
Avatar2: A Multi-target Orchestration Platform

Marius Muench, Dario Nisi, Aurélien Francillon and Davide Balzarotti
EURECOM, France

{muench, nisi, francill, balzarot}@eurecom.fr

Abstract—Dynamic binary analysis techniques play a central
role to study the security of software systems and detect vulnera-
bilities in a broad range of devices and applications. Over the past
decade, a variety of different techniques have been published,
often alongside the release of prototype tools to demonstrate
their effectiveness. Unfortunately, most of those techniques’
implementations are deeply coupled with their dynamic analysis
frameworks and are not easy to integrate in other frameworks.
Those frameworks are not designed to expose their internal state
or their results to other components. This prevents analysts
from being able to combine together different tools to exploit
their strengths and tackle complex problems which requires
a combination of sophisticated techniques. Fragmentation and
isolation are two important problems which too often results in
duplicated efforts or in multiple equivalent solutions for the same
problem – each based on a different programming language,
abstraction model, or execution environment.

In this paper, we present avatar2, a dynamic multi-target
orchestration framework designed to enable interoperability be-
tween different dynamic binary analysis frameworks, debuggers,
emulators, and real physical devices. Avatar2 allows the analyst
to organize different tools in a complex topology and then “move”
the execution of binary code from one system to the other. The
framework supports the automated transfer of the internal state
of the device/application, as well as the configurable forwarding
of input/output and memory accesses to physical peripherals or
emulated targets.

To demonstrate avatar2 usage and versatility, in this paper
we present three very different use cases in which we replicate a
PLC rootkit presented at NDSS 2017, we test Firefox combining
Angr and GDB, and we record the execution of an embedded
device firmware using PANDA and OpenOCD. All tools and the
three use cases will be released as open source to help other
researchers to replicate our experiments and perform their own
analysis tasks with avatar2.

I. INTRODUCTION

Our societies are increasingly depending on computing
systems, from low end embedded devices to large cloud-based
systems. These systems are used in very diverse areas ranging
from complex industrial settings to smaller consumer devices.
However, the significant number of software vulnerabilities
that are regularly discovered in all computing systems is
making this dependency a significant issue. The software

running on those systems therefore needs to be carefully
tested and verified, which is commonly done not only by the
manufacturers themselves, but also by third party companies
and security researchers. While an important body of work
exists on analyzing programs from the source code, binary-
only analysis is very popular among software authors and third
parties alike. The motivation for third parties to engage in
this activity are diverse, varying from consultant contracted
to perform additional black box testing, individuals searching
for security vulnerabilities as part of bug bounty programs, or
researchers just generally interested in reducing the number of
bugs in popular software products.

Binary-only testing is also a very popular option when
source code is available to the analyst or when the software
is available as open source. This is the case as some subtle
bugs cannot be discovered by source code inspection only and
because binary analysis allows to test software independently
from the source code language that was used to develop the
system. Moreover, not relying on the source code means the
analysis does not depend on the compiler to be correct, i.e.,
“what you fuzz is what you ship” [1].

As a result, over the past decade, testing and analyzing
software with binary-only approaches has become more and
more popular and a variety of different techniques have been
published for binary analysis [23]. It is often the case that
these techniques are implemented in independent tools to
demonstrate their effectiveness. While some tools are simple
prototypes, others are more mature solutions that have earned
a significant popularity over the years. Existing tools may
rely on testing to be performed directly on the target analysis
host, within an emulator, or even inside a dedicated specific
execution engine (e.g., for symbolic execution).

Unfortunately, most of these techniques’ implementations
are deeply coupled with their dynamic analysis frameworks
and are not easy to integrate into other frameworks. Quite
often, they even re-implement binary analysis techniques part
of other tools, to benefit from those techniques, as every frame-
work aims to obtain the best analysis possible. Unfortunately,
little effort has been invested so far towards a better inter-
action between different frameworks, and not only in terms
of re-using analysis results, but also by sharing the internal
analysis state to external components. This prevents analysts
from being able to combine together different tools to exploit
their strengths and tackle complex problems which requires
a combination of sophisticated techniques. Fragmentation and
isolation are two important problems which too often results
in duplicated efforts or in multiple equivalent solutions for
the same problem – each based on a different programming
language, abstraction model, or execution environment.

Workshop on Binary Analysis Research (BAR) 2018
18th February 2018, San Diego, CA, USA



In this paper we present avatar2, a framework we devel-
oped to facilitate the interoperability among multiple binary
analysis tools, such as debuggers, symbolic execution engines,
and emulators. The basic principle behind our solution is to let
the analyst choose multiple execution environments, which are
later used to perform their tasks on the same execution state.
Indeed, we will show in this paper that there are a variety of
scenarios in which it is beneficial to keep a specific analysis
not only local to one tool, but using its state as a basic block
inside other analysis environments. Avatar2 is a successor of
Avatar [29], a system originally designed to perform embedded
devices analysis, which we completely re-designed and ex-
tended to allow an easy orchestration of arbitrary components
that can be combined to perform sophisticated binary analysis
tasks.

We believe avatar2 is the first attempt to provide a
generic framework for such multi-target orchestration. In par-
ticular, this paper makes the following contributions to the area
of binary analysis:

• We show that state forwarding between analysis environ-
ments is not only useful for embedded devices analysis
but is a more generic technique that allows orchestration
among multiple environments.

• We present avatar2, a completely redesigned system
for orchestrating executions between multiple testing en-
vironments.

• We show how avatar2 scripting can help to quickly
replicate previous research and at the same time improve
repeatability of research performed using avatar2.

• We demonstrate avatar2 usage and versatility with three
very different use cases in which we replicate previous
firmware research, we record and replay the execution
of an embedded device, and we analyze a large desktop
application.

• We highlight the benefits of orchestrating the execution
across multiple tools: GDB, OpenOCD, QEMU, angr and
PANDA.

• We release all tools and the three use cases as open
source1 to help other researchers to replicate our ex-
periments and perform their own analysis tasks with
avatar22

.

The rest of the paper is structured as follows. First, in Sec-
tion II we provide a general background on program analysis,
and summarize the original Avatar [29], the predecessor of
avatar2. Afterwards, we present the avatar2 framework
(Section III) and then show its usefulness with three case
studies (Section IV) highlighting interesting aspects of the
framework. We then discuss the results (Section V) compare
avatar2 with related work (Section VI) and close the paper
with concluding remarks.

II. BACKGROUND

Before describing the avatar2 framework, we provide
some background information on the topic of dynamic binary
analysis, to emphasize the need for multi-target orchestration.
Afterwards, we briefly discuss the original Avatar framework,

1All code and examples are available at: https://github.com/avatartwo/
2We apologize in advance for any confusion between avatar2 typography

and the inevitable footnotes references in superscript.

the predecessor which served as inspiration for avatar2.
Although the purpose of the original tool was solely to enable
dynamic binary analysis for embedded devices by connecting
S2E [5] to a physical device, it introduced a number of
important concepts for building an orchestration framework
suitable for coordinating multiple dynamic binary analysis
tools.

A. Dynamic Binary Analysis

Program analysis is commonly divided in static and dy-
namic analysis. Static analysis reasons about the program just
by examining its code, whereas dynamic analysis relies on the
actual execution of the program. Therefore, static analysis can
provide sound results by analyzing all possible execution path
of a program.

However, with static analysis the whole runtime state of the
program is not available (e.g., heap structures, some pointers
or threading) and approximations are often needed to decide
otherwise undecidable problems, which may lead to a high
number of false positives. Dynamic analysis avoids those
problems by analyzing the actual behavior of a program while
it executes on a given input (at the price of being able to
observe only a small portion of the program state and code).

One common application of dynamic analysis is security
testing and evaluation, which aims at discovering bugs that
impact the security of the program under analysis. Common
examples of those bugs are authentication bypasses, memory
corruptions, or memory disclosure, which can all be beneficial
to a potential attacker. In this context, binary program analysis,
which is based on machine code only, is especially important
for two reasons. First, binary code is the most accurate
representation of the program as it is the code that is executed
directly on the processor. Second, despite the existence of a
steadily growing open source movement, a large number of
programs are distributed only in binary form. This applies
especially to programs written in memory-unsafe languages,
such as C and C++, which are an excellent target for attackers,
due to their widespread deployment.

In recent years, the state of the art in dynamic binary
analysis has largely improved and a variety of tools were
developed and made available to assist security testing. The
classic approach requires the instrumentation of the binary
under examination – either dynamically or statically – before
the execution of the program. Valgrind [18] and Address-
Sanitizer [22] are popular examples of tools following this
approach.

Another relevant use of dynamic analysis is in combination
with a symbolic execution engine, either as a way to provide
concrete inputs to drive the symbolic exploration (in what is
traditionally called concolic execution) or as a way to execute a
program along multiple paths driven by a symbolic exploration
and constraints solving. The development of this kind of
hybrid engines experienced a renaissance in the last decade
and an analyst has to choose between several frameworks,
such as angr [24], BAP [2], Manticore [27], Miasm [10],
BINSEC/SE [8] or Triton [21].

While each solution has its own strengths and weaknesses,
they all share a property: each analysis task is bound to

2

https://github.com/avatartwo/


its own dedicated tool. This is due to a variety of reasons,
including incompatible design choices (such as the use of an
intermediate representation specific to a certain tool or the
abstract representation of the program state in a custom format)
or the fact that developers often implement tools as standalone
systems that are implemented to be flexible to use but are
nevertheless difficult to integrate with other solutions. Besides
leading to duplication of work, as different tools are often
implementing the same dynamic binary analysis techniques
independently from each other, this prevents the full potential
of binary analysis from being unleashed.

B. Avatar One

Avatar [29] is a dynamic binary analysis framework for
embedded devices. In essence, it allowed partial emulation of
firmware inside S2E, a symbolic execution engine based on
QEMU. To achieve this goal, I/O requests which can not be
emulated are forwarded to the actual embedded device, either
via dedicated debugging ports or by using a debugging stub
manually injected into the device.

While Avatar focused solely on allowing S2E to work on
embedded devices, it introduced the following concepts which
play an important role for the design of a more general binary
dynamic analysis orchestration framework:

• Target Orchestration. Avatar introduced the concept of
orchestration, not simply as a way to control its two
targets (S2E and the physical system), but also as mean
to automatically transfer the execution from one tool to
the other, based on certain events specified by the analyst.

• Separation of Execution and Memory. While the ex-
ecution of a software and its memory space are tightly
linked together in traditional analysis approaches, Avatar
decouples them. This, among others, allows the frame-
work to use a so called remote memory, whereby the
execution proceeds on one target, while memory reads
and writes are forwarded to another target. This allowed
Avatar to achieve partial emulation, whereas the main
firmware is executed in an emulator, while accesses to
memory-mapped peripherals are forwarded to the actual
device.

• State transfer and synchronization Next to the orches-
tration of execution, Avatar provided the possibility to
selectively transfer the state from one of its targets to
another, where the state is defined by the combination of
the content of the memory as well as the CPU registers.
This allowed Avatar to execute initialization functions on
the physical device under analysis, before transferring the
state to S2E to perform symbolic execution.

III. THE AVATAR2 FRAMEWORK

As discussed in section II-A, dynamic binary analysis can
greatly benefit from the interconnection of existing tools. In
this section, we will present avatar2, the framework we
developed to enable flexible dynamic binary analysis by in-
terconnecting debuggers, emulators and other dynamic binary
analysis frameworks.

A. General Overview & Terminology

Combining and connecting a variety of distinct tools re-
quires a careful planned design to cope with the inherent
challenges arising from the large diversity of tools. For exam-
ple, such tools often use both asynchronous and synchronous
communications.

On an abstract level, avatar2 consists of four dis-
tinct elements, as visualized in Figure 1. The avatar2

core, targets and protocols are python libraries (available
as open source at https://github.com/avatartwo/
avatar2) while endpoints are third-party software (such as
other analysis frameworks, emulators, or solutions to talk to
physical devices) controlled and interconnected by avatar2.

The avatar2 core has three purposes: i) to serve as the
main interface for the analyst using the framework, ii) to carry
out the actual orchestration and control all the underlying
elements, and iii) to catch, dispatch, and react to events
generated by the various protocols while communicating with
the respective endpoints.

Targets play the role of abstracting each endpoint and
providing high-level interfaces to the avatar2 core. However,
these python abstractions do not directly communicate with
their associated endpoints. In fact, since the actual commu-
nication often requires similar patterns that would otherwise
be duplicated in multiple targets, it is mediated by a layer of
specific protocols objects. This architecture makes individual
protocols easy to reuse when prototyping new targets. This is
for instance the case for a variety of debuggers and emulators
that, while typically equipped with their own communication
interface, often incorporate also a gdbserver, which can be
controlled by gdb’s remote serial protocol.

The protocols themselves are divided according to their
purpose. In most of the cases, a target needs at least a memory
protocol, an execution protocol, and a register protocol. These
protocols are responsible, respectively, for dispatching memory
reads and writes, controlling the execution of the target, and
accessing its CPU registers. Additionally, avatar2 provides
the possibility to define additional protocols, such as monitor
protocols specifically dedicated to monitor the status of an
endpoint or specialized remote memory protocols that can
provide a custom high bandwidth channel for memory accesses
from one endpoint to another.

Finally, endpoints can be anything worth orchestrating
for an analysis, and the initial implementation of avatar2

supports five different options, which we will present in more
details in Section III-C.

The strict separation and abstraction of the different com-
ponents allow a flexible configuration of a variety of different
targets. Thus, in comparison to the first version of Avatar, the
scope of the framework is extended far beyond the initial target
of dynamically analyzing embedded devices firmware. This is
due to the drastic shift of paradigm in avatar2: instead of
orchestrating specific tools with a specific goal, the core goal
of avatar2 is to enable a general interoperability among an
arbitrary number of different tools frequently used for dynamic
binary analysis.

3

https://github.com/avatartwo/avatar2
https://github.com/avatartwo/avatar2


. . .

. . .

. . .

Fig. 1: Overview of avatar2

B. Under the Hood

So far we introduced the general design of the framework.
We now highlight and discuss in more details five specific
features provided by avatar2. These features are intended
to provide additional flexibility in order to cope with different
dynamic binary analysis tools.

1) Architecture Independence: With the emerging inter-
connectivity of software not only on commodity computers,
but also on embedded systems, the variety of architectures
and instruction sets of interest for program analysis systems
is broader than ever. Intuitively, as several dynamic binary
analysis frameworks already come with support for multiple
architectures, an orchestration framework should also be able
to cope with those. Avatar2 handles this problem by relying
on a flexible description of the architectures in a modular
manner, with the additional possibility to provide annotations
for specific targets (i.e., special variables defined in the ar-
chitecture that are fetched and consumed by targets). While
the current implementation is shipped with descriptions for
x86, x86 64 and ARM, the modular approach allows to easily
extend the framework to support additional architectures or
even intermediate representations used by specific tools.

2) Internal Memory Representation: Avatar2 is designed
to interconnect a variety of targets, which internally rarely use
the same representation of memory. However, to synchronize
the analysis across different frameworks and platforms, a
consistent view of a program’s memory is required. Hence,
avatar2 provides interfaces to the analyst for defining and
updating the memory layout, which is then pushed to the
targets. For instance, unlike other tools, avatar2 does not
represent memory on page granularity. This is because its goal
to be able to cope with embedded devices which often consist
of memory mapped peripherals and CPU registers that use
only a fraction of a common page. Instead, avatar2 works
by combining memory ranges of arbitrary and non-uniform
sizes.

3) Legacy Python Support: The initial prototype of
avatar2’s core was written in Python 3.x. While we believe
that a future migration to Python 3 is inevitable, several
popular dynamic analysis frameworks, such as angr, manticore,
and triton are either based completely on – or export bindings

only to – python 2.7. Therefore, we decided to work with
Python 3 but still maintaining legacy python support to enable
a flawless and performant integration to the aforementioned
tools.

4) Peripheral Modeling: Embedded devices often consist
of custom peripherals which are not implemented inside other
endpoints or – even worse – that cannot be represented equiva-
lently in other endpoints at all. Like the first Avatar, avatar2

is able to solve this issue by memory forwarding. However,
as memory forwarding can quickly become a performance
bottleneck, avatar2 provides an additional way to face this
issue by adding prototypes of simple peripherals models. These
models can be easily developed in python by the analyst and
are, in essence, simple objects that respond to memory reads
and writes at specified offsets. Facilitating these modeling
mechanism, avatar2 provides for instance an implementation
for a universal serial port interface (USART) which models an
interface present in a particular ARM based microcontroller by
STMicroelectronics. Hereby, the model receives and transmits
input and output over a tcp connection, instead of a physical
peripheral.

5) Plugin System: Avatar2 is designed to have a mini-
malistic and easy-to-maintain core, whereas the more complex
logic is provided by the specific targets and protocols. How-
ever, a variety of tasks required by most dynamic analysis
procedures are repetitive and therefore would be very inef-
ficient if the analysts would need to re-implement them in
every experiment. Therefore, to provide a common code base
for these repetitive tasks and to execute them automatically,
avatar2 adopts a rich event-driven plugin-system. Within a
plugin, the various events processed during an analysis can be
hooked by custom callbacks, or completely new features can
be added to the avatar2 core. Examples for already existing
plugins are an assembler and a disassembler, a forwarding
plugin for single instructions, which is for instance useful to
dispatch co-processor accesses, or a plugin for an automated
orchestration of the analysis.

C. Supported Targets

Avatar2 is designed to integrate new targets with low
effort. Currently, it supports five targets, which already provide
a large number of analyses combinations.

4



The Gnu Debugger (GDB).
The ability to communicate with GDB is probably one of
the most essential features of avatar2. The stand-alone
target allows to debug GNU/Linux software. Moreover,
a variety of endpoints are offering a gdbserver for de-
bugging purposes. Due to the separation of targets and
protocols, avatar2 is able to communicate to all of these
endpoints.

OpenOCD.
Modern CPUs and MCUs, and in particular those used in
embedded devices, expose standardized debugging ports,
such as Joint Action Test Group (JTAG) or Serial Wire
Debug (SWD) ports. OpenOCD is an open source tool
able to control debug dongles which can be attached to
these ports. Those dongles, together with OpenOCD, can
be used for fine-grained debugging of the executed soft-
ware. Naturally, avatar2 supports OpenOCD to perform
analysis of embedded devices.

Quick Emulator (QEMU).
QEMU is a popular emulator, which, at its core, uses
dynamic binary translation to allow emulation of software
written for different architectures. Although it allows to
emulate single GNU/Linux programs in its user mode via
dynamic system call translation, avatar2 uses its full
system emulation mode to handle hardware peripherals,
too. We add two noteworthy components to QEMU which
we maintain as part of the avatar2 project. First, we
introduced a new emulation machine, the configurable
machine, which is able to configure the memory layout
in a flexible way. This facilitates the integration with the
memory representation of avatar2 but also to support
variety of embedded devices. Second, we added a set of
dedicated avatar peripherals, which are responsible for the
interaction with other targets during an analysis.

PANDA.
The Platform for Architecture-Neutral Dynamic Analysis
(PANDA) [12] is a dynamic analysis engine with focus
on enabling repeatable reverse engineering. PANDA is
based on QEMU, and hence, reuses the same compo-
nents incorporated in the avatar2’s QEMU target. The
strength of PANDA lies on its additional capabilities to
record, replay, and analyze a previously-recorded concrete
execution.

angr.
The symbolic execution and program analysis framework
angr [24] provides a number of powerful dynamic analysis
capabilities. Several small additions to angr have been
performed for a better integration with avatar2. Those
modifications are mainly on angr’s state and memory
management. More precisely, a special representation for
memory pages to provide access to the memory of other
targets has been added, together with several automatic
procedures to set up an analysis state that can be used for
avatar2. Furthermore, as the angr target in avatar2

inherits angr objects, no direct modifications of angr are
required.

Listing 1: Re-implementation of HARVEY, using avatar2.
1 from avatar2 import Avatar, ARMV7M, OpenOCDTarget
2

3 input_hook = ’’’mov r5,0xfffffffc
4 b 0x20001E30’’’
5

6 output_hook = ’’’mov r5,0xfffffffd
7 mov r4, r5
8 mov r5, 0
9 b 0x2000233E’’’

10

11 avatar = Avatar(arch=ARMV7M)
12 avatar.load_plugin(’assembler’)
13

14 t = avatar.add_target(OpenOCDTarget,
15 openocd_script=’harvey.cfg’,
16 gdb_executable=’arm-none-eabi-gdb’)
17

18 t.init()
19

20 t.set_breakpoint(0xd270)
21 t.cont()
22 t.wait()
23

24 t.inject_asm(’b 0x2000250E’,addr=0x20001E2E)
25 t.inject_asm(’b 0x20002514’,addr=0x20002338)
26

27 t.inject_asm(input_hook, addr=0x2000250E)
28 t.inject_asm(output_hook,addr=0x20002514)
29

30 t.cont()

IV. USE CASES

In this section, we present three case studies to
demonstrate the versatility of avatar2 and the useful-
ness of dynamic multi-target orchestration. Like the rest of
avatar2, the full source code of those examples is pub-
licly available at https://github.com/avatartwo/
bar18_avatar2. Those case studies provide an in-depth
view of several possible uses of avatar2 but is not ex-
haustive. In fact, we designed avatar2 to be as versatile as
possible, allowing a variety of applications and many more
configurations are possible than those presented here.

A. Facilitating replication and reproduction of previous stud-
ies

Recent initiatives are pushing more and more towards
developing processes for facilitating replication3 of scientific
studies in the system security field [6]. However, when no
example source code is publicly available reproduction of the
results is required. Additionally, when embedded devices are
involved, reproduction of previous work is often complicated.

We choose HARVEY [14], a recently presented PLC
rootkit as a reproduction example. Using this example we
show that avatar2 can be used as a lightweight mechanism
to prototype scripts for reproduction of previous studies (or
share scripts to facilitate reliable replication). This is a good
example for a reproduction study, as this publication contains
all the necessary details to reproduce it while no source code
or scripts are publicly available.

3Following the terminology from https://www.acm.org/publications/
policies/artifact-review-badging

5

https://github.com/avatartwo/bar18_avatar2
https://github.com/avatartwo/bar18_avatar2
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging


Here, we only use avatar2 for scripting a single target
(rather than orchestrating multiple targets). As such, this ex-
ample does not perform any dynamic binary analysis.

The HARVEY rootkit is designed to be inserted in the
firmware of an Allen Bradley PLC. It modifies the functions
responsible for forwarding updates of physical inputs and
outputs to other parts of the hardware, such as the LEDs
and the Human Machine Interface (HMI). As a result, the
rootkit is able to tamper with the PLC’s I/O in a stealthy
manner without reporting suspicious behavior on the LEDs
or HMI. For deploying the required modifications, the authors
of HARVEY describe two ways of deploying the compromised
firmware on the PLC: a) by using JTAG debug access to patch
the firmware in memory b) by abusing the firmware update
functionality to persistently upload the malicious firmware.
Option (a) is possible in this scenario, as parts of the firmware
are loaded into and executed from the on-chip SRAM of the
main MCU, which - by design - can be modified during
runtime. Option (b), on the other hand, requires to exploit the
firmware update process. However, the firmware for this PLC
is cryptographically signed and the installation of a modified
firmware would either require the ability to create a new
firmware with colliding SHA-1 hash, the knowledge of the
PLC’s manufacturers private key, or the presence of a flaw in
this signature verification mechanism.

Although we use a slightly different version of the PLC
than in the original4, we were able to reproduce the base proof
of concept implementation of HARVEY using avatar2 and
with about 30 lines of python (Listing 1). Figure 2 shows
the PLC after infection by HARVEY: the two orange LEDs
indicate the presence of input signals on Port 1 and 2, albeit
no inputs are connected to the PLC.

This example provides several interesting insights into the
avatar2 framework. Line 12 loads the assembler plugin,
which adds the capability to assemble and inject code into
memory, as done in Line 24-28. Then a target is configured
(L. 14-17), and it is initialized as a standalone target (L. 18).
However, the hooks for HARVEY can not be inserted right
away, as the secondary firmware code has first to be loaded
into the SRAM. Hence, we insert a breakpoint after those
initialization functions (L. 20), before starting the execution
(L.21) and waiting for the breakpoint to be hit (L. 22). The
hooks are then inserted (L. 24 to L.28) and the execution is
resumed (L. 30).

While the full rootkit can be injected into the firmware
without the presence of avatar2, we want to stress that the
usage of the framework provides a centralized and unified
interface for dynamic instrumentation, which greatly eases
replicability and, in turn, reproducability.

B. Extending Symbolic Execution to complex Software

Although the state-of-the-art in symbolic execution of
binary software is steadily progressing, its application is often
bound to rather simple software for a variety of reasons. The
limiting factors can either be implementation constraints, such

4We used an Allen Bradley 1769-L16ER-BB1B CompactLogix 5370 PLC,
while HARVEY was initially implemented on an Allen Bradley 1769-L18ER-
BB1B CompactLogix 5370

Fig. 2: PLC Infected with HARVEY using avatar2 as in-
strumentation framework. The communication with avatar2

is performed with a JTAG debugger.

as missing environment abstractions, or more general problems
to symbolic execution in general, such as state explosion or
limitations of SMT-Solvers.

Although we do not aim to provide a generic solution
for such limitations, we show that avatar2’s state transfer
and synchronization capabilities can be used to dynamically
transfer states from concretely executed software into symbolic
execution engines which would not be otherwise able to reach
such state of execution. More specifically, we will analyze
Firefox, a popular browser. We choose this particular program
because of its size and the complexity, which make it nearly
impossible to analyze using a symbolic engine such as angr.

To show the implications for binary analysis, we will use
avatar2 to discover an artificially inserted bug in the GL-
rendering engine of the browser’s javascript engine. While
the inserted bug itself is a trivial null pointer dereference,
its location and trigger condition are inspired by CVE-2017-
54595.

The base idea how to leverage the capabilities of avatar2

is extremely simple: we execute Firefox in GDB until the
function of interest, and then transfer the concrete state into
angr, symbolize some attacker controlled arguments to the
function and explore until we eventually find a bug. This
approach has a number of advantages with respect to a plain
symbolic execution. First, it enables the execution of the
initialization phase of the program under analysis at nearly6

native speed. Second, the symbolic execution starts from
a valid concrete state of the program, which reduces the
need for over-approximations and, subsequently, reduces the
exploration space. This is in contrast to letting angr analyze
one single function of a binary by considering symbolic all
the environment around the execution, including the memory,
which would also lead the analysis through paths which are
not possible in a concrete execution of the program.

5https://bugzilla.mozilla.org/show bug.cgi?id=1333858
6Running the process in GDB introduces some slowdowns.

6

https://bugzilla.mozilla.org/show_bug.cgi?id=1333858


While the idea sounds simple, avatar2 has to overcome
several challenges. First of all, angr stores a variety of meta-
data associated to each memory location. As a result a full state
transfer would blast the memory representation capabilities of
angr. Hence, on state transfer we only transfer the memory
mapping into angr, while leaving the memory uninitialized.
The transfer of memory contents happens when angr actually
accesses the memory, effectively resulting into a copy-on-read
primitive. In contrast, writes are local to angr and they are not
forwarded back to the Firefox process, as this would introduce
inconsistencies between the different symbolic states inside
angr.

Another problem during state transfer are the segment
registers, which are not exported by GDB and which can not
easily be transferred into general purpose registers. We created
a shared library injected into the process under analysis,
which uses the arch_prctl syscall to retrieve the values
for those registers. Upon a state transfer, avatar2 snapshots
the register state, executes the library functions to retrieve
the segment registers, forwards them to angr and restores the
original state of the process under analysis.

A third challenge we had to overcome are commonly used
library functions. Indeed, many symbolic execution environ-
ments such as KLEE [3] or angr do not symbolically execute
standard libraries functions (e.g., printf, fread) because of their
complexity and unwanted interaction with the environment.
Instead, simpler function stubs are executed, which are called
“SimProcedures” in the angr terminology. To benefit from the
advantages of such abstractions, we automatically match the
SimProcedures known to angr with the symbols present in the
analyzed process. Once a match is found, the according address
in the process is hooked with the SimProcedure, effectively
retrofitting the function abstractions onto the state transferred
to angr.

The interested reader can find our avatar2 script for find-
ing the bug in the appendix. This script runs in approximately
9 minutes in our test environment consisting of a VM with
four Intel Xeon E5-2650L cores and 16GB of RAM. During
the symbolic exploration 36 basic blocks are executed and 21
unique pages are copied from GDB to angr. The observable
effects of this itself are rather trivial to detect in this example,
as it causes an invalid memory access, which both angr and
avatar2 can easily recognize.

However, the path causing this invalid memory access can
not easily be found utilizing angr alone. In fact, we were not
able to detect this bug when advising angr to begin the explo-
ration from the beginning of the function containing the bug
without inheriting a concrete state from avatar2. The reason
for this lies within the fact that the GL rendering functionalities
are involving frequent accesses to global objects, which is
hindering the exploration when annotated fully symbolically.
The other approach, of executing Firefox from the beginning in
angr, is likewise not able to uncover this bug. This is because
of two reasons: First, this bug is located deeply within the
execution and too many paths would have to be explored
first before realistically finding the bug. Second, a variety of
mechanisms used internally in Firefox can currently not be
expressed in angr, such as inter-thread communications.

Listing 2: Recording embedded device’s execution.
1 from avatar2 import ARMV7M, Avatar, OpenOCDTarget,

PandaTarget
2

3 avatar = Avatar(arch=ARMV7M)
4 avatar.load_plugin(’orchestrator’)
5

6 nucleo = avatar.add_target(OpenOCDTarget,
7 openocd_script=’nucleo-l152re.cfg’,
8 gdb_executable=’arm-none-eabi-gdb’)
9

10 panda = avatar.add_target(PandaTarget,
11 executable=’panda/qemu-system-arm’,
12 gdb_executable=’arm-none-eabi-gdb’)
13

14 rom = avatar.add_memory_range(0x08000000, 0x1000000,
15 file=firmware)
16 ram = avatar.add_memory_range(0x20000000, 0x14000)
17 mmio= avatar.add_memory_range(0x40000000, 0x1000000,
18 forwarded=True, forwarded_to=nucleo)
19

20 avatar.init_targets()
21

22 avatar.start_target = nucleo
23 avatar.add_transition(0x8005104, nucleo, panda,
24 synced_ranges=[ram], stop=True)
25 avatar.start_orchestration()
26

27 panda.begin_record(’panda_record’)
28 avatar.resume_orchestration(blocking=False)
29

30 [...]
31

32 avatar.stop_orchestration()
33 panda.end_record()

As a result, angr can outperform the other approaches
by utilizing an initial concrete state, which can either be
manually injected by the analyst, or, as seen in the exam-
ple, automatically extracted from gdb using avatar2. This
perfectly demonstrates the advantages of state transfer and
synchronization primitives provided by the framework.

C. Recording and Exchange of Firmware Execution

Traditionally, dynamic analysis of firmware for embedded
devices requires either the presence of the physical device or
the ability to emulate the firmware. In this example, we show
that avatar2 is capable of recording parts of the execution
of a firmware by partially emulating it. This recording can
then be replayed and analyzed without the presence of the
physical device. To achieve this, we instruct avatar2 to use
the PandaTarget to emulate and record the core parts of
the firmware, while memory accesses to hardware peripherals
are forwarded to a physical device, controlled by avatar2’s
OpenOCDTarget.

In this example, we use a Nucleo STM32L152RE devel-
opment board as physical target, which comes with an ARM
Cortex-M3 MCU whose JTAG connection is available over the
on-board USB interface. We use an example firmware form
ARM mbed7. As often with embedded code, it performs many
low-level memory accesses to the hardware’s peripherals.
PANDA alone would not be able to emulate the execution of

7https://www.mbed.com

7

https://www.mbed.com


this firmware, because the firmware would not execute properly
without proper emulation of the device’s specific peripherals.

The according avatar2 script is shown in Listing 2 and
exhibits a couple of notable points. Line 3-12 are responsible
for the usual general setup of avatar2 and targets. Note that
this time the orchestration plugin is loaded, which allows a
different way to control the execution of targets as seen in
the previous example. Line 14-18 define an explicit memory
layout, including the ROM memory, backed by the firmware,
and Memory-Mapped I/O (MMIO), which will be forwarded
to the physical device, using the remote memory functionalities
of avatar2.

After the definition of memory, the targets are initialized
(L. 20) and the actual orchestration is set up: Line 22 defines
which target shall be used for execution first. Line 23 adds
transition, in which avatar2 will switch the execution from
one target to another, while synchronizing the registers and
memory ranges specified by the synced_ranges argument.
In this case, only the RAM range needs to be synchronized,
as this is the only dynamic memory local to more than one
target within this analysis. The last argument, stop, instructs
avatar2 to stop the orchestration after this transition. The
reason for this state transfer lies in the desire to execute
the initialization functionalities of the physical device on the
device itself, as they are not of interest for the analysis of the
main firmware.

The following line (L. 24) starts the automatic orchestra-
tion. Avatar2 will run until a transition with the stop flag
is hit, which is trivial in this case, as only one transition
is defined. As a result, line 27, which enables the execution
recording of PANDA, is executed after the transition finished
and the automatic orchestration has to be resumed (L. 28).
Once the interesting parts of the firmware’s execution have
been recorded, both the orchestration and the recording can
be stopped (L. 32f). Afterwards, the execution recording is
available and can be reused in PANDA (e.g., to perform further
analysis) without using the embedded device.

This demonstrates the importance of avatar2’s unique
separation between execution and memory, which allows the
forwarding of MMIO in the first place. Without this, the initial
recording, even with the presence of the physical device, would
not be possible as long the underlying hardware platform can
not fully be emulated.

V. DISCUSSION

In order to effectively combine and orchestrate different
frameworks, avatar2 needs to be generic enough to support
a variety of frameworks with different design philosophies,
execution primitives and scopes. Even though we think that
it is unfeasible to be generic enough to allow support for
every dynamic binary analysis frameworks, we believe that our
abstraction and distinction of targets, protocols and endpoints
enable a variety of frameworks to be potential targets for
avatar2.

In fact, we designed avatar2 to keep the implementation
overhead for adding a new target as simple as possible. To
add a new target, an analyst needs first to decide over which
protocol instances it communicates to the associated endpoints.

In case the endpoint can not be controlled over already existing
protocols, the implementation of the additional protocols will
require the majority of the effort. However, we believe that by
providing protocol implementations for both GDB and QEMU-
based targets, already a decent amount of potential endpoints
can be integrated into avatar2 without the need to add
new protocols. Once the right protocols are chosen, the actual
target class can be written, which needs to provide interfaces
for functionalities specific to the target, and an initialization
function, which sets up the endpoint and connects the different
protocols to it.

One of the main goals of the framework is to enable
popular dynamic binary analysis frameworks to interoperate
with embedded devices firmware. While two out of the three
examples were targeting embedded devices, both were relying
on the presence of a JTAG interface. Unfortunately, when
analyzing real world hardware, such an interface is not always
available. However, even in those cases avatar2 can be
used together with these hardware instances if, for example,
a gdbserver can be launched directly on the device or a GDB
stub can be injected at runtime, for instance using a bootloader.
However, those stubs are highly dependent on the architecture
of the analysed target and are hard to abstract in a generic way.
Although such stubs already exist for some targets 8 However,
the stubs are not currently part of the current version of
avatar2, but we plan to provide such debuggers as dynamic
loadable plugins in the future.

An additional challenge for embedded devices is given
when embedded devices do not communicate over MMIO,
but trigger interrupts, e.g., upon arrival of new data. avatar2

provides an experimental support for forwarding interrupts on
some hardware. However, the lack of genericity of interrupt
handling is a limitation of the framework. Indeed, the way
interrupts are triggered and served is tightly coupled to the
hardware they are occurring on. As a result, interrupts need
to be implemented in a per-target manner by using dedicated
protocols for dispatching interrupts.

VI. RELATED WORK

Even though avatar2 is - up to our knowledge - the first
attempt to flexibly combine debuggers, emulators and dynamic
binary analysis frameworks in a generic manner, a few tools
have been directed to solve specific subproblems also tackled
in avatar2.

First and foremost, several existing tools embed or in-
tegrate other, third-party tools. So does Driller [25] for in-
stance combine angr [24] with AFL [30] to benefit from
both the advantages of symbolic execution and fuzzing. Sim-
ilarly, FrankenPSE [28], allows sharing of snapshots between
PySymEmu [13], a symbolic execution tool and the GRR
Fuzzer [26]. Unfortunately, as of time of writing, no open
source version of FrankenPSE has been made available, which
makes a direct comparison to other approaches difficult.

Independently, angr recently deployed a modular design-
philosophy, allowing to exchange different parts within the
symbolic execution framework. As a result, different execution

8https://github.com/avatarone/avatar-gdbstub or qcdebug [9]

8

https://github.com/avatarone/avatar-gdbstub


engines, Intermediate Representation (IR) or constraint solvers
can be plugged into the framework.

Another example for a tool benefiting from external
projects is given by radare2 [19]. Although being a reverse
engineering framework as its core it facilitates code emulation
thanks to a custom IR. Nevertheless, it is designed to be
enabled to control a variety of debuggers, and provide imple-
mentations for GDB and WinDBG. On top of this, community
based plugins are integrating frameworks like Miasm [10]
or emulators like Unicorn [20] into the radare2-ecosystem.
Although this, just like angr, already enables powerful analysis,
the specific tool is, together with its initial purpose, in the
foreground.

Next to interconnecting independent targets, approaches for
decoupling execution and memory have been incorperated by
other tools, for instance by Surrogates [17] and Prospect [16],
which both use memory forwarding to enable the analysis
of embedded devices. Hereby, Prospect focuses on allowing
partial emulation of Linux based targets by forwarding syscalls
accessing device drivers. Surrogates, on the other hand, uses
custom hardware to forward MMIO accesses with a high band-
width, effectively enabling near-realtime analysis of embedded
devices.

Additionally, a lot of modern dynamic binary analysis
frameworks with different purposes are based on QEMU.
DECAF [15] for instance focuses on just-in-time virtual ma-
chine introspection and tainting, while PANDA [12] provides
primitives for recording and replaying executions, whereas
advanced analysis plugins are used during the repeatable replay
of an execution. Rev.ng [11], on the other hand, is most
notably known for recovering control flow graphs and function
boundaries as basic block for subsequent analyses and S2E [5]
expands full-system emulation with the capability of symbolic
and concolic execution. Furthermore, even tools for analyzing
embedded devices firmware without having the actual device
are based on QEMU, such as Firmadyne [4], which emulates
a generic kernel for Linux-based firmware, and LuaQEMU [7]
which provides prototyping of hardware boards in Lua.

While all of those tools have their strength and are already
quite powerful, they are rarely designed with interoperability
in mind. As a result, the majority of those tools heavily
modify QEMU for their purposes, effectively denying an easy
integration with other tools. The patches for QEMU done by
avatar2, on the other hand, are minimalistic and centralized
in the code base, which leads to an easy integrability of those
tools as future targets for avatar2.

VII. CONCLUSION

In this paper, we showed the need to be able to interconnect
popular dynamic binary analysis frameworks. We presented
avatar2, a python based tool, designed to be able to dynam-
ically orchestrate a wide range of frameworks, debuggers, and
emulators. The initial implementation of the framework is al-
ready able to orchestrate the execution between GDB, QEMU,
angr, OpenOCD, and PANDA, and provides easy-to-use inter-
faces to transfer the state across one of the tools into another.
We demonstrated the versatility of avatar2 with three use
cases, which by no means exhaust the possibilities provided
by the framework. More specifically, we used avatar2 as

dynamic instrumentation tool to reproduce HARVEY, a novel
PLC rootkit, we found an artificially inserted bug in Firefox
by combining GDB with angr, and we recorded the execution
of an embedded device firmware, by using PANDA together
with OpenOCD.

All in all, we believe that avatar2 can greatly improve
state of the art dynamic binary analysis, as now the strengths of
different tools can be combined into single analysis scenarios.

REFERENCES

[1] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE, 2013.

[2] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in International Conference on Computer Aided
Verification. Springer, 2011.

[3] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in Proceedings of the 8th USENIX conference on Operating Systems
Design and Implementation, 2008.

[4] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware.” in Proceedings
of the Network and Distributed System Security Symposium, 2016.

[5] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-
vivo multi-path analysis of software systems,” in 16th Intl. Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2011.

[6] C. Collberg and T. A. Proebsting, “Repeatability in computer systems
research,” Communications of the ACM, vol. 59, no. 3, 2016.

[7] Comsecuris, “Luaqemu,” https://github.com/comsecuris/luaqemu.

[8] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M.-L. Potet, and
J.-Y. Marion, “BINSEC/SE: A dynamic symbolic execution toolkit for
binary-level analysis,” in 23rd International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 2016.

[9] G. Delugr, “Reverse-engineering a qualcomm baseband,” 28th Chaos
Communication Congress, 2011, https://code.google.com/archive/p/
qcombbdbg/.

[10] F. Desclaux, “Miasm : Framework de reverse engineering,” in SSTIC,
Symposium sur la scurit des technologies de l’information et des
communications, 2012, https://github.com/cea-sec/miasm/.

[11] A. Di Federico, M. Payer, and G. Agosta, “rev. ng: a unified binary anal-
ysis framework to recover cfgs and function boundaries,” in Proceedings
of the 26th International Conference on Compiler Construction. ACM,
2017.

[12] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Re-
peatable reverse engineering with PANDA,” in 5th Program Protection
and Reverse Engineering Workshop. ACM, 2015.

[13] feliam, “PySymEmu: An intel 64 symbolic emulator,” https://github.
com/feliam/pysymemu.

[14] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed,
and S. A. Zonouz, “Hey, my malware knows physics attacking PLCs
with physical model aware rootkit,” in Proceedings of the Network and
Distributed System Security Symposium, 2017.

[15] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, and
H. Yin, “Make it work, make it right, make it fast: Building a platform-
neutral whole-system dynamic binary analysis platform,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014.

[16] M. Kammerstetter, C. Platzer, and W. Kastner, “Prospect: peripheral
proxying supported embedded code testing,” in Proceedings of the
9th ACM symposium on Information, computer and communications
security. ACM, 2014.

[17] K. Koscher, T. Kohno, and D. Molnar, “Surrogates: Enabling near-real-
time dynamic analyses of embedded systems.” in USENIX Workshop
on Offensive Technologies, 2015.

9

https://github.com/comsecuris/luaqemu
https://code.google.com/archive/p/qcombbdbg/
https://code.google.com/archive/p/qcombbdbg/
https://github.com/cea-sec/miasm/
https://github.com/feliam/pysymemu
https://github.com/feliam/pysymemu


[18] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Conference on Programming Lan-
guage Design and Implementation. ACM, 2007.

[19] pancake, “radare2: unix-like reverse engineering framework and com-
mandline tools,” http://radare.org.

[20] N. A. Quynh and D. H. Vu, “Unicorn-the ultimate CPU emulator.”
[21] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution

framework,” in SSTIC, Symposium sur la sécurité des technologies de
linformation et des communications, 2015.

[22] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker.” in USENIX Annual Technical
Conference, 2012.

[23] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in IEEE
Symposium on Security and Privacy. IEEE, 2016.

[24] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[25] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Proceedings of the
Network and Distributed System Security Symposium, 2016.

[26] Trail of Bits, “GRR: High-throughput fuzzer and emulator of DECREE
binaries,” https://github.com/trailofbits/manticore.

[27] Trail of Bits, “Manticore: Symbolic execution for humans,” https:
//github.com/trailofbits/manticore.

[28] Trail of Bits, “A fuzzer and a symbolic executor walk
into a cloud,” 2016, https://blog.trailofbits.com/2016/08/02/
engineering-solutions-to-hard-program-analysis-problems/.

[29] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares.” in Proceedings of the Network and Distributed System
Security Symposium, 2014.

[30] M. Zalewski, “American fuzzy lop,” 2014, http://lcamtuf.coredump.cx/
afl/.

10

http://radare.org
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/


Appendix A: Avatar2-script for finding the inserted bug in firefox.
1 import avatar2
2 import angr as a
3 import logging
4

5 firefox_binary = "./firefox"
6 trigger = "./trigger"
7

8 breakpoint_function = "mozilla::WebGLContext::ReadPixelsImpl"
9

10 print "[+] Creating the Avatar object"
11 ava = avatar2.Avatar(arch=avatar2.archs.X86_64)
12 ava.log.setLevel(logging.INFO)
13 ava.load_plugin(’gdb_memory_map_loader’)
14 ava.load_plugin("x86.segment_registers")
15

16 print "[+] Creating the GDBTarget"
17 gdb = ava.add_target(avatar2.GDBTarget, local_binary=firefox_binary,
18 arguments=trigger)
19

20 # setup angr target
21 print "[+] Creating the AngrTarget"
22 load_options = {}
23 angr = ava.add_target(avatar2.AngrTarget, binary=firefox_binary,
24 load_options={’main_opts’: {’backend’:’elf’}})
25

26 print "[+] Initializing the targets"
27 ava.init_targets()
28

29 # Additional setup for GDB
30 gdb.disable_aslr()
31

32 print "[+] Running Firefox until %s" % breakpoint_function
33 gdb.bp(breakpoint_function, pending=True)
34

35 gdb.cont()
36 gdb.wait()
37

38 print "[+] Firefox reached %s" % breakpoint_function
39 print "[+] Avatar loads the memory ranges"
40 ava.load_memory_mappings(gdb, forward=True)
41

42 print "[+] Switching the execution to angr"
43 angr.hook_symbols(gdb)
44

45 options = a.options.common_options | set([a.options.STRICT_PAGE_ACCESS])
46 s = angr.angr.factory.avatar_state(angr, load_register_from=gdb,
47 options=options)
48

49 s.regs.rsi = s.solver.BVS("x", 64)
50 s.regs.rdx = s.solver.BVS("y", 64)
51 simmgr = angr.angr.factory.simgr(s)
52

53 print "[+] Starting symbolic exploration."
54 while True:
55 simmgr.step()
56 if len(simmgr.errored) != 0:
57 break
58

59 print "[+] Done, found error %s" % simmgr.errored[0].error
60 ava.shutdown()

11


	I Introduction
	II Background
	II-A Dynamic Binary Analysis
	II-B Avatar One

	III The avatar2 framework
	III-A General Overview & Terminology
	III-B Under the Hood
	III-B1 Architecture Independence
	III-B2 Internal Memory Representation
	III-B3 Legacy Python Support
	III-B4 Peripheral Modeling
	III-B5 Plugin System

	III-C Supported Targets

	IV Use Cases
	IV-A Facilitating replication and reproduction of previous studies
	IV-B Extending Symbolic Execution to complex Software
	IV-C Recording and Exchange of Firmware Execution

	V Discussion
	VI Related Work
	VII Conclusion
	References

