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Abstract—Network slicing is expected to be the main pillar
around which virtualization technologies together with SDN
control and NFV, will provide on-demand network and cloud
infrastructures and facilitate rapid service deployment. In this
paper we present JOX, an event-driven orchestrator for the virtu-
alized network, operating on top of the Juju management system,
that inherently supports network slicing. JOX is a python-based
generic network slicing orchestrator, with a plugins architecture
that is able to support different segments of a modern mobile
edge network. We present a concrete prototype implementation
of JOX for LTE, with experimental results considering footprint
analysis, performance metrics, and implementation experience
for slicing and orchestrating of an operational LTE network.

Index Terms—Network slicing, orchestration, cloud computing,
4G, 5G, SDN, NFV, RAN.

I. INTRODUCTION

In many ways virtualization technologies are solving funda-
mental weaknesses in traditional IT environments. However,
they have little to offer when they are not well suited to support
diverse services, when they are not agile with open interfaces
for management and control, while also when they are not able
to be optimized for specific use cases that are concurrently
exploiting shared infrastructures.

In order to support such functionalities, the concept of net-
work slicing has come about towards integrated 5G communi-
cations. A network slice is used to support the communication
service of a particular connection type with a specific way of
handling the control plane and user plane for this service [1],
[2]. The consensus of both academia and the industry is that
network slicing will rely on cloud-based approaches and the
main gears will be build around cloud technologies, Software
Defined Networking (SDN), Network Function Virtualization
(NFV), together with advanced orchestration tools [3], [4],
[5]. Network slicing will offer a way to enhance operational
efficiency, while reducing time-to-market for new services and
opening new business opportunities for Over-The-Top (OTT)
players and vertical industries.

In this paper we present JOX, an open-source orchestrator
for the virtualized network that natively supports network
slicing. Each slice supports one or multiple service offer-
ing tailored to specific business segment. Using JOX, each
network slice can be independently optimized with specific
configurations on its resources, network functions and service
chains. Inside the JOX core, a set of services is used to
operate and control each network slice, while at the same
time support the necessary interplay between resource and
service orchestration, Virtual Network Function Management

(VNFM) and Virtual Infrastructure Management (VIMs) as
these are defined in the ETSI MANO architecture [6]. VNFM
is the tool used to control the life-cycle management of Virtual
Network Function (VNFs) and Virtual Network Applications
(VNAs), whereas the VIM is responsible for managing the
virtualized infrastructure. From the implementation perspec-
tive, JOX is tightly integrated with the Juju VNFM framework
provided by Canonical [7]. The Juju system is also one of
the main VNFM for ETSI OSM [8].

Although there are many orchestration solutions avail-
able like Raft-IO in OSM [8], ONAP [3], and OpenStack
Tacker [9], they do not offer life-cycle management support
on per network slice basis. Furthermore, the operation at the
edge of network is fundamentally different from that of the
data-center, with a very sophisticated control plane and strict
requirements for the Radio Access Network (RAN) process-
ing. For the LTE network, issues like resource management
and isolation between slices are discussed in 3GPP TR 28.801,
but still no mature orchestration solution exists in the context
of network slicing. In that sense, the goal of JOX is to create
new vantage points on 5G orchestration targeting the edge
network, that will allow new policies to handle strict latency
or bandwidth requirements on per slice basis.

The core JOX characteristics and innovations are summa-
rized as follows and are analyzed in the following sections:

• slice-specific lifecycle management and a powerful north-
bound API;

• core services facilitate the optimization of the orchestration
procedures;

• a message-bus based plugin framework is exploited for
communicating with VIMs. JOX also supports RAN specific
plugins, like for example FlexRAN [10], in order to control
the physical or virtualized LTE eNodeBs;

• slice descriptors are coupled with the service configuration.
• network slice logic can be easily introduced as an applica-

tion for slice optimization.

In the following we describe the JOX architecture and we
analyze its core components, together with the functional-
ities offered. JOX partially covers the main network slice
lifecycle phases as identified by 3GPP TR 28.801, regarding
network slice pre-provisioning,instantiation,runtime operation
and decommissioning. To the best of our knowledge JOX
offers the first open-source orchestration implementation that
is able to support network-slicing targeting virtualized mobile
networks. We evaluate JOX performance, the efficiency of
the design and the ability to support network slicing. We
also demonstrate JOX in practice by running a use case
for building end-to-end LTE VNF service chains. For the978-1-5386-3416-5/18/$31.00 c© 2018 IEEE



necessary LTE network components and VNFs in all of our
demonstrations we exploit the open-source OpenAirInterface
(OAI) framework [11] and the FlexRAN protocol [10]. OAI
offers an open-source software implementation of the whole
LTE protocol stack for both the RAN and the core network.

The rest of the paper is organized as follows. In Section
II we present the related work. In Section III we present
the design goals and primitives of operation. In Section IV,
we present the JOX architecture, together with the main
functionalities and JOX core components. In section V we
evaluate JOX through footprint analysis and proof of concept
demonstrations. We conclude the paper and highlight some
future directions in Section VI.

II. RELATED WORK

A. Background Information on Network Slicing

The concept of network slices has been refined by
NGMN [1], adopted and adapted by the main Telecom man-
ufacturers like Huawei, Ericsson and Nokia. According to the
NGMN definition, a 5G network slice supports the commu-
nication service of a particular connection type with specific
requirements and configurations for handling the control and
data plane. A more generic definition is described in [12]
where a network slice can be defined as a composition of
adequately configured network functions, network applications
and underlying cloud infrastructures that are bundled together
to meet the requirement of a specific use case.

The concept is strongly coupled with SDN/NFV tech-
nologies [13], [14]. In [2], SDN and NFV technologies are
exploited to enable an dynamic sharing of network resources
among operators. In the LTE domain 3GPP SA2,SA5 and
3GPP radio access network (RAN) groups are building techni-
cal specifications to integrate Network Slicing in the upcoming
specifications. Network Slicing requirements are described in
[15] and 3GPP TR22.864 and TR23.799. 3GPP considers
a solution to enforce Network Slicing using the eDECOR
concept (3GPP, TR 23.711, release 14), and more recently a
technical report on study and provisioning of network slicing
for 5G networks and services (3GPP, TR 28.801 and TS
28.531, release 15). One of the objectives of these activities is
to combine the concept of 3GPP RAN sharing and eDECOR
to create an end-to-end Network Slice. In [16] a technical
approach is presented for slicing the LTE network.

B. ETSI MANO and 3GPP Orchestration Terminology

The ETSI NFV-MANO architectural framework is a col-
lection of functional blocks, data repositories and interfaces
through which information is exchanged for managing and
orchestrating network functions virtualization infrastructure
(NFVI) and VNFs. For ease of reading in Table I, we provide
a summary of definitions for the terminology used by ETSI.

VNF Orchestrator (VNFO): The main components of the
architecture that we focus in this work is the VNF Orchestrator
(VNFO). This is the software responsible to automate the
creation, monitoring and deployment of resources and services
in the underlying environment (software and hardware). Ac-
cording to ETSI, the following distinction must be considered:

TABLE I: Summary of MANO terminology

Acronym Description

V NF Is the virtualized network element like Router VNF,
Switch VNF, Firewall etc.

VNF A repository of all usable VNF Descriptors (VNFD).
Catalog VNFD describes a VNF in terms of its deployment

and operational behavior requirements
NFVI A repository of NFVI resources utilized for the

Resources purpose of establishing NFV services.
VNFO software responsible to automate the creation,

monitoring and deployment of resources and services.
VIM Virtualized Infrastructure Manager (VIM), manages NFVI

resources in one domain.
VNF Manages life cycle of VNFs. It creates, maintains and

Manager terminates VNF instances, installed on VMs which
(VNFM) the VIM creates and manages.

• Resource Orchestrator (RO): coordinates, authorizes, re-
leases and engages NFVI resources among different Point
of Presence (PoPs) or within one PoP, and

• Service Orchestrator (SO): SO overcomes the challenge of
creation of end-to-end services among different VNFs (that
may be managed by different VNFMs). Service Orchestra-
tion creates end-to-end service between different VNFs.

According to 3GPP a Network Slice Instance (NSI) is a set
of functions and the resources of these functions which are
arranged and configured, forming a complete logical network
(3GPP TR23.799, TR28.801). A NSI may operate over multi-
ple network slice subnetworks. For each sub-network a specific
set of requirements is driving the creation of a Network Slice
Sub-network Instance (NSSI). The NSSI is controlled through
interaction between the Network Slice Managemenent Func-
tion (NSMF) and the corresponding Network Slice Subnet
Management Functions (NSSMF). The NSSIs are integrated
in the NSMF in order to provide and instantiate the end-to-end
NSI. JOX is targeting RAN-NSSMF functionalities, however
it can also be used as a NSMF solution.

C. Orchestration Software Landscape

Towards 5G, standardization and open-source are becoming
complementary to allow fast innovation, which is why most
of the current solutions are open-source.

• Open Source MANO (OSM) [8]: published under Apache
v2 license, and includes the SO, the RO and a configuration
manager. In one of the realization of the architecture, the
Juju framework is used to provide the VNFM functionalities,
while Riftware is used to support orchestration.

• Tacker [9]: is an official OpenStack project building a
VNFM and a NFVO to deploy and operate Network Services
and VNFs on the OpenStack infrastructure platform. It
targets data center environments.

• ONAP [3]: brings together Open ECOMP from AT&T and
Open-O projects as a comprehensive platform for real-
time, policy-driven orchestration and automation of physical
and virtual network functions. It is supported by Linux
Foundation. Open-O had adopted standard service modeling
languages YANG and TOSCA to ensure commonality.

• OPNFV: is another realization of ETSI MANO framework,
supported by the Linux Foundation. OPNFV integrates
OpenStack as the supporting cloud management system and
also considers for a number of SDN controllers.
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Fig. 1: JOX support for two network slices. In slice A the OAI
eNodeB and EPC are deployed in a single VM. In slice B a
cloud-RAN chain using disaggregated RAN is deployed over
different VMs.

The SONATA and 5GEx projects12 introduce two new
types of orchestrator following the ETSI MANO design [17],
[18]. The architecture of JOX is similar to the SONATA
design, exploiting a message bus to support the plugin com-
munication subsystem. A similar proposal comes from Open-
Baton NFVO [19], designed and implemented following the
ETSI MANO specification. Similarly,OpenBaton uses message
queueing for the communication with the VNFM. Note, how-
ever both the OpenBaton and the SONATA solutions do not
inherently support life-cycle management of network slices.
Other frameworks such as CloudNFV, Puppet, Chef, Cloud
Foundry provide a fast applications development and deploy-
ment cycle. We also mention the Unify solution that describes
a multi-layer service orchestration in a multi-domain network
[20] and [21]. Third party solutions also exist like Hurtle that
delivers software as services and can easily compose and chain
network functions to deliver end-to-end services [22].

III. DESIGN GOALS AND PRIMITIVES

JOX is a multi-service orchestrator, developed as a part
of the Mosaic5G opensource ecosystem3. Mosaic5G aims to
provides agile mobile network service delivery platforms for
4G-5G R&D. JOX satisfies the following design goals:

• Support Network Slicing: JOX enables network
slice lifecycle management and allows to orchestrate each
network slice independently. As depicted in Fig.1 using JOX
one can deploy a number of network slices with different
end-to-end logical networks. These are optimized for a
particular service through custom logic. Each slice operates
over common VNFM and VIM infrastructures (see Fig. 2).

• Support Orchestration for the Mobile

Network: JOX exploits RAN and CN specific plugins
to efficiently orchestrate the edge network resources and
services. For example, orchestrate a new slice across

1www.sonata-nfv.eu
25gex.eu
3mosaic5g.io
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Fig. 2: JOX interactions with VNFM and VIMs

multiple eNodeBs, partition the radio resources and deploy
a dedicated CN for this newly generated slice.

• Optimize the operational environment: JOX
runs slice-specific logic (e.g. where to schedule VNFs and
how to optimize a slice) as an application running on top
through a northbound API (see Fig. 2). Global optimization
(considering all slices) is also possible as a Python applica-
tion within the JOX orchestrator.

• Isolation: JOX guarantees that different network slices
are isolated from each other in the management plane.

Fig. 3 presents the main components of JOX including
JOX Network Slices (JSlices) and JOX Clouds

(JClouds) and their relationship, which are detailed below.
1) JOX Network Slices (JSlices): In JOX a

slice is represented by a JSlice object that is defined as
a set of models (called JModels) together with a policy
specification. This policy may be global for all the slice
models, while every model is deployed over a specific cloud
infrastructure that is controlled by a single VIM (e.g. RAN-
VIM). Every JModel is a bundle of:

• Resources: include all physical (e.g. servers, spectrum) and
virtual resources (e.g., VMs).

• Services: include physical or virtual network functions
(PNFs and VNFs) such as eNodeB and vMME and vir-
tualized network applications (VNAs) (e.g. monitoring).

• Service chains: describe the relationship between
PNFs/VNFs/VNAs (e.g. between eNodeB and vMME).

• Policy: a JModel-specific policy (e.g. do not use server A).

Each service or resource is defined using a JSON descriptor
that defines requirements, capabilities and configurations.

2) JOX Clouds (JClouds): Every JCloud object
hosts all the underlying cloud resources and interacts with
the physical infrastructure and the cloud control mechanisms
through two channels: (1) the VNFM for a set of basic
funtionalities, and (2) directly with the VIM for fine-grain
monitoring and control. Although VNFM is able to interact
with the VIM, it is the direct communication between the
orchestrator and the VIM that can offer the maximum level of
control of the underlying physical and virtual infrastructure.

JOX is a single VNFM - multi VIM orchestrator. The
VNFM is Canonicals’s Juju, that interacts with charms that
act as structured NFV element managers driven by Juju. A
charm encapsulates a VNF as a service and contains all the
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necessary hooks (i.e. scripts and primitives) to manage the life-
cycle of the VNF and its relationships within service chains. It
contains all the logic required to deploy, configure, integrate,
scale, and expose the service to the outside world, that are
available to JOX through a rich Juju API. We highlight that a
rich set of OAI-based 4G and a subset of 5G VNFs (for both
RAN and CN) are already available as Juju charms in the Juju
store (an online VNF catalog [7]).

Juju supports a number of VIMs and the clouds includ-
ing OpenStack, LXC, MaaS, Joyent, Amazon, Cloudsigma,
Vmware, HPCloud, GCE and Azure. With JOX, the underlying
cloud resources are extended with physical or virtual RAN
and CN elements and a set of resources that also include
for example radio spectrum and resource blocks. Note that
while JOX exploits all the services that are exposed by Juju
regarding the resource management of the infrastructure, the
API between Juju and VIMs is restricted to a basic set of
functionalities (e.g., deploy VMs with specific requirements).
In order to retrieve/analyze the real-time performance and also
trigger custom events, JOX also exploits direct communication
with the VIMs through a plugins framework.

IV. ARCHITECTURE, SERVICES, AND IMPLEMENTATION

The architecture of JOX is depicted in Fig. 4. JOX exposes
a REST northbound API to enable monitoring, control, and
programming of each slice. A set of core services is used in
support of slice-specific life-cycle management, data handling,
monitoring and template management. In the following we
provide design and implementation details for each compo-
nents.

A. JOX Core Services

JOX provides two main services in support of slicing:

• JOX Slices Controller (JSC): responsible to host
and control all the instantiated JSlices. This is the place
where global optimizations can be performed.

• JOX Clouds Controller (JCC): responsible to host
and control all the instantiated JClouds. JCC offers services
to the JSC.

Other core services are related to the life-cycle management
of JOX itself and a logging subsystem.
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Fig. 4: JOX architecture

B. Northbound API

JOX exposes a northbound REST API. Using the exposed
methods one can create a JSlice, connect to a JCloud and
adjust all the models, resources, services and service relation-
ships. In more detail, JOX is aligned with the recommenda-
tions of the basic operations that are defined by 3GPP in TR
28.801. According to this the Network Slice Instance (NSI)
life-cycle phases are preparation, instantiation, configuration,
activation, runtime control and decommissioning. Through the
API methods related to these phases are exposed.

C. Network Slice Definition, Control and Management

1) JSlice Preparation Phase: The first step in the prepara-
tion phase is related to the NSI design. In this step the NSI
owner defines a set of resources, requirements and services,
service relationships and the corresponding configurations.
Currently, JOX provides a simple JSlice definition. At this
stage of developments and the current research status, it is
impossible to support a very large set of functionalities, since
standard templates definitions is currently an open research
issue.

In Fig.5 an empty network slice (without any resources or
services) id depicted that can be created as a POST message to
JOX. In the subsequent release of JOX, template descriptions
will be aligned with the work delivered in OASIS TOSCA and
the modeling work in IETF [23].

For every model we utilize different namespaces for re-
sources, services and the bindings to services. This way a
resource (e.g. a VM) is described using a JSlice-JModel

specific name. For example in the top right of Fig. 5 the
definition of a LXC-VM is described. The container identifier
for the specific model is “k2” while the container is hosted in
machine “cF45” that can be a physical machine or a container
or a KVM-VM. Note that in order to efficiently manage the
resources through the plugin framework, for each resource
a number of identifiers is used. For example a container
carries its LXC id “juju-97ba7d-0”, its Juju identifier “0” and
its JModel id “k2”. In the service provisioning time, each
JSlice/JModel is isolated, so only the JModel identifiers are
required, and there is no need to know what is the name the
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{ 

  "slice-template-version": 1.0, 

  "creation-date": "2016-23-07", 

  "juju-version": 2.25, 

  "description": "slice template", 

  "slice-name": "default-slice", 

  "slice-owner": "admin", 

  "slice-policy-rules":{} 

  "models-list": [ 

    { 

      "model-name": "default-model", 

      "model-cloud": "local",  

      "model-policy-rules":{} 

      "resources": [   

  "machines-list": [ 

 ], 

   "network":{}, 

 …, 
      "services-list": [ 

      ], 

      "service-relations": { 

        "description": “", 
        "service-relations-list": [] 

      } 

    } 

  ] 

} 

      { 

          "machine-type": "lxc", 

          "machine-template": "", 

        “mid-slice": "k2", 
          "series": "xedial", 

          “mid-slice-host": “cF45", 
          "memory": "5", 

          "disc-size":"2",      

          "os-series":"xenial", 

          "auto": "True" 

        } 

{ 

  "description":"test service", 

  "entity_url":"mysql", 

  "application_name":"test-mysql",

  "series":"xenial", 

  "channel":"stable", 

  "to":"k2" 

  "sla":{},  
   "config":{} 

} 

Virtual Machine Definition 

Service Definition 

JSlice Definition 

Fig. 5: JOX JSlice definition in JSON representation.

hypervisor assigns to the VM. These are discovered/assigned
internally by JOX. At the bottom of the figure the definition
of a ”mysql” service is described where the prefix “to” simply
places the deployment of the service to container “k2”.

Besides the information related to “where to deploy” the
service, the configuration of the service is passed together
with its definition; otherwise default configuration is loaded.
This is very important and can greatly assist the preparation,
the instantiation and activation phases. For example in custom
made solutions, fine-tuning a mysql server and connecting it
to the HSS service requires from minutes to hours. In JOX this
flexibility is enabled by the Juju framework, which triggers the
corresponding Juju charm hooks (e.g. configuration changes
and relation changed).

In the pre-provisioning phase a negotiation routine with the
VIM can also be executed. Such negotiation procedures were
described in [16], [5]. While a logical definition of services and
networks are initially requested by the slice, the VIM supports
the requested capabilities, SLA and QoS levels based on its
current state and the book-keeping information maintained by
the top-level orchestrator. The negotiation routine is currently
not supported by JOX.

2) Runtime: We consider that a modification of the runtime
state of a network slice is performed in two modes: auto and
manual. In the former the network slice controller detects
a performance degradation that leads to a SLA violation.
In such case, specific actions need to be performed through
interactions with the plugin framework. For example, increase
in memory and CPU power to support the current workload,
or increase the radio resources of a particular slice to increase
its data rate. In the manual mode, the network slice owner
is able to adjust the parameters and configurations of the
network slice and the corresponding sub-elements through the
northbound APIs. In both cases, a set of monitoring services
is exploited at the level of network slice (e.g slice is

healthy), the VNF, and the cloud infrastructure. These are
used to either trigger the necessary action sets or facilitate the
decision maker procedures.

The ability to monitor and adjust the network slice behavior
and characteristics in runtime is an extremely powerful feature

of JOX since it allows network slice logic to be easily
introduced. In the current version of JOX, this is achieved
through direct interactions with KVM, LXD hypervisors and
the plugins framework for the RAN. Automatic events creation
will be supported in future release.

3) Data Management: For the data back-end, the design is
based on the non-SQL REDIS server serving as in-memory
data structure store. In JOX we consider two types of data:
the configuration data and the runtime data. For each JSlice

the former are the data that are posted or pushed by the
JSlice owner to JOX to update the configuration of the slice
and its sub-elements. Example of such data updates are add

model, delete model, add machine to model or update a service

configuration. The runtime data are related to the actual current
state of the JSlice models on metrics like I/Os or the memory
usage of a VM.

One great challenge is related to the recreation of the slice
in case of failure. The reason is that JOX operates on top
of VNFM and VIMs that are unaware of the existence of
network slices. The state management of a JSlice is under
the full responsibility of the JOX orchestrator. If JOX fails for
some reasons, the VMs and the configured services (through
Juju VNFM) will still be operational; the JSlice state however
will be lost. Since the underlying VIM and VNFM systems are
still operational, the infrastructure and the services deployed
needs to be associated again with their corresponding slices.
The approach we currently consider is the serialization of the
entire JSlice object as a REDIS entry. This is only related to
configuration data (e.g. VM ”k2” belongs to JModel ”model-
k21” of JSlice ”default-slice”), which is an assembly of the
configuration requested by the slice owner. During operation
the runtime performance metrics (like CPU utilization, or
memory usage) are periodically stored in Redis as well and
thus in case of failure they can be restored.

D. Plugin Framework and Interplay with Juju

JOX interacts with the Juju VNFM using the Juju-python
2.25 API. A specific Juju plugin is responsible to update the
status of network slices services in runtime depending on the
events/messages received by JOX driven by the JSlice owner.
In order to interact with VIMs for the cloud infrastructure
and the RAN, JOX relies on a message-bus-based plugin
framework. The message bus implementation is based in the
RabbitMQ solution (v3.5.7 AMQP), while we use the Pika
library to exploit the RabbitMQ services.

In Fig. 6 a high level description of the agent-plugin
approach is described. For each resource, a local agent (called
JAgent) is instantiated responsible for providing two function-
alities: (1) monitoring, and (2) event handling. The former
is related to the statistics, measurements and status reports
that JOX and the JSlices need to know. The other is related
to the events that are driven by the orchestration logic, or
generated by the slice-specific applications, or even manually
from the JSlice owner. Inside JOX, a specific plugin (referred
as JPlugin) is loaded to interact with the JOX agent over the
message bus interface as well as with the JOX core services.
Regarding monitoring services, a Pub/Sub mechanism is used
for the JAgent/JPlugin messaging. The agent publishes the
monitoring information and the consumer plugin inside JOX
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receives information from a queue. For the event handling,
JOX relies on the RPC communication with a request/reply
pattern.

• Example 1 : In a physical host, a LXD JAgent is installed
for controlling LXC containers. Using the pylxd library
the JAgent retrieves information from the lxd hypervisor
or using custom libraries it can control the cgroups for
reallocation physical resources to each container. The JAgent

interacts with a LXD JPlugin inside JOX.
• Example 2 : For orchestrating LTE eNodeB resources a

JAgent is integrated with a FlexRAN controller, as de-
scribed in [10], using OAI-based LTE systems. In Fig. 7,
a high level representation of the solution is depicted. A
FlexRAN agent resides within the eNodeB communicating
and interacting with a FlexRAN real-time controller entity.
In contrast to traditional wired-SDN approaches, realtime
control and time-critical operations are also considered for
the programmability of the data plane, while retaining the
service continuity. The FlexRAN agent exposes a set of
RAN APIs, which can be used to monitor and control one or
many local network functions in the eNodeB. In this case
the JAgent is integrated with the FlexRAN controller (by
exploiting services from the controller’s northbound API),
while the orchestration procedures in JOX and the JSlice
drive the system operation.

E. Implementation

Table II provides a summary of the main libraries and
software used in JOX.

TABLE II: Summary of Implementation details

Component Library or framework used

JOX Core All JOX framework built in Python 3.5
RestAPI Flask v0.12.2
Database Redis server v 3.0.6, Redis python client v.2.10.5

Message bus RabbitMQ Server v3.5.7, JPlugins-JAgent: Pika v0.11.0
*note that JAgents can be implemented in any language
that supports the Rabbitmq bus

Juju VNFM Juju v2.2.4-xenial-amd64,juju python client v0.5.2

In Table III, we summarize an indicative list of the main
features that are available, under development or planned. As
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Fig. 7: JAgent integration with FlexRAN controller.

JOX is a living open-source orchestrator, there will be regular
updates and feature releases.

TABLE III: Summary of features supported

Feature Status

Provisioning, deployment-deletes of JSices supported
NF, VNF,VNA service chaining supported
JSlice runtime/config status save to Redis supported
JSlice runtime/config recovery under development
Auto action/events mechanisms planned
Manual Action mechanisms supported
Clustering support not in plans
Linux host, KVM, LXD, FlexRAN JPlugins supported
LL-MEC JPlugin under development
DOCKER, Openstack, FlexCore JPlugins planned
Negotiation routine with VIM planned
Negotiation routine with VNFM planned
SDN controller interaction planned
Support multiple VNFMs not in plans

The core of JOX framework is technology-agnostic, and
is able to support 4G/5G technologies through the plugin
architecture, as it is shown in Fig. 4 for RAN and CN
elements. Cloud-RAN concepts and 5G technologies can be
easily supported, using the necessary plugins that will interact
with the JOX Core.

V. EVALUATION

The goal of the evaluation process is to investigate the JOX
footprint, deployment times and network slicing operational
efficiency. We first present an analysis on the JOX footprint,
regarding issues like memory usage and CPU power consump-
tion. We then describe network slicing related performance
testing and investigate service chaining deployment times,
service scaling, and REST API response times.

In principle, a number of variables can be tuned which could
affect the effectiveness of the orchestration procedures. For
example, such parameters are the number of slices, the number
of models per slice, number and type of services or the number
and type of host machines, and statistical parameters, like the

6



(a) CPU overhead

(b) JAgent with FlexRAN

Fig. 8: PyVMMonitor profiling reports for JOX footprint

service request arrival rate distribution or the service lifetime
distribution.

A. JOX Footprint Analysis

In order to perform the necessary footprint evaluation,
we installed JOX in a 64bit Ubuntu Linux VM with 5GB
memory and 2 cores operating in 64 bit host equipped with
an Intel i5-5200U and 12GB memory. For each JModel,
all the instantiated VMs were LXC container-based and the
connectivity is provided using the Linux bridging driven by
Juju.

In Fig.8 presents the VM footprint of JOX using the
PyVmMonitor profiler for eclipse (10 samples/per second). In
all cases, a JAgent is activated to report statistics regarding
CPU, memory, storage, and network of the host machine.
Inside the JAgent, we exploit the psutil linux lib, with a report
interval of 10 secs. In Fig. 8(a) the CPU and the memory
footprint is presented when deploying a single slice with 1
JModel including the mysql service managed by its charm4

and hosted in 1 LXD container. It can be seen that during the
startup, the CPU utilization is close to 4%, while the memory
consumption is 47MB on average. During transient state the
average CPU utilization is close to 20%, but is decreasing
after deployment while the memory consumption is increasing
to 57MB. In principle a vanila JSlice deployment will affect
the memory usage (because of heap consumption), but not
the CPU utilization. The CPU utilization is increased when
the API is used to retrieve information or activate services.
In Fig.8(b), a single slice is deployed (1 model, with 1
machine and 1 service), where 3 remote clients are generating
HTTP GET requests to retrieve the serialized JSlice objects
(internally JOX retrieves this information from REDIS). It
can be observed that such requests greatly affects the CPU
performance, while the effects in memory consumption are
negligible.

Another very important issue to investigate is related to JOX
scalability. Fig. 9 shows the effects of increasing the number
of JSlices/JModels on the memory usage. In our experiments,
every model is a VNF service chain, deployed in LXC. As

4https://jujucharms.com/mysql/

TABLE IV: JOX performance Metrics

Description Average value

JOX loading time 70 ms
Access the configuration file of JOX 61.3 ms
Retrieve info for JUJU models 144 ms
Retrieve JSlice configuration 57 ms
Retrieve serialized JSlice json object 58.3 ms
JSlice loading times
Empty, with no models 1077 ms
1 model, 1 service, 1 machine 33 sec
2 models with 2 chained services, 2 machines each 7.37 min

expected, the memory footprint increases with the number
of JModels, however its amount is irrelevant of the service
deployed and remains constant among different type of slices.
Such a constant increase is because JOX only keeps the service
status and functionalities, and delegates service management
and maintenance to the underlying VNFM. The memory usage
of course of the overall system (JOX, VNFM and VIM) is
increased with the number of deployed services.
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Fig. 9: Effect of increasing the number of slices/models on the
memory usage. Every model is a chain of two services (either
mysql-OAI HSS, or mysql-apache2) deployed in LXC.

Other relevant performance metrics are presented in Ta-
ble IV, where the response times are the ones reported by
the HTTP client when using the REST APIs. These are
machine-depended metrics, however it can be seen that the
JOX loading time is very low. The reason is that in the
back-end, JOX exploits the non-SQL REDIS server, where
all the GET, SET, DELETE operations are extremely fast.5

In a local environment, under normal load conditions, any
information/configuration stored or retrieved in sub-second
timing.

Regarding JSlice deployment/updates/deletion times, an im-
portant observation can be made. As shown in Table IV, the
JOX’s response time for the deployment of a JSlice with two
models, carrying two service chains can be close to 7 min.
This is the timing seen by JOX based on the interaction and
reports received by the JUJU VNFM. Note however that the
time to actually bring up the service greatly depends on the
chained VNFs and their associated charms, the related hook
and the actual scripts that needs to be executed. For example,
the HSS service deployment time can be in the order of few

5See also the official REDIS website for benchmarking tools.
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minutes, whereas in case of the eNodeB it increases to tens
of minutes. Note also that as in any real deployment hardware
dependencies greatly affect the performance of the integrated
system.

B. Use Case: Building LTE VNF chains with JOX

JOX exploits a rich set of functions to enable network slic-
ing through Juju VNFM and charms. Each charm encapsulates
every underlying LTE network module as a VNF, leveraging
the OAI platform [11].6 As also shown in Fig.1, for every slice
the OAI solution can be chained using Juju relationship hooks
and appropriate VNFs. For example in a Cloud-RAN setting,
different functional splits can be exploited between the RRU
and the BBU VNFs.7

In the considered use case, JOX orchestrates the deployment
of standard LTE chain (eNB, MME, SPGW,MySQL, HSS)
for a new JSlice.8 Throughout this use case, OAI service
chains were deployed as real-time LTE platform. With the
support of Juju VNFM, JOX has the ability to fully automate
the deployment of a LTE network service chain in different
execution environments ranging from physical machine to a
container or a VM.

The physical server infrastructure was based on commodity
Linux-based machines, equipped with 6-cores i7-3930K CPU
at 3.2GHz and 16GB of RAM. Also two virtualization environ-
ments (Linux LXC containers and KVM) were considered as
the targets to deploy the LTE services. We highlight that during
the deployment for all the VNFs all the kernel dependencies
were automatically satisfied (because of the scripting inside
the charms installation hooks). In Juju, a common life-cycle
for a service has the following order (1) initialization: where
the target environment is instantiated, such as LXC, KVM,
or physical machine; (2) installation: where the service is
installed on the environment; (3) configuration: where the
service is reconfigured; (4) start and stop: where the service
is started or stopped depending on the whether the service
relationships are met, and (5) relationship: where the service
chain is built and dependencies are met. In our setup during
installation, the Juju charms were available from Juju remote
repositories.

From Figure 10, it can be observed that the initialization
phase in the case of LXC is faster and uniform for all the
services, where as in case of KVM, it is higher and has a high
variability. We observe that the installation delay dominates in
most of the service life-cycle, because the services chains are
deployed and built from source. The installation time can be
reduced drastically when deploying the service from a local
package or an image.

We highlight that when chains are deployed, service depen-
dencies may exist. For instance between MySQL and HSS,
the relationship cannot be built until the HSS is installed and
configured. This is the same between MME and SPGW/HSS,
and between eNB and MME. This imposes time delays that
cannot be avoided, because of the way the relation hooks
operate in Juju. On the other hand, JOX orchestrates the

6OAI charms can be found at jujucharms.com/q/oai
7Example can be found at jujucharms.com/u/navid-nikaein/oai-5g-cran/
8Example of this service chain can be found at jujucharms.com/u/

navid-nikaein/oai-nfv-4g/
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Fig. 10: Deployment time of VNF chains

service deployment and automatically handles dependencies
and conflicts through JUJU, without requiring any other action
to be taken.

VI. CONCLUSIONS AND FUTURE WORK

Network slicing is becoming extremely important towards
5G, for a number of stakeholders like vertical industries that
are now trying to enhance their service offering as much as
possible. In this work, we presented JOX, an open-source
orchestrator for the virtualized mobile network that inherently
supports network slicing. The JOX architecture was presented
together with the core functionalities and mechanisms used.
We also presented JOX footprint analysis and a LTE chaining
use case where JOX can be used as a fast prototyping tool for
network slices provisioning and operation. Our future plans
include the enrichment of the JOX features offering, in the
directions of slice life-cycle management, plugins extensions,
auto-placement and auto-scaling. We are also in the process
of prototyping three additional use cases, namely Cloud-
RAN with flexible functional split and RAN Sharing with
multiplexed radio resources within the same eNodeBs. We are
also planning to investigate interaction with SDN controllers
for orchestrating the necessary transport network resources.
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