-ITS). L’ensemble des

applications C-ITS de base (BSA) défini en [79] suppose par exemple la disponibilité

de systèmes de navigation par satellites (GNSS), qui fournissent une précision de posi-

tionnement de l’ordre de 3–10 mètres dans des conditions favorables d’utilisation [116].

Mais ce niveau de précision semble aujourd’hui très loin d’être suffisant pour des applica-

tions telles que le véhicule autonome (HAD), le contrôle coordonné de flotte de véhicules

(CCC), l’aide à la conduite (ADAS), ou encore, pour la prévention des risques d’accident

pour les usagers vulnérables de la route (VRUs) (ex. piétons, cyclistes...). Ces dernières

requièrent en effet une précision plutôt sub-métrique (typiquement, inférieure à 0.5 m)

et qui plus est, constante quelles que soient les conditions d’utilisation. Une telle qualité

de positionnement (c.-à-d., un tel niveau de précision et de résilience) n’est malheureuse-

ment pas autorisée par les technologies actuellement disponibles sur le marché de masse

(y compris le futur système Galileo) [9, 79], mais seulement par des technologies beau-

coup plus coûteuses (ex., GPS RTK, association de LIDARs et de cartes haute-définition

de l’environnement...), et/ou dont la mâturité n’a pas encore été réellement éprouvée

(ex., GPS Bi-bande intégré bas-coût), et/ou dont la rapidité de convergence ne peut être

garantie en toutes circonstances (ex. GPS PPP).

151
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Des standards de communication à courte portée dédiés (DSRC) (c.-à-d., IEEE 802.11p

ou ITS-G5), qui peuvent être perçus comme des extensions du standard WiFi spécifiquement

adaptées au contexte véhiculaire, se sont rapidement développés ces dernières années, au-

torisant la transmission de données sans fil entre véhicules (V2V), vis-à-vis de l’infrastructure

(V2I), voire vis-à-vis de dispositifs connectés appartenant au monde de l’Internet des ob-

jets (V2IoT). Selon ces standards, chaque véhicule diffuse périodiquement, par le biais

de messages coopératifs (CAMs, selon le standard européen [139] ou BSMs aux Etats-

Unis [98]1, sa propre position estimée (obtenue sur la base du GNSS), destinés à informer

ses voisins de la situation et donc, d’un éventuel danger. Ces communications entre

véhicules fournissent un cadre propice à l’amélioration de l’information de localisation,

grâce à l’application de techniques de localisation coopératives (CLoc) [9,59,61,65,79,92].

Chaque véhicule peut alors assister ses voisins, en particulier en cas de couverture GNSS

dégradée.

Toutefois, les spécificités du canal de communication véhiculaire sont telles que les

observations utiles à la localisation coopérative dans ce contexte (ex. la puissance reçue

sur les liens radio V2V ITS-G5 et les relevés GPS...) peuvent être affectées par des erreurs

importantes et potentiellement très dispersées (c.-à-d., en termes de biais et/ou d’écart

type). Par ailleurs, si les techniques CLoc se sont déjà avérées probantes dans un certain

nombre de contextes statiques ou faiblement mobiles (ex. réseaux de capteurs sans fil,

MANETs...), elles donnent également lieu à des questions plus spécifiques dans le domaine

véhiculaire. A titre d’exemple, on pourra citer l’asynchronisme des transmissions entre

les différents véhicules impliqués, ainsi que l’asynchronisme des données encapsulées au

sein des messages transmis (imposant de mettre en oeuvre des mécanismes de prédiction,

préalablement à la fusion des données reçues), la complexité calculatoire et le trafic impor-

tant en cas de coopération exhaustive/systématique vis-à-vis d’un grand nombre de voisins

(imposant de mettre en oeuvre des mécanismes de sélection de voisins/liens en fonction

du contexte), la congestion du canal de communication V2V et la limitation de la taille

des paquets à transmettre (imposant une simplification du contenu des messages, ainsi

qu’un contrôle des émissions en termes de puissance, de rafraichissement et/ou de trafic

mixte de données), la corrélation dans l’espace -et donc, dans le temps- des observations

réalisées en situation de mobilité sous la contrainte de taux de rafraichissement spécifiés

1En raison du rôle équivalent joué par les messages CAMs et BSMs dans ce travail de thèse, on se réfère
uniquement aux messages CAMs par simplicité, sans perte de généralité.
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par le standard (imposant la mise en oeuvre de traitements spécifiques au niveau signal,

comme au niveau du protocole de fusion), la confiance parfois excessive des filtres de fusion

et la propagation des erreurs sur le réseau, y compris en présence de mesures de distance

V2V très précises (imposant là-aussi des méthodes avancées de traitement du signal et/ou

un ordonnancement des étapes de fusion en fonction du voisinnage de chaque véhicule),

une dilution géométrique de la précision défavorable dans la dimension perpendiculaire

à la route ou encore, les environnements pathologiques dépourvus de couverture GNSS

(imposant d’avoir recours à des modalités de mesure complémentaires). . .

Ce rapport résume les travaux de recherche menés dans le cadre de cette thèse, ainsi

que les diverses contributions apportées à la problématique de la localisation véhiculaire

coopérative. Dans la Section 9.2, on pose tout d’abord le problème générique de la local-

isation coopérative CLoc, ainsi que les principaux challenges associés, avant d’introduire

brièvement les principales contributions de l’état de l’art dans la Section 9.3. Ensuite,

la Section 9.4 décrit une première proposition de schéma CLoc reposant uniquement sur

des liens de communication V2V ITS-G5 et sur le GNSS (V2V CLoc), ainsi que les algo-

rithmes correspondants (fusion, sélection de liens, réduction du niveau de corrélation des

bruits d’observation...). En Section 9.5, on introduit la technologie radio impulsionnelle

ultra large bande IR-UWB, qui permet de disposer de mesures de distances V2V plus

précises. A cette occasion, on traite également de problèmes de confiance excessive du

filtre de fusion, ainsi que de propagation de l’erreur entre véhicules. La Section 9.6, quant

à elle, aborde la question de la dilution géométrique de la précision dans la dimension

orthogonale à la route, en ayant recours à d’autres types de capteurs embarqués. Enfin, la

Section 9.7 apporte quelques validations supplémantaires, sur la base d’expérimentations

menées sur le terrain, ainsi que de simulations reposant sur des modèles de trafic plus

réallistes.

9.2 Problématique et Enjeux

En matière de localisation sans fil, le terme de coopération revêt une signification partic-

ulière. Les méthodes dites non-coopératives visent en général à localiser des noeuds mobiles

uniquement vis-à-vis d’une jeu d’ancres fixes dont les positions sont connues a priori. A

contrario, les solutions dites coopératives (CLoc) exploitent la présence de noeuds voisins
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(a)

(b)

Figure 9.1: (a) Véhicules échangeant périodiquement des messages CAMs permettant
d’assurer de nouvelles fonctions de localisation coopératives CLoc. Les instants de trans-
mission @ti et le niveau de puissance transmiseRSSIi dépendent du véhicule émetteur i (et
donc, du lien V2V). (b) Véhicule local “Ego” recevant des messages CAMs asynchrones
de la part d’“ancres virtuelles” et fusionnant l’ensemble des informations disponibles.
On s’attend à ce que la dispersion associée au résultat de cette fusion coopérative soit
plus fabvorable que celle résultant d’approches de localisation non-coopératives (c.-à-d.,
s’appuyant sur le GNSS seul).

(mobiles ou statiques) jouant le rôle d’“ancres virtuelles”2 [94], en s’appuyant typiquement

sur des méthodes distribuées de type passage de messages [84]. Ces schémas CLoc ont

jusque-là été principalement appliqués aux réseaux de capteurs sans fil (WSNs) statiques

ou encore à des réseaux ad hoc mobiles (MANET) présentant une faible dynamique.

De la même façon, dans le contexte des réseaux véhiculaires ad hoc (VANETs) (Cf.

2Le terme virtuelles est ici entendu dans le sens mobiles et dont les positions peuvent être, elles-mêmes,
entâchées d’erreurs.
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Figure 9.1), au lieu de considérer uniquement des ancres statiques telles que des unités

de bord de route (RSU) géo-référencées, les approches CLoc renvoient aux stratégies ex-

ploitant les véhicules voisins comme des “ancres virtuelles”. Plus précisément, les messages

coopératifs CAMs périodiquement diffusés entre véhicules peuvent être utilisés au premier

chef pour fusionner des données GNSS encapsulées (ou toute autre donnée renvoyant à

une estimation de la localisation du véhicule à l’origine du message), mais aussi, de façon

optionnelle3 et opportuniste, afin de mesurer des métriques radio dépendant de la distance

entre émetteur et récepteur, comme la puissance reçue (RSSI). Par rapport aux approaches

non-cooperatives, aucune connaissance a priori des positions des ancres fixes n’est alors

requise4 (ex. carte a priori de RSUs géo-référencées). On espère également bénéficier ainsi

d’une forme de redondance et de diversité d’information, notamment grâce aux données

transmises par les véhicules voisins.

Toutefois, en raison de la spécificité des motifs de mobilité et des contraintes géométriques

de la route d’une part, ou encore de la fréquente fragmentation et de la très haute dynam-

icité de la topologie du réseau d’autre part (typiquement, donnant lieu à les liens radio

dont la durée de vie n’excède pas une seconde pour des véhiculers évoluant en directions

opposées), l’application des techniques CLoc au contexte VANETs présente de nombreux

challenges.

Tout d’abord, les intervalles temporels entre CAMs consécutifs sont contraints par la

charge du canal de communication V2X et par conséquents, les transmissions correspon-

dantes sont non-periodiques. La réception de données vis-à-vis des “ancres virtuelles”

environnantes s’effectue donc de manière totalement asynchrone5 (Cf. Figure 9.1). Si ces

phénomènes ne sont pas correctement pris en compte au niveau de la conception du filtre

de fusion, des erreurs très significatives peuvent être commises in fine sur les résultats de

localisation.

Un autre défi réside dans l’optimalité du filtre de fusion lorsque les observations

disponibles en entrée (typiquement, les mesures GNSS et ITS-G5 RSSI) sont supposément

affectées par des processus de bruit blancs et indépendants, alors même qu’elles peu-

vent être en pratique fortement corrélées dans le temps et/ou l’espace. Ces problèmes

3Par optionnelle, on entend aussi que d’autres technologies dédiées pourraient être expoitées
spécifiquement pour la mesure de distance (ex. IR-UWB) en parallèle de communications V2X ITS-G5,
comme on le verra par la suite.

4Au besoin, une telle connaissance doit toutefois être facilement intégrable au problème, en conservant
le même cadre général de fusion.

5Qui plus est, les données encapsulées portent elles-mêmes sur des instants d’estimation asynchrones.
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de corrélation résultent de la continuité locale des phénomènes physiques de propagation,

de la spécificité des motifs de mobilité véhiculiare, ainsi que de taux de rafraichissement

contraints par les standards. Ils sont perçus comme une limitation importante vis-à-vis

des approches CLos de l’état de l’art.

L’optimalité de certaines implémentations du filtre de fusion peut aussi être mise

à mal dans des espaces d’estimation à grande dimension, en fonction de la nature des

données présentées en entrée. Typiquement, le filtrage Bayésien particulaire (PF) utilisé

habituellement pour hybrider des données hétérogènes peut être confronté à des problèmes

d’effondrement du nuage de particules (depletion) en cas de mesures de distances très

précises (typiquement, via la technologie radio impulsionnelle ultra large bande IR-UWB)

et de positions a priori très imprécises (typiquement, en cas de mauvaise initialisation

GNSS). Ce phénomène peut donner lieu à des biais d’estimation, ainsi qu’à une confiance

excessive dans les résultats de fusion, qui peuvent alors se propager sur le réseau du fait

de la coopération.

Il existe enfin un compromis à trouver entre la précision de localisation atteignable et

la complexité induite par la fusion (dans un contexte potentiellement contraint en termes

de capacités de calcul embarquées, de latence, et/ou de consommation...), en fonction

des éventuelles limitations ou déficiences du medium de communication V2X (e.g., trafic

accru au niveau du réseau, congestion du canal, pertes de paquets...). A titre d’exemple,

la coopération exhaustive, qui vise à prendre en compte l’ensemble des voisins disponibles

(c.-à-d., indépendamment de la qualité de leurs liens radio respectifs et/ou de la qualité des

informations qu’ils transmettent) peut générer une complexité calculatoire importante (au

niveau de l’étape de fusion) ainsi qu’une surcharge du canal de communication (en raison

de l’absence de mécanismes d’autocensure à l’émission). D’autre part, le filtre coopératif

PF peut lui-même induire une forte compexité calculatoire et un surcoût en termes de tafic

de données afin de garantir un niveau de performances optimal (ex. en rendant compte

du nuage de particules représentant la densité a posteriori de l’état estimé au niveau du

message à transmettre).
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9.3 Analyse de l’Etat de l’Art et Méthodologie Suivie

En matière de localisation véhiculaire non-coopérative, des unités de bord de route RSUs

peuvent être exploitées comme ancres. Chaque véhicle peut alors estimer de manière

indépendante sa position à partir de techniques classiques de multi-latération (c.-à-d., util-

isant des mesures de distances réalisées vis-à-vis de ces ancres), de simples informations de

connectivité/proximité (potentiellement, alliées à des techniques de navigation inertielles

de type dead reckoning [53]), voire des méthodes de reconnaissance de signatures radio

ou fingerprinting (ex. assistées par du filtrage particulaire [54]). Cependant ces solu-

tions dépendent fortement de la densité, de la disponibilité et de la géométrie relative de

l’infrastructure déployée le long de la route. Par exemple, comme illustré sur la Figure 9.1,

un simple lien V2I vis-à-vis d’une RSU serait insuffisant pour positionner sans ambigüıté

géométrique le véhicule “Ego” à partir de techniques classiques de multi-latération.

Au contraire, l’approche CLoc permet d’exploiter des liens vis-à-vis des véhicules

voisins mobiles et la connaissance de leurs propres positions estimées (awareness), ainsi

que d’autres mesures V2V opportunistes [9, 61, 84, 104], comme illustré sur la Figure 9.1.

Par exemple, les auteurs en [65] proposent un algorithme de poursuite distribué reposant

sur un filtre de Kalman standard (KF). Ce dernier fusionne les positions GNSS avec les

positions des voisins et des mesures de distances V2V (supposées parfaites) en cas de

dégradation avérée des conditions GNSS. Dans un autre exemple, la solution coopérative

proposée en [59] s’appuie sur une matrice de dissimilarités composées de mesures RSSI

V2V. Ces mesures sont injectées en tant qu’observations dans un filtre KF étendu (EKF),

alors que les données GNSS sont utilisées uniquement pour l’initialisation. En [61], la

matrice des mesures V2V et les positions GNSS sont conjointement incorporées en tant

qu’observation dans le filtre. Les auteurs de [73, 75] proposent d’échanger seulement des

données GNSS brutes (ou des facteurs correctifs DGPS) de proche en proche via des

liens de communication V2V, renforçant d’autant le positionnement relatif des véhicules.

En [76, 77], une méthode coopérative d’accord/reconnaissance de cartes (map matching)

vise à conformer la topologie relative obtenue par le biais des liens V2V avec la topologie

de la route. Enfin, la méthode distribuée proposée en [78] s’affranchit de mesures explicites

de distances entre véhicules, en se contentant d’un échange d’informations portant sur des

obstacles passifs (poteaux, piétons, etc.) détectés simultanément au niveau de capteurs
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LIDAR embarqués sur différents véhicules.

Alors même que le contexte véhiculaire impose des constraintes drastiques, la plupart

des solutions coopératives ci-dessus reposent sur des hypothèses de travail simplistes ou

trop optimistes, que ce soit en termes de propagation radio (Ex. paramètres constants pour

les évanouissements lents affectant les mesures RSSI V2V, absence de corrélations. . . ), de

connectivité (Ex. portée de communication constante, nombre important et stable de

voisins disponibles. . . ), et/ou de protocole (Ex. transmissions parfaitement sychrones et

périodiques, absence de contrôle à l’émission or rate. . . ). De plus, le niveau de précision

atteint sur la base de technologies à bas coût (dans le meilleur des cas, équivalent à celui

du GNSS nominal en situations favorables d’utilisation) est encore largement insuffisant

pour les applications véhiculaires de deuxième génération déjà mentionnées plus haut.

Les standards de communication V2X se trouvent bien évidemment au coeur de ces

nouvelles fonctions CLoc. La Figure 9.2 revient donc sur les principales technologies

pressenties pour équiper les futurs véhicules connectés, avec notamment le standard ITS-

G5/IEEE 802.11p déjà en grande partie spécifié, le standard LTE V2X (aussi appelé

C-V2X) en cours d’élaboration, et la future technologie 5G mmWave V2X. Dans le cadre

de nos recherches, nous avons choisi de retenir la technologie ITS-G5 dans la mesure

où cette dernière présente de loin le plus grand niveau de maturité, tout en remplissant

d’ores et déjà la plupart des besoins exprimés en termes de portée (et donc, offrant un

potentiel de coopération intéressant), de débit (au moins suffisant pour assurer la diffusion

d’informations élémentaires de position) et de latence (ex. a minima, compatible avec les

taux de rafraichissement des GNSS actuels). De plus, cette technologie, actuellement

disponible sur le marché, a déjà été testée en conditions réelles d’utilisation, ce qui nous

paraissait intéressant dans la perspective d’une implémentation et d’une validation à court-

terme des méthodes de localisation coopératives. Au contraire, la technologie LTE V2X,

qui se trouve encore en cours de spécification, nécessitera probablement plusieurs années

avant d’être pleinement opérationnelle, tandis que la technologie 5G V2X (notamment en

bandes millimétriques mmWave) demeure encore à un stade très prospectif6.

La Figure 9.3 résume les technologies de radiolocalisation permettant d’assurer des

mesures explicites (à courte portée) de paramètres radio dépendant de la distance en-

6La méthode d’optimisation conjointe proposée entre communications V2X et fonctions de localisation
se veut toutefois agnostique et suffisamment générique pour être facielement adaptée à d’autres technologies
sous-jacentes à terme.
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Figure 9.2: Technologies de communication envisageables dans un contexte véhiculaire de
fusion coopérative (en rouge, technologies retenues dans le cadre de la thèse).

Figure 9.3: Analyse des différentes technologies de radiolocalisation envisageables dans un
contexte véhiculaire de fusion coopérative (en rouge, technologies retenues dans le cadre
de la thèse).

tre émetteur et récepteur, au sens de différentes métriques (ex. temps de vol aller-

retour ou RT-ToF, (différence de) temps d’arrivée ou T(D)oA, puissance reçue ou RSSI,

mesure différentielle de phase ou PDoA, angle d’arrivée ou AoA...). Alors que cer-

taines technologies sont principalement pensées pour assurer un transfert de données (ex.

mesures RSSI opportunistes sur la base de communications ITS-G5), d’autres technolo-

gies, véritablement dédiées à la radiolocalisation, s’avèrent beaucoup plus précises (ex.

mesures RT-ToF en IR-UWB, avec une précision sur la distance de l’ordre de quelques cm

à quelques dizaines de cm).

Sur la Figure 9.4, on représente l’architecture globale de fusion considérée dans le cadre

du travail de thèse, ainsi que les différentes technologies mises en jeu à cette occasion (y

compris des capteurs embarqués tels que GNSS, centrale inertielle, odomètre et caméra

bas-coût pour la détection de voie). La Figure 9.5, quant à elle, illustre les différentes

étapes de recherche suivies. Pour chaque étape, on s’intéressera à une difficulté particulière,

inhérente au contexte véhiculaire coopératif, ainsi qu’aux moyens de la lever (notamment,

avec l’ajout de nouvelles modalités).
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Figure 9.4: Architecture globale de fusion adoptée pour la localisation véhiculaire
coopérative et technologies associées.

Figure 9.5: Approche graduelle suivie dans le cadre du travail de thèse, avec ajout progessif
de nouvelles modalités.

9.4 Localisation coopérative à partir de communications V2V

9.4.1 Architecture Générique de Fusion de Données CLoc

Une première architecture de fusion à base de communications V2V et de GNSS a tout

d’abord été proposée, incluant les étapes suivantes (Cf. Algorithme 6): i) mécanismes de

prédiction permettant d’incorporer de manière cohérente les données asynchrones reçues

de la part des voisins, reposant sur un modèle de mobilité a priori, comme décrit en [92] et

illustré sur la Figure 9.6; ii) mécanismes de sélection des liens, s’appuyant sur les bornes

théoriques de performance de positionnement, permettant de réduire la complexité du pro-
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Figure 9.6: Exemple de gestion temporelle des données CLoc au niveau du véhicule “Ego”
i (en charge de la fusion) vis-à-vis du véhicule voisin j. En raison de l’asynchronisme des
quantités estimées θ̂i(·) et θ̂j(·), le véhicule i doit réaliser une prédiction afin de ”resyn-
chroniser” à l’instant de fusion ti,k l’ensemble des données (y compris les informations
reçues de la part du voisin).

cessus de fusion (et potentiellement de réduire le trafic de données7) sans dégradation des

performances de localisation en termes de précision/latence; iii) mécanismes de décorrelation,

capables de forcer le caractère indépendant des observations présentées en entrée du filtre

de poursuite; iv) stratégies d’émission révisitées, permettant d’adpater la puissance et/ou

le taux de paquets transmis (voire également leur corrélation en réception); et finalement

v) une approximation du contenu des messages à diffuser de manière à respecter un format

standardisé, en termes de structure et de taille.

Algorithm 6 Architecture générique de fusion de données CLoc ITS-G5/GNSS

1: Collecte des CAMs: Réception de CAMs asynchrones de la part des voisins, mesures RSSI, et ex-
traction du contenu des messages reçus (c.-à-d., variables estimées -typiquement, positions et vitesses-
et éventuellement, incertitudes associées).

2: Re-synchronisation des données: Prédiction des états des véhicules “ego” et voisins au même point
temporel de fusion en appliquant un modèle de mobilité et mise à jour de la carte locale dyanmique
(LDM) des positions des voisins.

3: Sélection de liens et dé-correlation des observations en temps/espace: Parmi les voisins
détectés et recensés au sein de la LDM, sélection du meilleur sous-ensemble d’“ancres virtuelles” à
intégrer au processus de fusion, dé-corrélation optionnelle des mesures correspondantes retenues.

4: Correction sur la base des observations: Correction des états prédits sur la base des observations
sélectionnées, produisant l’estimation finale de la position (et de la vistesse) du véhicule “Ego”.

5: Contrôle à l’émission: Adaptation de la puissance et/ou du taux et/ou de la charge utile du paquet
contenant les résultats de la fusion.

6: Approximation et diffusion du message: Si le message CAM contient une distribution (c.-
à-d., rendant compte de l’incertitude sur les variables estimées), application d’une représentation
paramétrique puis encapsulation des paramètres correspondants dans la charge utile du message CAM
puis diffusion aux voisins.

7Pour peu qu’ils soient couplés à des mécanismes de contrôle à l’émission.
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Figure 9.7: Sous-ensemble de voisins sélectionnés (vert) par le véhicule ”ego” en charge
de la fusion (rouge), selon des critères CRLB (a) non-Bayésien et (b) Bayésien. Dans
cet exemple, le véhicule 5, pourtant mal positionné, serait sélectionné avec un critère
non-Bayésien (et donc, inclus dans le processus de fusion), alors qu’il serait rejeté après
application du critère Bayésien.

9.4.2 Sélection de Liens à Faible Complexité

Dans une seconde contribution [10], nous avons proposé de nouveaux algorithmes de

sélection des liens visant à améliorer la coopération pour des conditions GNSS variables,

tout en limitant la complexité du processus de fusion. Plus spécifiquement, nous avons

proposé un couple de critères basés sur des versions non-Bayésienne et Bayésienne de

bornes théoriques de type Cramér-Rao Lower Bound (CRLB), caractérisant les perfor-

mances de positionnement coopératif pour un sous-ensemble donné de voisins, combinés

à une procédure rapide de recherche (sous-optimale), alternative à la recherche exhaus-

tive (i.e., en restreignant de manière heuristique les comparaisons CRLBS à des sous-

ensembles pris uniquement parmi les plus proches voisins). La performance CLoc dépend

de la qualité des liens radio (ex. via l’atténuation moyenne en puissance et la profondeur

des évanouissements lents), de la topologie relative (c.-à-d., des positions relatives entre

les ”ancres virtuelles” et le véhicule “ego” en charge de la fusion) et/ou de la dilution

géométrique de la précision (GDOP), et enfin, des incertitudes portant sur les positions

estimées par le véhicule “ego” et ses voisins. Le critère CRLB non-Bayésien proposé ini-

tialement en [92] rend compte des deux premiers aspects, sans toutefois capturer l’effet

du dernier facteur. Il traite l’ensemble des positions du problème comme des quantités

déterministes et exactes8. Cette approche peut être suffisante dans un contexte non-

8On est donc amené à injecter dans le calcul de la CRLB, en lieu et place des positions exactes des
véhicules voisins, leurs positions estimées (reçues avec les messages CAMs), donnant lieu à une approxi-
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coopératif, lorsqu’on est amené à sélectionner uniquement un jeu d’ancres statiques (ex.,

RSUs), ou encore, lorsque l’ensemble des voisins présentent un même niveau de connais-

sance a priori et/ou un même niveau d’erreur sur leurs positions estimées (ex. dans un

canyon urbain et/ou du fait de l’utilisation d’une même classe de récepteurs GNSS). Cepen-

dant, dans la mesure où l’approche coopérative CLoc repose sur des “ancres virtuelles” qui

sont localisées de manière imprécise ou, tout du moins, très variable d’une ancre à l’autre,

nous avons donc proposé également un critère CRLB Bayésien intégrant l’incertitude a

priori sur les positions des voisins, de manière à ne sélectionner que les liens les plus

informatifs en vue de la fusion.

En [?], on présente en particulier une étude comparative des deux critères de sélection

dans deux scénarios complémentaires. Dans le premier scénario, on considère le même

type de dégradation du signal GNSS pour une même flotte d’une quinziaine de véhicules

pénétrant dans un canyon urbain (c.-à-d., avec un grand nombre de véchiles expérimentant

le même niveau d’erreur GNSS), tandis que dans le second scénario, on considère des

disparités ”à moindre échelle” en termes de qualité GNSS (c.-à-d., avec des véhicules

équipés de classes GNSS différentes). A cette occasion, en comparaison d’approches de

coopération exhaustives, on montre que les approches sélectives réduisent de manière dras-

tique la complexité en réduisant le nombre de paquets nécessaires au processus de fusion

(par un facteur de plus de 70%), en souffrant d’une détérioration raisonable de l’erreur,

d’environ 10% seulement dans des conditions normales GNSS et d’environ 14 à 18% pour

la portion la plus défavorable où le GNSS est perdu (Cf. Figure 9.8). Les résultats confir-

ment par ailleurs la supériorité du critère CRLB Bayésien sur le critère non-Bayésien dans

un contexte GNSS hétérogène, avec cette fois un niveau tout proche de la fusion exhaus-

tive, ouvrant ainsi la voie à des approches de sélection et/ou de fusion de l’information

dépendantes du contexte détecté (Cf. Figure 9.9).

En résumé, on a pu démontrer l’intérêt des mécanismes de fusion sélective, ainsi que

de l’incertitude a priori sur les positions estimées par les véhicules voisins.

9.4.3 Limitation de la Corrélation des Bruits d’Observation

Une seconde contribution concerne les phénomènes de corrélation affectant des observa-

tions injectées dans le problème de fusion. En pratique, la corrélation des processus de

mation de la CRLB exacte.
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Figure 9.8: Flotte de 15 véhicules (gauche-haut); pénétrant dans un canyon urbain offrant
des conditions GNSS homogènes pour l’ensemble de la flotte (gauche-bas); Erreur RMSE
et nombre de messages CAMs reçus effectivement injectés dans la processus de fusion
ITS-G5 V2V RSSI/GNSS pour des critères de sélection basés sur des bornes théoriques
non-Bayésiennes (CRLB) et Bayésiennes (BCRLB)(droite).

Figure 9.9: Flotte de 15 véhicules présentant des conditions GNSS hétérogènes (gauche);
CDF empirique de l’erreur de positionnement issu de la fusion ITS-G5 V2V RSSI/GNSS,
pour des stratégies de sélection basées sur des bornes théoriques non-Bayésiennes (CRLB)
et Bayésiennes (BCRLB)(droite).

bruit d’observation (et donc, leur corrélation dans le temps en situation de mobilité) résulte

de la conjonction de différents facteurs en lien avec les containtes pesant sur la mobilité

véhiculaire.

Tout d’abord, les conditions GNSS (bonnes ou mauvaises) peuvent rester inchangées

pendant plusieurs échantillons consécutifs et ce, au niveau de plusieurs véhicules voisins.

De la même façon, les variations lentes (résultant d’obstructions ou non) affectant les

mesures de puissance reçu RSSI peuvent demeurer relativement identiques et stables entre
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deux CAMs consécutives (ex. 100 ms) sur un lien V2V ITS-G5 vis-à-vis d’un même voisin

(autocorrélation dans le temps), de même que deux liens V2V quasi-simultanés et issus

de deux véhicules émetteurs proches l’un de l’autre subiront des évanouissements corrélés

(inter-corrélation dans l’espace).

L’incorporation de telles mesures au niveau des filtres de fusion constitue alors un enjeu

majeur si ces derniers supposent les processus parfaitement indépendants, venant ainsi

violer une hypothèses nécessaires à leur optimalité [86,87,89,104]. On illustre intuitivement

Figure 9.10: Auto-corrélation/Inter-corrélation des évanouissements lents affectant les
mesures de puissances reçues RSSI sur la base de liens V2V ITS-G5 dans un contexte
VANET (avec mobilité de l’émetteur et du récepteur).

ces phénomènes de corrélation sur la Figure 9.10. Ces phénomènes de corrélation affectent

aussi indirectement l’usage des données GNSS elles-mêmes au niveau du véhicule “ego” en

charge de la fusion. Des messages CAMs successifs issus de véhicules proches intègreront

ainsi potentiellement une information GNSS corrélée si l’intervalle de temps entre les

instants d’émission est plus petit que le temps nécessaire à ces véhicules pour parcourir

une distance équivalente à la distance de décorrélation GNSS. Dès lors, en [11], nous avons

proposé plusieurs méthodes de décorrélation au niveaux signal et protocole, pouvant être

combinées ou non selon le contexte, afin de restaurer toute la capacité du filtre de fusion.

La première technique s’appliquant aux mesures V2V RSSI repose sur l’intuition selon

laquelle la connaissance du niveau d’inter-corrélation entre les différentes composantes du

vecteur d’observation fournit une information constructive au filtre [103]. Plus spécifiquement,

cette information est utile pour filtrer le bruit d’observations au niveau de l’étape de cor-

rection (Cf. Algorithme 6), dans la mesure où la distribution des évanouissements lents

est mieux prise en compte. Dans notre cas, cette inter-corrélation peut être estimée de
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manière empirique sur la base des dernières positions estimées, ainsi que sur le modèle

point-à-point proposé par Wang et al. [111]. La seconde technique appliquée au niveau
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Figure 9.11: Illustration de la technique différentielle DM appliquée (a) à la coordonnée
GNSS x et (b) aux mesures V2V RSSI. Les termes de bruit GNSS nx(k) et nx(k− 1) sont
corrélés, avec des propriétés de corrélation connues. Dès lors, la partie corrélée comprise
dans nx(k) peut être prédite à partir de nx(k− 1) et ensuite soustraite de nx(k). Le bruit
résiduel résultant de l’opération est idéalement i.i.d et de moindre variance. L’application
de la même méthode aux évanouissements lents s1→E(k) et s1→E(k − 1) affectant les
mesures V2V RSSI est triviale.

signal, également appelée méthode des Mesures Différentielles (DM), peut être appliquée

aux erreurs GNSS comme au mesures V2V RSSI. Comme son nom l’indique, l’idée princi-

pale consiste à blanchir les termes de bruits en soustrayant leur partie corrélée commune,

en gardant inchangée leurs composantes indépendantes. Ce problème peut être résolu à

partir d’un modèle de prédiction du bruit, basé sur la connaissance a priori de ses pro-

priétés de corrélation spatiale (fonction de corrélation en fonction des positions relatives,

pour un type d’envionnement donné). En particulier, en considérant une certaine classe de

fonction de covariance (typiquement, de forme exponenielle décroissante avec la distance),

les erreurs GNSS et les évanouissements lents affectant les mesures RSSI peuvent faire

l’objet d’une prédiction au sens de modèles Gauss-Markov (au premier ordre).

La technique DM vise donc à soustraitre une version prédite de l’observation courante

au lieu de l’injecter directement dans le filtre de fusion, comme illlustré sur la Figure 9.11.

Contrairement aux deux approches précédentes, la dernière proposition consiste sim-

plemente à réduire délibérément le taux de fusion, sans manipuler les observations. Pour

chaque type d’observation (GNSS et RSSI), comme les mesures sont spatialement corrélées

sur une distance de décorrélation dcor (supposée connue pour un type d’environnement

donné), un véhicule se déplaçant en ligne droite sur une distance D peut collecter dans

le temps jusqu’à 1 + bD/ (γdcor)c mesures non-corrélées où γ ≥ 1 est une indication de

l’indépendance des échantillons (e.g., γ1 = 1 et γ2 = 2 correspondant à 50% et 75% de
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réduction du niveau de corrélation, respectivement) , comme illustré sur la Figure 9.12.

Cette simple technique peut s’avérer toutefois peu appropriée au GNSS, dans la mesure

où la distance de décorrélation peut atteindre plusieurs centaines de mètres [79]. Elle

est cependant beaucoup plus efficace pour les mesures RSSIs, du fait d’une distance

de décorrélation beacoup plus réduite, typiquement en environnement urbain (ex. 10–

20 m [101,102,111]).

𝑑cor

𝑑cor

↓ 50% correlation

↓ 75% correlation

Figure 9.12: Illustration de la réduction délibérée du taux de fusion permettant de collecter
des échantillons V2V RSSI non-corrélées.

Ces diférentes approches ont été évaluées par le biais de simulations Monte Carlo

dans trois scénarios et environnements représentatifs (c.-à-d., autoroute, canyon urbain et

tunnel). Les résultats obtenus montrent que notre proposition est susceptible de fournir

des gains en précision de l’ordre de 60% dans des environnements très corrélés, tout en

enregistrant une dégrédation limitée d’environ 15% par rapport à une situation idéalisée

où les processus d’observation seraient non-corrélés (Cf. Figure 9.13).

A partir de ces résultats, on note que les caractéristiques de l’environnement, c.-à-d. la

distance de décorrélation, le type de mobilité, la disponibilité GNSS. . . , influencent grande-

ment la façon dont le moteur de fusion doit traiter les observations présentées en entrée

afin de limiter les problèmes liés à la corrélation. En particulier, une certaine technique de

décorrélation peut s’avérer très efficace dans un environnement donné, mais peu probante,

voire contre-productive (Cf. autres résultats sur les taux de rafraichissement par ailleurs)

dans d’autres circonstances. Dès lors, on a suggéré une stratégie dépendante du contexte

d’utilisation, qui assiste le moteur de fusion CLoc afin d’obtenir la meilleure précision

possible au regard de la corrélation. Le Tableau 9.1 résume les techniques recommandées

(ou la combinaison de techniques) selon chaque modalité et chaque type d’environnement.

Ainsi, lorsqu’un véhicle pénètre dans un environnement spécifique (ex. sur la base d’une
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Figure 9.13: CDF empirique d’erreur de positionnement issu de la fusion ITS-G5 V2V
RSSI/GNSS pour différentes stratégies de dé-corrélation des bruits d’observation pour un
scénario de type autoroute.

Table 9.1: Techniques recommandées en fonction du contexte pour une dé-corrélation
optimale des bruits d’observation (Fusion ITS-G5 V2V RSSI/GNSS).

Modality Highway Urban Canyon Tunnel

V2V RSSI adaptive sampling optional differential measurement

GNSS position differential measurement differential measurement N/A

carte a priori), le système peut déterminer la technique la plus appropriée, ainsi que

les paramèters associés, pour réaliser la décorrélation des processus d’observation avant

fusion.

9.4.4 Approximation des Messages et Contrôle des Emissions

Dans notre contexte de fusion cooopérative, dans la mesure où certaines des observations

injectées (typiquement, les mesures V2V RSSIs ici) sont non-linéraires en fonction des

variables d’état estimées (ex., position, vitesse, cap. . . ), le choix d’un filtre particulaire

semble assez naturel. Ce dernier permet également d’assurer l’évolutivité du système à

moindre effort, dans le cas où d’autres capteurs/modalités sont intégrées au problème

(Cf. sections suivantes). Cependant, pour atteindre des performances optimales, il est ad-

mis que ce type de filtre génère une complexité calculatoire importante pour des espaces



9.4. Localisation coopérative à partir de communications V2V 169

Particle 

Filter

Particle 

Filter

DSRC 
channel

𝜽𝑗
(𝑝)
, 𝑤𝑗

(𝑝)

𝑝=1…𝑁𝑝

𝜽𝑖
(𝑝)
, 𝑤𝑖

(𝑝)

𝑝=1…𝑁𝑝

𝑅𝑆𝑆𝐼𝑖
𝑗→

+

𝑅𝑆𝑆𝐼𝑗
𝑖→ +

Vehicle 𝑖 Vehicle 𝑗

𝜽𝑗
𝐺𝑁𝑆𝑆𝜽𝑖

𝐺𝑁𝑆𝑆

Figure 9.14: Flot de données dans un contexte de fusion coopérative à base de filtre par-

ticulaire entre deux véhicules où, pour le véhicule i, θGNSS
i , RSSIj→i et {θ(p)

i , w
(p)
i }p=1...Np

représentent respectivement l’estimation GNSS, la mesure RSSI réalisée à partir du mes-

sage CAM reçu de la part de j, et le nuage de Np particules ets représenté par θ
(p)
i et w

(p)
i ,

respectivement les états et poids associés. Le canal de communication ITS-G5 (DSRC)
est sujet à des limitations imposées par le standard (ex. taille maximmale des messages:
300 – 800 octets, capacité maximale: 6Mbps, contrôle décentralisé de congestion imposant
une réduction à 2Hz du taux d’émission des messages en cas de de surcharge avérée du
réseau...).

d’estimation à grandes dimensions (typiquement en lien avec la simulation d’un grand

nombre de particules), ainsi qu’un surcoût en termes de communications, dans sa forme

coopérative (ex. pour rendre compte du nuage de particules par passage de message). Par

exemple, des milliers de particules (ex. de l’ordre de 1000) sont communément considérées

dans les systèmes de navigation embarqués [80]. Dès lors, un positionnement 2-D à base

de particules demanderait 16000 octets9, qui surchagerait les messages CAMs (100–800

octets) [140] et excéderait de loin les limites en termes de Maximum Transfer Unit (MTU)

des canaux ITS-G5 (2312 octets) [139]. La Figure 9.14 fournit une illustration simplifiée

des échanges d’information CLoc entre dexu véhicules i et j. Comme déjà mentionné, il est

impossible de diffuser explicitement le nuage de particules complet via des transmissions

ITS-G5 standardisées. Dès lors, sa représentation doit être simplifiée et réduite à quelques

scalaires qui peuvent être en pratique supportés par les messages CAMs. Les véhicules

voisins recevant ces messages doivent alors être en mesure de reconstruire fidèlement le nu-

age de particules initial, à partir de ces seuls scalaires. Une solution consiste à réaliser une

approximation paramétrique continue du nuage de particules. En partciulier, après iden-

9Une particule 1-D est en général représentée sur un format du type binary64 occupant 8 octets (64
bits).
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(a) (b)

(c) (d)

Figure 9.15: Simplified 2-D position representations including nonparametric (i.e., parti-
cles as blue dots) and parametric (i.e., diagonal Gaussian modes as red ellipses and full
Gaussian modes as green dash ellipses) approaches. Each explicit particle representation
costs two scalars, each diagonal Gaussian mode occupies 4 scalars, and each full Gaussian
mode requires 5 scalars. One more scalar is needed for the weight in case of bimodal
distribution.

tificaton des modes dominants, chaque nuage est approximé par une distribution connue,

communément sous forme de mixture de Gaussiennes. La Figure 9.15 illustre comment

une position 2-D représentée par un nuage de particules peut être approximée par le biais

de densités uni- ou bi-modales, pour deux configurations différentes présentant -ou non-

un risque d’ambigüıté (Cf. Figure 9.15(c)-(d) et 9.15(a)-(b), respectivement).

En [12], différents modèles de mixtures Guassiennes (GMMs) ont ainsi été comparés

dans notre contexte de localisation véhiculaire CLoc à base de filtres PF. Il a alors été relevé

que l’utilisation d’approximations multi-modales ne s’avérait pas toujours bénéfique pour

des scénarios concrets de déploiement (y compris lorsque la topologie de réseau présente

des symétries en miroir) mais donnait lieu, a contrario, à une complexité calculatoire

nettement accrue, en lien avec l’identification et la paramétrisation préalable des modes

composant les mixtures.

Par ailleurs, en matière de contrôle décentralisé de la congestion du canal (DCC),

les règles stipulées par l’ETSI recommandent de réduire le taux d’amission des messages

CAMs de 10 Hz à 2 Hz (correspondant à une charge du réseau de 60%), menant po-

tentiellement à une dégradation des performances de positionnement. Pour compenser
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Figure 9.16: Proposition de trafic mixte de données à l’émission, incluant des messages
CAMs standards et des messages limités (Tiny), afin de réduire la charge induite sur le
réseau par les nouvelles fonctions de localisation coopératives.

cette perte d’information, en combinaison avec les approximations de messages déjà men-

tionnées, nous avons aussi proposé de revoir les stratégies de contrôle à l’émission afin de

supporter des taux et des charges utiles de paquets variables (trafic mixte), en mélangeant

des messages “légers” (“Tiny” CAMs), sans payload aux taux critique de 10 Hz et des

CAMs conventionelles au taux de 2 Hz (limite du DCC de l’ETSI). Les messages “légers”

permettent alors de continuer à réaliser des observations V2V RSSI au taux de 10-Hz

RSSI, et donc de corriger au même taux les prédictions réalisées sur la base des données

comprises dans les CAMs conventionnelles. De plus, grâce à des mécanismes de contrôle

en puissance, ces messages “légers” CAMs peuvent être diffusés sur des distances plus

courtes (portée réduite par rapport aux messages CAMs conventionnels). En lien avec

les travaux sur la sélection de lien présentés en section 9.4.2, la coopération peut en ef-

fet se restreindre au premier cerlce des plus proches voisins sans dégradation significative

de la performance [10, 92]. En [12], les performances de cette politique de contrôle à

l’émission ont aussi été évaluées, montrant qu’il était possible d’approcher le niveau de

performance idéal d’une fusion de données au taux maximal de 10Hz (qui donnerait pour

autant lieu une charge inacceptable sur le réseau, y compris en appliquant des techniques

d’approximation de message citées plus haut), tout en générant une charge effective du

canal minimale, proche de celle engendrée par le plus bas taux d’émission de 2Hz imposé

par le DCC de l’ETSI (Cf. Figure 9.17).

D’autres études complémentaires [138] se sont intéressées à la proposition de nouveaux

types de messages, plus courts et plus fréquents (typiquement jusqu’à 100Hz) que les

messages CAMs conventionnels, et donc, encore mieux adaptés à la diffusion coopérative

de l’informaton de localisation (notamment vis-à-vis des problèmes de caducité).
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Figure 9.17: CDF de l’erreur de positionnement issu de la fusion ITS-G5 V2V RSSI/GNSS
pour différentes stratégies de contrôle à l’émission (et pour une approximation Gaussienne
unimodale du nuage de particules caractérisant la densité a posteriori de l’état estimé).

9.5 Localisation coopérative hybride à partir de communi-

cations V2V et de mesures de distances précises

Un espace destimation à grande dimension et/ou, de manière plus paradoxale, une fonction

de vraisemblance très ”étroite” (dans le cas d’observations très précises), peuvent s’avérer

pénalisants pour le filtre PF en charge de réaliser la fusion de données. L’optimalité de

ce dernier dépend en effet du nombre total de particules utilisées, du défaut ”d’accord”

entre le support de la densité a priori de l’état estimé et le support de la fonction de

vraisemblance exploitée pour pondérer les particules. Ces problèmes peuvent donner lieu

à un phénomène d’effondrement du nuage de particules (depletion), et in fine, dans un

excès de confiance du filtre dans ses résultats. Des quanités estimées biaisées (typique-

ment positions) peuvent alors se propagation sur le réseau, du fait de la coopération et de

l’échange de messages. Dans le contexte VA-CLoc, cette situation se présente par exemple

lorsque la position est initialisée via un GNSS de mauvaise qualité (donc avec une den-

sité a priori très évasée), lorsqu’on doit réaliser une estimation (i.e., correction) de l’état

des voisins (donc présentant un espace d’estimation à grande dimension), et/ou lorsque

l’on incorpore des mesures de distances V2V très précises, typiquement sur la base de la

technologie IR-UWB [13].

Au niveau protocole, une première technique (en deux étapes) a alors été proposée,
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Figure 9.18: Illustration de l’effet de l’augmentation artificielle du niveau de bruit
d’observation associé aux mesures de distance (modèle de perception), donnant lieu à
un support plus large de la fonction de vraisemblance servant à conférer leurs poids à un
plus grand nombre de particules du filtre.

basée sur l’ordonnancement des mises à jour de fusion en fonction du voisinage. Cette

dernière vise à éviter une contamination du reste du réseau, causée par les noeuds les

plus mal positionnés. Mais cette technique suppose aussi la présence de noeuds bien

positionnés. Une autre alternative introduite en [14] (Cf. Figure 9.18) permet d’ajuster

de manière itérative le niveau de bruit d’observation admis au niveau du filtre, en fonction

des performances théoriques attendues de localisation (au passage, en s’appuyant sur les

mêmes calculs de bornes Bayésiennes Cramer Rao Lower Bounds que pour la phase de

sélection de liens/voisins), améliorant sensiblement la consistance du filtre (et donc en

réduisant les priblèmes de confiance excessive et les risques de propagation d’erreurs), en

faisant passer la prbabilité de trouver une erreur de 20 cm typiquement de 50% à 90%

(Cf. Figure 9.19).

9.6 Localisation coopérative hybride multi-capteurs

Dans la mesure où la mobilité véhiculaire est fortement contrainte par la topologie des

voies/routes et les règles de conduite en vigueur (typiquement, les distances de sécurité à

respecter), la topologie relative du réseau peut donner lieu à un mauvais conditionnement

géométrique du problème de positionnement coopératif. Plus précisément, la topologie est

”distordu” dans la direction colinéraire à la route (ex. 20–150 m de distance de sécurité

contre 2.25–3.5 m de largeur de voie). En conséquence, la dilution géométrique de la

précision GDOP est souvent défavorable dans la dimension orthogonale à la route. Dès

lors, l’erreur de poisitionnement dans cette même dimension (emphcross-track) demeure
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Figure 9.19: CDF empirique de l’erreur de positionnement issu de la fusion ITS-
G5/GNSS/IR-UWB et erreurs caractéristiques effectives à 1-σ (c.-à-d. à CDF=68%),
pour différentes stratégies de filtrage (gauche) et évolution de l’erreur à 1-σ perçue au
niveau des filtres, en fonction du temps (droite).

importante et domine l’erreur globale.

De manière à atténuer ces effets, on exploite en [15] une centrale inertielle comprenant

un gyroscope (IMU) et un compte tour (WSS) afin de rendre compte du cap et de la

vitesse du véhicule et/ou une méthode de détection de voie basée sur une caméra bas-coût

(LC), permettant de tronquer la densité a posteriori de l’état estimé utilisée dans le filtre

PF de fusion (c.-à-d., tronquant le nuage de particules avec des contraintes géométriques).

La combinaison de ces techniques a alors permis d’améliorer la probablité de trouver une

erreur inférieure à 0.5 m de 60% à 90% dans la dimension orthogonale à la route (Cf.

Figure 9.20).

D’autres contributions en [16] (non détaillées dans ce résumé) portaient sur le traite-

ment des environnements spécifiquement dépourvus de couverture GNSS (typiquement,

dans les tunnels) en ayant recours à des mesures V2I complémentaires (IR-UWB RT-ToF

ou ITS-G5 RSSI) vis-à-vis d’éléments fixes d’infrastructure (RSUs), combinées aux cap-

teurs IMU et WSS. A cette occasion, on a chergché à identifier le meilleur compromis

opérationnel entre performances de localisation et sur-coût de déploiement, notamment

vis-à-vis d’une solution conventionnelle à base de répéteurs GSNSS.



9.7. Validations 175

Figure 9.20: CDF empirique de l’erreur de positionnement issue de la fusion ITS-
G5/GNSS/IR-UWB/IMU/WSS/LC, respectivement dans la dimension co-linéaire à la
route (gauche) et dans la dimension orthogonale à la route (droite).

9.7 Validations

9.7.1 Simulations en présence d’un trafic réaliste

En s’appuyant sur le simulateur de trafic SUMO, 10 trajectoires de véhicules ont été ex-

traites d’une simulation à large-échelle en milieu urbain, calibrée pour la ville de Bologne en

Italie (Cf. Figure 9.21). En particulier, on a considéré une zone gérographique restreinte

incluant une portion de canyon urbain et corespondant à une durée simulée d’environ

200 sec. Ce scénario permet notamment d’éprouver la sensibilité de nos algorithmes

vis-à-vis (i) des variations enregistrées par la qualité GNSS en fonction des conditions

environnementales (largeur de route et hauteur des bâtiments), (ii) de conditions non-

régulières/erratiques de mobilité (ex. arrêts aux intersections), et (iii) de la topologie

relative instantanée et du nombre de véhicules coopératifs. Au sein de la flotte testée al-

ternativement, chaque véhicule joue le rôle de véhicule “ego” en charge de la fusion, assisté

par les autres véhicules (“ancres virtuelles”). La fusion repose dsur un filtre PF avec 1000

particules. La phase de prédiction exploite les données issues d’un compte-tour (vitesse) et

d’une centrale inertielle (cap). Pour la synchronisation des données, “ego” prediction and

neighboring prediction are slightly different. Pour l’étape de correction au niveau du filtre

le filtre, les observations sont constituées de positions GNSS et de mesures de distances

IR-UWB (vis-à-vis des voisins dont un message CAM a été reçu). La précision des GNSS

embarqués dépend de la portion de trajectoire considérée, ainsi que de sa classe (allouée
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Figure 9.21: Environnement urbain mixte simulé avec trafic réaliste via SUMO.

arbitrairement, comme suit: 3 véhicules équipés de SBAS, 3 de SPS, 2 de DGNSS, 2 de

RTK). L’écart type des mesures de distances V2V IR-UWB a été fixé à 0.122 m.

Les résultats obtenus (Cf. par exemple Figure 9.22) ont confirmé l’apport de la

coopération V2V, donnant typiquement lieu pour l’ensemble de la flotte à une précision

de positionnement 2D sub-métrique dans le régime pire-cas d’erreur (pour CDF = 95%)

et même de l’ordre de 0.2-0.25m pour ce qui est de l’erreur médiane (pour CDF = 50%).

Comme on pouvait s’y attendre, cette coopération ne s’avère plus utile dans le cas où

un véhicule équipé d’un GNSS haut de gamme dispose de bonnes conditions de visiblité

vis-à-vis des satellites, mais elle présente surtout un intérêt pour améliorer les techniques

dites de dead reckoning en cas de perte ou de dégradation du signal GNSS. Par ailleurs,

d’autres études complémentaires (non présentées dans ce résumé étendu) ont aussi montré

que le pouvoir de la coopération dépendait largement de la configuration géométrique,

ainsi que des conditions de connectivité, en particulier pour les véhicules les plus isolés

(situés en périphérie du groupe). Enfin, l’étape de prédiction, bien que s’appuyant sur des

hypothèses de mobilité assez rudimentaires, semble raisonablement robuste vis-à-vis des

éventuels problèmes de désaccord entre modèles a priori et trafic réel.
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Figure 9.22: CDF empirique d’erreur de positionnement (aggrégée sur l’ensemble des 10
vehicles) pour une fusion VA-CLoc {GNSS+WSS+IMU/UWB} (rouge) et un position-
nement standalone {GNSS+WSS+IMU} (bleu) dans le scénario SUMO simulé dans la
ville de Bologne de la Figure 9.21.

9.7.2 Premières expérimentations

Un première campagne d’expérimentations à large échelle a été menée à Helmond, aux

pays-Bas, en mai 2017. Le groupe testé comprenait trois véhicules (Cf. 9.23) conduisant

en ligne. Chacun de ces véhicules étaient équipés d’un GPS standard, d’un GPS RTK

(permettant notamment de déterminer la vérité terrain au niveau du véhicule ”Ego” pour

l’évaluation des performances) et enfin, de modules ITS-G5 (Cohda MK5) pour l’échange

de données V2V. Ces véhicules ont effectués deux trajets complets le long d’une section

de l’autoroute A270/N270 de plusieurs kilomètres. Ces trajets comprenaient délibérément

des lignes droites et des virages, pour assurer une certain représentativité de l’étude10. Le

troisième véhicule de la file était considéré comme le véhicule ”Ego”, ce dernier recevant

des messages CAM (encapsulant des données GPS RTK) de la part des premier et second

véhicules, mesurant la puissance reçue RSSI associée à ces messages (en tant que métriques

explicites V2V dépendant de la distance), et finalement, fusionnant l’ensemble de ces

infomations avec ses propres données GPS locales. Le taux d’émission des messages CAMs

était d’approximativement 3 Hz, alors que le taux de fusion était plutôt d’environ 4 Hz.

10Une carte interactive de l’environnement de test est égalmeent disponible sur
http://u.osmfr.org/m/151124
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Figure 9.23: Trois véhicules coopératifs impliqués (gauche) dans le cadre d’une première
campagne d’expérimentations menée sur une portion d’autoroute de plusieurs km (droite)
à Helmond, aux Pays-Bas, en mai 2017.

Malgré ce taux relativement bas de 4 Hz, il a été montré que l’algorithme VA-CLoc

surpassait assez nettement le GPS standard pour les deux trajets réalisés et ce, dans tous

les régimes d’erreur (9.24), même si le gain était moins important qu’escompté initialement.

Ce résultat est en partie lié à la forte dispersion observée sur la mesures V2V RSSI, mais

aussi et surtout, au faible nombre de véchiules impliqués dans le processus de coopération

(2, au plus), au faible taux d’émission des CAMs (3 Hz en moyenne, au lieu du taux

critique attendu de 10 Hz) et finalement, à la topologie relative défavorable (les 3 véchiles

circulant en ligne et le véhicule en charge de la fusion étant situé à l’arrière, donc en

périphérie du groupe). D’autres analyses ont d’ailleurs permis de confirmer que l’erreur

de localisation était de loin dominée par l’erreur commise dans la dimension orthogonale

à la route, alors que le meilleur gain observé du fait de la coopération survient surtout

dans la dimension co-linéaire à la route.

Dans le cadre du projet européen HIGHTS (H2020-636537), une seconde campagne

d’expérimentations, plus complète et propice au test des algorithmes VA-CLoc, a eu lieu à

Helmond en fin d’année 2018 (ex. mesures V2V IR-UWB disponibles, topologie VANET

variable, fréquence d’émission des CAMs accrue...). Au moment de la rédaction de ce

résumé étendu, les données étaient toujours en cours d’exploitation.
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Figure 9.24: Valeurs critiques d’erreur de positionnement (c.-à-d., pour CDF=10%, 50%
et 90%) issue de la fusion ITS-G5/GNSS/IMU ou d’un positionnement standalone dans
le cadre de la première campagne d’expérimentations menée sur une portion d’autoroute
de plusieurs km.
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Appendix B

General Taxonomy of Localization

Algorithms

Localization algorithms can be classified in many ways and according to various criteria [30,

84,96,141,142]. A possible taxonomy in the more specific context of VANETs or connected

vehicles is briefly described in the following. Throughout this chapter (and also hereafter in

the remainder of this thesis), we define anchor nodes as known-location nodes (or vehicles,

devices, sensors, etc.). Similarly, target nodes refer to unknown-location nodes, for which

locations must be determined.

B.1 Direct versus Two-Step

The localization technique can be performed directly from sensor signals (i.e., waveforms),

which is also called direct localization, or by a two-step process consisting of i) an in-

termediary parameter measurement, during which certain parameters are extracted from

the signals and ii) a position estimation step, during which the position is inferred based

on those signal parameters. Various types of parameter measurements are surveyed in

Section C.

When compared to the direct approach, the two-step approach is typically adopted due

to its low complexity and modularity at a price of suboptimal solutions [29, 96, 143] due

to estimation problem (e.g., range estimation) in the intermediate step and measurement

model approximations [144].
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B.2 Centralized versus Distributed

From both architecture and computation points of view, centralized algorithms adopt a

data fusion center which maintains an aggregate state vector for all target nodes whereas

in distributed algorithms, multiple fusion engines on the nodes compute their own posi-

tions based only on locally gathered information [84,96,104,141]. Specifically, centralized

algorithms aim at computing the locations of multiple nodes simultaneously after collect-

ing all required input information to a central point in the network (at as self-elected or

assigned vehicle leader, as an element of the road infrastructure/edge server, or even in

the cloud). On the contrary, in distributed strategies, each single node carries out its own

data collection and calculations, based on the information received from its neighbors. Ac-

cordingly, these approaches tend to alleviate the usual scalability, overhead, latency, and

high computation issues of centralized approaches [104]. However they provide usually

suboptimal solutions in terms of accuracy and may face convergence issues in comparison

with centralized schemes.

B.3 Absolute versus Relative

Absolute localization produces position estimates in a global coordinate system while

different local coordinate systems are used by different nodes in relative localization.

Though several ITS applications are only interested in solving relative localization

such as ACC or even some autonomous driving systems1, absolute localization is a critical

requirement for the deployment of C-ITS to operate effectively. This is because each

vehicle needs to exchange its position and velocity data in order to predict other vehicles’

positions and build its own LDM. If two vehicles determine their positions in different

coordinate systems, these positions cannot be used to infer the necessary information

(e.g., the distance between them).

B.4 Range-Based versus Range-Free

Range-based techniques (aka fine-grained technique) rely on the point-to-point (P2P) dis-

tance or angle estimation between nodes (e.g., signal-strength-based, time-based, direction-

1In [145], the Stanford team demonstrates an autonomous car relying on a lidar-based relative localiza-
tion approach in a stored map without any absolute GNSS.
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based, or hybrid techniques). Accordingly, the position of a target node is estimated using

trilateration or triangulation. On the other hand, range-free techniques (aka coarse-grained

techniques) exploit connectivity information to achieve the position estimation. They

could be based on either hop counts (e.g., DV-hop [146]) as a distance estimate to anchor

nodes, or centroid algorithms where the position estimate is the average of the positions of

detected anchor nodes [147], or area-based techniques such as point-in-triangulation (PIT)

and approximate PIT (APIT) tests [148]. Range-free systems are cost-effective at the ex-

pense of less accurate position estimates compared to range-based ones [141, 149], for

instance due to strong inter-node range approximations and/or anisotropic network prop-

erties.

B.5 Noncooperative versus Cooperative

Depending on the use of device-to-device (D2D) communications between the mobile target

nodes, one can also classify localization techniques as noncooperative localization (non-

CLoc) or cooperative localization (CLoc). In non-CLoc, target nodes only exchange infor-

mation and make measurements with multiple anchor nodes. This may be not sufficient

depending on the infrastructure density and the nominal one-hop transmission range. On

the contrary, in CLoc, the target nodes additionally communicate (and make measure-

ments) with other mobile target nodes in range, especially when they are isolated from

the anchor nodes. Accordingly, the information gain from extra pairwise measurements

contributes to improve the accuracy, robustness, and coverage of the localization system,

through redundancy and spatial diversity [84,97].

B.6 Deterministic versus Probabilistic

Probabilistic algorithms compute the probability distribution (of the position estimate)

conditioned on the observation (i.e., posterior distribution) from the statistical models

of the measurements (i.e., likelihood) and estimated positions (i.e., prior distribution).

The deterministic option, however, does not exploit probability distributions (e.g., noise

distribution, prior distribution) but estimation is for instance based on least squares (LS)

or weighted least squares (WLS)2. Generally speaking, if the statistical models are known,

2However, under simplified additive centered Gaussian measurement noise assumptions, maximum like-
lihood (ML) (requiring likelihood only but no prior) is equivalent to WLS.



186 Appendix B. General Taxonomy of Localization Algorithms

probabilistic algorithms outperform deterministic ones [30,88,141].

B.7 Stand-alone Sensor versus Multisensor Fusion

Based on single or multiple information sources, localization techniques can be classified

into stand-alone sensor and multisensor fusion localizations, respectively. In principle,

multisensor fusion improves accuracies that cannot be achieved by the use of a stand-alone

sensor [3]. Other advantages include robustness, reliability, extended spatial, temporal

coverage, and increased confidence, etc. Yet, one main challenge lies in the design of

optimal fusion algorithms and architectures, which may lead to performance gains or

losses. Various types of data fusion methods applied to localization and tracking are

recalled with more details in Section D.



Appendix C

Location-dependent Radio Metrics

and Related Technologies

As the focus of this thesis is CLoc enabled by wireless communications, this section presents

various radio measurement categories that can be obtained from these links. We also

discuss position estimation techniques as well as preferred technologies for each type of

measurement.

C.1 Received Signal Strength Indicator

Received power (based on received signal strength indicator (RSSI) available in most wire-

less devices) is classically impacted by distance-dependent average path loss, large-scale

(slow) fading/shadowing due local radio obstructions (or other local physical propaga-

tion phenomena) and small-scale (fast) fading due to multipath under mobility (i.e., self-

mobility and/or scatterers mobility). From a localization perspective, RSSI readings are

usually averaged values (in either time or frequency) to mitigate the latter small-scale

fading and capture uniquely the most meaningful range-dependent effects (i.e., path loss

and correlated shadowing) [96, 150, 151]. Admittedly, a widely used representation of the

power path loss relies on the following log-normal model:

Pr(d) = P0(d0)− 10np log10

(
d

d0

)
+ s, (C.1)

where Pr(d) [dBm] is the average received power at a distance d from the emitter, P0(d0) [dBm]

the reference received power at a test distance d0, np the path loss exponent, and s [dB]
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(a) (b) (c)
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Figure C.1: Trilateration via RSSI measurements (a) in the absence of errors, (b) with
some uncertainty due to inaccuracies in both measurements and model quantification, and
(c) with more complicated error statistics.

a Gaussian random variable with zero mean and standard deviation σSh accounting for

shadowing. This model is accepted in both LOS and NLOS scenarios though it is hard to

estimate channel parameter for the latter [141].

Under ideal circumstances, each RSSI measurement accounts for the position of a target

node on a circle, which is the distance between the transmitter and the receiver. In 2-D

localization, the intersection of at least three circles gives the position of the target node,

which is called trilateration (circular positioning problem), as shown in Figure C.1(a). In

practice, it is rare that all circles (or more complicated shapes than a circle depending on

error statistics) coincide exactly, as illustrated on Figures C.1(b) and (c).

Although position estimation can be performed directly from RSSI measurements with-

out estimating the distances, the accuracy of distance estimation indicates how much in-

formative and useful a particular RSSI measurements can be with respect to positioning.

Thus, the CRLB for an unbiased distance estimate d̂RSSI of d from the RSSI measurement

under the received power model in (C.1) is expressed as [29]:

√
var(d̂RSSI) ≥

log 10

10

σSh

np
d. (C.2)

This bound shows that RSSI-based range estimates have a standard deviation proportional

to the true distance. For np = 2.5 and σSh = 3.7 dB1, at the actual range of 50 m, the

measured distance would be 67 m. This inaccuracy is one of the main drawbacks of RSSI

ranging and positioning. In addition, RSSI is a highly parametric that requires model

1These values are based on a small-scale field measurement campaigns carried out on a highway in
Helmond, Netherlands in May 2017 (see Chapter 7 for more details).
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calibration. It offers limited reliability, especially in non-static multipath environments,

where channel parameters (i.e., path loss, shadowing, etc.) may vary/change between the

moment they have been characterized and the moment they are exploited for localization

to interpret RSSI as meaningful range-dependent metrics. Yet, the main advantages of

this metric are its simplicity and its relaxed synchronization requirements. Due to the

issues mentioned above, it is mostly valuable in densely connected networks (and thus,

following cooperative approaches), where measurement redundancy and spatial diversity

over multiple links somehow compensate for single-link inaccuracy.

C.2 Time of Arrival

Time of arrival (TOA) is the measured time at which a wireless signal first arrives at a

receiver and equals to the time of transmission plus a propagation delay. Range mea-

surement dj→i is then deduced from this delay between transmitter j and receiver i as

dj→i = c(ti − tj) where tj is the time of transmission, ti the TOA at the receiver, and

c the speed of light (c ≈ 3 × 108 m/s). Importantly, tj is known by the receiver (e.g.,

encapsulated in the transmitted data packet) only if both involved devices are tightly syn-

chronized. This technique is called one-way TOA, as illustrated in Figure C.2(a). As it

is challenging to maintain highly accurate time synchronization between mobile devices,

multiple-way TOA schemes are usually employed.

On the one hand, in two-way ranging (or round-trip time of flight (TOF)), node i

transmits a packet to node j at time ti,0 according to its local clock. Node j receives

this packet at time tj,0 according to its local clock and responses with an acknowledgment

packet at time tj,1 = tj,0 + ∆tj after a processing delay ∆tj . Node i eventually receives

the response packet encapsulating the ∆tj at time ti,1 and computes the distance dj→i

through the relation 2dj→i = c(ti,1−ti,0−∆tj), as shown in Figure C.2(b). Though two-way

protocol can resolve clock offsets, a relative clock drift still induces a ranging errors (due to

delay ∆tj measured by neighboring device’s clock). On the other hand, three-way ranging

consists in a two-way ranging transaction coupled with the transmission of an extra packet

used to correct the relative clock drift, as shown in Figure C.2(c). This simple scheme

does not require any clock tracking mechanism at the expense of an increased number

of exchanged ranging packets. Details on how three-way ranging procedures can estimate
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Figure C.2: (a) One-way, (b) two-way, and (c) three-way ranging protocols.

these clock-related biases are provided in [152]. Ranging protocol aspects will be described

with more details in Section 5.2.1. Besides the above timing errors that can be partially

solved by ranging protocols, other main sources of errors include additive noise, multipath,

and mainly NLOS conditions.

First, the CRLB on TOA-based ranging for a single-path additive white Gaussian noise

(AWGN) channel is given by [97]:

√
var(d̂TOA) ≥ c

2
√

2πβ
√

SNR
, (C.3)

where β =
√∫∞
−∞ f

2|S(f)|2df/
∫∞
−∞ S(f)2df is the effective bandwidth of the transmitted

signal s(t) with spectrum S(f) and SNR denotes the signal-to-noise ratio.

Second, multipath propagation induces additional errors on TOA-based range esti-

mates. Specifically, several replicas of the transmitted signal arriving at the receiver via

different propagation paths decrease the SNR of the desired direct path [97]. This direct

path, carrying the correct distance information, might be weaker than the strongest path

and/or interfered by close secondary multipath components. Thus, multipath challenges

the receiver to detect the first arriving path [96,97]. Instead of finding the highest peak of

the cross-correlation, the time when the cross-correlation exceeds a threshold (e.g., false

alarm based on noisy parts of the signal, probability of missed direct path based on a

priori statistics) is discussed in [153].

Third, if the direct path is completely or partially obstructed, estimated distances are

larger than the actual distance, leading to measurement outliers (i.e., while assuming LOS

channel conditions) [141,154]. This problem can be countered by many NLOS mitigation
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techniques (e.g., WLS, constrained LS, identify and discard algorithms, robust estimators,

etc.) surveyed in [154].

The bound in (C.3) indicates that increasing the effective bandwidth provides more

accurate estimation of the TOA. Accordingly, IR-UWB and mmWave signals, whose band-

widths are larger than 500 MHz and possible hundreds of MHz respectively, have consid-

ered as ones of the best candidates for high localization accuracy. A significantly large

bandwidth also offers fine multipath resolution on the order of a nanosecond, thereby

leading theoretically to highly accurate ToA estimation.

Last but not least, by performing ranging via at least three anchor devices for 2-D

localization similarly to the RSSI metrics, one can compute a mobile position through

trilateration.

C.3 Time Difference of Arrival

Time difference of arrival (TDOA) performs the time difference of TOA measurements

in order not to depend on the timing offset of the target node. In other words, this

measurement only requires tight synchronization between the anchor nodes but no syn-

chronization between anchor and target nodes. TDOA can operate according to one of the

following schemes. For network-centric localization, the target node broadcasts a signal to

the anchor nodes and these anchors shares their estimated TOA to compute the TDOA

values. For self-localization, multiple signals from synchronous anchor nodes arrives at

the target node to compute the TDOA measurements. This mobile-centric option is also

called O-TDOA (for observed TDOA) and is in use in certain cellular systems where base

stations are synchronized through GPS time. In this case, TDOA can also be computed by

maximizing the cross-correlation value between the signals coming from a pair of anchor

nodes [96,155,156].

In 2-D localization, each TDOA measurement gives a hyperbola (with foci at the two

anchor nodes) on which the target node lies. Conceptually, the ideal position of the target

node is then the intersection of all hyperbolas, which is called hyperbolic localization.

The TDOA-based localization is depicted in Figure C.3. Finally, the preferred underlying

technologies as obviously similar to that considered for TOA-based localization.
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Figure C.3: 2-D localization based on TDOA measurements.

C.4 Angle of Arrival

Angle of arrival (AOA) estimation provides relative direction information to neighboring

devices. Nodes equipped with antenna array or directional antennas can measure this

AOA [97, 142]. By measuring the difference in arrival times for a transmitted signal at

different antenna elements, the direction of an incoming signal is obtained, as illustrated in

Figure C.4(a) for a simple case of uniform linear array (ULA) [96]. Note that narrowband

AOA-enabled devices often rely on phase delay φ rather than time delay τ through the

relation φ = 2πfcτ , where fc is the center frequency [97].

The location of the target node is then determined by the intersection of two angle

direction lines, each formed by the target node to anchor nodes, which is called triangu-

lation, as shown in Figure C.4(b). However, some configurations do not allow to identify

the unique position of the target node i.e., θ1 = θ2 = 90◦ in the simplified example of

Figure C.4(c). Accordingly, one would need more anchor nodes to resolve this ambiguity.

Obviously, small angular error translates to a large error in lateral distance especially

when the target node is far from the anchor nodes.

The adoption of multiple antenna elements implies higher costs and lager device sizes.

In addition, this technique is vulnerable to multipath propagation, NLOS scenarios, and

array precision [154,157]. Yet, AOA is a key measurement for future 5G localization since

mmWave frequency allows to package more antenna elements in a small area [97, 158]

and angular estimation is somehow an intrinsic feature and a communication-oriented

requirement in 5G mmWave (e.g., to be able to track the mobile users). Interestingly,

the combination of high attenuation at these mmWave frequencies as well as the use of
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Figure C.4: (a) Signal arrival at a ULA, (b) 2-D triangulation, and (c) ambiguous trian-
gulation.

directive antenna systems mitigate usual multipath issues, thus contributing to improve

the accuracy of AOA measurements.

C.5 Phase Difference of Arrival

Phase difference of arrival (PDOA) basically consists in sending signals on several fre-

quencies and measuring the phase offsets at the receiver. As a signal propagates in time,

how fast its phase accumulates depends on its frequency. Considering transmitted signals

at frequencies f1 and f2, the TOA (and thus the distance) is proportional to the phase

difference and inversely to the frequency difference f2 − f1. Yet 2π phase periodicity and

multipath cause unavoidable ambiguities in estimating the distance [157]. A good example

is the “Chronos” WiFi-based system recently demonstrated by MIT that performs PDOA

over multiple sub-bands of the WiFi spectrum spanning from 2.4 GHz to 5.8 GHz (thus

emulating synthetic ultra large bandwidth), while claiming decimeter-level accuracy [159].

On the other hand, IEEE 802.15.4/ZigBee-compliant devices can also issue ranging solu-

tions based on PDOA measurements [18].

C.6 Hybrid Measurements

Hybrid measurement merges more than one type of measurement among the RSSI, TOA,

TDOA, AOA, and PDOA metrics previously discussed. This could either be based on

multiple measurements issued over each given link, or based on multiple radio technolo-

gies, following a heterogeneous deployment scenarios (i.e., one per metrics). Such hybrid

method helps to improve accuracy and robustness/resilience (for instance, when a certain

kind of metrics/technology fails, other independent kinds/technologies may still operate
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properly, etc.), and to avoid ambiguity in case of limited available infrastructure (e.g.,

number of anchor nodes) [29,141,160].

If both the AOA and TOA are jointly measured, one anchor node is sufficient. This

scheme can solve out the near-far effect in cellular networks, when a mobile station is

much closer to its serving base station than others. Accordingly, the SNR of the farther

base stations is much lower causing a degradation in the quality of the measurements

with respect to them, and thus localization accuracy if using trileration or hyperbolic

approaches [30]. Hybrid AOA/TDOA approaches can thus eliminate the ambiguity when

the target node and the two anchor nodes are linear in Figure C.4(c). Various combinations

are feasible depending on applications, infrastructure, as well as environment. They are

summarized in [141].

C.7 Fingerprinting

Fingerprinting or pattern matching is based on the fact that the mapping between the

signal characteristics and the position of a target node is bijective or one-to-one. Any

fingerprinting localization technique is conducted in two phases, namely:

• Training (offline) stage: A database is built in a site survey by dividing it into small

grids. The database then maps the small grid positions onto the characteristics of the

measurements called fingerprints. Besides the mostly experimented RSSI in WLAN

and cellular networks, fingerprints could also include TOA, AOA, multipath power

delay profile (PDP), channel impulse response (CIR), etc. [18, 29, 96]. Note that

more recent approaches -yet not fully mature- tend to build and refine the database

on the wing, following a participatory approach, jointly with the following online

stage.

• Real-time (online) stage: The online signal measurement is correlated with the

stored fingerprints based on a “matching criterion”. The position of the target

node is derived from the location(s) whose fingerprint(s) best match(es) the mea-

surement. The algorithm can be deterministic based on similarity metric (e.g., k-

nearest neighbors (k-NN), support vector machine (SVM), linear discriminant anal-

ysis (LDA), etc.) or probabilistic based on statistical inference (e.g., Bayesian net-

work, expectation-maximization (EM), Kullback-Leibler divergence (KLD), etc.) [161].
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One major challenge of the fingerprinting is the construction of a database which may

easily grow very large depending on the complexity of the fingerprints and the granularity

of the grid positions. In addition, the database must be updated as often as there are

significant changes in the environment, meaning a lot of efforts. Yet prominent advan-

tages of fingerprinting-based positioning are its accuracy and its robustness in challenging

multipath and NLOS [29,141]. Moreover, the technique does not require any measurement

model.
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Multisensor Fusion Methods

In the previous section, we have mostly revised general radio-based localization metrics,

pointing out their pros/cons, as well as representative standards and technologies relying

on these metrics. One step ahead, introducing heterogeneous measurement data, and even

including possibly other modalities (i.e., non-radio metrics such as inertial units, maps,

etc.) in the problem leads to the definition of fusion architectures and algorithms.

D.1 Architectures for Multisensor Fusion

Depending on where the data fusion task is performed in the global data flow, there exists

three types of fusion paradigms as follows [3]:

• Fusion of raw observational data (aka data level fusion) is illustrated in Figure D.1(a).

Data from each sensor are aligned in time for central processing. Theoretically, this

centralized fusion architecture is the most accurate way to fuse data [3]. Sequential

estimation techniques such as Kalman filters are for instance used herein and will

be presented also in this chapter.

• Fusion of states is described in Figure D.1(b). Each sensor provides an estimate

of the state (i.e., position and velocity) using its individual measurements. These

states from multiple sensors are aligned and then fed into a fusion engine to obtain

a fused state. In general, state level fusion is not as accurate as the data level fusion

because of information loss between the sensors and the fusion process [3].

• Hybrid fusion that allows fusion of either raw data or states is depicted in Fig-

ure D.1(c). The hybrid architecture provides more flexibility to combine states and

196
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Figure D.1: Generic fusion architectures: (a) centralized (low-level), (b) autonomous
(high-level), (c) hybrid (partial reproduction and simplification of [3]).

data depending on available sensor information.

D.2 Statistical Estimators

In this section, we provide a brief overview of important estimation techniques, which are

at the center of the fusion architectures discussed above. Mathematically, an unknown

parameter x (e.g., position or state) is estimated from an observation z (e.g., sensor

measurements). The problem can be formulated by the following observation model (aka

measurement model):

z = h(x) + n, (D.1)

where h is the observation (measurement) model function and n is the observation (mea-

surement) noise. Depending on the availability of prior information about x, non-Bayesian

or Bayesian estimation techniques can be applied. Within the context of the Bayesian tech-

niques, we then consider sequential estimation (i.e., filtering) which is central for tracking
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problems.

D.2.1 Non-Bayesian Estimators

Two popular non-Bayesian estimators in which the state of interest x is assumed to be an

unknown deterministic parameter are least squares (LS) and maximum likelihood (ML)

estimators.

The LS estimator does not require any information about the statistics of n and min-

imize the squared error as follows:

x̂LS = arg min
x
‖z− h(x)‖2. (D.2)

If the measurements are characterized by different accuracies, the weighted LS (WLS) can

be performed as

x̂WLS = arg min
x

(z− h(x))†W(z− h(x)), (D.3)

where W is the positive definite (and by definition symmetric) weighting matrix, whose

entries reflect the confidence in the different measurements.

The ML estimator exploits the statistics of n and maximizes the likelihood function

p(z|x) as follows:

x̂ML = arg max
x

p(z|x). (D.4)

D.2.2 Bayesian Estimators

Two popular Bayesian estimators which assume x as a random variable with a priori

distribution p(x) are the minimum mean squared error (MMSE) and the maximum a

posteriori (MAP) estimators.

The MMSE estimator is the mean of the posterior distribution p(x|z) ∝ p(x)p(z|x) as

x̂MMSE =

∫
xp(x|z)dx. (D.5)

The MAP estimator is the mode of the distribution as

x̂MAP = arg max
x

p(x|z). (D.6)
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Algorithm 7 Bayesian filter algorithm (bel(xk−1), zk)

1: Prediction:

bel−(xk) =

∫
p(xk|xk−1)bel(xk−1)dxk−1.

2: Correction:
bel(xk) = αkp(zk|xk)bel−(xk),

where αk is a normalization factor.

D.3 Bayesian Filters

In the previous section, the position of a target node is estimated using a single observation

at a time of interest. However, in practice, multiple observations are performed over time,

thus more accurate position estimates can be achieved by incorporating all of them. It

turns out that the task is simple for static node but not straightforward for mobile node. To

do this, a dynamic model (aka mobility model) of the target node is needed. Accordingly,

the tracking problem can be formulated using a state-space approach:

xk = fk(xk−1) + wk, (D.7a)

zk = hk(xk) + nk, (D.7b)

where xk is the state vector at time k, fk(·) the dynamic model function, {wk}∞k=1 an

independent and identically distributed (i.i.d.) process noise sequence, zk the measurement

vector, hk(·) the observation model function and {nk}∞k=1 an i.i.d. measurement noise

sequence. For simplicity, it is assumed that the process as well as the observation noises

are additive, and there is no control factor in the dynamic model. The state vector can

include more elements of interest (e.g., velocity, heading, etc.) in addition to the position

coordinates.

A Bayesian filter represents its belief about a system at time k as a conditional prob-

ability over the state xk given all available measurements z1:k = {z1, z2, . . . , zk} i.e.,

bel(xk) = p(xk|z1:k). (D.8)

It is assumed that the prior belief bel(x0) = p(x0) is known. Under the Markov assumption,

the belief bel(xk) can be recursively calculated from the bel(xk−1) to track the state of a

dynamic system following Algorithm 7. In the following sections, we will describe various

optimal and suboptimal approaches to implement the Bayesian filter algorithm.
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Algorithm 8 Kalman filter algorithm (xk−1, Σk−1, zk)

1: Prediction:

x̂k|k−1 = Fkx̂k−1,

Σk|k−1 = FkΣk−1F
†
k + Qk.

2: Correction:

Sk = HkΣk|k−1H
†
k + Rk,

Kk = Σk|k−1HkS−1
k ,

x̂k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1),

Σk = (I−KkHk)Σk|k−1.

D.4 Kalman Filter

Kalman filter (KF), named after its inventor R. E. Kalman in 1960 [162], is the most famous

and fundamental technique for implementing Bayes filters. The KF parameterizes beliefs

by the moments representation. Specifically, the belief bel(xk) is represented by the mean

x̂k and the covariance Σk. Posterior beliefs are always Gaussian in linear Gaussian systems

due to the property of Gaussian distribution that multiplying or adding two Gaussians

results in another Gaussian. This conjugate distribution makes the KF optimal when

recursively computing the posterior distribution for a linear Gaussian system. Accordingly,

the linear Gaussian form of the state-space model (D.7) can be expressed as follows:

xk = Fkxk−1 + wk, (D.9a)

zk = Hkxk + nk, (D.9b)

where Fk and Hk are known matrices defining the linear functions. The noises wk ∼

N (0,Qk) and nk ∼ N (0,Rk) are herein statistically independent. The Kalman filter

algorithm is thus presented in Algorithm 8 without mathematical derivation. The details

can be found in many papers and textbooks [27,86,88,162,163].

The complexity of the KF is O(n2
x + n2.4

z ) for each iteration, where nx and nz are the

dimensions of the state vector xk and the measurement vector zk, respectively [88]. In

particular, the O(n2
x) and O(n2.4

z ) are due to the matrix multiplication when updating

the covariance matrix Σk and the matrix inversion when computing the Kalman gain Kk,

respectively.
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Algorithm 9 Extended Kalman filter algorithm (x̂k−1, Σk−1, zk)

1: Prediction:

x̂k|k−1 = fk(x̂k−1),

Σk|k−1 = F̂kΣk−1F̂
†
k + Qk.

2: Correction:

Sk = ĤkΣk|k−1Ĥ
†
k + Rk,

Kk = Σk|k−1ĤkS−1
k ,

x̂k = x̂k|k−1 + Kk(zk − hk(x̂k|k−1)),

Σk = (I−KkĤk)Σk|k−1.

D.5 Extended Kalman Filter

In practice, the assumptions of linear dynamic and observation models with added Gaus-

sian noises are difficult to satisfy in order to apply the KF. The extended Kalman fil-

ter (EKF) eases one of these assumptions i.e., the linearity assumption. The key idea

underlying the EKF is a linearization via Taylor expansion. Considering the state-space

model in (D.7) where wi,k and vi,k are additive white Gaussian noises, it is expanded in

Taylor series with terms up to the first order as follows:

xk ≈ fk(x̂k−1) + F̂k(xk−1 − x̂k−1) + wi,k, (D.10a)

zk ≈ hk(x̂k|k−1) + Ĥk(xk − x̂k|k−1) + vi,k, (D.10b)

where F̂k and Ĥk are the Jacobian matrices evaluated at x̂k−1 and x̂k|k−1, respectively.

Accordingly, the EKF in Algorithm 9 has almost the same equations as the KF in Algo-

rithm 8. Higher order EKFs that retain further terms in the Taylor expansion are possible,

but rarely employed due to additional complexity [87,89]. Note that the Jacobian matrices

must exist to apply the EKF.

As the goodness of the linearization depends on the degree of nonlinearity of the state-

space model and the degree of uncertainty of the state estimate, special care has to be

taken when initializing and running the EKF in order to keep the uncertainty small [88].

Besides, the complexity of the EKF is on the same order as that of KF i.e., O(n2
x + n2.4

z ).

The difference is that the EKF has to compute the Jacobian matrices at each iteration of

the algorithm.
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D.6 Unscented Kalman Filter

Besides Taylor expansion in the EKF, one alternative is stochastic linearizion through the

use of a set of weighted so-called sigma points, and the resulting filter is known as unscented

Kalman filter (UKF). Specifically, these sigma points are deterministically extracted from

the Gaussian approximation of the belief bel(xk) and are propagated through the true

nonlinear functions f(·) and h(·). When compared with the EKF, the UKF computes

the posterior beliefs better than that of the EKF i.e., matching the third order of Taylor

expansion [164].

Central for the UKF is unscented transformation (UT) that propagates mean and

covariance information through nonlinear transformations [164]. For an n-dimensional

random variable x with mean x̄ and covariance Σx, the resulting 2n+ 1 sigma points X (i)

with associated weights w
(i)
m and w

(i)
c used for reconstructing the mean and the covariance,

are respectively generated using [165], as follows:

X (0) = x̄

X (i) = x̄ +
(√

(n+ λ)Σx

)
i
, i = 1, . . . , n,

X (i) = x̄−
(√

(n+ λ)Σx

)
i−n

, i = n+ 1, . . . , 2n,

w(0)
m = λ/(n+ λ),

w(0)
c = λ/(n+ λ) + (1− α2 + β),

w(i)
m = w(i)

c = 1/(2(n+ λ)), i = 1, . . . , 2n,

(D.11)

where λ = α2(n+κ)−n, α and κ are scaling parameters that influence how far the sigma

points are away from the mean x̄, β applies prior knowledge about the distribution of x

(β = 2 is the optimal for Gaussian distribution), and (
√

(n+ λ)Σx)i indicates the ith

row of the Cholesky factorization of (n+ λ)Σx. These sigma points are then propagated

through f(·) and h(·) depending on the step, thus capturing how these functions changes

the shape of the input distribution. The UKF algorithm employing the UT is described

in Algorithm 10.

The complexity of the UKF is as that of EKF with a constant factor [88]. In many

practical applications, the difference between EKF and UKF is modest [88], however the

UKF is free from computing the error-prone Jacobian matrices. Last but not least, the
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Algorithm 10 Unscented Kalman filter algorithm (x̂k−1, Σk−1, zk)

1: Prediction:

Xk−1 = (x̂k−1, x̂k−1 +
√

(n+ λ)Σk−1, x̂k−1 −
√

(n+ λ)Σk−1),

X ∗k|k−1 = f(Xk−1),

x̂k|k−1 =

i=2n∑
i=0

w(i)
m X

∗(i)
k|k−1

Σk|k−1 =

i=2n∑
i=0

w(i)
c (X ∗(i)k|k−1 − x̂k|k−1)(X ∗(i)k|k−1 − x̂k|k−1)† + Qk.

2: Correction:

Xk|k−1 = (x̂k−1, x̂k−1 +
√

(n+ λ)Σk|k−1, x̂k−1 −
√

(n+ λ)Σk|k−1),

Zk|k−1 = h(Xk|k−1),

ẑk =

i=2n∑
i=0

w(i)
m Z

(i)

k|k−1

Sk =

i=2n∑
i=0

w(i)
c (Z(i)

k|k−1 − ẑk)(Z(i)

k|k−1 − ẑk)† + Rk,

Σx,z
k|k−1 =

i=2n∑
i=0

w(i)
c (X (i)

k|k−1 − x̂k|k−1)(Z(i)

k|k−1 − ẑk)†,

Kk = Σx,z
k|k−1S

−1
k ,

x̂k = x̂k|k−1 + Kk(zk − ẑk),

Σk = Σk|k−1 −KkSkK†k.

UKF still requires (approximately) Gaussian distributions.

D.7 Particle Filter

Particle filter (PF), aka the sequential Monte Carlo (SMC) method, is a nonparametric

solution to nonlinear and non-Gaussian problems in which the KF-based methods above

may diverge. In PF, the belief bel(xk), which can be arbitrarily complex and multimodal,

is approximated by a particle cloud {x(p)
k , w

(p)
k }

P
p=1 of random samples or particles x

(p)
k

and associated weights w
(p)
k such that

∑
pw

(p)
k = 1 as follows [87,88,166]:

bel(xk) = p(xk|z1:k) ≈
P∑
p=1

w
(p)
i,k δ(xk − x

(p)
k ), (D.12)

where δ(·) denotes the Dirac delta function. This is obtained by marginalizing the ap-

proximation of the full posterior distribution i.e., p(x0:k|z1:k) ≈
∑P

p=1w
(p)
i,k δ(x0:k − x

(p)
0:k).

However, it is challenging and expensive from the computation point of view to draw

samples directly from p(x0:k|z1:k) due to its complex functional form [87, 89]. Thus, an
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Algorithm 11 Particle filter algorithm ({x(p)
k−1, w

(p)
k−1}

P
p=1, zk)

1: Draw samples x
(p)
k from the importance distribution:

x
(p)
k ∼ q(xk|x(p)

k−1, zk), p = 1, . . . , P.

2: Calculate new weights

w
(p)
k ∝ w(p)

k−1

p(zk|x(p)
k )p(x

(p)
k |x

(p)
k−1)

q(x
(p)
k |x

(p)
k−1, zk)

, p = 1, . . . , P,

and normalize them to sum to unity.
3: Preform resampling:

• Sequential importance resampling (SIR): Generate new P samples with replacement from the

cloud {x(p)
k }

P
p=1 so that the probability to take sample p is w

(p)
k and reset w

(p)
k = 1/P .

• Adaptive sampling: Only resample as above when the effective number of samples is less than
a predefined threshold Nth (e.g., Nth = 2P/3 [80] or P/10 [89])

N̂eff =
1∑

p(w
(p)
k )2

< Nth.

approximate distribution called the importance distribution q(x0:k|z1:k) is used instead,

from which one can easily draw samples. The weights are determined according to the

importance sampling principle [166]. In addition, the importance distribution is chosen

to factorize such that q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) in order to avoid

redrawing the samples and recomputing the weights for the entire time sequence when

new measurements are integrated. Put differently, one only draws new state from the im-

portance distribution q(xk|x0:k−1, z1:k), or even simpler q(xk|xk−1, zk) due to the Markov

assumption. This solution is known as sequential importance sampling (SIS). The PF

algorithm is then described in Algorithm 11.

Note that the algorithm includes a resampling step to avoid particle depletion, which

corresponds to a situation when all the particles have zero or negligible weights [87,89,166].

The idea underlying this step is to remove particles with very small weights and duplicate

particles with significant weights. Yet it also ruins the diversity of samples after a while.

One schemes to counteract this effect is to do the resampling when it is actually needed,

which is called adaptive sampling. Other approaches include resample-move algorithm,

regularization, or Markov chain Monte Carlo (MCMC) steps, etc. [167].

Also note that Algorithm 11 is a generic framework to develop many variants of the

PF depending on the choice of the importance distribution. The most basic and well-

known embodiment consists in using the state transition distribution as the importance

distribution i.e., p(xk|x
(p)
k−1) [87–89]. The resulting filter is called bootstrap PF as stated in
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Algorithm 12 Bootstrap particle filter algorithm ({x(p)
k−1, w

(p)
k−1}, zk)

1: Draw samples x
(p)
k from the state transition distribution:

x
(p)
k ∼ p(xk|x(p)

k−1), p = 1, . . . , P.

2: Calculate new weights
w

(p)
k ∝ p(zk|x(p)

k ), p = 1, . . . , P,

and normalize them to sum to unity.
3: Preform resampling.

Algorithm 12. This eases the implementation, but due to the inefficiency of the importance

distribution it may require a very large number of particles [89]. Other popular variants

are discussed in [87,168].

PF is approximately a factor P/nx more complex than the EKF, where P is the number

of particles and nx denotes the state dimension [80]. As the number of particles should be

large enough to cover the space of all states [88], it increases exponentially with the increase

in the state dimension. Accordingly, PF are inappropriate for high dimensional problems.

The effects of dimensionality can be diminished by marginalizing out states that can be

modeled without sampling, known as Rao–Blackwellized particle filter (RBPF) [80, 166]

or mixture Kalman filter (MKF) [169].
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Performance Metrics

To evaluate the positioning/tracking performance, we first define the localization error Ei

of the “ego” vehicle i. Ei is a random variable which takes sampled value ei,k at time ti,k

as follows:

ei,k = ‖x̂i,k − xi,k‖, (E.1)

where x̂i,k and xi,k represent respectively the 2-D estimated and true positions of the

“ego” car i at time ti,k. We are then interested in the empirical Cumulative Distribution

Function (CDF) of the positioning error Ei. Said differently, the probability that the

positioning error does not exceed a certain threshold can be specified for all threshold

values, that is

F (x) = Ei {p (ei ≤ x)} , (E.2)

where the expectation Ei{·} is taken over all the vehicles in the VANET. We then extract

characteristic values of the error statistics, such as the median error (CDF of 50%) or the

so-called worst-case (WC) error (arbitrarily defined for a CDF of 90% herein).

The second metric that we consider is the root mean square error (RMSE) of the whole

VANET’s position estimates as a function of time, which we defined as

RMSEVANET(k) =
√
Ei{e2

i,k}, (E.3)

where the expectation Ei{·} is taken over all the vehicles in the cluster during the global

time window k1.

1Recalling that vehicles asynchronously estimate their own positions grouped by the global time windows
(Figure ??), we do not extrapolate these positions at specific instants to avoid introducing extra errors.
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Appendix F

Generation of Correlated

Observations

As the spatial/temporal correlation properties and models have been investigated in Sec-

tion 4.2.1, we herein recall the SOS-based approach to generate the corresponding pro-

cesses in our simulations. Given the true 2-D GNSS receiver’s position x = (x, y)†, the

2-D correlated GNSS x- and y-error maps n̂x(x), n̂y(x) are drawn as follows:

n̂(·)(x) = σ
(·)
GNSS

√
2

N

N∑
n=1

cos
(

2πf (·)†
n x + ψ(·)

n

)
, (F.1)

where (·) can be either x- or y-coordinate, {ψ(·)
n t}Nn=1 represents a set of random phase

terms uniformly distributed over [0, 2π), {f (·)
n }Nn=1 = {f (·)

x,n, f
(·)
y,n}Nn=1 the 2-D random dis-

crete spatial frequencies that can be generated according to a given joint pdf p(f (·)) related

to the 2-D power spectral density (PSD) of the shadowing process (i.e., performing 2-D

Fourier transformation on (4.1)), by using a frequency sampling Monte Carlo method

(MCM), as detailed in [114].

Regarding the V2V RSSI measurements, with knowledge of both Tx’s 2-D position

xt = (xt, yt)
† and Rx’s position xr = (xr, yr)

†, the 4-D spatially correlated shadowing

map ŝ(xt,xr) is then generated using [111], as follows:

ŝ(xt,xr) = σSh

√
2

N

N∑
n=1

cos

(
2πf †n

(
x†t ,x

†
r

)†
+ φn

)
, (F.2)

where {φn}Nn=1 are random phase terms uniformly distributed over [0, 2π), {fn}Nn=1 =

207
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{f tn, f rn}Nn=1 = {f tx,n, f ty,n, f rx,n, f ry,n}Nn=1 4-D random spatial frequencies generated accord-

ing to a given joint pdf related to the 4-D PSD of the shadowing process (i.e., performing

4-D Fourier transformation on (4.3)) through MCM, again like in [111,114].

Moreover, following [111], we consider the shadowing symmetric property in V2V net-

works, leading to identical fluctuations on both sides of the link i.e., s(xt,xr) = s(xr,xt)

due to a common channel propagation path. Accordingly, we “symmetrically” manipulate

the aforementioned 4-D spacial frequencies and phases through symmetric MCM.
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