
Modeling and Analysis of Mixed Flow of Cars and

Powered Two Wheelers

Sosina Gashaw†, Paola Goatin‡, Jérôme Härri†
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Abstract

In modern cities, a rapid increase of motorcycles and other types of Pow-
ered Two-Wheelers (PTWs) is observed as an answer to long commuting in
traffic jams and complex urban navigation. Such increasing penetration rate
of PTWs creates mixed traffic flow conditions with unique characteristics
that are not well understood at present. Our objective is to develop an ana-
lytical traffic flow model that reflects the mutual impacts of PTWs and Cars.
Unlike cars, PTWs filter between cars, have unique dynamics, and do not re-
spect lane discipline, therefore requiring a different modeling approach than
traditional “Passenger Car Equivalent” or “Follow the Leader”. Instead, this
work follows an approach that models the flow of PTWs similarly to a fluid
in a porous medium, where PTWs “percolate” between cars depending on
the gap between them.
Our contributions are as follows: (I) a characterization of the distribution
of the spacing between vehicles by the densities of PTWs and cars; (II) a
definition of the equilibrium speed of each class as a function of the densities
of PTWs and cars; (III) a mathematical analysis of the model’s properties
(IV) an impact analysis of the gradual penetration of PTWs on cars and on
heterogeneous traffic flow characteristics.

Keywords: Multiclass traffic flow model, Powered two wheelers, Porous
flow, Traffic impacts analysis

1. Introduction1

While a car is seen as a social achievement in most of the eastern coun-2

tries, drivers in Europe slowly replace them with motorcycles and other types3
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of Powered Two-Wheeler (PTW) to mitigate their perceived impact of traffic4

congestion (e.g. reduced travel time). In some cities, electrical scooter shar-5

ing initiatives are also proposed for drivers to switch transportation modes6

when reaching city centers. The significantly growing use of PTWs calls for7

new technologies to integrate PTWs safely and efficiently with other road8

users. Thus far, the focus is mainly on solving the safety issues of PTWs.9

However, the other aspect, i.e. traffic flow efficiency, has not been addressed10

sufficiently. Emerging intelligent transport system (ITS) technologies would11

play an important role in improving traffic mobility of PTWs as well as other12

users. This would be achieved by reducing the influence of PTWs on other13

road users, for example at intersections. Additionally, the opportunity pro-14

vided by PTWs could be exploited effectively by introducing a cooperation15

between PTWs and other interacting vehicles. Other ’PTWs aware’ tech-16

nologies could also contribute to promote PTWs use, which in turn minimize17

congestion.18

Yet, PTWs create traffic flow effects Yet, PTWs create traffic flow effects19

(e.g. car flow reduction in presence of PTWs, PTW filtering between and up20

car streams, etc...) that are difficult to understand with the currently avail-21

able models. Without such understanding, it is difficult to evaluate or develop22

innovative transportation solutions with or for PTWs, such as adapting traf-23

fic lights management to mixed traffic, safety-related PTW applications such24

as collision/approach warnings, or multi-modal initiatives.25

The interaction between PTWs and cars creates mixed traffic flow situa-26

tions, for which state-of-art models are not adapted. Multi-class flow mod-27

eling arises as an effort to characterize such mixed traffic flow situations,28

which may be characterized roughly in two domains: Mixed “driver” char-29

acteristics (Daganzo, 2002) or mixed “vehicle” characteristics. In this work,30

we focus on the latter case, where a classification among the vehicle classes31

is made on lane specific patterns, vehicles physical and dynamical features,32

and where each vehicle in a class possesses identical characteristics (Logghe33

and Immers, 2008).34

In a microscopic approach, the heterogeneity of driver and vehicle char-35

acteristics is modeled by defining different behavioral rules and parameters36

such as longitudinal and lateral movement rule (Pandey et al., ????), speed37

choice, headway (Lenorzer et al., 2015), reaction time, etc. The parameters38

and driver behaviors are described differently depending on the interacting39

vehicle classes (SHIOMI et al., 2012). Space discretization methods are also40

introduced to accommodate lateral movement within a lane and the variation41
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in vehicle size (Chen et al., 2013; Mathew et al., 2013).42

Multi-class traffic flows are usually evaluated following a metric called43

“Passenger Car Equivalent” (PCE), which reports the impact of a given44

class of traffic on traffic flow variables. With PCE a heterogeneous traffic45

flow is converted to a hypothetical homogeneous flow by representing the46

influence of each vehicle in terms of the equivalent number of passengers per47

car. PCE value for vehicles varies with the traffic conditions (Praveen and48

Arasan, 2013) and the value should be selected depending on traffic speed,49

vehicles’ size, headway and other traffic variables (Adnan, 2014). However,50

only few models Van Lint et al. (2008) define traffic state dependent PCE51

value.52

Numerous multi-class models are stemmed from the desire to characterize53

mixed flows of cars and trucks. For instance, the model in (Zhang and Jin,54

2002) formulates a mixed flow of passenger cars and trucks based on their55

free flow speed difference. A two-class flow model proposed in (Chanut and56

Buisson, 2003) differentiates vehicles according to their length and speed.57

Furthermore, heterogeneity among vehicles is modeled relating to maximal58

speed, length and minimum headway of vehicles in (Van Lint et al., 2008).59

Despite providing a separate representation for each vehicle classes, in all60

these models (Chanut and Buisson, 2003; Van Lint et al., 2008; Zhang et al.,61

2006) vehicle classes have identical critical and jam density parameters, but62

the parameters are scaled according to the actual traffic state. The multi-63

class model in (Wong and Wong, 2002) extends LWR model for heterogeneous64

drivers by distinguishing the vehicle classes by the choice of the speed. The65

assumption is that drivers respond in a different way to the same traffic66

density. Correspondingly, the work in (Benzoni-Gavage and Colombo, 2003)67

presents a mixed flow for several populations of vehicles, where the vehicle68

classes are differentiated by the maximal speed, and the equilibrium speed69

is expressed as a function of total occupied space. The model in (Fan and70

Work, 2015) uses a similar approach, yet integrating a specific maximum71

occupied space for each vehicle class.72

Mixed flows consisting of PTWs yet exhibit distinctive features from the73

assumption taken in the previously described multi-class models, making74

them look more like disordered flows without any lane rule. Their narrow75

width indeed grants PTWs flexibility to share lanes with other vehicles or76

filter through slow moving or stationary traffic, requiring traffic stream at-77

tributes to be defined differently from traffic following lane rules (Mallikar-78

juna and Rao, 2006). Accordingly, Nair et al. (2011) proposed to model79
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PTWs as a fluid passing through a porous medium. The speed-density re-80

lationship is presented in terms of pore size distributions, which Nair et al.81

obtained through exhaustive empirical simulations. This approach is com-82

putational very expensive and hardly reproducible, as it requires a different83

set up for each scenario being considered. On a later work from the same84

authors (Nair et al., 2012), the pore size distribution is assumed to follow85

an exponential distribution. Yet, the distribution parameter λ is defined86

wrongly, i.e. the mean pore size increases with increasing of vehicle class87

densities. Furthermore, the mean pore size is not described uniquely for88

given vehicle-classes densities.89

Therefore, this paper focuses specifically on a more realistic modeling of90

the pore size distribution, which is critical to mixed flow models based on a91

porous medium strategy. Our first contribution provides an enhanced mixed92

flow modeling, where we: (i) provide a closed form analytical expression93

for the pore size distribution and the statistical parameters of the pore size94

distribution (mean, variance and standard deviation) for generic traffic flow95

consisting of cars and PTWs; (ii) propose a fundamental relation described as96

a function of the density of each vehicle class. The fundamental diagram and97

the parameters for the fundamental diagram are defined uniquely for each98

class, and are also adapted to the traffic condition; (iii) Provide a mathemat-99

ical analysis of the model’s properties (iv) apply a consistent discretization100

method for the approximation of the conservation equations. Our second101

contribution evaluates the impact of our enhanced model to traffic flow char-102

acteristics, where we: (i) evaluate the impact of the maximum road capacity;103

(ii) formulate mixed flow travel time; (iii) analyze traffic light clearance time,104

and this considering a gradual increase of PTWs.105

The proposed model contributes as an enabler for ’PTW aware’ emerging106

technologies and traffic regulations. For example, a variety of traffic control107

strategies require traffic flow models to predict the traffic state and make an108

appropriate control decision. Employing our model in such system opens a109

door to the inclusion of PTWs in traffic control. On the other hand, the110

model can be used as a framework to assess the optimality of the existing111

control schemes, including information collection and computation methods.112

Moreover, the model could help traffic regulator to determine collective and113

class-specific optima and to induce a vehicle class specific flow adjustment.114

In this way, new traffic regulations adapted to PTWs can be introduced,115

which in turn promotes the use of PTWs. Additionally, our model could116

be applied to design a smart two-wheeler navigation system which is well117
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aware of PTWs’ capability to move through congested car traffic and pro-118

vides a route plan accordingly. The model could also contribute in the proper119

integration of PTWs into multi-modal transport planning. In general, the120

model plays a role in enabling ’PTW aware’ traffic efficiency related appli-121

cations/technologies.122

2. Model description123

One of the most used macroscopic models is the first order model de-124

veloped by Lighthill, Whitham and Richards (Lighthill and Whitham, 1955;125

Richards, 1956). In the LWR model, traffic flow is assumed to be analogous126

to one-directional fluid motion, where macroscopic traffic state variables are127

described as a function of space and time. Mass conservation law and the128

fundamental relationship of macroscopic state variables, namely, speed, den-129

sity, and flow are the basic elements for LWR formulation. The conservation130

law says that with no entering or leaving vehicles the number of vehicles131

between any two points is conserved. Thus, the first order PDE equation132

based on the conservation law takes the form133

∂ρ(x, t)

∂t
+
∂q(x, t)

∂x
= 0, (1)

where ρ(x, t), q(x, t) are, respectively, the density and the flow of cars at134

position x and time t. Flow q(x, t) is expressed as function of the traffic135

state variables:136

q(x, t) = ρ(x, t)v(x, t) (2)

The speed v(x, t) depends on the density and a unique speed value corre-137

sponds to a specific traffic density, i.e.138

v(x, t) = V (ρ(x, t)).

In the original LWR model, all vehicles in a traffic stream are consid-139

ered to exhibit similar characteristics. Therefore, no classification is made140

between vehicle classes. Multi-class extensions of the LWR model emerge to141

accommodate the heterogeneity in many aspects of road users. In multi-class142

modeling, vehicles with identical characteristics are grouped into a class and143

a conservation law applies to each class. For two vehicle classes the conser-144

vation equation is written as145

∂ρi(x, t)

∂t
+
∂qi(x, t)

∂x
= 0, i = 1, 2, (3)
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where ρi and qi denote density and flow of class i, respectively. Class specific146

flow, speed and density are related by the equations147

qi(x, t) = ρi(x, t)vi(x, t), i = 1, 2. (4)

The equilibrium speed vi for the individual vehicle class i is a function of the148

densities of both classes and satisfies the following conditions:149

vi = Vi(ρ1, ρ2), ∂1Vi(ρ1, ρ2) ≤ 0, ∂2Vi(ρ1, ρ2) ≤ 0, (5)

where ∂1Vi(ρ1, ρ2) and ∂2Vi(ρ1, ρ2) denote ∂Vi(ρ1,ρ2)
∂ρ1

and ∂Vi(ρ1,ρ2)
∂ρ2

, respectively.150

The interaction among vehicle classes is captured through the equilibrium151

speed. Moreover, the equilibrium speed is uniquely defined for all points of152

the space153

S = {(ρ1, ρ2) : ρ1 <= ρjam1 (ρ2), ρ2 <= ρjam2 (ρ1)} (6)

where ρjam1 (ρ2) and ρjam2 (ρ1) are the jam densities of vehicle class 1 and154

2, respectively. In this model, we adopt the speed function proposed in155

(Nair et al., 2011). This speed-density relationship is derived based on the156

assumption that the flow of vehicles is dictated by available free spaces along157

the way, and it is written as158

vi = vfi

(
1−

∫ rci

0

f(l(ρ1, ρ2))) dl

)
, (7)

where f(l(ρ1, ρ2)), v
f and rc are, respectively, the probability density function159

(PDF) of the inter-vehicle spacing (pore), the free speed and the minimum160

traversable inter-vehicle space (critical pore size) of class i. As such, by161

relating the speed to the inter-vehicle spacing lane sharing, filtering and162

creeping behaviors of PTWs can be captured, rendering it more suitable for163

our purpose than any other multi-class speed functions. However, in (Nair164

et al., 2011) a closed form expression for the PDF of inter-vehicle spacing165

(pore) is missing. The same author later proposes exponential distribution166

(Nair et al., 2012) with intensity λ to characterize the inter-vehicle spacing,167

where λ is given as:168

λ = (lmax − lmin)(1−
2∑
i=1

aiρi) + lmin.

This definition of the distribution parameter λ produces an incorrect result,169

i.e. the speed increases with increasing of vehicle class densities. Further-170

more, it does not describe the equilibrium speed uniquely for a given class171
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Figure 1: Heterogeneous traffic flow for PTWs and cars.

densities ( the requirement defined in equation (6)). On the other hand, the172

exponential assumption is taken based on the longitudinal headway distri-173

bution. In order to fill this gap, we develop an analytical expression for the174

inter-vehicle spacing distribution based on simulation results. Further, we175

introduce an approximation method in order to determine the distribution176

parameters.177

2.1. Vehicle spacing distribution178

Vehicle-spacing distribution, which was referred as pore space distribu-179

tion, was first used to describe the speed-density relationship in the paper180

by Nair et al. (2011), yet the distribution was not known. Here, we pro-181

pose Poisson point process and Delaunay triangulation based method for the182

derivation of vehicle spacing distribution.183

For the sake of simplicity, we take the following assumptions: cars and184

PWTs have a circular shape and they are distributed in the domain uniformly185

and independently according to Poisson point process with intensity λ, where186

λ is the number of vehicles per unit area. Although limited to non-dense187

traffic, the study done using real data in (Jiang et al., 2016) supports the188

Poisson point process assumption for the spatial distribution of vehicles on189

the road. The circular shape of vehicles that is introduced for simplification190

does not change the distribution of the inter-vehicle spacing qualitatively.191

Furthermore, Delaunay triangulation is used to define the spacing between192

vehicles on the assumption that Delaunay triangle edge length represents the193

size of the spacing.194

Given the density of each vehicle classes, vehicles are placed uniformly195

and independently without overlapping in a two-dimensional finite space with196

intensity λ = ρ1 + ρ2. Here, ρ1 and ρ2 represent PTWs’ and cars’ areal197

density, i.e. vehicles per unit area, respectively. The Delaunay triangulation198

is constructed over the center of vehicles (Figure 2(a)) and the triangles edge199
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length data from multiple simulation runs is used to estimate the probability200

density function (Figure 2(b)).201

(a) Delaunay triangulation over vehicles,
one example scenario.

(b) Probability density function for
different traffic compositions.

Figure 2: Vehicles spacing distribution, where ρ1 and ρ2 represent, respectively, PTWs
and cars density

In (Miles, 1970) it is indicated that for a Delaunay triangulation per-202

formed on homogeneous planar Poisson point with intensity λ the mean203

value of the length of Delaunay triangle edge, and the square of the length204

are given by E(lp) = 32
9π
√
λ

and E(l2p) = 5
πλ

, respectively. We then convert205

these formulations to our problem where we have circles, instead of points.206

When the points are replaced by circles (small circles for PTWs and large207

circles for cars), edge length measured for points is reduced by the sum of208

the radius of the circles the two end points of the edge. For instance, an edge209

connecting PTWs and cars is reduced by R1 +R2, where R1 and R2 are the210

radius of a circle representing the PTW and the car respectively.211
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Figure 3: Delaunay triangle edges length for circles.

In accordance with the mean length of the delaunay traingle edge over212

points, we define for circles as (Figure 3):213

E[lc] = E[lp]− 2(R1p1 +R2p2),

where p1 is probability for an edge to touch PTWs and p2 for cars. This214

probability is expressed in the form pi = ρi
ρ1+ρ2

, therefore we get215

E(lc) = µ =
32

9π
√
ρ1 + ρ2

− 2(R1ρ1 +R2ρ2)

ρ1 + ρ2
.

Standard deviation and variance are the same for the case of points (σ2
p) and216

circles(σ2
c ), thus217

σ2
p = E(L2

p)− E(Lp)
2 ≈ 3

π2λ
, σ2

c =
3

π2(ρ1 + ρ2)
.

The above equations provide the parameters for the distribution function of218

inter vehicle-spacing, we then identify the best fitting theoretical distribution.219

To determine a theoretical probability density function (PDF) that best fits220

the observed PDF, we use Matlab’s curve fitting tool, and the goodness of221

the fit is measured by R-square, sum of squared errors (SSE) and root mean222

square error (RMSE) values. We consider left-truncated normal, log-normal223
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and exponential as candidate distributions to characterize vehicle-spacing.224

The distributions are chosen based on qualitatively observed similarity on225

the shape of PDF curve. We also include the exponential distribution, which226

is recommended in (Nair et al., 2012). The comparison between the three227

selected theoretical distribution functions is shown in Figure 4. Based on the228

goodness of the fit results, see Table 1, left-truncated normal (LT-Normal)229

distribution conforms better to the estimated PDF than the other distribu-230

tions. Besides, it can be noted that the negative exponential assumption231

taken in (Nair et al., 2012) is not fitting well.232

(a) Fitting plot for
ρ1 = 0.01, ρ2 = 0.01, v/m2

(b) Fitting plot for
ρ1 = 0.05, ρ2 = 0.02, v/m2

(c) Fitting plot for
ρ1 = 0.02, ρ2 = 0.05, v/m2

(d) Fitting plot for
ρ1 = 0.1, ρ2 = 0.01, v/m2

Figure 4: Comparison of estimated probability distribution function and fitting
theoretical distributions for different vehicles composition
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SSE R-square RMSE SSE R-square RMSE

ρ1 = 0.01, ρ2 = 0.01 ρ1 = 0.05, ρ2 = 0.02
LT-normal 0.24 0.955 0.0069 0.97 0.938 0.0139
Log-normal 0.809 0.851 0.0127 2.67 0.831 0.023
Exponential 2.17 0.602 0.0208 4.05 0.744 0.028

ρ1 = 0.02, ρ2 = 0.05 ρ1 = 0.1, ρ2 = 0.01
LT-normal 3.21 0.853 0.025 1.46 0.993 0.017
Log-normal 5.51 0.748 0.033 4.07 0.813 0.028
Exponential 3.93 0.82 0.028 5.39 0.753 0.032

Table 1: Goodness of the fit measures obtained from the fitting experiments for different
theoretical distributions.

We added minimum distance rejection criteria (minimum allowable dis-233

tance) to Poisson point process distribution so that vehicles do not overlap,234

resulting in change of inter vehicle spacing distribution property ( E.g. the235

average, variance...of the distribution ). Due to this, we observed that the236

road width and ratio of vehicle classes have an influence on the PDF. The237

effect of the size of the area is pronounced when L >> W , where L and W238

denote length and width of the area (see Figure 5). The significance of the239

variation also depends on the ratio of the two densities. Yet, left-truncated240

normal distribution remains the best fit and gives a good approximation in241

most of the situation.242

Therefore, we assume that the spacing distribution follows the left-truncated243

normal distribution, having the form244

fpTN(l) =

{
0 l < 0
fp(l)∫∞

0 fp(l)
l ≥ 0

where fp =
1√

2πσ
exp
−(x− µ)2

2σ2
. (8)

2.2. Speed-density relationship245

Using the PDF function in equation (8), the speed-density relationship246

in equation (7) is re-written as247

vi = vfi

(
1−

∫ rci

0

fpTN(l) dl

)
, (9)

where vfi and rci represent the free flow speed and the critical pore size,248

respectively, of class i. The critical pore size depends on the traffic situation249
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Figure 5: Example ρ1 = ρ2 = 0.03 veh/m2: PDF of the inter-vehicle distance on a road
with dimension L = 100 and W ranging from 5m− 100m

and the interacting vehicle class (Ambarwati et al., 2014). The critical pore250

size accepted by vehicles when travelling at higher speed is larger than the251

critical pore size at lower speeds. To reproduce the critical pore size - speed252

proportionality (Minh et al., 2012), for example, we can formulate the critical253

pore size as:254

rc = rminc + r ∗ (1− (ρ1 ∗ A1 + ρ2 ∗ A2)),

where ρ1, A1, ρ2, A2, r
min
c and r denote density of PTW, area of PTW, density255

of car, area of car, the minimum critical pore size, and the difference between256

the maximum and the minimum critical pore size, respectively. As such, the257

critical pore size increases with increasing speed or with decreasing vehicle258

class densities, which is in agreement with the gap acceptance theory. To259

evaluate the impact of the critical pore on the speed function, we compare260

the result for a constant critical pore size and a critical pore size scaled261

according to the actual traffic. As depicted in Figure 6, the critical pore size262

doesn’t change the qualitative behavior of our fundamental diagram. Since263

the critical pore size does not have any qualitative implication, for simplicity264

we use a constant value. The limitation of equation (9) is that, because of265

the property of normal distribution function, the speed becomes zero only266

at infinite density, as for the speed function used in (Nair et al., 2011). In267

attempt to overcome this infinite jam density, we have distinguished the jam268
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Figure 6: Speed vs total occupied area for constant critical pore size (r2c = 3m) and a
variable critical pore size (r1c ) with the following parameters rmin

c = 3m and r = 2m.

area occupancy for the two classes, and the speed values are normalized to269

zero at the jam area occupancy. Beside the consideration of vehicles size,270

we selected the jam area occupancies for the two classes in such a way to271

allow filtering of PTWs through completely stopped cars traffic (Fan and272

Work, 2015). We distinguish the maximum total occupied area, which is the273

extreme total occupied areas corresponding to the null speed of a vehicle274

class, for the two classes in such a way that275

V2(A
2
max) = 0, V1(A

2
max) > 0, V2(A

1
max) = V1(A

1
max) = 0, A2

max < A1
max

(10)
where V2, V1, A

2
max and A

1
max represent the speed of cars, the speed of PTWs,276

the maximum total occupied area of cars and the maximum total occupied277

area of PTWs, respectively. Accordingly, when the total area occupied by278

vehicles equals A2
max, the cars completely stop while the average speed of279

PTWs is greater than zero. Due to this, PTWs can move through jammed280

car until the total area occupied by vehicles reaches to A1
max. On the grounds281

of the relation in eqn. (10) and some realistic conditions, we approximate282

the jam area occupancy, i.e. ρ1A1 + ρ2A2, to 1 for PTWs and to 0.85 for283

cars, where ρ,A stand for density (veh/m2) and projected area of vehicles284

(m2), respectively.285

13



(a) Car speed at different density of
PTWs.

(b) PTWs speed at different cars
density values.

Figure 7: Speed Vs total occupied area (
∑
ρ1A1 +

∑
ρ2A2), where ρ1A1 and ρ2A2 are

area projected on the road by PTW and car, respectively.

Further modification is applied to the speed function in order to comply286

with triangular fundamental diagram theory, that is presence of two regimes,287

specifically, congestion and free flow regime (Newell, 1993). In free flow there288

is no significant drop of average speed with the increase of density. However,289

beyond some critical density value, the average speed of vehicles decreases290

with density increase. Therefore, we adjust the speed functions to:291

v1 = min

{
v1
f , Cvv

f
1

(
1− 1

N1

∫ rc1

0

fpTN(l) dl

)}
, (11)

292

v2 = min

{
vc
f , Cvv

f
2

(
1− 1

N2

∫ rc2

0

fpTN(l) dl

)}
, (12)

where Ni is a speed normalization factor and Cv is a scaling factor so that293

vi equals the free flow speed at critical density in the presence of traffic of294

vehicle class i only. After all the modifications, the speed-density relation295

look as shown in Figure 7. Different from the existing models which describe296

traffic composition in terms of total area/space occupancy (Nair et al., 2012)297

(Fan and Work, 2015)(Benzoni-Gavage and Colombo, 2003), one of the key298

characteristics of our speed model is that it captures well the variation in299

traffic composition as the speed is expressed as a function of the density of300

each vehicle class. Specifically, for a given area occupancy, depending on the301

proportion of one class of vehicles the speed value varies. For instance, for a302
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given area occupancy, the higher the percentage of PTWs the higher becomes303

the number of vehicles and the average pore size shrinks. In turn, the speed304

value decreases. The general properties of our speed model are summarized305

as follows:306

1. A unique speed value is associated with a given total density and traffic307

composition.308

2. In free flow, vehicles move at constant (maximal) speed.309

3. In congestion, speed decreases with increase of density.310

4. Speed depends on the densities of the two vehicle classes and their311

proportion.312

5. For the same occupancy area (total area occupied by vehicles) the more313

the share of PTWs is the lower becomes the speed, which is the main314

property missed by multi-class models that define the speed function315

in terms of area occupancy.316

6. Each class has a different fundamental relation317

7. Each class has a distinctive critical and jam densities parameters.318

None of the models known to us satisfies all the aforementioned properties,319

although there are models that satisfy a few of them. Property (3), (4) and320

(6) are common to most of multi-class LWR models. Nonetheless, models321

that describe speed as a function of total occupied space (Benzoni-Gavage322

and Colombo, 2003; Fan and Work, 2015; Chanut and Buisson, 2003) do not323

satisfy property (1). While (Van Lint et al., 2008) satisfies property (1) and324

(Fan and Work, 2015) satisfies property (7), property (5) is unique to our325

model.326

2.3. Model Analysis327

To describe the solution of the system equations (3)-(5) in terms of wave328

motion, the jacobian matrix Dq of q = (q1, q2) should be diagonalizable with329

real eigenvalues, in another word the system has to be hyperbolic. We can330

prove the hyperbolicity by showing that the system is symmetrizable, i.e.331

there exists a positive-definite matrix S such that SDq is symmetric, see332

(Benzoni-Gavage and Colombo, 2003).333

Re-writing the system in the form:334

∂ρ

∂t
+Dq(ρ)

∂ρ

∂x
= 0,
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where335

ρ =

[
ρ1
ρ2

]
and q(ρ) =

[
ρ1v1(ρ)
ρ2v2(ρ)

]
,

the Jacobian matrix of q(ρ) is given by:336

Dq(ρ) =


∂(ρ1v1)
∂ρ1

∂(ρ1v1)
∂ρ2

∂(ρ2v2)
∂ρ2

∂(ρ2v2)
∂ρ1

 =

 ρ1∂1 (v1) + v1 ρ1∂2 (v1)

ρ2∂1 (v2) ρ2∂2 (v2) + v2


For ρ1 > 0, ρ2 > 0,337

S =

 1
ρ1∂2(v1)

0

0 1
ρ2∂1(v2)

 (13)

is a symmetrizer of Dq, thus the system satisfies the hyperbolicity condition.338

339

The eigenvalues of the Jacobian representing information propagation340

(characteristic) speed are given by:341

λ1,2 =
1

2

[
α1 + α2 ±

√
(α1 − α2)2 + 4ρ1ρ2∂2(v1)∂1(v2)

]
,

where342

α1 = ρ1∂1(v1) + v1, α2 = ρ2∂2(v2) + v2.

Following (Benzoni-Gavage and Colombo, 2003, Proposition 3.1) it is possible343

to show that344

λ1 ≤ min{α1, α2} ≤ min{v1, v2} and min{v1, v2} ≤ λ2 ≤ max{v1, v2}, (14)

where, we have taken λ1 ≤ λ2. The proof in (Benzoni-Gavage and Colombo,345

2003) assumes that V1 > V2 to exclude the degenerate case, when V 1 =346

V 2. However, Zhang et al. (Zhang et al., 2006) also studied the prop-347

erties of a similar model as in (Benzoni-Gavage and Colombo, 2003), but348

here for a generic speed function which is expressed as a function of to-349

tal density, i.e. vi = vi(ρ), where ρ =
∑

i ρi. Accordingly, it is proved350

that for v1 < v2 < v3.... < vm, the eigenvalues are bounded such that351

λ1 < v1 < λ2 < v2 < λ3 < ...vm − 1 < λm < vm (refer (Zhang et al.,352

2006, Theorem 3.1, Lemma 2.2, Lemma 2.3)). Due to the complexity of the353

dependency of the speed function on vehicle class densities, we could not fol-354

low a similar analytical approach. Nonetheless, we have checked the validity355
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of this relationship, i.e. λ1 < v1 < λ2 < v3 < λ3 < ...vm − 1 < λm < vm,356

using a graphical analysis, by taking a specific case where v1 > v2 is not true357

in all traffic states. In our model, v1 > v2 is not always satisfied when the358

maximum speed of cars is higher than PTWs’. Hence, for the test, the max-359

imum speed of cars is set to be greater than the maximum speed of PTWs.360

Let λ1 = min {λ1, λ2} and λ2 = max {λ1, λ2}, if the relation λ1 < min {v1, v2} <361

λ2 < max {v1, v2} holds, then max {v1, v2}−λ2 > 0, min {v1, v2}−λ2 < 0 and362

min {v1, v2}−λ1 > 0. Figure 8(a) shows that max(v1, v2)−λ2 > 0, implying363

λ2 < max(v1, v2). From Figure 8(b) it can be learned that min(v1, v2)−λ2 <364

0, thus min(v1, v2) < λ2. Figure 9 shows that min(v1, v2) − λ1 > 0 over all365

point in S = {ρ1, ρ2}, thus λ1 < min(v1, v2).

(a) max(V1, V2)− λ2 (b) min(V1, V2)− λ2

Figure 8: Evaluation of the maximum characteristics speed over a point in S = {ρ1, ρ2},
Here V1 = 22m/s and V2 = 27m/s

366
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(a) min(V1, V2)− λ1

Figure 9: Evaluation of minimum characteristics speed over a point in S = {ρ1, ρ2}, Here
V1 = 22m/s and V2 = 27m/s

The results from the graphical analysis strongly suggest that the relation367

in equation (14) is valid for our model, which confirms that in the model no368

wave travels at a higher speed than the traffic and thus the wave propagation369

speed is finite.370

2.4. Model discretization371

To simulate the traffic flow we need the solution of the traffic equation372

in Eq. (3). Thus, we apply a conservative finite volume method for the373

approximation of the numerical solution. In the approximation, the spatial374

domain is divided into equal grid cells of size ∆x and at each time interval375

∆t the density value in the domain is updated according to the conservation376

law. Rewriting in the integral form it becomes377

d

dt

∫ xi+1/2

xi−1/2

ρ(x, t)dx = q(ρ(xi−1/2, t))− q(ρ(xi+1/2, t)) (15)

Integrating eq. (15) in time from tn to tn+1 = tn + ∆t, we have∫ xi+1/2

xi−1/2

ρ(x, tn+1)dx =

∫ xi+1/2

xi−1/2

ρ(x, tn)dx

+

∫ tn+1

tn
q(ρ(xi−1/2, t))dt−

∫ tn+1

tn
q(ρ(xi+1/2, t))dt.

(16)
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After some rearrangement of Eq. (16), we obtain an equation that relates378

cell average density ρnj update with average flux values at the cell interfaces.379

ρn+1
i = ρni −

∆t

∆x

[
F n
i+1/2 − F n

i−1/2
]
, (17)

where F n
i+1/2 is an average flux value at the cell interface x = xi+1/2:380

F n
i+1/2 = F(ρni , ρ

n
i+1), where F is the numerical flux function. (18)

Accordingly, equation (17) rewrites381

ρn+1
i = ρni −

∆t

∆x

[
F(ρni , ρ

n
i+1)−F(ρni−1, ρ

n
i )
]
. (19)

In the absence of a general Riemann solver, numerical methods for multi-class382

LWR model based on a generalization of the cell transmission model (CTM)383

supply and demand functions for each vehicle class have been introduced384

in (van Wageningen-Kessels, 2013; Fan and Work, 2015). However, these385

algorithms are computationally expensive to implement in our case, due to386

the lack of analytical expression for computing the numerical flux. Therefore,387

we have opted for the Lax-Friedrichs scheme (LeVeque, 1992), which is easier388

to implement and gives a good accuracy at sufficiently refined meshes. The389

numerical flux function is therefore given by390

F(ρi, ρi+1) =
1

2
(q(ρi) + q(ρi+1)) +

α

2
(ρi − ρi+1), (20)

where α is the numerical viscosity satisfying the condition α ≥ Vmax =391

max{vf1 , v
f
2}. The space and time steps ∆x and ∆t are selected to meet392

Courant, Friedrichs and Lewy (CFL) condition, which is a necessary condi-393

tion for a numerical method to achieve stability and convergence. Therefore,394

∆t is chosen to satisfy ∆t ≤ ∆x/Vmax, due to the bounds on the eigenvalues395

derived in Section 2.3.396

3. Model Verification397

The verification experiments are intended to evaluate our proposed model398

against the baseline model in (Nair et al., 2011), and the required qualitative399

behaviors.400
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3.1. Pore size distribution verification401

Here, we verify the pore size distribution against the results in (Nair402

et al., 2011), which are produced by determining the cumulative distribution403

of the pore size from the average of multiple simulation outcomes. We ex-404

pect that the vehicle spacing distribution we propose yields qualitatively the405

same result as multiple simulation runs. To derive the pore size distribution,406

we have introduced simplification assumptions which are not used in (Nair407

et al., 2011). The impact of these assumptions on the model behavior can408

be grasped through the qualitative comparison between the results from our409

model and (Nair et al., 2011).410

Therefore, we reproduce the result in (Nair et al., 2011) following the same411

approach used in the paper. In Nair’s approach, for each configuration, the412

fraction of accessible pores is determined by running multiple simulation run,413

where vehicles are randomly placed in the domain (without overlapping) and414

then the probability of finding a pore greater than the critical pore size is415

determined from this configuration. However, at high density it may not be416

possible to find a solution within a reasonable amount of time. In these cases,417

the author proposed to adjust the pore space distribution to reflect ‘unplaced418

vehicles’. But, nothing is mentioned in the paper how the pore space distri-419

bution can be adjusted. Thus, we applied our own method for adjusting the420

pore size distribution. For a given total number of vehicles, first the fraction421

of accessible pore (Fc) is determined according to the ‘placed vehicles’. If all422

the vehicles can not be placed within the time limit set, FC will be reduced423

by a ratio of total number of ‘placed vehicles’ to total number of vehicles.424

For the sake of comparison, we use similar loading profile and simulation425

parameters. With normal profile, the interaction of the two classes under426

uninterrupted flow conditions is studied, while a traffic flow with disruption427

is studied in queue profile. The maximum speed is set to V1 = 80km/hr for428

PTWs and V2 = 100Km/hr for cars. The simulation is done for 300s on429

the space domain x ∈ [0, 3000m], and with homogeneous initial density of430

ρ1(x, 0) = 0, ρ2(x, 0) = 0. We also set ∆x = 100m and ∆t = 2.5sec. For431

both experiments the upstream inflow is set to:432

433

F1(0, t) =

{
0.5veh/sec for t ∈ [100s, 200s],

0 otherwise,

20



434

F2(0, t) =

{
0.5veh/sec for x ∈ [0s, 200s],

0 otherwise,
435

and we give absorbing boundary conditions downstream, so that the vehicles436

leave freely.437

From Figure 10, it can be observed that PTWs traffic density wave moves438

faster than cars. Due to this, although PTWs starts behind, they move past439

cars traffic and leave the simulation domain faster. At t = 250sec, all PTWs440

have overtaken cars. Both models behave similarly except small quantitative441

changes.

Figure 10: Normal profile, traffic density waves of cars and PTWs at different time steps.
(PTW-1, Car-1) and (PTW-2, Car-2) represent result form our model and Nair’s model,

respectively.

442
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Figure 11: Queue profile, traffic density waves of cars and PTWs at different time steps.
(PTW-1, Car-1) and (PTW-2, Car-2) represent result form our model and Nair’s model,

respectively.

The result in Figure 11 represents the interrupted scenario, where for443

t ∈ [0sec, 250sec] the flow is blocked at the mid of roadway (at 1500m). Im-444

portant properties observed from the results are: PTWs are able to move to445

the front of the queue passing stationary cars (from t = 200sec to t = 250sec),446

thus, when the blockage is removed, PTWs clear first. In this scenario, a447

big quantitative divergence is observed between the two models, particularly448
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when the queue is formed. In our model, we defined jam densities for each449

class and the speed function is scaled to reach zero at the jam densities450

(section 2.1, Figure 7). But, this modification is not applied to the speed451

function in Nair’s model, see Figure 12. The difference between the speed452

values becomes more significant at the higher densities. The resulting quan-453

titative change mainly happens because of the speed difference. Otherwise,454

both models are quantitatively similar.455

The results in Figures 10 and 11, have almost the same qualitative properties456

as the results in (Nair et al., 2011), confirming the validity of the assumptions457

made to establish the distribution function of inter-vehicle spacing.

(a) Car speed at different density of
PTWs

(b) PTWs speed at different cars
density values.

Figure 12: Speed Vs total occupied area (
∑
ρ1A1 +

∑
ρ2A2) Nair’s model (Nair et al.,

2011), where ρ1A1 and ρ2A2 are area projected on the road by PTW and car, respectively.

458

3.2. Verifying model properties459

In this section, the capability of our model to reproduce the observed460

macroscopic phenomena of mixed flow of PTWs and cars is evaluated. The461

following two well-known features (Fan and Work, 2015) are used as a bench-462

mark to evaluate our model.463

• Overtaking- when the traffic volume is high, cars start slowing down.464

However, PTWs remain unaffected or less affected by the change in465

traffic situation, as they can ride between traffic lanes. As a conse-466

quence, PTWs travel at higher speed and overtake slow moving cars.467
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• Creeping- when cars are stopped at traffic signals or because of traffic468

jams, PTWs can find a space to filter (creep) through stationary cars469

and move ahead.470

In addition, a comparison with the models in (Benzoni-Gavage and Colombo,471

2003) and (Fan and Work, 2015), hereafter referred as N-pop and creeping472

respectively, is presented along with the verification of our model, porous G.473

For creeping and overtaking experiments, the parameters in Table 2 are474

chosen. Jam density refers to the maximum area occupancy, which equals to

PTW Car

Vehicle length (m) 1.5 3
Vehicle radius (m) 0.75 1.5
Max. speed (m/s) 1.8 1
Jam density porous G 1 0.85
Jam density creeping 1.8 1
Jam density N-pop 1 1

Table 2: Simulation Parameters

475

ρ1A1 + ρ2A2 for porous G model and ρ1l1 + ρ2l2 for the other models, where476

vehicles come to complete stop state. The simulation is done on a road of477

length 50m and ∆x = 0.05m and ∆t is selected according to CFL condition.478

3.2.1. Creeping experiment479

A signalized intersection is employed for testing creeping. In the simula-480

tion, PTWs start behind the cars traffic and cars traffic have concentrated481

close to the traffic signal, so that PTWs arrive after most of the cars reached482

a complete stop. The simulation is done for 200sec and starts with initial483

densities484

485

ρ1(x, 0) =

{
0.25 for x ∈ [1m, 21m],

0 otherwise,
ρ2(x, 0) =

{
0.25 for x ∈ [31m, 50m],

0 otherwise.
486

487

The inflow and outflow at the boundaries are set to zero. At the time PTWs488

start catching up cars traffic (Figure 13(a)), most of the cars are at stationary489

state (see Figure 13(a) lower subplot space location 45− 50m). However, as490

shown in Figure 13(b), PTWs maneuver through those stationary cars and491
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reach the front of the queue for the case of creeping and Porous G mod-492

els. For the N-pop model, the PTWs traffic stays behind the cars since both493

classes have the same jam density. Table 3 shows the average speeds of PTWs494

and cars in a particular location at time t = 50s. As can be observed from495

the speed values, unlike N-pop model, in the other two models PTWs have496

a non-zero speed value even though cars are at a complete stop state.

(a) Density profiles at time t=10s. (b) Density profiles at time t=200s.

Figure 13: Creeping experiment density-space diagram, upper subplot for PTWs and
lower subplot for cars.

497

Creeping Porous G N-pop

V1 0.2179 0.6349 0
V2 0 0 0

Table 3: Speed values extracted at time t = 50sec and position x = 39.15m

The results from the creeping experiment show similar behavior to the498

situation we may observe in real scenarios, i.e. PTWs seep through cars499

queue to reach the head the queue, both for Porous G and Creeping models.500

However, for the N-pop model, PTWs remain behind car traffic queue. Thus,501

only the first two models are able to produce this predominantly observed502

phenomenon of mixed traffic flow of cars and PTWs.503

3.2.2. Overtaking experiment504

For the overtaking scenario, car traffic is placed ahead of PTWs. The505

simulation starts with the initial state where:506
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507

ρ1(x, 0) =

{
0.3 for x ∈ [1m, 20m],

0 otherwise,
ρ2(x, 0) =

{
0.3 for x ∈ [15m, 34m],

0 otherwise.
508

509

The inflow at the upstream boundary is set to zero and vehicles are al-510

lowed to leave freely at the downstream boundary. For this experiment, we511

consider two cases one when free flow speed of PTWs is higher than cars512

and the other when cars take the higher free flow speed. The occurrence of513

overtaking is evaluated by inspecting the evolution of traffic densities of the514

two classes. Overtaking is said to happen when the density waves of the two515

classes come to the same level in space and one of the two go past the other,516

i.e the tail end of one class is before the other.517

As Figure 14 depicts, when free flow speed of PTWs is greater than cars,518

PTWs overtake cars in all the three models. In Porous G model overtaking519

is observed around at time t = 18sec (Figure 14(b)), and for Creeping and520

N-pop models overtaking happens at t = 38sec (Figure 14(c)) and t = 80sec521

(Figure 14(d)), respectively.522

The simulation results in Figure 15 correspond to the case where free flow523

speed of cars (V2 = 1.8) is greater than free flow speed of PTWs (V1 = 1.5).524

As shown, in the two models, Porous G and Creeping, overtaking is observed.525

In Porous G model overtaking happens around time t = 26sec (Figure 15(b))526

and at time t = 40sec (Figure 15(c)) for Creeping. Nonetheless, N-pop model527

fails to reproduce overtaking. At time t=52sec for N-pop the tail end of528

PTWs traffic is around location x = 26m whereas for cars traffic it is around529

x = 41m (Figure15(d)), which is far behind.530

According to what is illustrated in Figures 14 and 15, all the three models531

are able to show the overtaking phenomenon when PTWs free flow speed is532

higher than cars. Further, for Porous G and Creeping models overtaking533

happens in the case where free flow speed of cars is higher than PTWs’534

as well. In N-pop model, unlike to the other two models, overtaking never535

happens unless car free flow speed is higher. This can be explained using a536

particular instance in Figure 16. As shown in the figure, in Creeping and537

Porous G models there exist a region where the speed of PTWs is greater538

than cars despite the free flow speed choice.539

In conclusion, the model verification results validate that our model (Porous540

G) can reproduce the required creeping and overtaking phenomena.The Creep-541

ing model also satisfies all these properties. Yet, this model has a limitation,542

as occupied space is a mere factor that determines the speed and the varia-543
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(a) Density profiles at time t=2sec.
(b) At time t=18sec, overtaking in

Porous G

(c) At ime t=38sec, overtaking in
Creeping.

(d) At time t=80sec, overtaking in
N-pop.

Figure 14: Overtaking experiment density-space diagrams, upper subplot for PTWs and
lower subplot for cars, free flow speed of V1 = 1.8m/s greater than V2 = 1m/s. The

dashed lines stretching from upper subplot to the lower connect the tail of the density
profiles for cars and PTWs’ traffic and the spacing between the two lines indicates the

distance gap after PTWs overtake.
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(a) Density profiles at time t=2sec.
(b) At time t=26sec, overtaking in

Porous G.

(c) At time t=40sec, overtaking in
Creeping.

(d) At time t=52sec, N-pop.

Figure 15: Overtaking experiment density-space diagrams, upper subplot for PTWs and
lower subplot for cars, free flow speed of V2 = 1.8m/s greater than V1 = 1.5m/s.
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Figure 16: Speed vs. total number of vehicles plot, when free flow speed of PTWs less
than cars and cars account to 80% of the total traffic, upper subplot Porous G, middle
subplot Creeping, lower subplot N-pop.
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tion in the composition of vehicles has no influence as long as the occupied544

space is the same (see section 2.1, Figure 7). The N-pop model, however,545

lacks the creeping behavior and overtaking is conditioned by the free flow546

speed of PTWs.547

4. Traffic impact analysis548

The traffic impact analysis aims to assess the potential improvements in549

traffic mobility obtained from growing use of PTWs. Identifying the oppor-550

tunities leads to the introduction of new innovative smart city applications.551

Furthermore, it gives the necessary information on how transport policies,552

mobility plan, traffic management, etc. should be shaped to benefit from553

the opportunities. Thus, the section here explores the impact of PTWs on554

traffic flow, road capacity and queue discharge time. First, we analyze the555

role of PTWs, at different penetration rates, on minimizing congestion, by556

substituting some of the cars with PTWs. Next, we investigate how shifting557

travel mode to PTWs could help in the reduction of travel times. Finally,558

we study the effect of PTWs filtering behavior on queue discharging time.559

4.1. Road capacity560

Road capacity, which is also called critical density, is defined as the max-561

imum volume of traffic that corresponds to the maximum flow rate. Above562

the road capacity, traffic flow enters congestion state and the flow of vehicles563

decreases with the increase in traffic volume. In mixed traffic flow, the road564

capacity varies depending on the total density and the traffic composition.565

Here, the role of PTWs in reducing congestion is evaluated. For the compar-566

ison, the flow-density plot for different ratios of PTWs is presented in Figure567

17. The following simulation parameters are used to produce the results.568

The maximum speed of cars is V2 = 100 km/hr, maximum speed of PTWs569

is V1 = 80 km/hr and we consider a single lane one-way road with a carriage570

width of 3.5m.571

PTWs stay in free flow state for longer ranges of density than cars, be-572

cause of their ability to ride in between other vehicles. The flow-density573

diagram, which is depicted in Figure 17(b), shows the variation of maximum574

flow rate and critical density of the two classes. Figure 17(a) shows the total575

flow rate against the total volume of vehicles. The total flow rate describes576

the number of vehicles that leave a given point per unit time, which in our577

case is equal to the sum of the flow rates of PTWs and cars. As Figure 17(a)578
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illustrates, increasing the proportion of PTWs on the total traffic from 0%579

to 10% results in a 9.3% improvement of the road capacity and 2.74% of the580

maximum flow rate. The results in Figure 17 and Table 4 point up that shift

% of PTWs Critical density Maximum flow
(veh/km) (veh/hr)

0 43.1 4248
10 47.1 4320
25 58.1 4608
35 72.1 4896
50 116.1 6084

Table 4: The Change in Critical Density (veh/km per unit lane width) and Maximum
Flow Rate (veh/hr/lane) at Different Ratios of PTWs

581

to PTWs indeed helps to improve road capacity. Besides, the variation on582

the reaction of the two traffic classes for a given traffic situation entails a583

new method for mobility management and monitoring.

(a) Total flow rate vs. total density,the
connecting dashed lines show the

maximum flow rate and the
corresponding road capacity.

(b) Flow-total density diagram, upper
subplot for cars and lower subplot for

cars.

Figure 17: Flow-density diagram,for different penetration rates of PTWs.

584

4.2. Travel time585

Here, we analyze how replacing some of the cars with PTWs improves586

travel time based on the instantaneous travel time analysis. The instanta-587
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neous travel time (iTT) is computed on the assumption that vehicles travel588

through the considered road section at a speed profile identical to that of the589

present local speed and it is formulated as:590

tinst =
n∑
i=1

∆x

v(xi, t)
, (21)

where n is the number of cells and ∆x is the mesh size. The experiment591

is done under the following simulation setups: road length 500m, ∆x =592

10m, free flow speeds V1 = V2 = 80km/hr and the simulation is run for593

80sec. A homogeneous initial total density of ρ1(x, 0) + ρ2(x, 0) = 0.1 for594

x ∈ [0, 500m] is set. The result in Figure 18 is produced by computing the595

instantaneous travel time every 0.02sec. According to the result, a 12.4%596

reduction on average travel time is obtained even at the lowest penetration597

of PTWs (10%). The table in Figure 18 below presents the iTT values598

averaged over the whole simulation period for different traffic compositions599

and the improvement on the average travel time. According to these results,600

in addition to the reduction of the average travel times, with more shift of601

cars to PTWs, cars travel at high speed for more time. Certainly, the results602

show that PTWs help in maintaining reliable and reduced travel times.603

% of cars average Improv.
PTWs travel time (%)

0 41.6
10 36.45 12.4
20 32.74 21.3
30 30 27.9
40 28 32.7
50 26.68 35.9

Figure 18: Change in travel time of cars for different penetration rate of PTWs.

4.3. Queue clearance time604

At signalized intersections, PTWs creep through the queue of other traffic605

to reach the front line. As more PTWs accumulate at the front of the queue,606

it is likely that they discharge from the queue much quicker than cars. Since607
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cars behind are forced to wait until all the PTWs in the front leave the608

queue, this may cause further delay on the cars clearance time. In this part,609

we study the effect of PTWs filtering behavior on cars traffic clearance time610

and the overall traffic flow.611

Queue clearance time is defined as a green time interval to exhaust the612

queue and it is determined by finding out the time where the number of613

vehicles upstream the traffic light equals zero.614

T ic = inf{ti : ρiavg = 0}, i = 1, 2,

where ρiavg represents the average density of the vehicles in the study domain.615

Thus, with M denoting the number of space steps in the study domain, i.e.616

the space before the traffic light, the average density is computed as:617

ρiavg =
1

M

M∑
s=1

ρs, i = 1, 2.

For the study, two simulation scenarios have been considered. First, PTWs618

are allowed to filter through the queue of cars traffic. On the second scenario,619

PTW and cars act in a similar manner, i.e. PTWs don’t creep through the620

queue of cars traffic. The later scenario is produced by assigning the same621

critical pore size for both classes.

(a) Clearance time when Filtering of
PTWs is allowed.

(b) Clearance time, no filtering.

Figure 19: Evolution of number of vehicles in the queue over time.

622
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(a) Density profile of PTWs and cars,
when PTWs are allowed to filter

through traffic queue.

(b) Density profile of PTWs and cars,
cars and PTWs behave in a similar

manner.

Figure 20: Spatial distribution of the density of vehicles in the queue.

The simulation are run on the space domain x ∈ [0, 5001m] and the623

inflow in the upstream direction, for both classes, is set to have the following624

values:625

Fi(0, t) =

{
2 veh/s for t ∈ [0, 50sec],

0 otherwise.

The traffic light (TL) is placed at x = 500m. The simulation starts with a626

red phase and stays in this state for the first 50 seconds.627

To observe the queue clearance time and queue discharging behavior for628

both vehicle classes, the evolution of the number of vehicles in the queue629

is shown in Figure 19 and the spatial distribution of vehicles in the queue,630

immediately before the beginning of the green light period, is presented with631

the density profile plot shown in Figure 20.632

According to the results from the first experiment, where filtering of633

PTWs allowed, most of the PTWs occupy the front of the queue during634

the queue formation (see Figure 20(a)), and they clear from the queue 28sec635

before cars traffic. On the other hand, no difference is observed in the clear-636

ance time of the two classes when PTWs are forced to behave in a similar637

manner to cars.638

A comparison of the plots in Figure 20(a) with Figure 20(b) show that,639

with the filtering of PTWs, higher percentage of PTWs reach the front line640
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of the queue. However, PTWs attain high speed rapidly and dissipate from641

the queue faster. As a result, there is no a significant delay incurred on cars642

traffic because of the filtering behavior of PTWs. The message here is that643

PTWs creeping behavior has no influence on clearance time of cars, but rather644

improves the average delay experienced by road users at the intersections.645

Having a facility which helps PTWs to leave first at the intersections would646

allow better use of this opportunity offered by PTWs.647

In general, the results indicate the positive impact of PTWs creeping be-648

haviors on queue clearance time and the necessity to consider such behaviors649

on the design of traffic light operation, particularly when the ratio of PTWs650

is higher.651

5. Calibration of the model652

The model is validated against the desired qualitative behaviors. Yet, to653

accurately reproduce the real traffic situation adjusting the model parame-654

ters is imperative. The model is founded on the assumption that the traffic655

flow behavior can be characterized using the inter-vehicle spacing distribu-656

tion. Thusly, the accuracy of the model highly depends on how precisely657

the inter-vehicle spacing distribution is estimated. The inter-vehicle spac-658

ing distribution, therefore, has to be calibrated from empirical data. The659

calibration process involves, for different traffic compositions and densities,660

collecting position information of vehicles, measuring spacing between vehi-661

cles, estimating statistical parameters of inter-spacing (mean, variance) and662

curve fitting experiments. Thereafter, the functional relationship of speed663

and inter-vehicle spacing distribution should be calibrated based on real ob-664

servation. This could be done by employing a trial and error calibration665

method where the value of the speed function parameters, such as critical666

pore size (gap) and jam density, are adjusted until a good fitting curve to667

the observation is obtained. The jam and critical density values are depen-668

dent on the actual traffic state, that is, the traffic compositions and density.669

Therefore, it is also necessary to establish an accurate relationship between670

the jam and critical density parameters, and the traffic state.671

For the calibration, real trajectory data for each vehicle class and different672

ranges of density is required. In addition, for non-lane based traffic the influ-673

ence of the road geometry is significant, thus information about the roadway674

such as lane width, number of lanes, etc is necessary. Although there are675

widely available methods to collect vehicles’ trajectory data, only a few of676
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them are applicable for the required validation experiment. The challenge is677

mainly on getting the required traffic parameters and accurate geo-location678

of vehicles, specifically PTWs. For example, data collected from sensors like679

inductive loops are not sufficient as extrapolation of vehicles spatial location680

is very difficult, if not impossible. Floating Car Data (FCD) could be an681

efficient method for collecting vehicles’ trajectory data, where smartphones682

or GPS devices in vehicles continuously send location, speed, etc. infor-683

mation. However, the inefficiency of smartphone GPS to produce the true684

location of PTWs (Koyama and Tanaka, 2011) and the low penetration rate685

of vehicles equipped with an accurate GPS receiver make FCD method less686

applicable. Another potential alternative is to use video cameras and to ex-687

tract the required traffic data (vehicle number, vehicle type, location, etc.)688

utilizing image processing techniques (Mallikarjuna et al., 2009). Given the689

complexity of data collection, calibrated commercial simulators like VISSIM690

can serve as a means of model calibration. Yet, as the simulator might be691

calibrated to a particular scenario, the model validation would be valid only692

to that specific scenario.693

6. Summary and conclusion694

Motorcycles, scooters and other moped, thereafter referred to as Pow-695

ered Two-Wheelers (PTWs), have peculiar maneuvering behaviors, such as696

filtering through slow moving or stationary traffic, or lacking lane discipline,697

which create mixed traffic flow characteristics resembling more disordered698

flows rather than lane-based follow-the-leader flows. Mixed flow models con-699

sidering ordered flows accordingly fail to truly represent the impact of PTW700

on heterogeneous traffic flow characteristics. This paper specifically inves-701

tigated disordered PTWs moving similarly to a fluid in a porous medium.702

An enhanced mixed flow traffic model is provided, based on an innovative703

modeling of the distribution of the pore sizes. This model is then used to704

evaluate the impact of a gradual penetration of PTWs on mixed flow traffic705

characteristics.706

The close form distribution of pore size in porous media has been val-707

idated by comparing it against typical PTW flow characteristics and also708

benchmarked against related studies. This model allowed us to propose a709

mathematical formulation of the fundamental relation between speed and710

density for both cars and PTW individually. The latter aspect could be very711
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beneficial in related traffic flow studies, which assumed identical fundamental712

relations for PTWs and cars.713

The evaluation of the impact of PTWs on mixed traffic showed that a714

gradual replacement of cars with PTWs manages to increase the flow capacity715

by 9.3% already with 10% PTW penetration. The results not only confirmed716

the benefit of PTWs in reducing travel times, but also illustrated the mutual717

benefit of a gradual penetration of PTWs on travel times for both PTWs and718

passenger cars (12.4 % benefit on cars at 10% penetration of PTWs). Finally,719

we also showed that PTWs creeping through slow passenger car traffic at720

traffic light actually impacts queue clearance time and as such should be721

considered by traffic light where the cycles length is set according to queue722

clearance time.723

The presented model assumes that both classes of vehicles disregard the724

lane discipline and their spatial distribution over the road segment follows725

Poisson point process. As a future work, we aim to consolidate the model726

by applying a more realistic approach for the spatial distribution and lane727

discipline of cars. The model is validated against the desired qualitative728

behaviors. Yet, to accurately reproduce the real traffic situation adjusting729

the model parameters is imperative. The model parameters such as the730

maximum speeds, jam and critical densities, stochastic characteristics of the731

probability density function of the spacing distribution, and the fundamental732

diagram should be tuned using real traffic data. For the calibration, the733

traffic data collected either from field or calibrated simulation platforms can734

be used. Because of the scarcity of real traffic data containing the trace735

of PTWs, we will perform the model calibration using VISSIM, which is a736

calibrated simulation platform.737
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Table of symbols881

Symbol Meaning

PTW Powered Two Wheelers
x spatial location
t time
q1/2 flow of PTWs/cars
ρ1/2 density of PTWs/cars
v1/2 speed of PTWs/cars

v1/2
f free flow speed of PTWs/cars

i vehicle class
R radius of circle
lp length of Delaunay edge for points
lc length of Delaunay edge for circles

Table 5: Table of Symbols And Acronym Used Along The Paper
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Appendix882

Spatial distribution of vehicles883

To distribute vehicles inside the domain, we follow the following proce-884

dures. Given the mean vehicle density and area of the domain, the total885

number of vehicles in the domain is drawn from Poisson count. Then, the886

vehicles are distributed uniformly and independently in the domain. Here, we887

are considering a heterogeneous and disordered traffic. There is no a clearly888

defined distribution for the spatial distribution of vehicles for disordered traf-889

fics. In heterogeneous traffic, the space gap (lateral and longitudinal gap)890

maintained by different vehicle classes widely varies. Due to this, the spacing891

of vehicles appears random even when vehicles are in a car following process.892

Therefore, even for moderate and dense traffic conditions, more randomness893

in vehicles inter-spacing is observed in heterogeneous traffic than in homoge-894

neous.895

Applying a uniform distribution instead of a Poisson one for dense traffic896

condition, the only difference would be that the vehicle count will not be897

generated from Poisson process. We have carried out a test to compare the898

Poisson approach and a uniform distribution. Example results in the table899

below show the mean and variance of inter-vehicle spacing for the two cases,900

i.e. Poisson distribution and uniform distribution. As reported, the Poisson901

and uniform assumptions yield a closely similar results. In both cases, the902

variability of inter-vehicle spacing decreases with increasing traffic densities.903

Therefore, for the purpose of analytical simplicity we use Poisson planar904

process for the spatial distribution of vehicles.

[ρ1, ρ2] [0.005, 0.005] [0.02, 0.01] [0.05, 0.02] [0.1, 0.05] [0.15, 0.075]
Poisson distribution

Mean 16.57 7.84 4.39 2.15 1.471
Variance 234.5 72.89 26.70 5.677 2.02

Uniform distribution
Mean 17.04 8.24 4.415 2.15 1.41
Variance 223.5 76.45 26.23 5.75 1.95

Table 6: The mean and variance of inter-vehicle spacing distribution for Poisson and
uniform distribution assumptions. [ρ1, ρ2] shows the traffic composition where ρ1 and ρ2

represent, respectively, PTWs and cars densities

905
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