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Abstract
By allowing a large number of users to behave as readers or writers, Multi-User Searchable Encryption

(MUSE) raises new security and performance challenges beyond the typical requirements of Symmetric
Searchable Encryption (SSE). In this paper we identify two core mandatory requirements of MUSE
protocols being privacy in face of users colluding with the CSP and low complexity for the users, pointing
that no existing MUSE protocol satisfies these two requirements at the same time. We then come up
with the first MUSE protocol that satisfies both of them. The design of the protocol also includes new
constructions for a secure variant of Bloom Filters (BFs) and multi-query Oblivious Transfer (OT).

1 Introduction
Cloud computing allows users to outsource the hosting of data and the execution of programs to a third
party with much greater storage, computational, and network capacities called Cloud Service Provider (CSP).
Despite its great benefit to users, cloud computing raises problems in terms of security and privacy when
the user is not willing to trust the CSP. Traditional encryption methods can guarantee the privacy of the
data against an evil or compromised CSP, but it also prevents the CSP from searching the data on behalf
of the user. Searchable Encryption (SE) protocols allow both uploading data to a CSP and searching it
while preserving the privacy of the data. Additionally, most SE protocols also assure the privacy of both
the queries and their result. SE has been an active research topic [11, 8, 15, 19, 7, 6] and recent schemes
allow, for only a small cost overhead, to perform complex search operations over very large datasets with
only a very limited leakage of information to the CSP. However in many cases a large dataset consists of a
large number of small datasets, each having a different legitimate owner. This typically is the case in the
example of a hospital managing the medical records of all its patients, a scenario that is frequently cited
in the literature on SE. In such a case, using a model with a single user owning the whole dataset requires
that every legitimate owner of a segment of this dataset gives up any control on their data. In particular if
this single SE user –the hospital in our example– gets compromised, the data of every legitimate owner is
exposed. As a result the problem that was solved by SE, where users can outsource their data to a third
party without trusting it, is raised again between the multiple owners of data segments and the entity that
manages them. Hence, Single-user SE (SSE, also called Symmetric SE in the literature) is not suited for
datasets that consist of several segments owned by different parties.

Multi-User Searchable Encryption (MUSE) protocols typically address the privacy requirements of this
scenario. MUSE considers a large number of users that can be divided into two categories, the readers
and the writers; writers can upload data to the CSP and each writer can choose which readers should be
authorized to search her data. While several MUSE systems have already been suggested, the majority of
them [20, 25, 13, 16, 27, 1, 2, 26], were shown in [22] to be subject to very serious attacks unless all users are
completely trustworthy; as to the only solution [21] that is not affected by this kind of attacks, the high level
of privacy in that solution comes with a cost per user that is prohibitive in a large-scale multi-user setting.
We thus still lack a solution that is satisfying regarding security and scalability at the same time.

In this paper we motivate a threat model that takes into account user-CSP collusions, and we study the
extent to which privacy can be compatible with efficiency. As a result we come up with a set of objectives
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for the design of MUSE protocols that we think represent among the best trade-off we can achieve between
security and efficiency in MUSE. We then present the first MUSE protocol that satisfies these properties.
Our solution is partly based on some existing techniques but it also introduces new concepts such as the
notion of response unlinkability and new constructions for secure hashing structures and Oblivious Transfer
(OT) techniques that are required for the building of our protocol and whose properties were not achieved
by any existing construction. This paper aims at influencing the way the research community thinks about
the MUSE problem and at paving the way for the sound design of MUSE protocols.

The contributions of the paper can be listed as follows:

• We define and motivate a threat model for MUSE that is stronger than what most existing papers in
the literature have been using, and in which the large majority of existing solutions provide very little
privacy;

• we discuss how the privacy level of a MUSE scheme limits it maximum efficiency and highlight a
privacy level that seems interesting and has been under-studied;

• we define a new notion named response unlinkability that proves very helpful in the design of a MUSE
protocol satisfying the newly identified privacy level;

• we present three new constructions that address response unlinkability: Two of them, Zero-Sum Gar-
bled Bloom Filters (ZGBFs) and In-line Zero-Sum Garbled Bloom Filters (IZGBFs), are secure hashing
structures derived from Bloom Filters (BF), and the last one is a new technique for multi-query OT;

• we present a new MUSE protocol that makes use of these new building blocks and is the first to ensure
a high level of privacy in presence of users colluding with the CSP, while being scalable thanks to a
very low user workload and a moderate server workload;

• we show the security properties of the new building blocks and prove the security of the MUSE protocol
using a standard and rigorous proof method.

The rest of the paper is organized as follows: In Section 2 we study the problem of MUSE and state what
we think is a proper vision of it; in Section 3 we detail the ideas behind the design of our solution; in Section
4 we define most of the concepts we will use in the technical parts of the paper; in Section 4 we formally
define the problem of MUSE; in Section 5 we describe the building blocks used in our protocol, some of
them being new constructions; in Section 6 we describe a new MUSE protocol that makes use of the building
blocks we described and is the first solution to the MUSE problem as we defined it; in Section 7 we describe
various improvements that can be applied on the protocol; in Section 8 we analyze both the complexity and
the security of the MUSE protocol we present; in Section 9 we compare our solution to the already existing
MUSE protocols; finally in Section 10 we conclude the paper and suggest directions for future work.

2 Problem Statement
2.1 The Need for a realistic threat model
The aim of MUSE, just like with any SE, is to protect the privacy of the hosted data and the queries. The
first question that comes then is who should they be protected against, that is, what is the threat model.
As opposed to SSE, MUSE raises an additional challenge in that in a multi-user setting, one must consider
the potential collusion of some users. This is even more true considering that we expect the number of users
to be very large and that users are typically the weakest point in this kind of systems.

Surprisingly, most papers on MUSE assume that all the users are trusted [25, 13, 16, 27, 1, 2, 26], and
that the CSP is the only threat. This threat model is often justified by some specific scenario such as all
users being employees of a same company. Not only this kind of scenario is merely a special case that
does not represent most of the possible uses of a MUSE system; but we also claim that this scenario is
actually a case where one should use a SSE protocol instead of a MUSE one: Because the company is the
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single legitimate owner of its employees’ data, it can operate a single logical entity (typically some in-house
server) representing the user in a SSE protocol on behalf of all employees. By and large, the very presence
of an authorization mechanism in MUSE suggests that users should not be trusted a priori. It thus seems
necessary to include the possible corruption of users in the threat model of a MUSE protocol. Similarly,
we believe that one must take into account users colluding not only with each other but also with the CSP.
Indeed it seems very unrealistic to assume that whoever controls the CSP, be it the legitimate CSP operator
or an external attacker that compromised it, is unable to control even a single user. Finally we consider the
adversary as honest-but-curious, as it is done in most SE papers.

The resulting threat model, which we think should be taken into account in every work on MUSE, is
very challenging because the adversary can have access to all the information that is available to the users
colluding with it. This includes the indexes of the colluding writers and the queries of the colluding readers,
but also the indexes of the writers that gave an authorization to a colluding reader. We call revealed these
indexes and queries the adversary has an immediate access to. Unfortunately, existing MUSE schemes that
were designed with the assumption that users are trusted provide close to no privacy in this stronger threat
model even in the case where the number of colluding users is small, as shown in [22].

2.2 The difficult tradeoff between privacy and efficiency
We must now discuss the privacy guarantees we want to achieve against the strong adversary model we
defined in the previous section. It seems natural to exclude the revealed indexes and queries from the
domain of the privacy guarantees. For the other indexes and queries, which we can call “non-revealed”, the
most intuitive choice is to aim for an absolute notion of privacy where the adversary would learn nothing
but benign information such as the size of the indexes and the number of queries.

Unfortunately privacy rarely comes for free, and such a high privacy level can only be achieved at the
cost of a significant loss of efficiency. More precisely, enforcing this level of privacy would imply that a reader
receives one response for every index that was searched, instead of only receiving the responses corresponding
to matching indexes as it would be the case in a non-privacy-preserving search protocol. Indeed if the number
of responses sent to the reader depends on the number of matching indexes, the CSP necessarily obtains
information about this number, and this would already be considered as a violation of the privacy level. It
is this phenomenon that prevents a scheme like the one of [21] from being applicable to settings with a very
large number of users with limited resources.

As a result it does not seem suitable to aim at this absolute notion of privacy, and the highest level
of privacy one can achieve with a scalable MUSE protocol consists in leaking no more than the number of
positive responses (a response is positive if the index it corresponds to does contain the queried keyword),
which we call the result length.

To summarize, the design of a MUSE scheme that is both technically sound, efficient and privacy-
preserving for the users must address the two requirements raised in this section, that is: (a) the threat
model must take into account the collusion between users and the CSP and (b) it must achieve a compromise
between privacy and efficiency that is acceptable in the multi-user setting. No existing scheme so far seems
to address both of these challenges.

It appears that a MUSE protocol revealing no more than the number of positive responses to the CSP
would be a solution to both these challenges as it would provide the highest possible privacy level without
being condemned to inefficiency.

3 Idea
We present a solution to the previously described problem in the form of a MUSE protocol in which we
prove that the CSP colluding with some users does not learn anything about non-revealed indexes and
queries beyond the result length of the queries. This protocol is based on some already existing design
principles, among which the use of two non-colluding entities to implement the CSP and the combination of
Oblivious Transfer (OT) with some hashing structure to implement privacy-preserving keyword search. We
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also introduce new elements such as the notion of “response unlinkability” and new techniques for OT and
GBF that are required for the specific needs of our protocol. In the rest of this section we give an overview
of the main ideas behind the design of the presented protocol.

Handling multiple queries The main challenge raised by MUSE is that a reader is willing to search
a large number of indexes, but each of these indexes is encrypted with the secret key of a different writer.
Intuitively there seems to be two alternative approaches for solving this problem: the first one consists in
having the reader create one query for each index it wants to search, for instance by deploying one SSE
system for each writer that wants to give search rights to the reader; however this simple approach stops
being practical as the number of authorizations becomes large. In the other alternative, the CSP is in charge
of multiplexing the reader’s query into a number of queries per index to be searched. This latter approach
was chosen by the majority of papers in the literature on MUSE [25, 13, 16, 27, 1, 2, 26], ; however it seems
very difficult with this approach to prevent the CSP from learning a large amount of information, as all
MUSE schemes following this approach were shown to have a significant leakage profile and to be subject to
powerful attacks in presence of colluding users [22].

We suggest a third approach whereby a third party called Query Multiplexer (QM) is in charge of
multiplexing the reader’s query whereas the other third party called Data Host (DH) performs the lookup
based on the resulting multiplexed queries. Together, QM and DH implement the role of the CSP as defined
by MUSE. The advantage of implementing the role of the CSP with several independent entities is twofold:
compared to the approach where readers issue several queries, QM relieves the reader from this burden
by handling query transformation; and compared to the approach where the CSP transforms the query,
outsourcing this task to QM makes it easier to achieve a high level of privacy. Indeed each of QM and DH
only have a part of the information that would be held by a single CSP; it is then easier to assure privacy
against these weaker adversaries. This separation of knowledge requires however that DH and QM do not
collude together. While it is a challenge to prevent such collusion in practice, we claim that this assumption
is much more realistic than assuming that some CSP will not collude with any user, both because of the
large number of users and because entities such as DH and QM can be audited while users cannot. Moreover
this technique seems to be the only known way so far to ensure privacy against user-CSP collusions.

Query privacy Additionally to the non-collusion of DH and QM, mechanisms are necessary to ensure
that QM can transform queries, send them to DH and filter the responses it receives without this separation
of knowledge to be undermined. Fortunately, protecting the privacy of the queries can be achieved using
already existing techniques: Privacy-preserving trapdoor transformation can be done using bilinear pairings
with the technique used by [20] and [21]; and privacy-preserving keyword search can be done by combining
OT with some hash structure as first suggested by Chor et al. in [9] and further used in several other papers
[14, 3] .

Response unlinkability The technical problem that remains to be solved is how to let QM filter out
negative responses without learning more than the number of positive and negative responses. Intuitively,
one way to meet this goal would be to make QM able to see if a response is positive or negative but unable
to link a response with its corresponding index. More precisely QM must be unable to distinguish a positive
(resp. negative) response from another one. We call this requirement response unlinkability. The notion
of response unlinkability will be crucial to understand the challenges that must be solved in the design of
a MUSE protocol that is both efficient and secure. A first step towards response unlinkability consists in
encrypting the index ids attached to the responses sent to QM and to send the responses in random order.
However it is also necessary to ensure that the OT responses will not allow QM to find back which index
corresponds to which response. This is exactly the problem that arises with BFs, a hash structure that can
be used for representing the encrypted indexes. The properties of BFs, namely a low false positive probability
with a short size, are necessary for the protocol to be efficient; but when using BFs, a response lets QM learn
more information than just its positive or negative nature. More precisely, with BFs QM retrieves several bits
from some bit array and decides that the queried keyword is present in the searched index if all these bits are
set to one. If instead some bits are set to zero QM decides that the element was absent, but the values of the
retrieved bits give some information about the other elements in the filter. Dong et al. present a variant of
BFs named Garbled Bloom Filters (GBFs) where one retrieves secret shares instead of bits, so that nothing
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Figure 1: An illustration of our solution; main features and mechanisms are in blue boxed text.

can be learned beyond the presence or absence of the searched element. Unfortunately, this solution requires
that QM remembers the element searched for when processing the response, which contradicts response
unlinkability. We thus present a new construction called Zero-Sum Garbled Bloom Filters (ZGBFs) that has
the same properties as GBF but with which one can process a response without having to remember the
element that was searched. We also solve another challenge raised by the use of (some variant of) BFs being
that for each index that must be searched, QM has to send several OT queries. Because of the cost of OT
queries this is a serious performance bottleneck in our protocol, and as with the previous problem, solutions
exist but are not compatible with response unlinkability. We then present a simple technique to efficiently
group several OT queries into one that is compatible with response unlinkability.

The resulting protocol can be summarized as follows: readers send trapdoors to QM which, thanks to
bilinear pairings, is able to transform them without seeing their content; QM is able to apply the transformed
trapdoors to the index hosted at DH without DH learning anything thanks to the use of OT; finally, QM
is able to filter out negative responses while only learning the result length thanks to the use of ZGBF and
several other new techniques that ensure response unlinkability. Figure 1 illustrates this high-level overview.

4 Multi-User Searchable Encryption
We formally describe a multi-writer-multi-reader SE (MUSE) scheme in which the “documents” being
searched, named indexes, are sets of bit strings called keywords, as it is the case in most SE schemes
(see for instance [8, 15, 23]); in practice these indexes will likely represent more complex documents that are
not managed by the MUSE system. Also while we describe a system with static indexes for simplicity, our
system would allow in practice to add new keywords to indexes at any time. A search query allows to find
which indexes contain a given keyword, as in most SE protocols in the multi-user setting (in the single-user
setting however, modern schemes tend to allow a greater query expressiveness).

A MUSE system consists of a CSP and two types of users, namely the readers and the writers. We note
R and W the sets of all readers and writers, respectively. Each writer w ∈ W owns an index that is a set
Iw ⊂ {0, 1}∗ of keywords. Each writer can authorize an arbitrary set of readers to search her index and we
represent the authorizations with the function Auth such that for each reader r ∈ R, Auth(r) ⊂ W is the
set of writers that authorized r. We consider Auth as public, that is, computable by anyone. A reader r can
create a query for a keyword q ∈ {0, 1}∗ to find which index, among the ones she was authorized to search,
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contains q. We note a (for “answer”) the result of a search query. With qr,s the s-th query of reader r and
ar,s the corresponding result, the protocol is correct if:

ar,s = {w ∈ Auth(r) | qr,s ∈ Iw}

We will use the notation q to represent all the reader queries by writing qr,s as q[r][s], and we will
sometimes use “∀qr,s ∈ q” as a synonym of “∀(r, s) | (r ∈ R ∧ 1 < s < |q[r]|)” . Similarly we sometimes
write Iw as I[w].

4.1 Privacy of a MUSE scheme
We define the privacy of a MUSE scheme using the simulation paradigm, following [8, 11], that is based
on the notions of history, leakage and view. We define the history of a MUSE instance, noted H, as
(I, q, Auth,R′,W ′) where the sets R′ ⊂ R and W ′ ⊂ W are called the corrupted readers and corrupted
writers, respectively. The view V(H) of an adversary denotes the transcript of the messages this adversary
sees during the execution of the protocol; the view depends on the MUSE protocol used, on which adversary
is considered and on the corrupted readers and writers. For L a function of the history, we say that a MUSE
scheme has leakage profile L against the adversary having view V if there exists an efficient algorithm S,
called simulator, such that for all valid history H, S(L(H)) is indistinguishable from V(H).

In order to characterize the leakage (sometimes called trace) of various MUSE schemes, we define the
following notions:

• the access pattern represents the information of “which index matched which query” and is defined as:

AP(H) := ({w ∈ Auth(r)|qr,s ∈ Iw} ∀qr,s ∈ q)

• the result length represents the number of index matching each query and is defined as:

RL(H) := (|{w ∈ Auth(r)|qr,s ∈ Iw}| ∀qr,s ∈ q)

• the search pattern represents the information of “which queries are similar” and is defined as:

SP(H) := (qr,s = qr′,s′ ∀(r, s, r′, s′))

• [22] define the notion of keyword-access pattern which is equivalent to seeing the similarity of queries
that match a common index (recall that because of the authorization mechanism a query will not be
evaluated against all indexes). We define it as:

KWAP(H) :=
(qr,s = qr′,s′

∧ (∃w ∈ Auth(r) ∩Auth(r′) | qr,s ∈ Iw)

∀(r, s, r′, s′))

• finally the following is considered as “benign leakage” and is leaked by the majority of SSE and MUSE
schemes:

– the length of indexes (|Iw| ∀w ∈W ) ;
– the number of queries of each reader (|q[r]| ∀r ∈ R) ;
– (for MUSE schemes) the authorizations Auth .
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Following the discussion of Section 2, we present a MUSE protocol that leaks no more than the benign
leakage and the result length while all other MUSE schemes leak at least the keyword-access pattern, exposing
them to the powerful attacks presented in [22], with the exception of [21] that leaks no more than the benign
leakage and as a consequence is too inefficient on the user side to be practical.

Note that [22] calls for the construction of a scheme leaking no more than the access pattern; such a
scheme would have a privacy level stricly lower than the one of the scheme we present (the result length can
be derived from the access pattern), but given the numerous recent attacks on SSE protocols that use the
access pattern, we think that it is important to have a scheme that is immune to this kind of attack, hence
our “more conservative” objective.

4.2 Typical Structure of a MUSE protocol
A MUSE protocol typically consists in the following:

• a writer w generates her secret writer key γw by running algorithm Writer.KeyGen and uses this key to
encrypt her index by running algorithm Writer.Encrypt. The resulting encrypted index, noted Iw, is
sent to the CSP.

• a reader r generates her public and private reader keys ρpriv,r and ρpub,r using algorithm Reader.KeyGen;

• for a writer w to authorize a reader r, w runs algorithm Writer.Delegate with input her secret writer
key and the secret reader key of r; the resulting authorization, noted ∆r,w or ∆[r][s], is sent to the
CSP.

• reader r uses her private reader key to encrypt a query qr,s using algorithm Reader.Trapdoor; the result,
called a trapdoor, is noted tr,s and is sent to the CSP.

• when the CSP receives a trapdoor tr,s, it applies it on the encrypted indexes this user is allowed to
search using the algorithm CSP.Search with input the trapdoor, the indexes and the corresponding
authorizations. The resulting response, noted pr,s, is sent back to the querying reader.

• Finally the reader opens the response using algorithm Reader.Open to get the result ar,s of the query.

Our MUSE protocol follows this structure and implements the CSP entity with two non-colluding servers,
QM and DH, that implement the CSP.Search algorithm by executing some protocol we call the Search Protocol
(described in Section 6).

5 Building Blocks
Before we describe the construction of the building blocks we use in our protocol, we have to explain what
they will be used for. The main task of QM is to transform trapdoors sent by readers into what we call
“transformed trapdoors” that can be used to search the indexes hosted at DH for the queried keyword.

A reader trapdoor is essentially the queried keyword encrypted with the key of the querying reader, and
trapdoor transformation consists in re-encrypting this trapdoor so that it is encrypted under the key of
the targeted index. In our protocol this is performed using bilinear pairings, in a similar fashion as in [20]
and [21]. This step resembles what is known as “proxy re-encryption” where a third party called “proxy”
re-encrypts a ciphertext without ever seeing the underlying plaintext; the main difference with our case is
that we do not need a trapdoor to be decrypted.

Encrypted indexes are just lists of encrypted keywords, each index belonging to a different writer holding
a separate key, and testing if the queried keyword is in an index only consists in testing if the corresponding
transformed trapdoor is in the encrypted index.

What makes this operation difficult is that it must be done in a privacy-preserving manner, and in par-
ticular it must satisfy response unlinkability. As we already explained, this implies that response processing
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cannot depend on any value generated during query creation; this restriction will raise many challenges
during the design of our building blocks.

In the remaining of this section we describe bilinear pairings, a novel construction we call Zero-Sum
Garbled Bloom Filters (ZGBF), and an existing OT protocol that is compatible with response unlinka-
bility. Another primitive used in our protocol is a IND-CPA-secure cipher which description and possible
constructions are considered well-known.

5.1 Bilinear pairings
Let G1, G2 and GT be three groups of prime order ζ and g1, g2 generators of G1 and G2, respectively.
e : G1 ×G2 → GT is a bilinear map if e is:

• efficiently computable;

• non-degenerate: if x1 generates G1 and x2 generates G2 then e(x1, x2) generates GT ;

• bilinear: e(ga1 , g
b
2) = e(g1, g2)

ab ∀(a, b) ∈ Z2
ζ

We note h̃ a function that hashes any bit string into G1, modeled as a random oracle.

5.2 In-line Zero-Sum Garbled Bloom Filters
We present a new hashing structure named Zero-Sum Garbled Bloom Filter (ZGBF) that is a variant of
Bloom Filter (BF) compatible with response unlinkability and is adapted from the existing construction of
Garbled Bloom Filter (GBF).

A BF encodes a set S of at most n elements in an array BFS of length m and allows set membership
tests, i.e. allows testing whether a particular element c is in S, with a small probability of false positive
(where c appears to be in S while it is not) and no possible false negative. A BF uses η independent hash
functions h1, . . . , hη and is initialized as a zero-filled array; inserting an element c in BFS consists in setting
BFS [hi(c)] to 1 for every i, and testing the presence of c is done by checking that BFS [hi(c)] is set to 1 for
every i. Using a BF instead of a simple hash map (that is, a BF with η = 1) provides a very low probability
of false positive with a low memory footprint, as it is explained in [5]. We define the following algorithms
provided by BF and all further variants of BF:

• BF.Build(S)→ B: creates a BF representing the set S.

• BF.Map(x)→ {i1, . . . , iη}: outputs the positions in the BF corresponding to the element x.

• BF.Check(x1, x2, . . . ) → 1 or 0: with input the BF components x1, x2, . . . , outputs 1 to indicate that
the corresponding element is present in the BF or 0 to indicate that it is absent.

The intuition of our protocol is the following: DH represents the set S with a BF and QM tests the pres-
ence of some element c in S by retrieving (BFS [hi(c)])i=1...η using OT. Nevertheless such an implementation
would let QM learn information about S − {c}, which would break response unlinkability. Indeed if c /∈ S,
the content of the components of BFS that were retrieved reveal information about the other elements of S
(such as the simple fact that S does contain other elements, for instance).

This problem was solved by Dong et al. in [12] by introducing GBF where one inserts c in GBFS by
filling (GBFS [hi(c)])i=1...η with XOR-secret shares of c, that is,

⊕
i GBFS [hi(c)] = c. The presence of c in S

is tested by testing the preceding equality. We note λ the bit-length of the shares. When inserting a new
element c in a GBF, if a slot GBFS [hi(c)] has already been filled by the insertion of a previous element, this
component is left unchanged and is “reused” as a share of c. As [12] remark, as long as one of the slots,
say GBFS [hj(c)], is empty, one can build a correct GBF by setting GBFS [hj(c)] ← c ⊕

⊕
i6=j GBFS [hi(c)].

Finally, slots that are still empty after all elements have been inserted are filled with random values. Let
S and C be two sets, and GBFS and BFC have the same number of components and use the same hash
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functions; then, Dong et al. [12] define their intersection the following way: every component of GBFS that
corresponds to a zero in BFC is overwritten with some random value. The result, which we note1 GBFS∩BFC

, is a correct GBF encoding the set S ∩ C. Theorem 4 in [12] shows that GBFS ∩ BFC is computationally
indistinguishable from a GBF created from S ∩ C only. The proof given by Dong et al. can be summarized
this way: First, the probability that one element from S−C had none of its shares overwritten is negligible;
second, if an element from S − C had at least one of its shares overwritten, all information about its value
was lost. Thanks to this property, GBF are well-suited for the implementation of a Private Set Membership
Test: a client that retrieves (GBFS [hi(c)])i=1...η learns nothing beyond the presence or absence of c in S,
said differently, it learns nothing about S − {c}. Nevertheless, GBFs are not compatible with our specific
requirement for response unlinkability. Indeed in our protocol when QM receives some components of a GBF
and must decide the presence or absence of some element, it has lost the information as to what this element
was. It is then unable to test the equality

⊕
i GBFS [hi(c)] = c because it does not know c. This problem

appears much more clearly in Section 6 where the full protocol is formally described.
We therefore present a new variant of GBF that we call Zero-Sum Garbled Bloom Filters (ZGBF). A

ZGBF is a GBF where one creates shares of 0 instead of shares of the inserted element. Testing the presence
of an element consists then in testing if the corresponding components sum to zero, and ZGBF are thus
compatible with response unlinkability. We give the formal listing of algorithms ZGBF.Build, ZGBF.Map and
ZGBF.Check.

Algorithm: ZGBF.Build
Input: S,m, (hi)i=1...η, λ
Output: B
Initialize B as an empty array of length m ;
for x ∈ S do

if ∃j | (B[hj(x)] is empty) then
for i 6= j do

if B[hi(x)] is empty then
B[hi(x)]

$←− {0, 1}λ ;
set B[hj(x)]←

⊕
i6=j B[hi(x)] ;

else
Abort. ;

Algorithm: ZGBF.Map

Input: x, (hi)i=1...η

return (hi(x) for i = 1 . . . η) ;

Algorithm: ZGBF.Check
Input: (xi for i = 1 . . . η)
return true if

⊕
i xi = 0 else false ;

Surprisingly, a ZGBF enjoys the same security property as a GBF. Intuitively this is because the proof
only uses the security of the XOR secret sharing scheme regardless of what the secret shares sum to; We
elaborate on that in Appendix A.

1[12] denotes it as GBFS∩C , which we think is confusing
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5.3 Oblivious Transfer
In this Section we present an existing OT protocol compatible with response unlinkability. Let B be an
array of size m hosted at a server. An OT protocol allows a client to retrieve B[i] in a privacy preserving
manner with the following algorithms where κOT is some security parameter:

• OT.KeyGen(1κOT )→ KOT

• OT.Query(KOT , i,m)→ Q

• OT.Apply(Q,B)→ R

• OT.Open(KOT , R)→ x

The protocol is correct if x = B[i], and secure if Q reveals no information and R reveals nothing beyond
B[i].

Lipmaa describes in Section 4 of [17] how to modify Stern’s Private Information Retrieval (PIR) protocol
[24] into an OT protocol secure in the honest-but-curious model. The general idea of Stern’s PIR protocol
is to use an Additively Homomorphic cipher AH and to build Q as:

Q[j]←

{
AH.Enc(1) if i = j

AH.Enc(0) otherwise

OT.Apply consists then in performing R← B ×Q where multiplication of a ciphertext by a scalar is seen as
repeated addition (see Section 2.1 of [18]):

a× AH.Enc(b) =
a∑

i=0

AH.Enc(b) = AH.Enc(ab)

As a result, R decrypts to
1×B[i] +

∑
j 6=i

0×B[j] = B[i]

This protocol is not an OT protocol because it only provides privacy against the server and not against
the client. Lipmaa shows that it can be transformed in an OT protocol secure against honest-but-curious
parties simply by adding fresh encryptions of zero to the results of homomorphic computations. This requires
that the cipher AH is a public-key scheme (typical ciphers for AH would be Paillier encryption or LWE-based
ciphers).

This OT protocol, unlike others, is compatible with response unlinkability because a response is simply
a public-key ciphertext so the client (QM in our case) is able to open it without having to remember which
query it corresponds to.

6 Our MUSE Protocol
Our protocol follows the usual structure of a MUSE protocol described in Section 4 and implements the CSP
entity with two non colluding servers QM and DH such that:

• Writers send encrypted indexes to DH and authorizations to QM, and readers send trapdoors to QM;

• Reader.KeyGen has an extra output value in our protocol, a symmetric key that we note kr or k[r]
and that is sent to DH, and Reader.Trapdoor has an extra output value that we note ξr,s and note the
blinding factor and that is sent to DH as well;

• When QM receives a trapdoor tr,s from reader r with query number s, QM and DH run the following
protocol called Search Protocol:

10
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Figure 2: Illustration of the protocol flow showing encryption, delegation and search

– QM transforms the trapdoor into one specific trapdoor for each index to search by running
QM.Transform with input the trapdoor and the authorizations of the reader ∆[r]; The output,
called transformed trapdoors and noted t′r,s, is sent to DH together with values r and s.

– DH applies the transformed trapdoors on the corresponding indexes using algorithm DH.Process,
the corresponding blinding factor and the symetric key kr of the querying reader. The output,
noted p′r,s, is sent back to QM;

– QM filters out the negative responses with algorithm QM.Filter and the output pr,s is sent to the
reader

We illustrate the protocol flow in Figure 2 and we give the formal listing of the protocol algorithms.

Algorithm: Writer.KeyGen

Input: 1κ

γw
$←− ZQ;

Algorithm: QM.KeyGen

Input: 1κ

KOT ← OT.KeyGen(1κOT );

7 Improvements
We describe some modifications to the protocol that significantly improve its performance in practice.

These modifications naturally preserve the security and correctness of the constructions they apply on;
However they make the scheme more complex, so that finding optimal parameters is even more difficult. We
leave such optimization as future work and consider these improvements as arguments that the scheme can
be made much more efficient than how it is formally described in Section 6.
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Algorithm: Reader.KeyGen
Input: 1κ

ρpriv,r
$←− ZQ;

ρpub,r ← g
1/ρpriv,r

2 ;
kr ← CPA.KeyGen(1κ);

Algorithm: Writer.Encrypt

Input: (Iw, γw)
Iw ← {e(h̃(x), gγw

2 ) ∀x ∈ Iw};

Algorithm: Writer.Delegate

Input: (ρpub,r, γw)
∆r,w ← (ρpub,r)

γw ;

Algorithm: Reader.Trapdoor
Input: (qr,s, ρpriv,r)

ξr,s
$←− ZQ;

tr,s ← h̃(qr,s)
ξr,sρpriv,r ;

Algorithm: QM.Transform

Input: (tr,s, r,∆,KOT )
Output: t′r,s
Initialize t′r,s as an empty sequence;
for w ∈ Auth(r) do

∆r,w ←∆[r][w];
// apply the authorization
cr,s,w ← e(tr,s,∆r,w);
// compute positions to retrieve
zr,s,w ← ZGBF.Map(cr,s,w);
// query to retrieve components
Q← OT.Query(KOT , zr,s,w, η);
Append (w,Q) to t′r,s;

12



Algorithm: DH.Process
Input: (t′r,s, r, I,k, ξr,s)
Output: p′r,s
Initialize p′r,s as an empty sequence;
for (w,Q) ∈ t′r,s do

// apply randomization factor

I
(ξr,s)

w ← {xξr,s ∀x ∈ I[w]};
// build ZGBF for query application

Br,s,w ← ZGBF.Build(I
(ξr,s)

w );
// apply query from QM
p′′r,s,w ← OT.Apply(Q,Br,s,w);
// encrypt index id for unlinkability
w ← CPA.Encrypt(w,k[r]);
Append (w, p′′r,s,w) to p′r,s;

// for response unlinkability
Randomly reorder p′r,s;

Algorithm: QM.Filter

Input: (p′r,s,KOT )
Output: pr,s
Initialize pr,s as an empty sequence;
for (w, p′′) ∈ p′r,s do

shares← OT.Open(KOT , p
′′);

if ZGBF.Check(shares) = 1 then
Append w to pr,s;

Algorithm: Reader.Open
Input: pr,s, kr
ar,s ← {CPA.Dec(w, kr) ∀ w ∈ pr,s};
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7.1 Pre-computation
Pairing precomputation: Multiple executions of the function x 7→ e(x, y) for some fixed y can be made
significantly faster using pairing pre-computation (see [10]).
Off-line index preparation: In algorithm DH.Process, the creation of I(ξr,s)w and Br,s,w can be done off-
line before the reader sends her query, provided that DH knows ξr,s in advance. This can be done either
by having the reader generate and send the blinding factors in advance, but a better approach would be
to generate them using a Pseudo-Random Number Generator and to send the seed to DH. Off-line index
preparation does not reduce the workload of DH but makes the search protocol significantly faster.

7.2 Recursive OT
The PIR-based OT protocol we use is rather inefficient as it is presented in Section 5.3 since the size of the
query is linear in the size of the database; Recursive OT is a well-known technique that greatly diminishes
the communication complexity by sending several small queries instead of a single large one. Readers can
refere to [18] for a description of this technique, but we give the intuition of it here:

Degree-2 recursivity consists in considering the size-m database B as a matrix of size
√
m ×

√
m; Com-

ponent B[i] is now B[i′][j′] with i′ = b i√
m
c and j′ = i mod

√
m. The client sends a first OT query Q1 that

retrieves the i′-th element in a size-
√
m database, which is applied on each line of B to obtain a list of

√
m

responses that are considered as a “temporary database” B′. A second query is then sent that retrieves the
j′-th element of B′ and the result, sent back to the client, is a double encryption of the desired cell. As a
result the client sent a total of 2

√
m ciphertexts instead of m.

7.3 Multi-Query OT and In-line ZGBF
In the search protocol run between QM and DH, for each index to search, QM must retrieve η components of
some ZGBF. With the OT protocol we use, each of these components is transported in a different ciphertext.
For a large message, the ratio between the size of the ciphertext and the size of the plaintext is called the
expansion factor, noted F ; for instance in [18] the authors report F ≈ 5 for the encryption scheme they use
in their implementation of Stern’s PIR. However for a small message the ciphertext size stops being related
to the message size as it reaches a lower bound due to security requirements. We are definitely in this case,
with a component being λ-bit long and [12] recommending λ = 128; there is a lot of “unused space” in a
ciphertext transporting a single share.

One way to make the search protocol much more efficient is thus to use a single query to retrieve several
components B[i1], B[i2], . . . . This can be done easily by generating Q[ik] as AH.Enc(2(k−1)λ) so that the
response R will decrypt to

∑
k 2

(k−1)λB[ik]. We call this technique OT encoding. The problem with OT
encoding is that it does not combine well with OT recursiveness. Details on the problems that arise are in
appendix B, but the solution is again quite simple: If all the components to retrieve are in the same “row”
of B (as we defined it in OT recursiveness), then the two techniques can be used together without problems:
the first sub-query uses OT encoding to retrieve all the wanted components and the second sub-query selects
the (single) proper row. As a result we should be able to retrieve all the wanted components of B in a single
OT query while still benefiting from the efficiency of recursive OT.

Modifying the ZGBF construction to guarantee that all the components corresponding to an element are
in the same row can be done by building B as

√
m successive ZGBF, each being a “row” of B, and deciding

which row an element x should be inserted or looked up in by hashing x in the range [
√
m]. We call the

resulting data structure In-Line ZGBF.

8 Evaluation of the protocol
In this section we study the complexity of the protocol, its security against an honest-but-curious QM with
colluding users, how bilinear pairings provide security against some malicious behavior of QM that does
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not appear in the honest-but-curious model, and finally we discuss security against an honest-but-curious
DH with colluding users. The correctness of the protocol simply follows from the correctness of each of the
building blocks (pairings, ZGBF, and OT).

8.1 Complexity
The presented scheme is clearly efficient for the users which was the first objective regarding scalability, and
this suffices to make it more suitable than the scheme of [21] or than using several parallel SSE systems.

The workload for the servers however is quite substantial, and the protocol is quite complex to implement,
especially the OT component with our modifications. It would be very interesting as future work to use the
work of [18] that presents an efficient implementation of Stern’s PIR to implement the OT protocol in order
to obtain practical measurements.

We thus give some figures on the theoretical complexity of the presented scheme on the server side.

8.1.1 Storage and communication during upload

We assume a system with N writers each uploading an index containing M keywords.

• DH must store NM elements of GT for the encrypted indexes and one symmetric key for each reader.
With off-line index preparation it must also store a few prepared indexes B for each index for each
reader authorized to search this index. The size of a prepared index is linear with M .

• QM must store one element of G2 for each authorization.

8.1.2 Computation and Communication during Search

We assume a querying reader being authorized to search N indexes each containing M keywords:

• QM must perform N (precomputed) pairings, ηN hashing and create N OT queries (one query per
index thanks to OT encoding). The on-line execution time of query creation can be quite fast if
encryptions of zero and of 2(k−1)λ (see Section 7) are created in advanced and just “put together” to
create an OT query. Data sent from QM to DH consists in N × 2

√
|B| ciphertexts from encryption

scheme AH; The size |B| of the prepared index would depend on how parameters of the In-Line ZGBF
are optimized, which was left as future work, but in any case |B| is linear in M .

• the cost for DH to apply the queries on the prepared indexes is N (|B| × FMA)+F
√
|B|×FMA where

FMA is the cost of the “Fused Multiply and Add” operation described in [18]. The amount of data
sent from DH to QM is NF 2ηλ bits.

• Finally the cost of filtering should be negligible with regard to the rest of the search protocol.

8.2 Privacy Against an honest-but-curious QM
We prove that an honest-but-curious QM colluding with some users cannot learn more information on
non-revealed indexes and queries than the result length of each query by showing that one can efficiently
produce an output that is computationally indistinguishable from V(H), (we use the symbol c≡ to denote
computational indistinguishability), using only L(H) as input, where V(H) and L(H) are defined below.

Definition 1 (View of QM) The view V(H) of QM consists of all readers public keys (ρpub,r ∀r ∈ R), all
created authorizations (∆r,w ∀r ∈ R ∀w ∈ Auth(r)), protocol messages sent to QM ((tr,s, p

′
r,s) ∀qr,s ∈ q), the

keys of colluding users (ρpriv,r ∀r ∈ R′) and (γw ∀w ∈W ′), the revealed indexes and queries (Iw ∀w ∈W ′′)
and (qr ∀r ∈ R′).
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Definition 2 (Leakage to QM) The leakage to QM L(H) consists of the result length RL(H), the revealed
indexes and queries (Iw ∀w ∈W ′′) and (qr ∀r ∈ R′), and the benign leakage (|Iw| ∀w ∈W ), (|qr| ∀r ∈ R),
and Auth.

For the sake of readability, our proof makes use of several incremental steps. In each step i we define a
simulator Si that takes H as input. S0 outputs V(H) and for i = 1 . . . 5 we show that Si(H)

c≡ Si−1(H).
Thus by transitivity we have S5(H)

c≡ V(H). Finally we show that one can build an algorithm that has
the same exact output distribution as S5 while having L(H) as input instead of H, and this ends the proof.
The common structure for all simulators is given in Algorithm Si. Since S0 must output V(H) it calls the
algorithms from the real protocol defined in Section 6, that is, Reader.Trapdoor0 = Reader.Trapdoor etc. For
each subsequent simulator we only list the algorithms that differ from the ones in the previous simulator,
and we highlight differences in red. Note that a variable that is computed in some algorithm in the simulator
is accessible inside subsequent algorithms called by the simulator. For instance in S1, variables zr,s,w are
used in DH.Process1 while they are computed in QM.Transform1.

Algorithm: Si
Input: (I, q, Auth,R′,W ′)
Output: The view of QM
Create all keys, all deltas;
for w ∈W do

I[w]←Writer.Encrypti(I[w], γw);
for qr,s in q do

(tr,s, ξr,s)← Reader.Trapdoori(qr,s, ρpriv,r);
t′r,s ← QM.Transformi(tr,s, r,∆);
p′r,s ← DH.Processi(t

′
r,s, r, I,k, ξr,s);

8.2.1 Simulators

In S1, algorithm DH.Process1 does not call OT.Apply, and instead creates p′′r,s,w by directly encrypting the
components of Br,s,w that the OT query Qr,s,w was supposed to retrieve, using the OT.Forge algorithm.
The p′′r,s,w variables are the only variables of the simulator output to be affected by these changes, and each
fabricated p′′r,s,w is indistinguishable from a real one thanks to ciphertext sanitization in the OT protocol;
finally a straightforward application of the hybrid argument shows that the output of S1 is indistinguishable
from the one of S0.

Algorithm: DH.Process1
Initialize p′r,s as an empty sequence;
for (w,Q) ∈ t′r,s do

I
(ξr,s)

w ← {xξr,s ∀x ∈ I[w]};
Br,s,w ← ZGBF.Build(I

(ξr,s)

w );
sharesr,s,w ← (Br,s,w[j] ∀j ∈ zr,s,w);
p′′r,s,w ← OT.Forge(sharesr,s,w);
w ← CPA.Encrypt(w,k[r]);
Append (w, p′′r,s,w) to p′r,s;

Randomly reorder p′r,s;

In S2 DH.Process2 does not use the content of non-revealed indexes; Instead the query result ar,s is
used, which is computed by S2 beforehand from H: If w ∈ ar,s, p′′r,s,w is created as a forged OT response
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containing shares of zero, and is thus a positive response; otherwise it is created as a forged OT response
containing random values, and is thus a negative response. This procedure is equivalent to building Br,s,w as
a regular ZGBF from the set I(ξr,s)w ∪{cr,s,w}, while the corresponding procedure of DH.Process1 is equivalent
to a intersection between an ZGBF built from I

(ξr,s)

w and a BF built from {cr,s,w}. Thus from the security
property of ZGBF, a p′′r,s,w variable built by S2 is indistinguishable from the same p′′r,s,w variable built by
S1. Again, one can then show using the hybrid argument that the output of S2 is indistinguishable from the
output of S1.

Algorithm: DH.Process2
Initialize p′r,s as an empty sequence;
for (w,Q) ∈ t′r,s do

sharesr,s,w ← η random values;
if w ∈ ar,s then

sharesr,s,w[1]←
⊕

j 6=1 sharesr,s,w[j];
p′′r,s,w ← OT.Forge(sharesr,s,w);
w ← CPA.Encrypt(w,k[r]);
Append (w, p′′r,s,w) to p′r,s;

Randomly reorder p′r,s;

In S3, DH.Process3 sends random values instead of w. The output of S3 is indistinguishable from the
output of S2 thanks to the IND-CPA security of the CPA cipher and the hybrid argument.

Algorithm: DH.Process3
Input: (t′r,s, r, I,k, ξr,s)
Output: p′r,s
Initialize p′r,s as an empty sequence;
for (w,Q) ∈ t′r,s do

sharesr,s,w ← η random values;
if w ∈ ar,s then

sharesr,s,w[1]←
⊕

j 6=1 sharesr,s,w[j];
p′′r,s,w ← OT.Forge(sharesr,s,w);
Random w;
Append (w, p′′r,s,w) to p′r,s;

Randomly reorder p′r,s;

S4 does not use the query results but only their result length. For each query, S4 just creates the proper
number of positive and negative responses. All positive (respectively negative) responses were already created
the same way as in S3, and their order is being randomized at the end of DH.Process, so the output of S4
has the same exact distribution as the one of S3.
S5 does not use non-revealed queries. User trapdoors tr,s are just random values; as to p′r,s variables,

they are not affected by the change: Indeed thanks to the changes introduced in the previous simulators,
algorithm DH.Process5 does not use any variable that depends on tr,s. Thanks to the blinding factors ξr,s
and the hybrid argument, the output of S5 is indistinguishable from the output of S4.

Finally it is trivial to build an algorithm that has the same exact output distribution as S5 while only
having L(H) as input.
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Algorithm: DH.Process4
Input: (t′r,s, r, I,k, ξr,s)
Output: p′r,s
Initialize p′r,s as an empty sequence;
for k = 1 . . . |Auth(r)| do

sharesr,s,w ← η random values;
if k ≤ |ar,s,w| then

sharesr,s,w[1]←
⊕

j 6=1 sharesr,s,w[j];
p′′r,s,w ← OT.Forge(sharesr,s,w);
Random w;
Append (w, p′′r,s,w) to p′r,s;

Randomly reorder p′r,s;

Algorithm: Reader.Trapdoor5
Input: (qr,s, ρpriv,r)
Output: (ξr,s, tr,s)

ξr,s
$←− ZQ;

tr,s
$←− GT ;

8.3 Security from bilinear pairings
Bilinear pairings ensure that QM can transform a user trapdoor tr,s for some index Iw only if the owner w
of the index created the corresponding authorization ∆r,w. The benefit of pairings is not noticeable in the
semi-honest model because a semi-honest QM cannot send the resulting “forged” transformed trapdoors.
However such property seems desirable in the real world, and consequently we keep the use of pairings in
our protocol.

From the proof of [20], it is easy to show that QM cannot create cr,s,w without knowing ∆r,w: The ability
of QM to “forge” c variables in our scheme would contradict the proof in [20] that their scheme satisfies the
“token hiding” property they define.

8.4 Privacy against an honest-but-curious DH
The proof of privacy against DH is similar to the one against QM yet much simpler. The view of DH
V ′(H) consists of the public values, the symmetric key of each reader kr ∀r ∈ R, the encrypted indexes
Iw ∀w ∈ W , the transformed trapdoors t′r,s ∀qr,s ∈ q, and the informations from users colluding with DH:
(ρpriv,r ∀r ∈ R′), (γw ∀w ∈W ′), (Iw ∀w ∈W ′′), (qr ∀r ∈ R′), and (pr,s ∀r ∈ R ∀qr,s ∈ qr).

We could define leakage the same way as against QM, but we can actually prove a leakage even smaller
against DH because DH does not learn the result length. The leakage L′(H) is then defined as (Iw ∀w ∈W ′′),
(qr ∀r ∈ R′), (|Iw| ∀w ∈W ), (|qr| ∀r ∈ R), and Auth.

We define three simulators S ′0 to S ′2 which structure is described in algorithm S ′i. Again, S ′0 outputs the
real view V ′(H) of DH and thus calls the real algorithms, meaning that Reader.Trapdoor′0 = Reader.Trapdoor
etc.

In S ′1, Reader.Trapdoor′1 outputs random values. The only affected values in the view are the t′r,s values
because DH only receive the pr,s values corresponding to corrupted readers. The indistinguishability of the
output of S ′1 and the one of S ′0 follows simply from the sender privacy of OT and the hybrid argument.

In S ′2, Writer.Encrypt′2 outputs random values. Recall that the function h̃ used in Writer.Encrypt is
modeled as a random oracle; because each index is encrypted using a different independent key, we can use
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Algorithm: S ′i
Input: (I, q, Auth,R′,W ′)
Output: The view of QM
Create all keys, all deltas;
for w ∈W do

I[w]←Writer.Encrypt′i(I[w], γw);
for qr,s in q do

(tr,s, ξr,s)← Reader.Trapdoor′i(qr,s, ρpriv,r);
t′r,s ← QM.Transform′

i(tr,s, r,∆);
p′r,s ← DH.Process′i(t

′
r,s, r, I,k, ξr,s);

pr,s ← QM.Filter′i(p
′
r,s);

a different random oracle for each index. The indistinguishability of the output of S ′2 and the one of S ′1 is
then straightforward.

Finally it is trivial to build a simulator which on input the leakage L′(H) has the same output distribution
as S ′2.

9 Related Work
In this paper “multi-user” has the meaning of “multi-reader and multi-writer” as used in [6]. As a conse-
quence, we do not consider “Public-Key Encryption with Keyword Search” (PEKS) protocol (among which
[4]), where anyone can write but a single user can search, as part of MUSE protocols. Similarly schemes with
a single writer and multiple reader (sometimes called “Delegated Word Search” protocols) are considered
out of scope, and so is Symmetric Searchable Encryption (SSE).

All existing MUSE schemes but one [20, 25, 13, 16, 27, 1, 2, 26], follow a common algorithmic structure
named “iterative testing” by [22] that expose them to a very powerful attack when a user colludes with the
CSP. Intuitively, the attack described by [22] works the following way: Because of iterative testing the CSP
sees indexes as a list of encrypted keywords, and during the processing of a query it sees which encrypted
keywords match the query. As a result, the CSP notices identical keywords across different indexes when they
match the same query, and identical queries sent by different readers when they match identical keywords,
resulting in a leakage of what [22] call keyword-access pattern and that we defined in Section 4. If the CSP
gets to know the keyword corresponding to some queries or some encrypted keywords, for instance through
a collusion with a user, keyword-access pattern leakage allows it to recover other queries and other keywords
across the system. With this attack a CSP colluding with even a very small number of users can recover a
great amount of queries and keywords as shown in [22]. Our MUSE protocol on the other hand has a much
smaller leakage profile that should give strong privacy guarantees against both DH and QM, no matter how
many users collude with either DH or QM; it is thus the first user-side efficient MUSE scheme to be truly
secure against user collusions.

Note that, unlike recent SSE schemes, all existing MUSE schemes have low query expressiveness and
their search time is linear with respect to the total number of search indexes. Their search time is also linear
with respect to the number of keywords in each index because of the iterative testing structure that requires
to test every encrypted keyword until one, if any, matches. As a result the presented scheme as an efficiency
that is asymptotically similar to the state of the art in MUSE. Comparing the efficiency of single-user SE
protocols with MUSE ones makes little sense because the problem of MUSE is a more general one that is
not addressed by SSE protocol.

As to the scheme of [21], while it has a privacy level slightly higher than the one of our protocol (it does
not leak the result length), it does not scale properly: as we already explained, in this scheme a reader must
process one response for every index that was searched which is not feasible for a low-powered user when the
number of searched indexes is large. By adding a privacy-preserving filtering mechanism to [21], our scheme
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has a cost for the reader that only depends on the number of matching indexes at the cost of a very limited
sacrifice regarding the leakage profile.

10 Conclusion
We highlighted the importance for security models in MUSE to consider user-CSP collusions and the lack of
existing solutions for MUSE achieving a satisfactory level of privacy in the security model as defined in this
paper as well as efficiency at a large scale. Apart from a new security model for MUSE, we introduced a new
notion of response unlinkability and new constructions for secure BFs and multi-query OT and used them
to design the first MUSE protocol that satisfies both security in face of collusions and scalability. Finally we
proved the security of the protocol using rigorous standard techniques and analyzed its complexity, showing
that our protocol can be used in practice.

In this work, we had recourse to a new party in the system in order to meet the security and performance
objectives of MUSE; Although we believe the scheme including the new party is sound, searching for solutions
meeting the same requirements without this new third party seems to be an interesting research direction.
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A Security of Zero-Sum Garbled Bloom Filters
We show that the proof of Theorem 4 of [12] on the security of GBF applies to ZGBFs as well. We first
reproduce Theorem 4 of [12] with our notation:

Theorem 1 Let C and S be two sets, and GBF-BF intersection be as defined in Section 5.2, then:

GBFS ∩ BFC
c≡ GBFS∩C

In our protocol C will always be some singleton {c}. We show that the proof of this theorem given by Dong
et al. in [12] applies to ZGBF as well. In their proof, Dong et al. consider two cases: The first case is when
some element of S−{c} had none of its shares overwritten during the GBF-BF intersection operation. This
corresponds to

∃x ∈ S − {c}, GBF.Map(x) = BF.Map(c)

Dong et al. remark that this event correspond to a BF false positive, which has a negligible probability
due to how the parameters of GBF are picked; This remains true for ZGBFs. The second case is when each
element of S−{c} had at least one of its shares overwritten by a random value. Dong et al. show that thanks
to the distribution of XOR secret shares, the distribution of GBFS ∩ BFC is the same as the distribution of
GBFS∩C ; this ends their proof. Because shares have the same distribution in a ZGBF than in a GBF (XOR
random shares of some determined value), this step applies as well to ZGBF. As a result the proof of Dong
et al. applies to ZGBF.

B Incompatibility of OT encoding and OT recursiveness in the
general case

We take a simple example to show that OT encoding and OT recursiveness, that were described in Section
5.3, are not compatible in the general case.

Let B be a database of size 9; we want to retrieved B[1] and B[5] and we want to use level-2 OT
recursiveness, that is to send two sub-queries of size 3.

Recall that in level-2 recursiveness the first sub-query selects the proper position of the targeted compo-
nent in its block and the second sub-query selects the proper block. Another way of seeing this situation is to
consider B as a matrix and say that the first sub-query selects the column and the second sub-query selects
the row. With several components to retrieve it is not clear how to build the sub-queries; one solution would
be that the first sub-query retrieves all necessary columns and the second sub-query retrieves all necessary
rows.

In our example this would mean to build sub-queries in the following way (for simplicity we omit the fact
that the two queries would use different parameters for AH, but we do use different λ values):

Q1 ← (AH.Enc(2λ),AH.Enc(1),AH.Enc(0))
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Q2 ← (AH.Enc(2λ
′
),AH.Enc(1),AH.Enc(0))

However the response would then decrypt to two ciphertext where one would decrypt to 2λB[1] + B[2]
and the other to 2λB[4] + B[5]. Not only having the client retrieve components it does not need (B[2] and
B[4] in our example) is inefficient, but it also violates the expected security properties of an OT protocol. It
thus appears that OT encoding and OT recursiveness do not combine well in the general case, at least not in
a straightforward way. This probably explains the fact that OT encoding does not appear in the literature
on OT.

Nevertheless and as we said in Section 5.3, this problem disappears when all components to retrieve are
in the same block, and this remark allows us to obtain the first multi-query OT protocol that is compatible
with response unlinkability.
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