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Abstract. The increasing use of machine learning algorithms to deal
with large amount of data and the expertise required by these algorithms
lead users to outsource machine learning services. This raises a trust issue
about their result when executed in an untrusted environment. Verifiable
computing (VC) tackles this issue and provides computational integrity
for an outsourced computation, although the bottleneck of state of the art
VC protocols is the prover time. In this paper, we design a VC protocol
tailored to verify a sequence of operations for which existing VC schemes
do not perform well on all the operations. We thus suggest a technique to
compose several specialized and efficient VC schemes with Parno et al.’s
general purpose VC protocol Pinocchio, by integrating the verification
of the proofs generated by these specialized schemes as a function that is
part of the sequence of operations verified using Pinocchio. The result-
ing scheme keeps Pinocchio’s property while being more efficient for the
prover. Our scheme relies on the underlying cryptographic assumptions
of the composed protocols for correctness and soundness.
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1 Introduction

1.1 Motivation

Neural networks (NN) are machine learning techniques that achieve state of the
art performance in various classification tasks such as handwritten digit recogni-
tion, object or face recognition. Despite their excellent accuracy performances,
these algorithms are computationally expensive and need to be trained with large
amounts of data to perform well during the classification phase, where all the
algorithm parameters are set. Therefore, cloud providers such as Amazon or Mi-
crosoft start offering Machine Learning as a Service (MLaaS) to perform complex
classification tasks. However if a user does not trust the cloud provider, neither
shall he trust the result of the computation returned by the server. Verifiable
computing gives an answer to this problem and aims at providing computa-
tional integrity without any assumptions on hardware nor on failures that could
happen. Existing verifiable computing (VC) systems can theoretically prove and
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verify all NP computations [14]. In practice nevertheless, trade-offs have to be
taken between expressiveness and functionality [34].

Due to the sequential nature of NNs, a simple solution would be to compute
proofs for each part of the NN sequence. However, this solution would degrade
the verifier performance, increase the communication and force the prover to
send all the intermediate results. As a consequence, the prover would reveal the
parameters of his NN, which are sensitive data.

The goal of this paper is the following: we consider a Neural Network per-
forming classification, which means that it has already been trained and that
its parameters are set and we want to define a VC system able to efficiently
verify the NN, even if it has a large number of parameters. Following Valiant
[32], we propose to compose proofs to address the verifiability of NNs. We reach
generality and efficiency by a careful choice of the VC systems to compose. We
develop our proposition in the case study of NN but we stress that our methods
are general and can fit other use cases.

1.2 Problem Statement

Majority of applications involve several sequences of function evaluations com-
bined through control structures. Assuring the verifiability of these applications
has to face the challenge that the functions evaluated as part of these applications
may feature computational characteristics that are too variant to be efficiently
addressed by a unique VC scheme. For instance, in the case of an application that
involves a combination of computationally intensive linear operations with sim-
ple non-linear ones, none of the existing VC techniques would be suitable since
there is no single VC approach that can efficiently handle both. This question
is perfectly illustrated by the sample scenario described in the previous section,
namely dealing with the verifiability of Neural Network Algorithms, which can
be viewed as a repeated sequence of a matrix product and a non-linear activation
function. For instance, a two layer neural network, denoted by g, on an input x
can be written as:

g(x) = W2 · f(W1 · x) (1)

Here W1 and W2 are matrices and f is a non-linear function like the frequently
chosen Rectified Linear Unit (ReLU) function x 7→ max(0, x). For efficiency,
the inputs are often batched and the linear operations involved in the Neural
Network are matrix products instead of products between a vector and a matrix.
The batched version of (1) therefore is:

g(X) = W2 · f(W1 ·X) (2)

where X is a batch of inputs to be classified.
In an attempt to assure the verifiability of this neural network, two alternative

VC schemes seem potentially suited: the CMT protocol [8] based on interactive
proofs and Pinocchio [28]. CMT can efficiently deal with the matrix products but
when it comes to the non-linear part of the operations, problems arise since, using
CMT, each function to be verified has to be represented as a layered arithmetic
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circuit (i.e. as an acyclic graph of computation over a finite field with an addition
or a multiplication at each node, and where the circuit can be decomposed
into layers, each gate of one layer being only connected to an adjacent layer).
Nevertheless the second component of the neural network algorithm, that is,
the ReLU activation function, does not lend itself to a simple representation as
a layered circuit. [18] and [8] have proposed solutions to deal with non-layered
circuits at the cost of very complex pre-processing resulting in a substantial
increase in the prover’s work and the overall circuit size. Conversely, Pinocchio
eliminates the latter problem by allowing for efficient verification of the non-
linear ReLU activation function while suffering from excessive complexity in the
generation of proofs for the products of large matrices (benchmarks on matrix
multiplication proofs can be found in [34]).

This sample scenario points to the basic limitation of existing VC schemes
in efficiently addressing the requirements of common scenarios involving several
components with divergent characteristics such as the mix of linear and non-
linear operations as part of the same application. The objective of our work
therefore is to come up with a new VC scheme that can efficiently handle these
divergent characteristics in the sub-components as part of a single VC protocol.

1.3 Idea of the Solution: Embedded Proofs

Our solution is based on a method that enables the composition of a general
purpose VC scheme suited to handle sequences of functions with one or several
specialized VC schemes that can achieve efficiency in case of a component func-
tion with excessive requirements like very large linear operations. Without loss of
generality, we apply the method to a pair of VC schemes, assuming that one is a
general purpose VC scheme, called GVC, like Pinocchio [28], which can efficiently
assure the verifiability of an application consisting of a sequence of functions,
whereas the other VC scheme assures the verifiability of a single function in a
very efficient way, like, for instance, a VC scheme that can handle large matrix
products efficiently. We call this scheme EVC. The main idea underlying the VC
composition method is that the verifiability of the complex operation (for which
the GVC is not efficient) is outsourced to the EVC whereas the remaining non-
complex functions are all handled by the GVC. In order to get the verifiability
of the entire application by the GVC, instead of including the complex operation
as part of the sequence of functions handled by the GVC, this operation is sep-
arately handled by the EVC that generates a standalone verifiability proof for
that operation and the verification of that proof is viewed as an additional func-
tion embedded in the sequence of functions handled by the GVC. Even though
the verifiability of the complex operation by the GVC is not feasible due to its
complexity, the verifiability of the proof on this operation is feasible by the ba-
sic principle of VC, that is, because the proof is much less complex than the
operation itself.

We illustrate the VC composition method using as running example the
Neural Network defined with formula (2) in Section 1.2. Here, the application
consists of the sequential execution of three functions f , g and h (see Figure 1),
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t1 = f(x)
+ proof π1

t2 = g(t1)

y = h(t2)
+ proof π2

Proof that:




Verify(π1, t1, x) = 1

t2 = g(t1)

Verify(π2, y, t2) = 1

t1 , π1

t2

t3, π3

P1 (EVC1)

P2 (EVC2)

P (GVC)

Fig. 1. High level view of the embedded proofs

where f and h are not suitable to be efficiently proved correct by GVC while g is.
Note that we consider that g cannot be proved correct by any EVC systems or
at least not as efficiently as with the GVC system. The computation to verify is
therefore y = h(g(f(x))). In our example, the functions f , g and h are f : X 7→
W1 · X, h : X 7→ W2 · X and g : X 7→ max(0, X), where X, W1 and W2 are
matrices and g applies the max function element-wise to the input matrix X.

In order to cope with the increased complexity of f and h, we have recourse
to EVC1 and EVC2 that are specialized schemes yielding efficient proofs with such
functions. πEVC1 denotes the proof generated by EVC1 on f , πEVC2 denotes the
proof generated by EVC2 on h and ΠGVC denotes the proof generated by GVC. For
the sequential execution of functions f , g and h, the final proof then is:

ΠGVC

((
VerifEVC1(πEVC1 , x, t1)

?
= 1
)
∧
(
g(t1)

?
= t2

)
∧
(
VerifEVC2(πEVC2 , t2, y)

?
= 1
))

(3)
where the inputs of the GV C system are respectively the computation of g and

the verification algorithms of EVC1 and EVC2 systems, which output 1 if the proof
is accepted and 0 otherwise.

The method can easily be extended to applications involving more than three
functions and various specialized VC techniques like EVC that would be selected
based on their suitability to the requirements of special functions provided that:

1. The verification algorithm for each EVC proof is compatible with the GVC

scheme.
2. The verification algorithm for each EVC proof should have much lower com-

plexity than the outsourced computations (by the basic VC advantage).
3. The EVC schemes should not be VC’s with a designated verifier but instead

publicly verifiable ones [13]. Indeed, since the prover of the whole computa-
tion is the verifier of the EVC, no secret value should be shared between the
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prover of the EVC and the prover of the GVC. Otherwise, a malicious prover
can easily forge a proof for EVC and break the security of the scheme.

In the sequel of this paper we present a concrete instance of our VC compo-
sition method using Pinocchio [28] as the GVC and an efficient interactive proof
protocol, namely the Sum-Check protocol [24] as the EVC. We develop further
this instance with a Neural Network verification example. We assume that the
matrix involved in the products do not have the same sizes so there will be two
instances of the Sum-Check protocol. Indeed, the Pinocchio system requires that
the verification algorithms are expressed as arithmetic circuits in order to gen-
erate evaluation and verification keys for the system. As the parameters of the
verification algorithms are different, the two Sum-Check verification protocols
are distinct as arithmetic circuits.

1.4 Related Works

Verifying computation made by an untrusted party has been studied for a long
time. Theoretical solutions have been proposed: interactive proofs [19], prob-
abilistically checkable proofs (PCP) [2], computationally sound proofs [25] or
arguments [22]. Despite solving theoretically the problem, the implementation
of these protocols would have been impossible or dramatically inefficient, either
in time or space. A decade ago, Goldwasser et al. [18] proposed an efficient inter-
active proof that, after some optimizations, led to a practical implementation by
Cormode et al. [8], later refined by Thaler [31]. Quite at the same moment, Ishai
et al. [21] proposed a particular PCP theorem that also led to an implementation
by Setty et al. [30]. The next steps toward practical implementations of verifi-
able computation were taken by Gennaro et al. with the definition of Quadratic
Arithmetic Programs [14], an efficient way to encode circuit satisfiability. Build-
ing on QAPs, Parno et al. [28] proposed Pinocchio, achieving generality (the
protocol can handle any type of computation), succinctness of the proof and
possibility for the prover to supply private inputs. The latter property enables
to produce proofs that are zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARKs). Most of the subsequent works also built on QAPs
either optimizing the cryptographic protocol embedding the QAPs [10, 4] or im-
proving the expressiveness of the systems [7, 5, 33]. Leveraging the zk-SNARKs
property of the proof, several applications of verifiable computation (VC) sys-
tems have been proposed: a new cryptocurrency [3], an image authentication
protocol [27] or a proposal to improve efficiency, privacy, and integrity of the
X.509 public key infrastructure [11].

In SafetyNets [15], Ghodsi et al. build an interactive proof protocol to verify
the execution of a deep neural network on an untrusted cloud. This approach,
albeit efficient has several disadvantages over ours. The first is that expressivity
of the interactive proof protocol used in SafetyNets prevents from using state of
the art activation functions such as ReLU. Following CryptoNets [16], Ghodsi et
al. replace ReLU functions by a quadratic activation function, namely x 7→ x2,
which squares the input values element-wise. The fact that square activation
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functions have unbounded derivative causes instability on the neural network
training, as mentioned in [16]. A second disadvantage is the impossibility for the
prover to hide some of his inputs, i.e. to prove a non-deterministic computation.
As a consequence, the verifier and the prover of SafetyNets have to share the
model of the neural network, namely the values of the matrices (e.g. W1 and W2

in formula (1)). This situation is quite unusual in machine learning: since the
training of neural networks is expensive and requires a large amount of data,
powerful hardware and technical skills to obtain a classifier with good accuracy,
it is unlikely that cloud providers share their models with users. In contrast,
with our proposition the prover could keep the model private and nonetheless
be able to produce a proof of correct execution.

Proof composition has been proposed by Valiant [32] and refined in the case
of SNARKs by Bitansky et al. [6]. The implementation of SNARKs recursive
composition has later been proposed by Ben-Sasson et al. in [5]. The high level
idea of the latter proof system is to prove or verify the satisfiability of an arith-
metic circuit that checks the validity of the previous proofs. Thus, the verifier
should be implemented as an arithmetic circuit and used as a sub-circuit of the
next prover. However, SNARKs verifiers perform the verification checks using an
elliptic curve pairing and it is mathematically impossible that the base field has
the same size as the elliptic curve group order. Ben-Sasson et al. therefore pro-
pose a cycle of elliptic curves i.e. at least two elliptic curves where the verifier’s
finite field of the first curve is the base field of the second curve, enabling proof
composition. Although proofs can theoretically be composed as many times as
desired, this method has severe overhead. Our method has a more limited spec-
trum than Ben-Sasson et al.’s but our resulting system is still general purpose
and enjoys the property of the GVC system, such as succinctness or efficiency
for the prover. Furthermore, our proposal improves the prover time, replacing
some part of a computation by sub-circuit verifying the sub-computation that
can then be executed outside the prover.

1.5 Paper organization

The rest of the paper is organized as follows: we first introduce the building
blocks required to instantiate our method in Section 2, then we state the details
of a VC composition based on our method and using the selected GVC and EVC

schemes in Section 3, evaluate the efficiency of our scheme in Section 4, its
security in Section 5 and conclude in Section 6.

2 Building blocks

2.1 GVC: Verifiable Computation based on QAPs

Quadratic Arithmetic Programs. In [14], Gennaro et al. defined Quadratic
Arithmetic Programs (QAP) as an efficient object for circuit satisfiability. The
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computation to verify has first to be represented as an arithmetic circuit, from
which a QAP is computed. Using the representation based on QAPs, the cor-
rectness of the computation can be tested by a divisibility check between poly-
nomials. A cryptographic protocol enables to check the divisibility in only one
point of the polynomial and to prevent a cheating prover to build a proof of a
false statement that will be accepted.

Definition 1 (from [28]). A QAP Q over field F contains three sets of m+ 1
polynomials V = {(vk(x))}, W = {(wk(x))}, Y = {(yk(x))} for k ∈ {0, . . . ,m}
and a target polynomial t(x). Let F be a function that takes as input n elements
of F and outputs n′ elements and let us define N as the sum of n and n′. A
N-tuple (c1, . . . , cN ) ∈ FN is a valid assignment for function F if and only if
there exists coefficients (cN+1, . . . , cm) such that t(x) divides p(x), as follows:

p(x) =

(
v0(x) +

m∑

k=1

ck · vk(x)

)
·
(
w0(x) +

m∑

k=1

ck · wk(x)

)
−
(
y0(x) +

m∑

k=1

ck · yk(x)

)
.

A QAP Q that satisfies this definition computes F . It has size m and its degree
is the degree of t(x).

In the above definition, t(x) =
∏
g∈G(x − rg), where G is the set of multiplica-

tive gates of the arithmetic circuit and each rg is an arbitrary value labeling a
multiplicative gate of the circuit. The polynomials in V, W and Y encode the
left inputs, the right inputs and the outputs for each gate respectively. By defi-
nition, if the polynomial p(x) vanishes at a value rg, p(rg) expresses the relation
between the inputs and outputs of the corresponding multiplicative gate g. An
example of a QAP construction from an arithmetic circuit is given in [28]. It is
important to note that the size of the QAP is the number of multiplicative gates
in the arithmetic circuit to verify, which also is the metric used to evaluate the
efficiency of the VC protocol.

VC protocol. Once a QAP has been built from an arithmetic circuit, a crypto-
graphic protocol embeds it in an elliptic curve. The verification phase makes use
of a pairing to perform the divisibility check and to ensure that the inputs of the
computation were correctly incorporated and that the QAP has been computed
with the same coefficients ck for the V, W and Y polynomials during p’s com-
putation. This results in a publicly verifiable computation scheme, as defined
below.

Definition 2. Let F be a function, expressed as an arithmetic circuit over a
finite field F and λ be a security parameter.

– (EKF , V KF ) ← KeyGen(1λ, F ): the randomized KeyGen algorithm takes as
input a security parameter and an arithmetic circuit and produces two public
keys, an evaluation key EKF and a verification key V KF .

– (y, π)← Prove(EKF , x): the deterministic Prove algorithm, takes as inputs
x and the evaluation key EKF and computes y = F (x) and a proof π that y
has been correctly computed.
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– {0, 1} ← Verify(V KF , x, y, π): the deterministic Verify algorithm takes the
input/output (x, y) of the computation F , the proof π and the verification key
V KF and outputs 1 if y = F (x) and 0 otherwise.

Security. The desired security properties for a publicly verifiable VC scheme
have been defined in [14]:

– Correctness: for any function F and any input x:

Pr




(EKF , V KF )← KeyGen(F, 1λ);
(y, π)← Compute(EKF , x);
Verify(V KF , x, y, π) = 1


 = 1

– Soundness: for any function F and any probabilistic polynomial-time adver-
sary A,

Pr

[
(u, y, π)← A(EKF , V KF ) :
F (u) 6= y and Verify(V KF , u, y, π) = 1

]
6 negl(λ)

– Efficiency : the cost of Verify is lower than the cost of F .

Parno et al. [28] prove that their VC protocol is correct and sound if some
knowledge of exponent assumptions [20] hold.

Costs. In QAP-based protocols, the proof consists of few elliptic curve ele-
ments (e.g. 8 group elements in Pinocchio [28]) and has constant size no matter
the computation to be verified: the verification is fast. Regarding the set-up
phase, the KeyGen algorithm outputs evaluation and verification keys that de-
pend on the function F , but not on its inputs. The resulting model is often
called verifiable computation with pre-processing. The setup phase has to take
place only once, the keys are reusable for later inputs and the cost of the pre-
processing is amortized over all further computations. The bottleneck is due to
the computations performed by the prover: for an arithmetic circuit of N multi-
plication gates, the prover has to compute O(N) cryptographic operations and
O(N log2N) non-cryptographic operations.

Zero-knowledge. QAPs also achieve the zero-knowledge property with little
overhead: the prover can supply private inputs in the computation and randomize
the proof by adding multiples of the target polynomial t(x) to hide his inputs.
The proof obtained using the protocol by Parno et al. thus is called a zero-
knowledge Succinct Non-Interactive Argument (zk-SNARK). zk-SNARKs have
found many applications [11, 3, 33, 27] due to their (relative) efficient production
and their non-interactivity. Moreover, in the zk-SNARKs setting, the efficiency
requirement is no longer meaningful since the computation could not have been
performed by the verifier. Indeed, some of the inputs are supplied by the prover
and remain private, making the computation impossible to perform by the sole
verifier.
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2.2 EVC: Sum-Check Protocol

The Sum-Check protocol [24] enables to prove the correct evaluation of a multi-
variate polynomial P defined over a finite field. Suppose that P is a polynomial
with n variables, defined over Fn and it has to be evaluated on {0, 1}n. Using
the Sum-Check protocol, a prover P can convince a verifier V that he knows the
value:

H =
∑

t1∈{0,1}

∑

t2∈{0,1}

. . .
∑

tn∈{0,1}

P (t1, . . . , tn) (4)

A direct computation performed by the verifier requires at least 2n evaluations
while the Sum-Check protocol only requires O(n) evaluations for the verifier.

The protocol is a public coin interactive proof with n rounds of interaction
during which the prover computes n univariate polynomials Pi, i = 1 . . . , n de-
rived from P . During each round, V generates a random field value that P has
to integrate in the computation of the next Pi. The consistency of P’s answer is
then checked with this value. V is supposed to be able to compute P in one point,
namely in the point (r1, r2, . . . , rn), corresponding to the random challenges ri
he has sent to P during the rounds of the protocol.
The n rounds of the protocol are summarized below:

– P computes the univariate polynomial P1 claimed to be computed as follow:

P1(x) =
∑

t2∈{0,1},...,tn∈{0,1}

g(x, t2, . . . , tn) (5)

– P sends H and P1 to V.
– V checks if P’s claim on P1 holds using: H = P1(0) + P1(1). If it does not,
V rejects and the protocol stops. Otherwise, V chooses uniformly at random
r1∈F and sends it to P.

– P sends V a univariate polynomial P2 and claims that:

P2(x) =
∑

t3∈{0,1},...,tn∈{0,1}

P (r1, x, t3, . . . , tn) (6)

– V checks if P’s claim on P2 holds using: P1(r1) = P2(0) +P2(1). If the claim
does not hold, V rejects the response ad the protocol stops. Otherwise, V
picks another value r2∈F uniformly at random and sends it to P
The protocol goes on, until the n-th round, where:

– P sends the univariate polynomial Pn and claims that:

Pn(x) = P (r1, r2, r3, . . . , rn−1, x) (7)

– V picks a random value rn ∈ F and checks that Pn(rn) = P (r1, r2, . . . , rn).
If the equality holds, then V is convinced that H = P1(0) + P1(1) and that
H has been evaluated as in (4).

The Sum-Check protocol has the following properties:
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1. The protocol is correct, i.e. if P’s claim about H is true,then V accepts with
probability 1

2. The protocol is sound, i.e. if the claim on H is false, the probability that
P can make V accept H is bounded by nd/|F|, where n is the number of
variables and d the degree of the polynomial P .

Note that the soundness is here information theoretic: no assumption is made on
the prover power. To be able to implement the Sum-Check protocol verification
algorithm into an arithmetic circuit we need a non-interactive version of the pro-
tocol. Indeed, Pinocchio requires the complete specification of each computation
as input to its QAP generation process (see Section 2.1). Due to the interactive
nature of the Sum-Check protocol, the proof cannot be generated before the ac-
tual execution of the protocol. We therefore use the Fiat-Shamir transformation
[12] to obtain a non-interactive version of the Sum-Check protocol that can be
used as an input to Pinocchio. In the Fiat-Shamir transformation, the prover
replaces the uniformly random challenges sent by the verifier by challenges he
computes applying a public hash function to the transcript of the protocol so
far. The prover then sends the whole protocol transcript, which can be verified
recomputing the challenges with the same hash function. This method has been
proved secure in the random oracle model [29].

2.3 Multilinear extensions

Multilinear extensions allow to apply the Sum-Check protocol to polynomials
defined over some finite set included in the finite field where all the operations
of the protocol are performed. Thaler [31] showed how multilinear extensions
and the Sum-Check protocol can be combined to give a time-optimal proof for
matrix multiplication.
Let F be a finite field. For any d-variate polynomial P , we denote by degi(P ) the
degree of P in variable i. A n-variate polynomial P is multilinear if: degi(P ) 6
1,∀i ∈ {1, . . . , d}.

Definition 3. Let f : {0, 1}d → F be any function mapping the d-dimensional
boolean hypercube to F. A d-variate polynomial g over F is said to be an extension
of f if: g(x) = f(x)∀x ∈ {0, 1}d.

A multilinear extension (MLE) of a function f is a polynomial that is an exten-
sion of f and has degree at most 1 in each variable.

Theorem 1. Any function f : {0, 1}d → {0, 1} has a unique multilinear exten-
sion over F.

We will hereafter denote by f̃ the MLE of f . Using Lagrange interpolation, an
explicit expression of MLE can be obtained:

Lemma 1. Let f : {0, 1}d → {0, 1}. Then f̃ : Fd → {0, 1} has the following
expression:
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f̃(x1, . . . , xd) =
∑

w∈{0,1}d
f(w)χw(x1, . . . , xd) (8)

where χw is defined for all w = (w1, . . . , wd) as :

χw(x1, . . . , xd) =

d∏

i=1

(xiwi + (1− xi)(1− wi)) (9)

2.4 Ajtai Hash Function

As mentioned in Section 1.2, our goal is to compute a proof of an expensive sub-
computation with the Sum-Check protocol and to verify that proof using the
Pinocchio protocol. The non-interactive nature of Pinocchio prevents from prov-
ing the sub-computation with an interactive protocol. As explained in Section
2.2, we turn the Sum-Check protocol into a non-interactive argument using the
Fiat-Shamir transform [12]. This transformation need a hash function to sim-
ulate the challenges that would have been provided by the verifier. The choice
of the hash function to compute challenges in the Fiat-Shamir transformation
here is crucial because we want to verify the proof transcript inside the GVC

system, which will be instantiated with the Pinocchio protocol. This means that
the computations of the hash function have to be verified by the GVC system
and that the verification should not be more complex than the execution of the
original algorithm inside the GVC system. For instance the costs using a standard
hash function such as SHA256 [26] would be too high: [3] reports about 27,000
multiplicative gates to implement the compression function of SHA256. Instead,
we choose a hash function which is better suited for arithmetic circuits, namely
the Ajtai hash function [1] that is based on the subset sum problem as defined
below:

Definition 4. Let m,n be positive integers and q a prime number. For a ran-
domly picked matrix A ∈ Zn×mq , the Ajtai hash Hn,m,q : {0, 1}m → Znq is defined
as:

∀x ∈ {0, 1}m, Hn,m,q = A× x mod q (10)

As proved by Goldreich et al. [17], the collision resistance of the hash function
relies on the hardness of the Short Integer Solution (SIS) problem. Ajtai hash
functions have first been used in verifiable computation by Braun et al. in [7].
Ben-Sasson et al. [5] then noticed that the translation in arithmetic circuit is
better if the parameters are chosen to fit with the underlying field of the com-
putations. A concrete hardness evaluation is studied by Kosba et al. in [23].
Choosing Fp, with p ≈ 2254 to be the field where the computations of the arith-
metic circuit take place leads to the following parameters for approximately 100
bit of security:

n = 3,m = 1524, q = p ≈ 2254.

Few gates are needed to implement an arithmetic circuit for this hash function:
to hash m bits, n × m multiplicative gates are needed. With the parameters
selected in [23], this means that 4572 gates are needed to hash 1524 bits.
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3 Verifiable Neural Networks via Embedded Proofs

3.1 High level description of our protocol

The generation of a proof for y = h(g(f(x))) involves several steps as depicted in
Figure 2. Since the prover has to execute three different proving algorithms, the
prover is viewed as the union of three sub-provers, the first and the second sub-
provers P1 and P2 being in charge of the efficient VC algorithm (EVC) and the
third sub-prover P3 using the general verifiable computation (GVC) algorithm.
In the Setup phase, the verifier and the prover agree on an arithmetic circuit
which describes the computation of the function g along with the verification al-
gorithms of the proof that f and h were correctly computed. The pre-processing
phase of the GVC system takes the resulting circuit and outputs the correspond-
ing evaluation and verification keys. In the query phase, the verifier sends the
prover an input x for the computation along with a random value that will be
an input for the efficient sub-provers P1 and P2. In the proving phase, P1 first
computes t1 = f(x) and produces a proof πEVC1 of the correctness of the compu-
tation, using the efficient proving algorithm. The prover P then computes the
value t2 = g(t1) and sub-prover P2 computes y = h(t2). Sub-prover P3 then ver-
ifies the proofs πEVC1 and πEVC2 : if the verification fails it aborts. Otherwise, P3

provides the inputs/outputs of the previous computations to the GVC system
and, using the evaluation key computed in the setup phase, builds a proof πGVC
that:

1. the proof πEVC1 has been correctly verified,
2. the computation t2 = g(t1) is correct,
3. the proof πEVC2 has been correctly verified

In the verification phase, the verifier checks that y was correctly computed
using the GVC’s verification algorithm, the couple (y, πGVC) received from the
prover, and (x, r).

Recall that our goal is to gain efficiency compared with the proof generation
of the whole computation inside the GVC system. Therefore, we need proof
algorithms with a verification algorithm that can be implemented efficiently as
an arithmetic circuit and for which the running time of the verification algorithm
is more efficient than running the computation. Since the Sum-Check protocol
involves algebraic computations over a finite field, it can easily be implemented
as an arithmetic circuit and fits well to our model.

3.2 Protocol description

In this section, we give a description of embedded proofs in the case where the
function f takes as input a matrix X and returns the product W1 × X, the
function h takes as input a matrix X and returns the product W2 ×X and the
function g is the ReLU function x 7→ max(0, x). We use the Sum-Check protocol
to prove correctness of the matrix multiplication, as in [31] and Pinocchio as the
global proof mechanism.
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Verifier

r
$← F

VerifyGVC(πGVC, y, x, r)
?
= 1

Prover

t1 = f(x)
compute proof π1

P1 (EVC1)

t2 = g(t1)

t1, π1

y = h(t2)
compute proof π2

P2 (EVC2)

t2

Compute proof πGVC that:



Verify(π1, t1, x) = 1

t2 = g(t1)

Verify(π2, y, t2) = 1

y, π2

P (GVC)

x, r

y, πGVC

Fig. 2. Embedded proof protocol

For the sake of simplicity, W1 and W2 are assumed to be square matrices:
W1 ∈ Mn,n(F), W2 ∈ Mm,m(F). We denote d1 = log n, d2 = logm and we
denote by H the Ajtai hash function (see Section 2 for details). The protocol is
the following:

Setup: – Verifier and Prover agree on an arithmetic circuit C description for
the computation. C implements both the evaluation of the function g
and the verification algorithms of the Sum-Check protocols for the two
matrix multiplications.

– (EKC , V KC)← KeyGen(1λ, C)
Query Verifier:

– generates a random challenge (rL, rR) ∈ Flogn × Flogn

– sends the prover a matrix input X and the challenge (rL, rR)
Proof Sub-prover P1, on input X:

– computes the product T1 = W1 ×X
– computes the multilinear extension T̃1(rL, rR)
– computes, using serialized Sum-Check protocol, the proof πEVC1 of the

evaluation of the polynomial:

P (x) = W̃1(rL, x) · X̃(x, rR) (11)

where x = (x1, . . . , xd) ∈ Fd.
– Sends prover P the value (X,W1, T1, πEVC1 , rL, rR).
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– Prover P computes the value T2 = g(T1) and sends it to sub-prover P2
Sub-prover P2, on input T2:
– computes the product Y = W2 × T2
– computes the multilinear extension Ỹ (rL, rR)
– computes, using serialized Sum-Check protocol, the proof πEVC2 of the

evaluation of the polynomial:

P (x) = W̃2(rL, x) · T̃2(x, rR) (12)

where x = (x1, . . . , xd) ∈ Fd.
– Sends prover P the tuple (T2,W2, Y, πEVC2 , rL, rR).

Prover P: on input (X,W1, T1, πEVC1 , rL, rR)
– Computes T̃1(rL, rR).
– Parses πEVC1 as: (P1, r1, P2, r2, . . . , Pd, rd)
– Verifies π:
• Checks that: P1(0) + P1(1) = T̃1(rL, rR)
• Computes: ri+1 = H(ai, bi, ci, ri), for i = 1, . . . , d, with r1 = rL ‖ rR
• Checks that: Pi(0) + Pi(1) = Pi−1(ri−1) for i = 2, . . . , d.

• FromX andW1, computes the multilinear extensions: W̃1(rL, r1, . . . , rd)

and X̃(r1, . . . , rd, rR)
• Checks that:

Pd(rd) = W̃1(rL, r1, . . . , rd) · X̃(r1, . . . , rd, rR) (13)

– Aborts if one of the previous checks fails. Otherwise, accepts T1 as the
product of W1 and X.

– On input (T2,W2, Y, πEVC2 , rL, rR), apply the verification algorithm as
above. If all the checks pass, accept Y as the product of W2 and T2.
Otherwise, abort.

– Computes T2 = ReLU(T1).
– Using Pinocchio, computes the final proof πGVC that πEVC1 and πEVC2 have

been verified and T2 has been correctly computed from T1.
– Sends (Y, πGVC) to the Verifier.

Verification Verifier:
– computes Verify(X, rR, rL, Y, πGVC)
– If Verify fails, rejects the value Y . Otherwise accepts the value Y as the

result of Y = W2 ·ReLU(W1 ·X)

4 Efficiency Evaluation

Regarding the embedded proofs protocol, we seek efficiency gains over the ex-
ecution of the complete function evaluation inside the GVC system. Since the
complexity of the Pinocchio scheme is related to the number of multiplicative
gates of the arithmetic circuit to verify, it is natural to study the number of mul-
tiplications performed by the GVC prover P. More precisely, we need to compare
the cost of implementing the verification algorithm of the EVC inside the GVC sys-
tem with the cost of executing the function directly in the GVC system. For the
example we developed in Section 3.2, we need to compare the cost of executing
a matrix multiplication in the Pinocchio system with the cost of implementing
the verification of the Sum-Check protocol inside Pinocchio.
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Matrix multiplication cost. QAP encodes the constraints of all multiplication
gates of the circuit to verify, hence the last operation performed in the circuit
cannot be an addition. In a matrix multiplication C = A · B, each component
ci,j of the product is the result of an operation

∑
k ai,k · bk,j . Multiplications

between components are first performed and the product component ci,j is the
addition of the latter multiplications. The representation as a circuit has thus
to add an extra multiplication gate, which is a multiplication by 1, to enable
the verification of the last addition in the circuit constraints. Consequently, in
the multiplication between n × n matrices, the computation of each of the n2

component requires n + 1 multiplicative gates in the corresponding arithmetic
circuit.

To sum up, a circuit implementing matrix multiplication between two n× n
matrices requires (n+ 1)× n2 = n3 + n2 multiplication gates.

Sum-check verification cost. The verification algorithm of the Sum-Check
protocol has three parts. The first one is the consistency checks for the re-
ceived univariate polynomials, the second one is the computation of the mul-
tilinear extension to perform the last check of the protocol while the last one
is the hash computation of the challenge in the serialized proof. In the sequel
of the paper, we assume that the sub-prover P has received a proof πEVC1 =
(P1, r1, P2, r2, . . . , Pd, rd) from sub-prover P1. The same reasoning would apply
for P2.

Consistency checks. Recall that the verifier has to check if:P1(0) +P1(1) is equal
to the claimed value and if Pi(0) + Pi(1) = Pi−1(ri−1) for i = 2, . . . , d. If sub-
prover P1 sends the coefficient of the degree 2 polynomials Pi, which we will
denote by ai, bi, ci, then the check becomes:

ai + bi + 2ci = ai−1r
2
i−1 + bi−1ri−1 + ci−1

= (ai−1ri−1 + bi−1)ri−1 + ci−1. (14)

The cost of this check is 3 multiplicative gates for the equality testing (see [28])
and, using Horner algorithm, 2 multiplication gates for the Pi−1(ri−1) evaluation,
the computation of the left hand side being free. Adding the first check, which
is only an equality check, we obtain a cost of 5 · log n+ 3 multiplicative gates for
(14).

Multilinear extension computation. For the final check, sub-prover P has to com-
pute the multilinear extension of the input matrices that we will denote by
A,B,C for convenience. Suppose that A is a (n, n) matrix and denote d = log n.
A can be interpreted as a function A : {0, 1}d×d → F, associating to each in-
dex (i, j) value written in binary form the value A(i, j). In the last step of
the Sum-Check protocol, the verifier has to compute Ã(rL, r1, . . . , rd), where
rL = (rL1 , . . . , rLd

) ∈ Fd is the randomness sent to the prover. Cormode et al.
[9] describe an algorithm to compute this multilinear extension, using O(n× d)
time and O(d) space. For convenience, we rewrite the randomness (r1, . . . , r2d).
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The algorithm is the following:

Ã(r1, . . . , r2d)← 0

Ã(r1, . . . , r2d)← Ã(r1, . . . , r2d) +A(i1, . . . , i2d) · χ(i1,...,i2d)(r1, . . . , r2d)

(15)

Where (i1, . . . , i2d) spans the hypercube {0, 1}2d and χ is defined in Section 2.3
in equation (9). On each loop the actualization of Ã(r1, . . . , r2d) requires 6d mul-
tiplications. The total number of multiplications is thus 6d22d = 6n2 log n. Since
the verifier has 3 multilinear extensions to compute from matrices of the same
size, the total number of multiplications for the matrix multilinear extensions is
18n2 log n.
Challenge computations in the proof serialization. The Sum-Check protocol, as
performed for the matrix multiplication (Section 3.2), involves d rounds. The
verifier need to compute a hash value to check the challenge of the next round
is correct. The total cost is thus d · cost(H), where cost(H) is the cost required
to compute the hash value to get the challenge. Using Ajtai hash function with
the parameters given in Section 2.4, the cost of hashing the 4 field elements to
get the new challenge would be: cost(H) = 4572 gates.

Gathering all the sub-costs, the overall cost to verify the Sum-Check protocol
for matrix multiplication is 18n2 log n+ 4577 log n+ 3.

Table 1 compares the cost required to prove a matrix multiplication using our
embedded proof system and computing the whole proof inside the GVC system.
The cost is expressed as the number of multiplication gates inside the arithmetic
circuit performing the computation.

Table 1. Matrix multiplication cost comparison (in multiplicative gates)

n 64 128 256 512 1024

Whole GVC 266240 2113536 16842752 134479872 1074790400

Embedded proofs 469833 2096426 9473803 42508524 188789453

Gains −76% 0.8% 44% 68% 82%

5 Security Evaluation

Our embedded proof system has to satisfy the correctness and soundness re-
quirements. Suppose that we have a GVC and two EVC systems to prove the
computation of y = h(g(f(x))). These systems already satisfy the correctness
and soundness requirements. Let denote by εGVC, εEVC1 and εEVC2 the respective
soundness errors of these systems. Note that while the EVC systems prove that
t1 = f(x) and y = h(t2) have been correctly computed, the GVC system proves
the correctness of three computations, namely that the verification of the EVC
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proofs has passed and that the computation t2 = g(t1) is correct. Furthermore,
the GVC system proves the correct execution of the function F as defined below:

F : (x, t1, t2, π, g, y) 7→





1 if VerifyEVC1(x, t1, πEVC1) = 1 and t2 = g(t1)

and VerifyEVC2(t2, y, πEVC2) = 1,

0 otherwise.

5.1 Correctness

Theorem 2. If the EVC and the GVC systems are correct then our embedded proof
system is correct.

Proof. Assume that the value y = h(g(f(x))) has been correctly computed.
It means that t1 = f(x) and t2 = g(t1) have also been correctly computed.
Since the GVC system is correct, it ensures that the function F will pass the GVC

verification with probability 1, provided that its result is correct. Now, since the
EVC1 system is correct, the probability that VerifyEVC1(x, t1, πEVC1) = 1 is 1. The
same argument applies for the EVC2 system: since it is correct, the probability
that VerifyEVC2(t2, y, πEVC2) = 1 is 1.

Therefore, if y = h(g(f(x))) has been correctly computed, then the function
F will also be correctly computed and the verification of the embedded proof
system will pass with probability 1.

5.2 Soundness

Theorem 3. If the EVC and the GVC systems are sound with soundness error
respectively equal to εEVC and εGVC, then our embedded proof system is sound with
soundness error at most ε := εEVC1 + εEVC2 + εGVC.

Proof. Assume that a p.p.t. adversary Aemb returns a cheating proof π for a re-
sult y′ on input x, i.e. y′ 6= h(g(f(x))) and π is accepted by the verifier with prob-
ability higer than ε. We then construct an adversary B that breaks the soundness
property of either the GVC or of one of the EVC systems. We build B as follow:
Aemb interacts with the verifier of the embedded system until a cheating proof
is accepted. Aemb then forwards the cheating tuple (x, t1, t2, πEVC1 , πEVC2 , y, π) for
which the proof π has been accepted. B can then submit a cheating proof to the

GVC or the EVC systems, depending on the result of the tests t1
?
= f(x), t2

?
= g(t1)

or y
?
= h(t2):

– t1 = f(x) is not correct:
By definition of the proof π, this means that the EVC1 proof has been accepted
by the verification algorithm implemented inside the GVC system. Aemb can
then forward to the adversary B the tuple (x, t1, πEVC1). Now if B presents
the tuple (x, t, πEVC1) to the EVC1 system, it succeeds with probability 1.
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Therefore, the probability that the verifier of the embedded proof system
accepts is:

Pr[VEVC1 accepts π] = Pr[VEVC1 accepts /Vemb accepts π]× Pr[Vemb accepts π]

= 1× ε
> εEVC1

Thus B breaks the soundness property of EVC1.
– y = h(t2) is not correct:

Based on the same reasoning, B will break the soundness property of EVC2
by forwarding the tuple (t2, y, πEVC2) to the EVC2 system.

– t2 = g(t1) is not correct:
This means that the proof π computed by the GVC system is accepted by
Vemb even if t2 has not been correctly computed. If B forwards π to a GVC
system, it breaks its soundness.

6 Conclusion

We design an efficient verifiable computing scheme aiming at proving the cor-
rectness of a neural network algorithm. Our scheme builds on the notion of proof
composition and leverages an efficient VC scheme, namely the Sum-Check pro-
tocol to improve the performance of Pinocchio in proving matrix multiplications.
We prove that our scheme is sound and give an efficiency evaluation. As noted
in Section 1.3, the composition technique described in the article can be ex-
tended to other VC schemes and to an arbitrary number of sequential function
evaluations, provided that they respect the requirements defined therein.
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