
Synthesizing Entity Matching Rules by Examples

Rohit Singh♠∇ Venkata Vamsikrishna Meduri♦ Ahmed Elmagarmid♣ Samuel Madden♠

Paolo Papotti♥ Jorge-Arnulfo Quiané-Ruiz♣ Armando Solar-Lezama♠ Nan Tang♣

♠CSAIL, MIT, USA ∇Uber AI Labs, USA ♦Arizona State University, USA
♣Qatar Computing Research Institute, HBKU, Qatar ♥EURECOM, France

{rohitsingh, madden, asolar}@csail.mit.edu, vmeduri@asu.edu,
{aelmagarmid, jquianeruiz, ntang}@hbku.edu.qa, papotti@eurecom.fr

ABSTRACT
Entity matching (EM) is a critical part of data integra-
tion. We study how to synthesize entity matching rules
from positive-negative matching examples. The core of our
solution is program synthesis, a powerful tool to automati-
cally generate rules (or programs) that satisfy a given high-
level specification, via a predefined grammar. This gram-
mar describes a General Boolean Formula (GBF) that can
include arbitrary attribute matching predicates combined
by conjunctions (

Ź

), disjunctions (
Ž

) and negations (),
and is expressive enough to model EM problems, from cap-
turing arbitrary attribute combinations to handling missing
attribute values. The rules in the form of GBF are more
concise than traditional EM rules represented in Disjunctive
Normal Form (DNF). Consequently, they are more inter-
pretable than decision trees and other machine learning al-
gorithms that output deep trees with many branches. We
present a new synthesis algorithm that, given only positive-
negative examples as input, synthesizes EM rules that are ef-
fective over the entire dataset. Extensive experiments show
that we outperform other interpretable rules (e.g., decision
trees with low depth) in effectiveness, and are comparable
with non-interpretable tools (e.g., decision trees with high
depth, gradient-boosting trees, random forests and SVM).

PVLDB Reference Format:
Rohit Singh, Vamsi Meduri, Ahmed Elmagarmid, Samuel Mad-
den, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-
Lezama, Nan Tang. Synthesizing Entity Matching Rules by Ex-
amples. PVLDB, 11(2): 189 - 202, 2017.
DOI: https://doi.org/10.14778/3149193.3149199

1. INTRODUCTION
Entity matching (EM), where a system or user finds

records that refer to the same real-world object, is a fun-
damental problem of data integration [12] and cleaning [5].

There is a key tension in EM solutions: on one side,
machine learning (ML)-based solutions are often preferred,
as they typically offer higher effectiveness. On the other
side, hand-crafted rules are also desirable, because their

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 2
Copyright 2017 VLDB Endowment 2150-8097/17/10... $ 10.00.
DOI: https://doi.org/10.14778/3149193.3149199

logical structure makes them interpretable by humans. In-
terpretable rules enable interactive debugging of the re-
sults [30], maintenance [9], explicit specification of domain
knowledge [21], and optimization at execution time [16].

Unfortunately, interpretability is not supported by sys-
tems that use ML methods – such as SVMs [7] or fuzzy
matching [17] – because their models consist of weights and
functional parameters that are hard to interpret even for
technical users. In contrast, rule-based systems [16] offer
better interpretability, particularly when the rules can be
constrained to be simple with relatively few clauses.

For this reason, despite the recent effort for new ML ap-
proaches, several data-centric systems prefer rule-based ap-
proaches in tasks similar to EM. A survey over 54 Infor-
mation Extraction vendors shows that 67% of the tools are
rule-based, only 17% ML-based, and 16% a hybrid of the
two [9]. In Product Classification at Walmart [21], rules
are adopted because they allow domain analysts to improve
the system, without the involvement of a CS developer to
revise a statistical model. For these reasons, developing in-
terpretable ML models is an important challenge in the ML
community [23, 26]. However, since hand-writing EM rules
is extremely time consuming and error-prone, a key question
is whether we can automatically generate interpretable EM
rules, by learning from positive-negative matching examples.

We present a system to learn EM rules that (1) matches
the performance of ML methods, and (2) produces concise
rules [34]. We consider a model more interpretable than
another if it consists of fewer logical predicates or atoms.
Our approach is to use program synthesis [37] (PS), where a
program (set of rules) is generated by using positive-negative
examples as constraints that guide the synthesizer towards
rules that match the examples.

Example 1: Consider two tables of famous people that
are shown in Figure 1. Dataset D1 is an instance of
schema R pname, address, email, nation, genderq and D2 of
schema S pname, apt, email, country, sexq. The EM problem
is to find tuples in D1 and D2 that refer to the same per-
son. Off-the-shelf schema matching tools [13,33] may decide
that name, address, email, nation, gender in table R map to
name, apt, email, country, sex in table S, respectively. Given
a tuple r P D1 and a tuple s P D2, a simple EM rule is:

ϕ1: rrnames «1 srnames
Ź

rraddresss «2 srapts
Ź

rremails “ sremails
Ź

rrnations “ srcountrys
Ź

rrgenders “ srsexs

Where «1 and «2 are two different similarity functions,
and the rule ϕ1 says that a tuple r P D1 and a tuple s P D2

refer to the same person (i.e., a match), if they have similar
or equivalent values on all aligned attributes. l

189

However, in practice, the rule ϕ1 above may result in very
low recall, since real-world data may contain multiple issues
such as misspellings (e.g., s3rnames), different formats (e.g.,
r2rnames and s1rnames), and missing values (e.g., r3remails
and r4remails). Naturally, a robust solution is to have a set
of rules that collectively cover different cases.

Example 2: For example, we may have two rules as below.
ϕ2: rrnames «1 srnames

Ź

rraddresss «2 srapts
Ź

rrnations “ srcountrys
Ź

rrgenders “ srsexs;
ϕ3: rrnames «3 srnames

Ź

rremails “ sremails

Typically, these kinds of rules are specified as disjuncts,
e.g., ϕ2

Ž

ϕ3, which indicates that a tuple r P D1 and a tuple
s P D2 match, if either ϕ2 or ϕ3 holds. However, a more
natural way, from a user perspective, is to specify the rule
in a logical flow. For instance, when handling Null values,
the following representation may be more user-friendly:
ϕ4: if (rremails ‰ Null

Ź

sremails ‰ Null)
then rrnames «1 srnames

Ź

rremails “ sremails
else rrnames «3 srnames

Ź

rraddresss «2 srapts
Ź

rrnations “ srcountrys
Ź

rrgenders “ srsexs

These if-then-else rules provide a more flexible way to
model matching rules. l

Challenges. There are two key challenges in automatically
discovering good EM rules from examples.

(1) Interpretability vs. Effectiveness. While interpretability
is crucial in many domains, it also might sacrifice the ef-
fectiveness of the system. In real-world applications, it is
often difficult or impossible to find matching tuples by con-
sidering only a few attribute combinations. A solution to
the EM rule mining problem should keep rules simple and
concise but still achieve satisfactory effectiveness.

(2) Large Search Space. Consider two relations with n

aligned attributes. There are m “ 2n possible combina-
tions of attributes. If we constrain ourselves to EM rules
that consist of arbitrary selections of these attribute combi-
nations represented in DNF (disjunctive normal form), this

results in a search space of Σmi“1

`

m
i

˘

“ 2m ´ 1 “ 22n

´ 1.

For instance, the search space is 225

´ 1 (4 billion combi-
nations) for Example 2, which contains only 5 attributes!
Moreover, we need to consider the possible similarity func-
tion and threshold for each attribute.

Contributions. We propose a new EM rule synthesis
engine to generate rules that are both concise and effec-
tive (Challenge 1). The core of our approach is an algo-
rithm based on Program Synthesis [37] (PS), in the Syntax-
Guided Synthesis (SyGuS) framework [6]. Given a prede-
fined grammar for EM rules (hardwired into our system for
all datasets), PS is optimized to explore the massive space of
possible rules and find rules that satisfy the provided exam-
ples (Challenge 2). Unfortunately, existing SyGuS solvers
are designed to find solutions that satisfy all examples,
and have a difficult time reasoning about complex numer-
ical functions such as the similarity functions used by EM
rules. To cope with these challenges, we devise a novel algo-
rithm RuleSynth. We adopt the idea of Counter-Example
Guided Inductive Synthesis (CEGIS) [38] to perform synthe-
sis from small sets of examples. RuleSynth is inspired by
Random Sample Consensus (RANSAC) [19] to avoid exam-
ples that may make the algorithm to under-perform. It em-
ploys a new approach for combining special-purpose search

procedures with a general-purpose constraint-based synthe-
sizer. We summarize our contributions as follows:

(1) We define the problem of synthesizing EM rules from
positive-negative examples. In particular, we use General
Boolean Formulas (GBF) to represent EM rules, and define
an optimization problem to find a good EM rule (Section 2).

(2) We show how to solve this optimization problem using
the SyGuS framework (Section 3). We also develop a new al-
gorithm, built around an open-source SyGuS engine named
Sketch [37], to synthesize EM rules from positive-negative
examples (Section 4).

(3) We describe optimizations in our algorithm to avoid
over-fitting, to eliminate biased samples, and to compute
the composition of multiple rules (Section 5).

(4) We experimentally verify that our system significantly
outperforms other interpretable models (i.e., decision trees
with low depth, SIFI [40]) in terms of matching accuracy,
but our rules have much fewer clauses. It is also comparable
with other uninterpretable models, e.g., random forests and
SVM, on accuracy (Section 6).

2. PROBLEM OVERVIEW

2.1 Notation
Let RrA1,A2, . . . ,Ans and SrA11,A

1
2, . . . ,A

1
ns be two rela-

tions with corresponding sets of n aligned attributes Ai and
A1i (i P r1, ns). We assume that the attributes between two
relations have been aligned and provided as an input. Note
that our approach naturally applies to one relation. Let
r, s be records in R,S and rrAis, srA

1
i s be the values of the

attribute Ai,A
1
i in records r, s, respectively.

A similarity function fprrAis, srA
1
i sq computes a similarity

score in the real interval r0, 1s, e.g., edit distance and Jaccard
similarity. A bigger score means that rrAis and srA1i s have a
higher similarity.

Attribute-Matching Rules. An attribute-matching rule
is a triple «pi, f, θq representing a Boolean function with
value fprrAis, srA

1
i sq ě θ, where i P r1, ns is an index, f

is a similarity function and θ P r0, 1s is a threshold value.
Attribute-matching rule «pi, f, θq evaluating to true means
that rrAis matches srA1i s relative to the specific similarity
function f and threshold θ.

We write rrAis«pf,θqsrA
1
i s as an attribute-matching rule

for a similarity function f and threshold θ. We will simply
write rrAis«srA

1
i s when it is clear from the context.

Record-Matching Rules. A record-matching rule is a
conjunction of a set of attribute-matching rules on differ-
ent attributes. Intuitively, two records r and s match iff all
attribute-matching rules in the set evaluate to true.

Disjunctive Matching Rule. A disjunctive matching rule
is a disjunction of a set of record-matching rules. Records
r and s are matched by this rule iff they are matched by at
least one of this rule’s record-matching rules.

Indeed, a disjunctive matching rule can be seen as a for-
mula in Disjunctive Normal Form (DNFEM) over attribute-

matching rules as:
ŽP
p“1

´

ŹQp

q“1«pipp,qq, fpp,qq, θpp,qqq
¯

Note that we use DNFEM to refer to the EM rules that
are traditionally used for the EM problem, which is more
restricted than the general DNF in Boolean logic. There
are two main shortcomings of using DNFEM rules:

190

Figure 1: Sample tables for persons
(a) D1: an instance of schema R

name address email nation gender
r1 Catherine Zeta-Jones 9601 Wilshire Blvd., Beverly Hills, CA 90210-5213 c.jones@gmail.com Wales F
r2 C. Zeta-Jones 3rd Floor, Beverly Hills, CA 90210 c.jones@gmail.com US F
r3 Michael Jordan 676 North Michigan Avenue, Suite 293, Chicago US M
r4 Bob Dylan 1230 Avenue of the Americas, NY 10020 US M

(b) D2: An instance of the schema S
name apt email country sex

s1 Catherine Zeta-Jones 9601 Wilshire, 3rd Floor, Beverly Hills, CA 90210 c.jones@gmail.com Wales F
s2 B. Dylan 1230 Avenue of the Americas, NY 10020 bob.dylan@gmail.com US M
s3 Micheal Jordan 427 Evans Hall #3860, Berkeley, CA 94720 jordan@cs.berkeley.edu US M

(1) [Not Concise.] A DNFEM pu1

Ź

v1q
Ž

pu1

Ź

v2q
Ž

pu2
Ź

v1q
Ž

pu2

Ź

v2q is equivalent to a much more concise for-
mula pu1

Ž

u2q
Ź

pv1

Ž

v2q.

(2) [Expressive Power.] A DNFEM rule without negations
cannot express the logic “if puq then pvq else pwq”, which
can be modeled using a formula such as pu

Ź

vq
Ž

p u
Ź

wq.
Traditionally, negations are not used in positive EM rules.

Hence, a more natural way than DNFEM to define EM
rules is to use general boolean formulas, as defined below.

Boolean Formula Matching Rule. A Boolean formula
matching rule is an arbitrary Boolean formula over attribute-
matching rules as its variables and conjunction (

Ź

), disjunc-
tion (

Ž

) and negation () as allowed operations.
We formulate a Booleanformula matching rule as a Gen-

eral Boolean Formula (GBF).

Example 3: Consider Example 2. Let the similarity func-
tion for matching attributes name in R and name in S (resp.
address in R and apt in S) be Levenshtein (resp. Jaccard),
with threshold 0.8 (resp. 0.7).

[Attribute-matching rule.] rrnames « srnames can be
formally represented as «p1, Levenshtein, 0.8q, where the
number 1 is the positional index for the 1st pair of aligned
attributes, i.e., attributes (name, name) for relations (R, S).

[Record-matching rule.] ϕ2 and ϕ3 can be formalized as:
ϕ2 : «p1, Levenshtein, 0.8q

Ź

«p2, Jaccard, 0.7q
Ź

“p4, Equal, 1.0q
Ź

“p5, Equal, 1.0q
ϕ3 : «p1, Levenshtein, 0.8q

Ź

“p3, Equal, 1.0q

[Disjunctive matching rule.] A disjunctive matching rule
for ϕ2 and ϕ3 is the disjunction of the above two record-
matching rules, ϕ2

Ž

ϕ3.

[Boolean formula matching rule.] Consider a custom sim-
ilarity function noNulls that returns 1.0 when the values
of the corresponding attributes are both not null and 0.0
otherwise. Using this function, we can formalize ϕ4 as:
ϕ4: if («p1, noNulls, 1.0q) then ϕ2 else ϕ3

l

There are two reasons why we propose to synthesize GBF
rules instead of DNFEM rules: (1) GBF can concisely rep-
resent a DNFEM and increase its expressibility thereby en-
hancing the readability; and (2) Traditionally used EM rules
in the DNFEM [40] form require each attribute to show
up with the same similarity function and threshold every-
where in the DNFEM, with the main purpose of reducing
the search space of their solution. In our GBF rules, we
allow one attribute to have different similarity functions in

the Boolean formula. This is because values in the same col-
umn are not always homogeneous and hence we need differ-
ent similarity functions to capture different matching cases.
Consider for instance the attribute name. In rule ϕ2, the
similarity function used is Levenshtein with threshold 0.8.
A variant ϕ13 of ϕ3 could use Jaccard similarity with thresh-
old 0.6 for name.

2.2 Problem Statement
We want to generate an optimal general Boolean formula

(GBF) without user involvement in providing structure for
the GBF. To evaluate the quality of a GBF, we assume
that the user provides a set of examples, denoted by E “

MYD, where M are positive examples, i.e., pairs of records
that represent the same entity, and D are negative examples,
i.e., pairs of records that represent different entities.

Optimality Metric. Consider a GBF Φ and positive and
negative examples M and D. We define a metric µpΦ,M,Dq
returning a real number in r0, 1s that quantifies the goodness
of Φ. The larger the value of µ, the better is Φ.

Let MΦ Ă E be the set of all examples pr1, s1q such that
r1 and s1 are matched by Φ. Some candidates for optimality
metric µ are:

µrecall “
|MΦ XM|

|M|
µprecision “

|MΦ XM|

|MΦ XM| ` |MΦ XD|

µF-measure “
2 ¨ µprecision ¨ µrecall

µprecision ` µrecall

Problem Statement (EM-GBF). Given two relations R
and S, the aligned attributes between R and S, sets M and
D of positive and negative examples, a library of similarity
functions F , and an optimality metric µ, the EM-GBF
problem is to discover a GBF Φ that maximizes µ.

3. SYNTHESIS OVERVIEW
In this section, we introduce program synthesis (PS), and

describe how to formulate the EM-GBF problem as a PS
problem. The basic idea of PS is to search for a complete
program that satisfies a set of input-output examples, given
a grammar that specifies what is valid in the programming
language of choice. In the context of EM, the grammar
represents the space of GBFs, and the problem is to search
for a GBF that satisfies as many examples as possible.

Our system assumes that the two input relations’ at-
tributes have been aligned. Afterwards, to solve the synthe-
sis problem our system must find the best structure of the
GBF along with the best combinations of attributes, simi-
larity functions, and thresholds for each attribute matching
rule in the GBF.

191

Internally, we use the formalism of partial programs to
frame the synthesis problem. In these partial programs,
holes are used to represent the unknown aspects of the pro-
gram, and the space of all possible code fragments that can
fill those holes is given by a grammar. The partial program
also includes behavioral constraints, which in the case of our
problem require the synthesized program to match the ex-
amples (Section 3.1). This style of synthesis based on partial
programs, behavioral constraints, and grammars of possible
code fragments is known as Syntax Guided Synthesis (Sy-
GuS) and it has recently received significant attention by the
formal methods community [6]. We give the modeling of the
EM-GBF problem as a SyGuS problem and show how the
appropriate grammar can be represented as a partial pro-
gram in an open-source SyGuS solver, namely Sketch [37]
(Section 3.2). Note, however, that not all examples can be
satisfied in practice, we also define a version of the SyGuS
problem as an optimization problem (Section 3.3).

3.1 Partial Programs and Grammars
Partial Programs. A partial program represents a space of
possible programs by giving the synthesizer explicit choices
about what code fragments to use in different places. A
simple partial program in Sketch is shown below:
void tester(bit x, bit y) {

bit t = boolExp(x, y);
if (x) assert t ==˜y;
if (y) assert t == ˜x; }

bit boolExp(bit x, bit y){
return {| ((x | ˜x) || (y |˜y)) |}; }

The partial program (called a sketch) gives the synthe-
sizer choices separated by |, about whether or not to negate
x and y before or-ing them together in order to satisfy the as-
sertions in the tester. The language also supports unknown
constants indicated with “??” which the solver replaces with
concrete values (as employed in Example 4 below).

Grammar. SyGuS problems are also represented ab-
stractly as a grammar G representing a set of expressions,
together with a constraint C on the behavior of the desired
expression. A grammar G is a set of recursive rewriting rules
(or productions) used to generate expressions over a set of
terminal symbols and non-terminal (recursive) symbols. The
productions provide a way to derive expressions from a des-
ignated initial symbol by applying the productions one after
another. An example SyGuS problem with a grammar and
an associated constraint is given below:

grammar expr Ñ expr _ expr pbound : Bq
expr Ñ x | y | x | y

constraint pxñ y “ exprq ^ py ñ x “ exprq

The above grammar has a non-terminal symbol (also the ini-
tial symbol) expr that represents a disjunction of variables
x, y or their negations. Unlike the sketch above, the space
of expressions is unbounded, except for a parameter B that
bounds the number of times a rule can be used. Sketch also
supports recursive definitions of program spaces that are
equivalent to the grammar above; for the rest of the paper
we alternate between showing more abstract descriptions of
a space of expressions as a grammar, and showing more con-
crete Sketch syntax when necessary.

3.2 SyGuS Components for EM-GBF
We are ready to give the grammar and constraints to for-

mulate the EM-GBF problem. It is important to empha-
size that these partial programs are built into the tool; the
encoding of the grammar as sketches is invisible to the user.

Grammar for EM-GBF. In order to formulate the
EM-GBF problem in the SyGuS framework, we use a
generic Boolean formula grammar (GGBF) defined below:

grammar Gattribute Ñ rrAis«pf,θqsrA
1
i s

i P r1, ns; f P F ; θ P r0, 1s
grammar GGBF Ñ Gattribute pbound : Naq

GGBF Ñ GGBF

GGBF Ñ GGBF ^GGBF

GGBF Ñ GGBF _GGBF

,

.

-

pbound : Ndq

The grammars Gattribute and GGBF represent an
attribute-matching rule and a Boolean formula matching
rule (GBF), respectively. Note that the search space rep-
resented by the above grammars is infinite because there
are infinitely many real values for θ P r0, 1s. We tackle this
by introducing a custom synthesis procedure (Section 4.2).
The bounds Na and Nd make the search space for the
Boolean formula finite by bounding the number of attribute-
matching rules (Gattribute) in GGBF and ““the depth of the
expansion of the grammar, respectively.

Constraints for EM-GBF. A candidate selected from the
grammar GGBF can be interpreted as a Boolean formula.
Given both positive (M) and negative (D) examples, the
SyGuS constraints are specified as the evaluation of this
GBF on the provided examples being consistent:

constraint GGBFprm, smq “ true @ prm, smq PM
constraint GGBFprd, sdq “ false @ prd, sdq P D

Partial Programs for EM-GBF. Now let’s showcase the
partial programs used for the EM-GBF problem.

Example 4: Consider the two tables discussed in Ex-
ample 1. The partial program that represents a Boolean
formula matching rule (GBF) with Na attribute-matching
rules and Nd depth of grammar expansion is listed below.
grammar bool attributeRule(int e){ // e = Example Id

int i = ??; // Attribute Id
assert (1 <= i && i <= 5);
int f = ??; // Similarity Fn Id
assert (1 <= f && f <= 29);
double θ = customSynth(i,f);
return (evalSimFn(e,i,f) >= θ);

}
@depth(Nd)
grammar bool gbfRule(int e, int &A){

if (??){ A++; return attributeRule(e); }
else if (??) return ! (gbfRule(e,A));
else if (??) return gbfRule(e,A) && gbfRule(e,A);
else return gbfRule(e,A) || gbfRule(e,A);

}
bool matchingRule(int e, int Na){

int A=0;
bool b = gbfRule(e,A);
assert (A<=Na);
return b;

}
constraint void examples(int Na){

//Example Id 1 is a positive example
assert(macthingRule(1,Na) == true);
//Example Id 2 is a negative example
assert(macthingRule(2,Na) == false);

}
In the code above, some functions are annotated

with being a grammar or a constraint. For example,
attributeRule is a grammar function. Since there are 5
aligned attributes, we assert that the values taken by i lie be-
tween 1 and 5. Similarly, the candidate space of 29 similar-
ity functions is asserted accordingly. The values for thresh-
old θ are chosen using a custom synthesis procedure. The
function evalSimFn symbolically represents the evaluation
of function f on attribute i of the records from example e
(see more details in Section 4.2). Also, gbfRule is a grammar

function with function attributeRule being inlined at most

192

Na times (enforced by a variable A passed by reference) and
multiple recursive calls to itself to specify the possible expan-
sion of the grammar. The expansion is bounded by a depth
Nd passed as a parameter in the “@” annotation. Note that,
in Sketch, each grammar function is completely inlined up
to the specified depth as a parameter. This results into the
holes (“??”s) occurring multiple times as well. Each hole
inside the if’s represents a possible true or false value.

The examples function is a constraint that represents
the requirement that the resulting rule should work for the
positive and negative examples.

The Sketch synthesizer will fill all the holes in the above
partial program to synthesize a complete program, with a
function matchingRule that represents a Boolean formula
(GBF) for entity matching. l

Wrap Up. Next we put together the sample grammars and
constraints to show how to obtain a GBF.

Example 5: Consider the example in Figure 1. A specific
grammar G5

GBF for representing a Boolean formula match-
ing rule (GBF) in this scenario is obtained by using the
following in the above definition of the grammar GGBF:

– let n “ 5 (number of aligned attributes),

– let F “ tEqual, Levenshtein, Jaccardu,
– let examples be: matching M “ tpr1, s1q, pr2, s1qu and
non-matching D “ tpr1, s2qu

Our system gives the synthesizer a table representing the
evaluations of each similarity function f P F on each at-
tribute i P r1, ns of every provided example pr, sq P E (the
function evalSimFn in the sketch). The GBF ϕ2 _ϕ3 from
Example 2 can now be obtained as candidate GBF from
this grammar G5

GBF. l

3.3 Optimization SyGuS Problem
We are ready to model the EM-GBF problem by extend-

ing the Syntax-Guided Synthesis (SyGuS) framework [6]. We
consider two versions of the problem: the exact problem and
the optimization problem. The former corresponds to finding
a GBF that satisfies all constraints from examples. Unfor-
tunately, such a perfect GBF oftentimes does not exist in
practice because examples may have errors or the grammar
may not be expressive enough to correctly classify all exam-
ples. The latter relaxes the condition by discovering a GBF
of partial satisfaction of constraints based on an optimality
metric µ. The EM-GBF problem is equivalent to the opti-
mization version of the SyGuS problem defined below.

Optimization SyGuS Problem (EM-OPT). Given a
grammar and constraints from positive-negative examples,
the optimization SyGuS problem is to find a candidate GBF
in the grammar that satisfies a subset of the constraints that
maximizes the given optimality metric µ.

As will be seen shortly, although exact SyGuS cannot
solve the studied EM-OPT problem, it can still be used
as a building block in our algorithm (Section 4).

4. SYNTHESIS ALGORITHMS
Existing SyGuS solvers are designed to solve the ex-

act SyGuS problem, not the optimization SyGuS problem
(EM-OPT) that would discover a GBF that maximizes a
given optimization metric. In this section, we start by giv-
ing a näıve solution (Section 4.1) to solve EM-OPT. We
then present our novel RuleSynth algorithm (Section 4.2).

4.1 A Naı̈ve Solution & Its Limitations
In fact, given a set E of examples, grammars, and con-

straints, the GBF that satisfies all constraints from all ex-
amples may not exist. Hence, we shift our goal to find a
GBF that satisfies all constraints for a subset of examples.

A Näıve Solution. Informally, a simple approach would
be to choose multiple, random, subsets S from all examples
E, and invoke the Sketch SyGuS solver on each subset in S.
The solver will only succeed on some of these subsets, but for
those that it succeeds on, we can take the best performing
GBF based on the optimality metric µ evaluated on all
examples in E.

Limitations. The näıve solution has three limitations.

(i) We must choose subsets of E in a way that allows us to
synthesize a GBF with good coverage of the example sets.

(ii) We have to avoid examples that do not lead to a good
solution, i.e., sub-optimal examples that are not matched
correctly by any matching rule with high µ value.

(iii) We have to reason about numerical similarity functions
and thresholds in a symbolic solver like Sketch, but such
reasoning is not supported by existing solvers.

4.2 A Novel Solution (RuleSynth)
Below we introduce our new algorithm. For Limitation (i),

we use ideas from the Counter-Example Guided Inductive
Synthesis (CEGIS) [38] to perform synthesis from a few ex-
amples. For Limitation (ii), we are inspired by the Random
Sample Consensus (RANSAC) [19] to avoid sub-optimal ex-
amples. For Limitation (iii), we add a custom synthesizer
for finding a numerical threshold within the symbolic solver.

Note that, the synthesis approach used by Sketch re-
lies on having a complete symbolic representation of all the
building blocks of the program. However, when the build-
ing blocks are complex numerical functions, as our similar-
ity functions are, the process can become very inefficient.
In this paper, we pioneer a new technique that allows the
general purpose solver to collaborate with a special purpose
search procedure that can reason about the similarity func-
tions and their numerical thresholds. This is conceptually
challenging because of the different approaches that the two
solvers use to represent the search space. Our novel tech-
nique allows the individual synthesis instances to be solved
in seconds instead of the hours they take on using only the
Sketch general purpose synthesizer.

Algorithm. The algorithm, referred to as RuleSynth, is
presented in Algorithm 1 with an overview in Figure 2.

It has two loops. The outer (RANSAC) loop (lines 3-
19) picks random samples to bootstrap the synthesis algo-
rithm (step 1 in Figure 2). In each iteration, given a sample
(line 5), it starts with the Synth routine (line 6). It then
invokes the inner (CEGIS) loop (lines 7-18). In each itera-
tion, it first synthesizes a GBF (line 8). If it cannot find
a satisfiable GBF, it will restart (lines 9-10 and step 4);
otherwise, it will Verify to find counter-examples (line 11
and step 3). Either there is no counter-example so the pro-
cess will terminate (lines 12-13 and step(5)), or a randomly
selected counter-example will be added to be considered in
the next CEGIS iteration (lines 14-16 and step 3). The cur-
rent best GBF will be re-calculated (line 17). Finally, the
algorithm will return a GBF (line 20). We explain different
parts of the algorithm below.

193

Algorithm 1: Synthesis Algorithm for EM-OPT

input : E “MYD : Set of examples
GGBFpNa, Ndq : Bounded GBF grammar
F : Library of similarity functions
µ : Optimality metric
KRANSAC : Bound on RANSAC restarts
KCEGIS : Bound on CEGIS iterations

output: Φ˚ : A GBF from GGBFpNa, Ndq maximizing µ

1 r Ð 0
2 Φ˚ Ð true
3 while r ă KRANSAC do // RANSAC loop
4 iÐ 0
5 e0 Ð sample pEq
6 ESYN Ð Listpe0q
7 while i ă KCEGIS do // CEGIS loop
8 Φi Ð Synth pGGBFpNa, Ndq,ESYN,Fq
9 if Φi “ null then // Unsatisfiable Synth

10 break // restart CEGIS

11 EΦi
Ð Verify pΦi,Eq // Counter-examples

12 if EΦi
“ H then

13 return Φi

14 else
15 ei`1 Ð sample

`

EΦi

˘

16 ESYN Ð ESYN.appendpei`1q

17 Φ˚ “ arg maxΦPtΦ˚,Φiu
µpΦ,M,Dq

18 iÐ i` 1

19 r Ð r ` 1

20 return Φ˚

Customized Synth Routine: We begin with the core
Synth routine (line 8) that solves the exact SyGuS prob-
lem, i.e., it searches for a candidate GBF from the bounded
grammar GGBFpNa, Ndq that satisfies all the constraints
arising from examples in ESYN. Sketch solver works by
analyzing every part of the grammar and constraints sym-
bolically, and reducing the search problem to a Boolean sat-
isfiability (SAT) problem. Using Sketch directly for this
problem is impractical because it involves reasoning about
complicated numerical functions. For solving this prob-
lem with Sketch, we pioneer a new technique that allows
Sketch to collaborate with a custom solver that handles
analysis of similarity functions and synthesizes thresholds
while Sketch makes discrete decisions for the GBF. Specif-
ically, Sketch makes the decisions for: (1) expanding the
GGBF grammar with multiple atoms or attribute-matching
rules; (2) choosing examples in ESYN to be positive (E`)
or negative (E´) for each atom of the expanded GBF; and
(3) choosing the attributes i P r1, ns and similarity functions
f P F to be used in these atoms. The custom solver finds
a numerical threshold that separates the positive (E`) and
negative examples (E´) chosen by Sketch for an atom, if
one exists. Otherwise, it asks the Sketch solver to back-
track and make alternative discrete decisions. This solver
will be called multiple times inside Sketch. Algorithm 2
shows the pseudocode of this solver. As an optimization, to
avoid recomputing numerical functions in the special pur-
pose solver, we enumerate and memoize the function eval-
uations on all possible values that can be obtained from
aligned attributes in the examples. For example, if we have
just one example e1 “ pr, sq with

r ” tname = ‘C. Zeta-Jones’, gender = ‘F’u
s ” tname = ‘Catherine Zeta-Jones’, sex = ‘F’u

then we evaluate the Jaccard similarity function on aligned
attributes and provide the following table evalSimFn to the
custom solver (Algorithm 2):

example id matched attribute function evaluation
e1 name|name Jaccard 0.5
e1 gender|sex Jaccard 1.0

Algorithm 2: Custom solver inside Sketch

input : f : Chosen similarity function
a : Matched attribute Id
E` : Examples chosen to be positive
E´ : Examples chosen to be negative

output: exists : Does a valid threshold exist
θ : A valid threshold separating E` & E´

1 θatmost Ð 1.0
2 for e P E` do
3 θatmost “ min pθatmost, evalSimFnpe, a, fqq

4 θatleast Ð 0.0
5 for e P E´ do
6 θatleast “ max pθatleast, evalSimFnpe, a, fqq

7 if θatleast ă θatmost then
8 existsÐ true

9 θ Ð θatleast`θatmost
2

10 else
11 existsÐ false

Figure 2: RuleSynth overview for EM-OPT

SYNTHe0, …, e1

VERIFY

Intermediate

GBF (Φι)
Counter example

(eι+1)

RANDOM
EXAMPLE

(e0)

if r<KRANSAC then restart

(i>KCEGIS or  
cannot find Φι)

optimal GBF

(cannot find (eι+1))

Training set

use

use

(1)

(2) (3)

(4)

(5)

if r==KRANSAC then

optimal GBF (Φ*)

Synthesis from a few Examples (CEGIS). We use
ideas from the Counter-Example Guided Inductive Synthesis
(CEGIS) [38] approach to build an iterative algorithm that
has two phases: Synth (line 8) and Verify (line 11). The
idea is to iteratively synthesize a GBF that works for a
small set of examples and expand this set in a smart manner
by adding only those examples that are currently not being
handled correctly by the synthesized GBF.

For example, consider Figure 1 with matching examples
M “ tpr1, s1q, pr4, s2q, pr2, s1qu and non-matching examples
D “ tpr1, s2q, pr4, s1qu. Suppose the algorithm picks pr1, s1q

as the first example and Synth returns the function Φ0 “

Equalrnames ě 1.0. Verify tries this function on all exam-
ples in M YD and randomly picks pr4, s1q as the counter-
example, i.e., an example which is not correctly matched by
the function Φ0 since the names are not equal for pr4, s1q. It
would then add this counter-example to the set ESYN and
start the next CEGIS iteration. In this iteration Synth may
now return the function Φ1 “ Jaccardrnames ě 0.4, which
matches all examples correctly.

At iteration i, Synth uses the currently available exam-
ples ESYN “ te0, e1, . . . , eiu and solves the Exact SyGuS
problem with Sketch to find a GBF Φi from the bounded
grammar GGBFpNa, Ndq that correctly handles all the ex-
amples in ESYN. Verify, on the other hand, considers the
full set of examples E “ M Y D and finds the counter-
example subset EΦi Ă E, which contains examples e P E
such that Φipeq “ false if e P M and Φipeq “ true if e P D.
In other words, it identifies examples that are incorrectly
handled by Φi. A counter-example ei`1 chosen randomly
from EΦi is added to the set ESYN to be considered in
the next Synth phase. The process continues until either

194

Synth is unable to find a GBF for the current set of ex-
amples or until it has performed KCEGIS (CEGIS cutoff)
iterations. If Verify cannot find any counter-example (i.e.,
EΦi “ H), the algorithm terminates and outputs Φi as the
optimal GBF since it correctly handles all examples in E.

Synthesis with Sub-optimal Examples (RANSAC).
We use ideas from the Random Sample Consensus
(RANSAC) [19] approach and build a loop on top of the
CEGIS loop to restart it multiple times with different ini-
tial random examples (e0). The idea is that if the provided
example set contains a small number of sub-optimal exam-
ples, then multiple runs are more likely to avoid them. Note
that some examples individually may not be sub-optimal,
i.e., the algorithm may still find a good GBF after choosing
them in the CEGIS loop. Instead, certain larger subsets of
examples may correspond to conflicting constraints on the
GBF grammar and constitute sub-optimality only when all
examples in that subset are chosen together. Both the ran-
domness in sample routine and the RANSAC restarts help
avoid choosing all such points together. Before restarting
CEGIS, if the number of restarts reaches KRANSAC (the
RANSAC cutoff) then the algorithm terminates and out-
puts the best GBF Φ˚ seen across all CEGIS and RANSAC
iterations w.r.t. the optimality metric µ.

5. SYNTHESIS OPTIMIZATIONS

5.1 Grammar: Conciseness and Null Values
We use the power of synthesis to control the structure of

the GBF and provide a concise formula as the output. Note
that these techniques also help us avoid over-fitting to the
provided examples since our GBFs are as small as possible.

Handling Null values in GGBF: Null (missing) values are
problematic because we cannot know whether two records
match on some attribute A if one record has a Null value for
A. Rather than assuming that such records do not match (as
was done in previous work), we allow learning different rules
for the Null and noNull case. We specify a new grammar
production in GGBF for deriving GBFs that capture this
intuition:

grammar GGBF Ñ if p«pi, noNulls, 1.0qq
then pGGBFq else pGGBFq

i P r1, ns
This rule says that if there are no nulls in the matching

attributes in a pair of records, then we should use one GBF;
otherwise we should use a different GBF. This makes it
possible for the synthesizer to quickly find rules similar to
example ϕ4 (Section 1). Note that this addition does not
affect the expressibility of the grammar and is purely for
making the grammar GGBF and the synthesis process more
targeted towards databases with large numbers of nulls.

Incremental Grammar Bounds To make sure that
the generated rules are small and concise, RuleSynth it-
eratively adjusts the grammar bound on the number of
attribute-matching rules (Na) as it runs, starting with rules
of size 1 and growing up to Na, so that it prefers smaller
rules when they can be found. To be more precise, we in-
troduce the following loop in Algorithm 1 replacing line 8:
RuleSynth uses an optimized version of this loop where

in CEGIS iteration i ě 1, the initial value of na is set to the
value of na used to synthesize Φi´1 in the previous CEGIS
iteration (instead of starting with na “ 1). Since the set
of examples being considered in iteration i is a superset of
examples considered in iteration i´ 1, if for any na Synth

Procedure Incremental Grammar Bounds
1 na Ð 1 // attribute-matching rules bound na
2 while na ď Na do
3 Φi Ð Synth pGDNFpna, Ndq,ESYN,Fq
4 if Φi “ null then // Unsatisfiable Synth
5 na Ð na ` 1 // try larger na

6 else
7 break

could not find a GBF in iteration i ´ 1 then for the same
na it will not be able to find a GBF that matches all the
examples in iteration i.

5.2 Sampling: Bias in Picking Examples
In CEGIS iteration i, the RuleSynth algorithm tries

to primarily choose an example that is currently not be-
ing matched correctly. This guides the resulting GBF
towards higher accuracy on the example set by making
more and more examples match correctly. On top of this,
RuleSynth picks the best GBF that maximizes µ across all
CEGIS and RANSAC iterations. For optimality metrics like
µF-measure, µprecision, µrecall it is important to focus on find-
ing GBFs that maximize the number of positive examples
being matched correctly. Note that if the set of examples is
largely only negative examples then the likelihood of most
of the chosen examples being negative is high. This may
result in the algorithm missing certain positive examples for
smaller CEGIS cutoffs (KCEGIS) and thereby finding a solu-
tion with possibly lower µ even when the accuracy is high.
Hence, in RuleSynth we eliminate this bias based on the
actual distribution of positive and negative examples and re-
place it with a 50-50 chance of choosing a positive or negative
example, i.e., the sample routine (line 5 in Algorithm 1) is
modified as described above.

5.3 Algorithm Optimizations
SynthComp: Composition of Discovered Rules. The
SynthComp optimization efficiently produces larger GBFs
from smaller GBFs. SynthComp supplements RuleSynth
with an additional step at the end, where it synthesizes a
general boolean formula (GBF) using BSynthComp GBFs
from a set of top KSynthComp GBFs collected across all
CEGIS and RANSAC iterations while maximizing the met-
ric µ. That is, if RuleSynth found 3 functions ϕ1, ϕ2, ϕ3

with metric µ being 0.82, 0.77, 0.64, respectively, then it
will look at all boolean combinations of these GBFs and
come up with the best one, say, pϕ1 ^ ϕ3q _ ϕ2 with metric
µ “ 0.87 that is better than all three functions individually.
Our implementation of SynthComp uses ideas from truth-
table-based synthesis of Boolean circuits [14] and takes less
than 5 minutes for BSynthComp ď 4 and KSynthComp ď 10.
Note that a larger value of BSynthComp would make this time
grow substantially, but it will also make the final rules large
and uninterpretable. As will be seen in the experiments
(Section 6), these values (K ď 10, B ď 4) work well in RS-
SynthComp method for all datasets and lead to effective
and interpretable rules, which are generated in reasonable
time. Using SynthComp also involves a tradeoff between
conciseness (number of attribute-matching rules in GBF)
and performance (metric µ).

195

Consensus: Building Consensus of Multiple Rules.
Consensus optimization (similar to SynthComp) builds
a combination of discovered rules or GBFs. But, unlike
SynthComp, Consensus focuses on combinations of rules
of a specific form. More specifically, Consensus optimiza-
tion searches for rules of the form:

count true pϕ1, ϕ2, . . . , ϕBq ě C

where ϕ1, ϕ2, . . . , ϕB are B GBFs discovered by
RuleSynth, count true represents the function that counts
how many of these rules output true when evaluated on an
example and C is an integer between 0 and B. Intuitively,
the Consensus optimization finds a rule that builds a con-
sensus of at least C out of B rules when classifying an ex-
ample. To find such a combination, the Consensus op-
timization enumerates all B-combinations of top K GBFs
and then tries different values of C (from 0 to B) and eval-
uate the metric µ on all of them. Afterwards, it picks the
best consensus rule found so far. Note that since we are
considering only some of the all possible compositions of
discovered rules, the search space here is much smaller than
SynthComp and hence, we can run this procedure with
larger bounds in the same amount of time. Our implemen-
tation of Consensus takes less than 10 minutes for B ď 5
and K ď 15. As will be seen in the experiments (Section 6),
these values lead to more effective rules. We will use the
notation BConsensus and KConsensus to distinguish these pa-
rameters from those of SynthComp.

6. EXPERIMENTS
The key questions we answer with our evaluation are: (i)

How do our rules compare in interpretability and accuracy
to other interpretable models? (Exp-1, Exp-2); (ii) How do
they compare in accuracy to expert-provided rules? (Exp-3);
(iii) How do they compare in accuracy to non-interpretable
models, such as SVMs? (Exp-4); (iv) How do we per-
form when using limited training data? (Exp-5); (v) Can
RuleSynth discover rules in reasonable amounts of time?
(Exp-6); and (vi) How efficient are the RuleSynth rules
compared to non-interpretable ML models when applied to
large datasets? (Exp-7).

6.1 Experimental Setup
Datasets. Table 1 shows four real-world datasets used in
our evaluation. The Cora dataset has one relation, while
the others have two relations with aligned schemas. Posi-
tive examples for every dataset are also given. To ensure
that negative examples are quite different from each other,
we took the Cartesian product of the relations and pruned
pairs with high Jaccard tri-gram similarity values [24, 25].
We varied the similarity threshold across datasets to con-
trol the number of negative examples. Table 1 also shows
the average number of record pairs with at least one null
value. These numbers show the importance of using the
custom noNulls function in a formula because noNulls in the
if condition enables the synthesizer to find smaller rules
for the noNulls (then) vs nulls (else) cases. Some datasets
have a skewed distribution of nulls across attributes, e.g., for
DBLP-Scholar, the attribute year has around 40K nulls,
whereas title and authors have 0.

Inputs for EM-GBF Problem (Section 2.2). In the
following, we use F-measure as the metric to be optimized.
We use a set of 29 similarity functions that were also used
in the SIFI project [40]. This set includes functions from

Table 1: Dataset statistics
#Matching #Record #Attr Avg #nulls

Pairs Pairs per Attr
DC 14, 280 184, 659 9 92, 955p50%q
DAG 1, 300 97, 007 4 22, 583p23%q
DLF 6, 048 341, 244 10 99, 629p29%q
DDS 5, 347 112, 839 4 12, 685p11%q

DC =Cora, DDS =DBLP-Scholar
DAG =Amazon-GoogleProducts, DLF =Locu-FourSquare

the Simmetrics library (https://github.com/Simmetrics/
simmetrics) and functions implemented by authors of SIFI.
We also treat Equal and noNulls as two similarity functions
that evaluate to 0 or 1. We use the outputs of these simi-
larity functions rounded to a finite precision of 3 decimals.

Input features for ML techniques. For every example
record pair, we evaluate all available similarity functions on
strings from aligned attributes and construct a vector of
these numerical values between 0 and 1. These vectors are
used as input feature vectors for all ML techniques. For
SVM, we also normalize the feature vectors to have zero
mean and unit variance during training and use the same
scaling while testing [3].

Comparisons with State-of-the-Art ML Approaches.
We compared the basic and the optimized variants of
RuleSynth with decision trees, SVM [40], gradient tree
boosting [8] and random forests [22]. All ML methods con-
vert EM into a binary classification problem.

While the output from SVM lacks logical interpretability,
a decision tree can be interpreted as a boolean formula with
multiple DNF clauses arising from traversal of paths that
lead to positive classification. However, the output of Ran-
dom Forests is tedious to interpret because: (1) the output
has tens to hundreds of trees that are aggregated to make
the final decision, (2) each decision tree has a large depth
resulting into thousands of nodes, making them hard to in-
terpret individually. Since a similar aggregation mechanism,
such as bagging, can be used over RuleSynth as well, we
focus on (2) and compare our results with a single decision
tree from [22].

Comparisons with Rule-based Learning Approaches.
We evaluated RuleSynth against a heuristic-based ap-
proach, SIFI [40], which searches for optimal similarity func-
tions and thresholds for the attribute comparison given a
DNF grammar provided by a human expert. In contrast, the
GBFs are automatically discovered by RuleSynth without
any expert-provided structure of the rules.

Implementation. All experiments were run on a cluster
of virtual machines with Ubuntu 14.04 OS, 32 GB RAM
and 16-core 2.3 GHz CPU. We implemented RuleSynth in
Python 2.7 as scripts that interact with the Sketch synthe-
sis tool (written in Java and C++). We implemented SVM,
random forests and gradient boosting in Python using the
scikit library and libsvm (http://www.csie.ntu.edu.tw/

~cjlin/libsvm). The other two baseline approaches, i.e.,
SIFI and decision trees, were obtained from the authors
of [40] and [22], respectively. SIFI was implemented in C++,
and the random forest entity matcher was coded in Java us-
ing the Weka library [36].

Techniques and Parameters. For all ML techniques, we
used a simple grid search [4] of values for different parame-

196

ters. We list the parameters being searched for below: (i)
For decision trees: depth of the tree, minimum number of
examples needed for a split. (ii) For SVM: choice of kernel
(LinearSVC or RBF) [2], the penalty hyper-parameter C in
the loss function and γ hyper-parameter for RBF kernel.
(iii) For Gradient Boosting: the learning rate, maximum
depth of a tree, maximum number of trees. (iv) For Ran-
dom Forests: maximum depth of a tree, number of trees.

For decision trees, we separately present results for depths
3, 4 and 10 (the default configuration in Weka). For SVM,
we separate the results for the two kernels. For gradient
boosting and random forests, we present results with small
#-atoms, i.e., 2´ 4 trees of depth 2´ 4 (so that #-atoms is
bounded by 60), and large #-atoms (searching around the
defaults in the Scikit learn [31] libraries on the grid), i.e.,
5 ´ 15 depth or unlimited depth trees for Random Forests
and 25 ´ 100 trees with depth 2 ´ 4 for Gradient Boost-
ing. Note that, even though these two techniques have in-
terpretable trees, each tree or leaf has a numerical weight
assigned to it that makes them hard to interpret. For SVM
we use balanced class-weights as a low-effort configuration
for optimizing F-measure [29]. We also ran SIFI with default
configurations and grammars given by experts.

We use three variants of our algorithm: (1) the ba-
sic CEGIS+RANSAC based RuleSynth (Section 4.2),
(2) RS-SynthComp that uses the SynthComp optimiza-
tion (Section 5.3), and (3) RS-Consensus that uses the
Consensus optimization (Section 5.3). For all variants, we
have the following parameters with their respective default
values: (i) The depth of the grammar Nd “ 4, which is
enough to represent formulas with at most 15 atoms; (ii) A
high KCEGIS “ 1000 with a timeout of 15 minutes per
CEGIS iteration so that the CEGIS loop runs until it finds a
set of examples for which Sketch cannot synthesize a valid
rule or it times out and picks the best rule obtained till then;
(iii) The bound KRANSAC “ 5 to restart CEGIS 5 times
and explore different underlying sets of examples; (iv) The
number of attribute-matching rules Na: for RuleSynth,
we set Na “ 8 so that it is comparable with the number of
atoms in a decision tree of depth 3. For RS-SynthComp
we use Na “ 5 and combine BSynthComp “ 3 rules out of
KSynthComp “ 10 rules (Section 5.3) to generate a compos-
ite GBF so that in total #-atoms is bounded by 15 and is
comparable with #-atoms in a decision tree of depth 4. For
RS-Consensus, we use Na “ 8 and combine BConsensus “ 5
rules out of KConsensus “ 15 rules (Section 5.3) to have simi-
lar #-atoms as the small Gradient Boosting Trees and Ran-
dom Forests (with 2´ 4 trees of depth 2´ 4).

Performance Evaluation. We performed K-fold cross-
validation (for K=5) on each of the datasets used, where
we divided the data into K equal fractions (folds) randomly
and performed K experiments. In each experiment one of
the K folds was the test set while the remaining K´1 folds
were training. We report the average F-measure obtained
across all folds on the test sets as the performance metric
(Figure 5). Note that we use the same folds for each tech-
nique we compare and for each fold we may find different
optimal values for the parameters of the ML techniques.

6.2 Experimental Results
Exp-1: Interpretability. We measure interpretability
as being inversely proportional to the number of attribute-

matching rules (or atoms) present in the rule. In other
words, interpretability is defined as the number of atomic
similarity function comparisons with a threshold «pi, f, θq
in the formula representing the rule. For clarity, we rep-
resent atoms or attribute-matching rules as

`

fnrattrs ě θ
˘

,
where fn is the name of the applied similarity function, attr
is the name of the matched attribute, and θ is the corre-
sponding threshold, e.g., EditDistancertitles ě 0.73 is a valid
atom. Intuitively, a complex DNF is less interpretable than
a semantically equivalent but more concise GBF.

Below, we present two GBFs, ϕsynth and ϕtree for Cora,
obtained by using RuleSynth and decision trees of depth
3, respectively. We obtained both GBFs on the same train-
ing set as the best rules. These rules result in average F-
measures of 0.83 (ϕsynth) and 0.77 (ϕtree) on test data. The
GBF ϕsynth demonstrates the conciseness of formulas gen-
erated by RuleSynth as compared to ϕtree, as ϕsynth has
only 6 atoms whereas ϕtree has 12 atoms. Also note that
the RuleSynth rules include if/then/else clauses that al-
low them to be more compact that the DNF-based rules the
decision tree produces.
ϕsynth :

`

ChapmanMatchingSoundexrauthors ě 0.937
Ź

if noNullsrdates ě 1
then CosineGram2rdates ě 0.681
else NeedlemanWunchrtitles ě 0.733

˘
Ž

`

EditDistancertitles ě 0.73
Ź

OverlapTokenrvenues ě 0.268
˘

ϕtree :
`

OverlapGram3rtitles ě 0.484
Ź

MongeElkanrvolumes ě 0.429
Ź

Soundexrtitles ě 0.939
˘
Ž

`

OverlapGram2rpagess ě 0.626
Ź

MongeElkanrvolumes ě 0.429
Ź

`

Soundexrtitles ě 0.939
˘˘

Ž

`

ChapmanMeanLengthrtitles ě 0.978
Ź

`

OverlapGram3rauthors ě 0.411
˘

Ź

`

MongeElkanrvolumes ě 0.429
˘˘

Ž

`

CosineGram2rtitles ě 0.730
Ź

OverlapGram3rauthors ě 0.411
Ź

`

MongeElkanrvolumes ě 0.429
˘˘

Figure 3 shows the interpretability results with respect
to the number of atoms for all datasets. It shows that
our algorithm produces more interpretable rules, i.e., with
fewer atoms, than decision trees with depths 3 and 4
for all datasets. In particular, RuleSynth produces
rules that are (i) more interpretable than decision trees
with depth 3 for all datasets and (ii) up to eight times
more interpretable than decision trees with depth 4 (see
dataset Amazon-GoogleProducts). The second variants
RS-SynthComp produces rules with more atoms but still
has better interpretability than decision trees with depth 4.
Moreover, as we will see in Exp-2, the rules produced by
RS-SynthComp are more effective than decision trees with
both depth 3 and 4. The third variant RS-Consensus pro-
duces rules with even more atoms but they still have less #-
atoms than small Gradient Boosting and Random Forests.
Small Gradient Boosting and Random Forests are also not
easily interpretable due to the presence of numerical weights
along with the trees. Figure 3 also shows that the number of
atoms increases exponentially with the depth of the decision
trees i.e., the deeper is the tree, the less interpretable the
corresponding rules are. For example, it is nearly impossi-
ble to interpret decision trees of depth 10 with thousands of
atoms.

User study. Figure 4 shows the results of our informal user
study with 27 CS researchers from six institutions. We gave

197

Figure 3: Interpretability results for 5-folds experiment (80% training and 20% testing data)

Figure 4: User interpretability preference: Cora,
Amazon-GoogleProducts (AGP), Locu-FourSquare
(LFS), DBLP-Scholar (DBLP)

each participant 8 multiple-choice questions with 3 options
for the answer. Each question comprised a pair of well-
formatted rules generated by two different techniques from
the same training data. The participant was asked to select
which one of the two rules they thought was more inter-
pretable. Each participant was given 2 questions for each
dataset. One question compared the rules generated by
RuleSynth against decision trees of depth 3, and the other
compared RS-SynthComp against decision trees of depth
4. We observe from the results that the rules with fewer
atoms are preferred by more users. Generally the rules gen-
erated by RuleSynth and its variants are preferred except
in one case (i.e., RuleSynth on DBLP-Scholar), where the
decision trees have a similar number of atoms as our algo-
rithms, as shown in Figure 3. On average, 67.15% of the
responses state that the rules generated by our algorithms
are more interpretable, while only 23.13% prefer the deci-
sion trees, and 9.72% state no preference. This supports the
validity of #-atoms as our measure of interpretability.

Exp-2: Effectiveness vs. Interpretable Decision
Trees. We now evaluate the effectiveness (average F-
measure across 5 folds) of rules generated by our algo-
rithms against the ones found by decision trees. Figure 5
shows the average F-measures for different interpretable
techniques. We observe that RuleSynth achieves a higher
F-measure than decision trees with depth 3 for all datasets,
except for DBLP-Scholar where the F-measures are compa-
rable. Decision trees achieve higher F-measures when in-
creasing their depth from 3 to 4 for all datasets. However,

RS-SynthComp still results into higher F-measures than
decision trees with depth 4 on all data sets.

Moreover, as we saw in Figure 3, each of RuleSynth and
RS-SynthComp produces more interpretable rules than
decision trees with depth 4 for all datasets. From fig-
ures 3 and 5, we conclude that decision trees can get bet-
ter F-measures by increasing their depth but this comes
at a significant sacrifice to their interpretability. In con-
trast, RuleSynth can get better F-measures by applying
SynthComp and Consensus optimizations while not sac-
rificing on interpretability as much. For example, for the
Amazon-GoogleProducts dataset, increasing the depth of de-
cision tree from 3 to 4 increases the F-measure from 0.484
to 0.553 while the average number of atoms increases from
4.6 to 10.2. In contrast, the SynthComp optimization in-
creases the F-measure from 0.567 to 0.614 while increasing
the average number of atoms from 1.4 to 4.2.

Exp-3: Effectiveness vs. Expert-Provided Rules. To
further demonstrate the effectiveness of GBFs produced by
RuleSynth and its variants, we compare RuleSynth with
SIFI [40]. SIFI requires experts to provide a DNF template
from experts as an input and completes it to generate a
rule. In contrast, RuleSynth discovers rules automatically,
reducing the effort needed from an expert.

Figure 5 shows that RuleSynth and its variants per-
form better than SIFI for all datasets. In contrast with
SIFI, which employs a heuristic to search through a smaller
space of rules, RuleSynth searches through a huge space
of generic GBFs. This allows us to discover various corner
cases that can be sometimes missed by an expert-provided
expression. In addition, as shown in Figure 3, RuleSynth
generates GBFs that are more concise (and thus inter-
pretable) than the DNFs produced by SIFI for all datasets.

Exp-4: Effectiveness vs. Non-interpretable Meth-
ods. We now compare RuleSynth and its variants with
four ML algorithms: (1) Decision trees with depth 10,
(2) SVM, (3) Random Forests, and (4) Gradient Tree Boost-
ing. Figure 5 shows the results for interpretable methods,
and Figure 6 gives the results for non-interpretable meth-
ods, we observe that all the three variants of RuleSynth
achieve smaller F-measure values than the ML algorithms
on an average. Still, RS-Consensus achieves quite com-
parable F-measures, with the F-measure difference between
the ML best algorithm and RS-Consensus being 0.08, 0.05,
0.02, and 0.04 for each of the four data sets. However, the
effectiveness of these ML algorithms comes at a high price.
We see in Figure 3 that these four ML algorithms are not
interpretable: (i) SVM does not produce rules, (ii) deci-

198

Figure 5: Effectiveness results for 5-folds experiment (80% training and 20% testing data)

Figure 6: Effectiveness: non-interpretable methods

sion trees with depth 10 yield rules with around 1K atoms
for all datasets, (iii) Random Forests and Gradient Boost-
ing provide both rules with 1K-13K atoms with hundreds of
weights, which are also impossible to interpret for a human.

Exp-5: Variable Training Data. We also varied the
number of folds (K) by randomly sampling a fraction 1

K
of

training examples with K “ 100, 40, 20, 10, 7, 5. Each frac-
tion 1

K
corresponds to a different percentage P% of examples

(i.e., P “ 1, 2.5, 5, 10, 14.3, 20). We use the rest p100´ P q%
of the examples for testing, and we train and test on 100
such randomly selected sets for each percentage P . We re-
port the average test-set F-measure and size of matching
rules obtained across all 100 runs (99% confidence intervals).

Figure 7 shows the comparison between interpretable de-
cision trees and RuleSynth variants on Locu-Foursquare
dataset with different percentages (1% to 20%) of train-
ing data. The figures for the other datasets show simi-
lar trends, and are thus omitted for space limitation. We
compare Decision Trees (depth 3) with RuleSynth since
they both produce rules with smaller sizes, and, Decision
Trees (depth 4) with RS-SynthComp since they both pro-
duce interpretable rules with larger sizes. Both RuleSynth
and RS-SynthComp outperform Decision Trees of depth 3
and 4, respectively, in effectiveness (higher F-measure) on
all datasets. At the same time, RS-SynthComp generates
more interpretable (lower number of atoms) rules than Deci-
sion Trees (depth 4). RuleSynth and Decision Trees (depth
3) both generate small and interpretable rules (2-7 atoms on
average). RuleSynth generates smaller rules for 2 out of 4
datasets, has similar interpretability for Locu-Foursquare,
and, generates slightly larger rules for DBLP-Scholar. RS-
SynthComp is the most effective method for generating in-
terpretable rules (2-14 atoms on average) with limited train-
ing data on all datasets.

Figure 7: Locu-Foursquare (100 runs with 99% confi-
dence intervals on the means in the shaded regions)

Exp-6: Efficiency of Training. RuleSynth and its vari-
ants provide the flexibility for users to control how much the
algorithm should explore in the CEGIS loop (boundKCEGIS,
time-limit, grammar bounds) and how many times it should
restart (bound KRANSAC). Figure 8 shows that RuleSynth
and its variants take at most an hour to search through the
huge space of rules in order to produce an effective and con-
cise rule as output for all datasets in Table 1. This is a rea-
sonable amount of time as compared to what it takes experts
to examine the dataset and write their own rule expressions,
especially given the low-cost of computation relative to hu-
man time. For example, our experts took around 2 hours
on average to write a DNF expression for SIFI per dataset.
Figure 8 also shows that SIFI searches through a smaller
constrained space in at most 40 minutes to produce a rule.
Decision trees with depth 3 and 4 produce a rule in less than
a minute but the produced rules are neither as concise nor as
effective as rules produced by RuleSynth and its variants
(Exp-2). Decision trees with depth 10, random forests and
gradient boosting take between 1-150 minutes to produce a
rule but they are not interpretable (Exp-4). SVM takes up
to 2 hours (linear kernel) or 1-3 days (RBF kernel).

Exp-7: Efficiency of Testing. When we have N records
and we want to apply a rule or a classifier on each pair of
these records to identify duplicates. In general, applying a
rule would require enumerating all OpN2

q pairs and comput-
ing the relevant similarity functions. Note that until now, for
training we pre-computed these similarity functions but for
testing the rule in a new environment, we have to compute
the relevant similarity functions again to be able to apply
the rule or the classifier. For a classifier that uses many
similarity functions, this process becomes prohibitively slow
since they have to compute all of them; as shown in Ta-
ble 2, SVM is much slower than rules applied on all pairs.

199

Figure 8: Efficiency (average time for training per fold) for 5-folds experiment (80% training { 20% testing)

Table 2: Efficiency on testing

rule
record

pairs
time taken (s)

SVM
rule on
all pairs

rule on
buckets

DC

ϕ1

360,000 3,576.18
55.17 2.56

ϕ2 32.05 2.67
ϕ3 87.91 3.63
ϕ1

810,000 N/A
127.29 8.30

ϕ2 61.38 5.54
ϕ3 176.46 8.85

DAG

ϕ11
360,000 12,528.3

30.28 0.80
ϕ12 34.47 1.02
ϕ13 98.94 1.17
ϕ11

810,000 N/A
71.80 1.03

ϕ12 87.23 1.9
ϕ13 216.61 3.65

DC =Cora, DAG =Amazon-GoogleProducts

Hence, applying smaller rules on all pairs already has an
advantage over large classifiers that utilize many similarity
functions with numerical weights like SVM. Moreover, for
smaller GBF rules with a specific structure, one can use
a hashing scheme [41] to bucket similar records as a first
pass, which reduces the pairwise comparisons from OpN2

q

to OpM2
q where M ! N . The rule application on buckets

takes much less time (1 ´ 4s) than applying the rule on all
pairs (30´ 200s), as shown in Table 2.

We identified 3 RuleSynth generated rules each for two
datasets that are of the form pfsimrattrs ěq θ ^ ϕ1 where
ϕ1 is a general GBF and fsim is a similarity function for
which there is a locality sensitive hashing (LSH) family avail-
able [41]. Out of 30 functions considered in this work, LSH
families are available for at least 7 of them. Note that in
RuleSynth, we can also force this structure for all rules
with our flexible grammar. For this experiment, we found
rules generated by RuleSynth that have the format men-
tioned above with fsim being the Jaccard function over the
set of n-grams (with n “ 2) of the input strings. Using a
MinHash LSH scheme described in [28] and available as the
Datasketch tool [1], we built an index on the attribute attr
with Jaccard threshold θ to identify potentially similar pairs
and reduce the number of record pairs to compare. The
running times for this experiment are shown in Table 2.

7. RELATED WORK
Machine Learning-Based Entity Matching. Most current so-
lutions are variants of the Fellegi-Sunter model [17], where
entity matching is treated as a classification problem. Such

approaches include SVM based methods [7], decision tree
based solutions [22], clustering based techniques [10], and
Markov logic based models [35]. As remarked earlier, the
main obstacles to deploy them is that humans do not under-
stand and trust them [26], due to the lack of interpretabil-
ity [27].

Rule-Based Entity Matching. Declarative EM rules are nor-
mally desirable to end users. Such rules are also popular in
the database community since they provide great opportu-
nities for improving the performance at execution time, such
as those studied in [11,15]. However, these approaches typ-
ically assume that EM rules are given by domain experts,
which, in practice, it is a hard problem. Closer to our work
is [40], which discovers similarity functions and their associ-
ated thresholds by assuming a given DNFEM rule structure.
In contrast, our approach discovers more expressive GBF
rules without the user-provided rule structure.

Active Learning and Crowdsourcing. Since good and suffi-
cient training dataset is often hard to get in practice, a
natural line of work studies active involvement of users in
verifying ambiguous tuple pairs, a.k.a. active learning in
EM [22, 32]. Due to the popularity of crowd-sourcing plat-
forms, there have been efforts of leveraging crowd workers
for entity matching problems [18, 22, 39]. Active learning
can potentially be used to collect training examples in our
approach as well, but this is orthogonal to our study.

Custom Constraint Solvers. Using a custom solver in
Sketch is similar to using a special-purpose theory
solver [20] inside SMT solvers (a different class of solvers).
In the context of program synthesis, we are the first to show
how a custom solver can be used to solve synthesis problems
efficiently inside a general purpose solver like Sketch.

8. CONCLUSION
In this work, we presented how to synthesize EM rules

from positive-negative examples. Given a high level speci-
fication of rules and some examples, our solution uses pro-
gram synthesis to automatically synthesize the GBF rules
for EM. We have also presented optimizations based on spe-
cialization of a general-purpose solver, RANSAC and CEGIS
to improve the effectiveness of the optimizer. We showed
with extensive experiments that our solution produces rules
that are both concise and easy to interpret for end-users,
while matching test accuracies that are comparable with the
state-of-the-art solutions, despite the fact that those solu-
tions produce non-interpretable results.

200

9. REFERENCES

[1] Datasketch: Minhash lsh.
https://ekzhu.github.io/datasketch/lsh.html.

[2] Scikit learn: Support vector machines in practice.
http://scikit-learn.org/stable/modules/svm.html.

[3] Standardization, or mean removal and variance
scaling. http://scikit-
learn.org/stable/modules/preprocessing.html.

[4] Tuning the hyper-parameters of an estimator.
http://scikit-
learn.org/stable/modules/grid search.html.

[5] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F.
Ilyas, M. Ouzzani, P. Papotti, M. Stonebraker, and
N. Tang. Detecting data errors: Where are we and
what needs to be done? PVLDB, 9(12):993–1004,
2016.

[6] R. Alur, R. Bod́ık, E. Dallal, D. Fisman, P. Garg,
G. Juniwal, H. Kress-Gazit, P. Madhusudan, M. M. K.
Martin, M. Raghothaman, S. Saha, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa.
Syntax-guided synthesis. In Dependable Software
Systems Engineering, pages 1–25. 2015.

[7] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
KDD, pages 39–48, 2003.

[8] T. Chen. Introduction to boosted trees. University of
Washington Computer Science, 2014.

[9] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based
information extraction is dead! long live rule-based
information extraction systems! In EMNLP, pages
827–832, 2013.

[10] W. W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data
integration. In KDD, pages 475–480, 2002.

[11] N. Dalvi, V. Rastogi, A. Dasgupta, A. Das Sarma,
and T. Sarlós. Optimal hashing schemes for entity
matching. In WWW, pages 295–306, 2013.

[12] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas,
S. Madden, M. Ouzzani, and N. Tang. The data
civilizer system. In CIDR, 2017.

[13] H. H. Do and E. Rahm. COMA - A system for flexible
combination of schema matching approaches. In
VLDB, pages 610–621, 2002.

[14] R. Drechsler and R. Wille. From truth tables to
programming languages: Progress in the design of
reversible circuits. In ISMVL, pages 78–85, 2011.

[15] A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani,
J. Quiané-Ruiz, N. Tang, and S. Yin. NADEEF/ER:
generic and interactive entity resolution. In SIGMOD,
pages 1071–1074, 2014.

[16] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1):1–16, 2007.

[17] I. Fellegi and A. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 64
(328):1183–1210, 1969.

[18] D. Firmani, B. Saha, and D. Srivastava. Online entity
resolution using an oracle. PVLDB, 9(5):384–395,
2016.

[19] M. A. Fischler and R. C. Bolles. Random sample
consensus: A paradigm for model fitting with
applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, June
1981.

[20] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,
and C. Tinelli. Dpll (t): Fast decision procedures. In
CAV, volume 4, pages 175–188. Springer, 2004.

[21] P. S. G.C., C. Sun, K. G. K., H. Zhang, F. Yang,
N. Rampalli, S. Prasad, E. Arcaute, G. Krishnan,
R. Deep, V. Raghavendra, and A. Doan. Why big
data industrial systems need rules and what we can do
about it. In SIGMOD, pages 265–276, 2015.

[22] C. Gokhale, S. Das, A. Doan, J. F. Naughton,
N. Rampalli, J. Shavlik, and X. Zhu. Corleone:
Hands-off crowdsourcing for entity matching. In
SIGMOD, pages 601–612. ACM, 2014.

[23] Interpretable ML for Complex Systems NIPS 2016
Workshop. https:
//sites.google.com/site/nips2016interpretml.

[24] H. Köpcke and E. Rahm. Training selection for tuning
entity matching. In QDB/MUD, pages 3–12, 2008.

[25] H. Köpcke, A. Thor, and E. Rahm. Evaluation of
entity resolution approaches on real-world match
problems. PVLDB, 3(1):484–493, 2010.

[26] H. Lakkaraju, S. H. Bach, and J. Leskovec.
Interpretable decision sets: A joint framework for
description and prediction. In SIGKDD, pages
1675–1684, 2016.

[27] T. Lei, R. Barzilay, and T. S. Jaakkola. Rationalizing
neural predictions. In EMNLP, pages 107–117, 2016.

[28] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining
of massive datasets. Cambridge university press, 2014.

[29] D. R. Musicant, V. Kumar, and A. Ozgur. Optimizing
f-measure with support vector machines. In Proc. of
the 16th International Florida Artificial Intelligence
Research Society Conference, pages 356–360, 2003.

[30] F. Panahi, W. Wu, A. Doan, and J. F. Naughton.
Towards interactive debugging of rule-based entity
matching. In EDBT, pages 354–365, 2017.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[32] S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In KDD, pages
269–278, 2002.

[33] L. Seligman, P. Mork, A. Y. Halevy, K. P. Smith,
M. J. Carey, K. Chen, C. Wolf, J. Madhavan,
A. Kannan, and D. Burdick. OpenII: an open source
information integration toolkit. In SIGMOD, pages
1057–1060, 2010.

[34] R. Singh, V. Meduri, A. K. Elmagarmid, S. Madden,
P. Papotti, J. Quiané-Ruiz, A. Solar-Lezama, and
N. Tang. Generating concise entity matching rules. In
SIGMOD, pages 1635–1638, 2017.

[35] P. Singla and P. Domingos. Entity resolution with
markov logic. In ICDM, pages 572–582, 2006.

201

[36] T. C. Smith and E. Frank. Statistical Genomics:
Methods and Protocols, chapter Introducing Machine
Learning Concepts with WEKA. Springer, 2016.

[37] A. Solar-Lezama. The sketching approach to program
synthesis. In APLAS, pages 4–13, 2009.

[38] A. Solar-Lezama. Program sketching. STTT,
15(5-6):475–495, 2013.

[39] J. Wang, T. Kraska, M. J. Franklin, and J. Feng.
Crowder: Crowdsourcing entity resolution. PVLDB,
5(11):1483–1494, 2012.

[40] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity
matching: How similar is similar. PVLDB,
4(10):622–633, 2011.

[41] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for
similarity search: A survey. CoRR, 2014.

202

