
Evaluation of Deception-Based Web Attacks Detection
Xiao Han
Orange Labs
Eurecom

xiao.han@orange.com

Nizar Kheir
Thales Group

nizar.kheir@thalesgroup.com

Davide Balzarotti
Eurecom

davide.balzarotti@eurecom.fr

ABSTRACT
A form of moving target defense that is rapidly increasing in pop-
ularity consists of enriching an application with a number of de-
ceptive elements and raising an alert whenever an interaction with
such elements takes place. The use of deception can reduce some of
the advantages of an attacker, making the exploration of the target
to discover vulnerabilities a difficult and risky task. Another popular
argument in support of deception techniques is that they are very
effective at detecting attackers while maintaining a low, or even
zero, false positive rate. However, to the best of our knowledge, no
experiments have been performed to evaluate the use of deception
in web applications. In particular, the lack of precise measurements
of false positive and false negative rates makes it very difficult to
understand if, and to which extent, deception can be an effective
defense solution and a replacement for other traditional detection
techniques.

In this paper, we first implement a web deception framework that
allows us to introduce deception in any web application. Using this
framework, we conduct two experiments that measure respectively
the number of false alarms in a production environment and the
detection accuracy during a controlled red team experiment with
150 participants. The first experiment has been performed for a
period of seven months with 258 regular users and no false alarms
have been triggered. The second experiment shows instead that
deception is indeed capable of detecting attackers even before they
could find one of the numerous vulnerabilities in the target applica-
tion. However, 36% of the attackers who successfully exploited at
least one vulnerability did so without triggering any of our traps.
While more experiments are needed to better understand this phe-
nomenon, our preliminary study seems to suggest that deception
is a valuable companion of other detection techniques but it may
not be suitable as a single standalone protection mechanism.

1 INTRODUCTION
It has been estimated that there are over one billion websites on
the World Wide Web today [15], and this number is steadily in-
creasing over time. In 2015 the global business-to-consumer (B2C)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MTD’17, October 30, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5176-8/17/10. . . $15.00
https://doi.org/10.1145/3140549.3140555

e-commerce turnover has increased by about 20 percent, attain-
ing a value of 2.2 billion dollars [12] and even governments are
increasingly transitioning to web services to enable savings on the
budget [34].

Unfortunately, this popularity regularly attracts a large number
of attackers and according to Symantec [33] three quarters of the
websites they scanned in 2015 contained unpatched vulnerabilities.

A large number of techniques have been proposed to secure
web applications on the server side. Li et al. [21] classified these
techniques into three categories: 1) secure construction of new web
applications, 2) security analysis and testing of legacy applications
and 3) runtime protection of legacy applications. The first cate-
gory of techniques usually requires the design of new languages or
frameworks, whereas the challenge of security analysis and testing
stems from finding the right balance between correctness and com-
pleteness. Runtime protection typically provides a scalable solution
to secure legacy applications at the cost of certain performance
overhead.

These traditional measures, although being essential in any
modern security arsenal, cannot provide a comprehensive solu-
tion against Internet threats. Due to these limitations, complemen-
tary solutions have been recently investigated to help anticipating
threats and possibly warn users against attacks in their very early
stages. In particular, intrusion deception techniques have recently
attracted a lot of interest among security researchers [1, 4].

Previous work in this area first focused on using honey URLs
to detect web bots [8] or flash crowd attacks [13]. Recently, more
work has been done to support the adoption of deception techniques
for the purpose of web attack detection – for instance by insert-
ing honey configuration files, invisible links, HTML comments
that contain fake accounts information [36], decoy forms [18], and
honey URL parameters [28]. All these solutions aim at attracting
the attention of attackers who are trying to discover vulnerabilities
in a web application, detect their attempts, and finally protect the
target system.

These forms of deception are also an excellent example of moving
target defense. In fact, a web application enriched with deceptive
elements add uncertainty in the attacker steps, as it is unclear which
elements (e.g., form fields) belong to the real application and which
ones are instead just traps positioned to detect the attacker’s moves.
Moreover, since the actual number, nature, and position of each
deception element is not fixed, but decided by the administrator, the
resulting system is different from any other similar applications.

Therefore, adding decoys to a system is a way to “mutate” it –
resulting in a large number of different instances. Moreover, the set
of decoys deployed on a system needs to be constantly updated and
modified over time, thus making the system evolving and appearing
different from an attacker perspective.

https://doi.org/10.1145/3140549.3140555

When more and more companies are already promoting and sell-
ing deception-based protection systems, there is not yet a common
consensus among the scientific community about the effectiveness
of these techniques and their ability to detect cyber attacks. In
particular, one of the main gaps in the current understanding of
deception techniques is the lack of precise measurements of their
false negative and false positive rates. Our experiments have shown
that deception can detect attackers, even before they discover and
exploit a vulnerability in the target system. However, evaluating
the false negatives (i.e., the number of attackers that have not been
detected) is much harder.

In this paper we present two separate experiments we conducted
to evaluate these important aspects. To perform our tests we first
implemented a web deception framework that allows to easily intro-
duce different forms of deceptive elements to any web application
without changing its source code or affecting the backend server.
Our solution is deployed as a transparent reverse proxy, which
injects deceptive elements in outgoing HTTP traffic based on a set
of configurable rules, and remove them from the incoming HTTP
requests before they are forwarded to their destination. When a
deceptive element is triggered, our framework generates an alert
and, if requested to do so, redirects the current HTTP session to
another endpoint where the attacker can be monitored without
causing any damage.

Using our framework, we perform two experiments to measure
the false negative and false positive rates of these techniques. In the
first experiment we installed our framework to protect a production
content management system (CMS) for a period of seven months –
from December 2016 to June 2017. We introduced examples of all
known web deception techniques we could find in the literature,
and added two new ones we developed specifically for this task.
During our experiment, the CMS system was publicly accessible
on the Internet, and has been routinely used by 258 authenticated
users. No false alert has been reported by our system throughout
this experiment.

We then performed a second experiment during a red team
exercise where 150 participants were asked to find vulnerabilities
within a custom developed e-commerce application. To be able
to compare results, the framework was configured to re-use the
same techniques we adopted in the previous CMS experiment. In
this case, we found that deception was able to detect 64% of the
participants who successfully exploited at least one vulnerability
during the exercise.

However, 36% of the successful attackers were able to exploit
the system without triggering any deception elements. This test
seems to support the hypothesis that deception-based techniques
are good candidates for the purpose of attack detection, but only
if combined with other protection and detection techniques. In
particular, the results of our experiments show that deception may
enhance the ability to detect attacks. They also show that deception
alone is insufficient to protect a web application, and more research
is needed in this direction to better understand the limitations of
this technique.

2 BACKGROUND
Deception relies on a “planned set of actions taken to mislead attack-
ers and to thereby cause them to take (or not to take) specific actions
that aid computer-security defenses” [38].

The use of deception techniques in computer security was first
proposed over two decades ago under the form of a user account
populated with fake documents to track the activity of a remote
attacker [32]. The fictitious setting used to monitor the attacker is
nowadays known by security researchers as a honeypot [20] and
has been widely used to detect attacks and monitor many types of
malicious activities [10, 29]. The planted documents deployed in
a legitimate system have also gained popularity [19] as a way to
detect insider attacks. Since then, other studies have adopted similar
techniques, such as honeyfiles [37], and also decoy documents [7].

Another popular deception technique is honeytoken [27], which
mainly consists of “a digital or information system resource whose
value lies in the unauthorized use of that resource” [31]. The simple
fact of using such honeytoken may indicate a malicious intention
since normal users are not supposed to be aware of such informa-
tion. Many variants of this technique can be found in follow-up
contributions such as honey passwords [16], honey HTTP parame-
ters [28], and honey data in a database [6, 9].

Analogous to conventional deceptive military tactics, deception
can also reply to attacks with decoy actions, instead of indicat-
ing an access violation, but fake protocol messages [14], delayed
response [17], or crafted error messages [23]. In this case, the de-
ception elements are supposed to intrigue attackers and make them
believe that they are about to compromise the target system.

Deception techniques, if used correctly, can place defenders a
step ahead of attackers, by modifying the system with additional
traps that increase the risk of being detected. For this reason, decep-
tion has been proposed as a good example ofmoving target defense.
For instance, Crouse et al. [11] proposed probabilistic models that
confirmed that the combination of deception and network address
shuffle provides the largest impact to attacker success. Urias et
al. [35] extended a deception environment to clone the entire sub-
net that has suspicious activities. Then they proposed to modify the
cloned network view, host attributes and network files as a moving
target defense.

3 METHODOLOGY
Our aim is to design experiments to evaluate both the ability of
deception-based techniques to detect web attacks, and their rate
of false positives. To achieve this goal, we first survey existing
work and collect a catalog of deception techniques that had been
previously proposed in the literature for web-based attack detection.
We then implemented a framework that allowed us to quickly and
transparently insert these elements in an existing web application.
At the end of this Section we discuss the strategy that we use to
deploy deception techniques, which finally allows us to perform
the experiments described in Section 4.

3.1 Deceptive Elements
Most deception techniques for the purpose of web attack detec-
tion actually find their root in the concept of honeytoken [31].
Early examples of this technique mainly consisted of using honey

hyperlinks to detect phishers [22], flash crowd attacks [13] and
web bots [8]. Most recently, several works promoted the use of
deception for web applications [18, 28, 36]. Moreover, the OWASP
AppSensor project [26] that aims at detecting and responding to
attacks from within the application, provides a detailed description
of honey traps that may be used as detection points inside a web
application. More precisely, it classifies these detection points into
three categories: 1) alteration to honey trap data, which mainly
refers to honeytoken in HTTP protocol such as fake hidden form
fields, additional URL parameters and cookies, 2) honey trap re-
source requested, for instance, fake page and directory listed in the
application’s robot.txt file and 3) honey trap data collected and
used by the attacker, where a typical example is the use of honey
accounts information only visible in source HTML code.

In this paper, we design our system using the aforementioned
deception techniques. Furthermore, we extend them by adding two
additional deceptive elements. The first is a fake protected area
(e.g., an administration console) that requires HTTP authentication.
This is similar to a normal fake page, but it contains no content
and the fact that it prompts the client for an authentication may
attract both humans and automated tools that try to brute-force
the password to gain access to the protected resource.

The second additional technique includes a set of fake vulnerabil-
ities that, when tampered with by an attacker, return realistic error
messages based on the pre-defined attack types. The focus of this
particular type of deceptive element is to maintain the attackers
busy trying to exploit some bug that does not exist.

For our experiment we supported two types of fake vulnera-
bilities: local file inclusion and SQL injection. For instance, if an
attacker alters the honey trap by attempting a SQL injection as
illustrated below, the fake vulnerability returns a classic error that
exposes a valid-looking vulnerability.
Injection: ' or 1=1 --

Response: Invalid query: You have an error in your
SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to
use near '' at line 1

3.2 Deception Framework
We now describe the design requirements and the implementation
details of our deception framework, which allows us to transpar-
ently add different deceptive elements without the need to mod-
ify the target application. While the framework is not the main
contribution of our work, it is necessary to quickly test different
approaches and conduct experiments on their actual effectiveness
in a real-world deployment.

3.2.1 Design Requirements. To build a deception framework that
enables to integrate deceptive elements into most web applications,
our system needs to achieve the following design requirements:

• Language/Framework Independent
In order to keep our system applicable to a large number
of different web applications, our application should not
be tied to any programming language nor any particular
framework.

Figure 1: Deception Framework

• No Access to Source Code
One of the main goals of our system is to provide an addi-
tional layer of protection without touching or modifying
the target web applications.

• Non-Interference.
The system needs to support the insertion of any type
of deceptive elements, including additional URL or form
parameters, fake pages, or honey accounts. However, it is
important that these elements do not interfere with the
normal behavior of the target application.

To satisfy these requirements, our system was designed to work
at the HTTP protocol level, modifying requests and responses on
the fly by acting as a reverse proxy in front of the target application.
To avoid any potential interferencewith the original application, the
systemmakes sure that any direct sign of deceptive elements or any
side-effect for their presence will be transparently removed from
the incoming traffic and so it may not reach, nor to be processed
by, the target application.

3.2.2 Implementation. Following the above design requirements,
we decide to deploy our system in-front of the target web appli-
cation in the form of a transparent reverse proxy, as illustrated in
Figure 1. Our framework implements common mechanisms to mod-
ify the HTTP protocol and HTML content such as adding additional
cookies, hidden input form fields, additional HTTP GET and POST
parameters, fake protected areas, and fake vulnerabilities, which
enables the injection of all deceptive elements described section
in 3.1.

The deception framework is configured using simple regular
expression rules that specify which request or response needs to be
intercepted and modified, the type of deceptive element that needs
to be inserted, and the fake data associated to that element. For
each rule, the reverse proxy is responsible for adding the specified
deception technique to the outgoing responses, and removing them
from the incoming requests, before it may relay them to the target
web application.

The reverse proxy is implemented based on an open source
HTTP hacking tool, Hoxy [30]. It enables the interception of HTTP
request and responses, observing and altering all aspects of the
requests and responses. Coupled with a HTML parsing library, it
allows us to modify the HTML content on the fly during runtime.

Adding Deceptive Elements While Hoxy intercepts the HTTP
response, it exposes the HTTP header and also the body in the form
of JSON, string, jQuery or raw buffer. It is quite straightforward
to add deceptive elements which are located in the HTTP header.
For instance, to add a fake cookie, we simply add a set-cookie
field with the desired data. Similarly, the fake protected area is
implemented by adding a WWW-Authenticate field in the HTTP
header. To implement a deceptive HTTP GET parameter, we modify

the HTTP response status code to 302, which then redirects the
original request towards the new URL that has been appended with
the fake parameter.

There are also a few types of deceptive elements that require
modifications of the HTTP body such as the fake hidden input
field and fake data in JSON response. Hoxy supports by default the
edit of HTML as a DOM object similar to jQuery. We implement
hidden input field by searching the form field in the DOM object
and further adding the hidden field inside it. It is also possible to
convert the HTTP body to a JSON object to which we can easily
add the fake data.

Finally, in order to implement the decoy vulnerabilities, we detect
any modification on the deceptive elements and then apply regular
expressions to determine whether the modification belongs to a
known attack pattern. For this purpose we reuse the type of attacks
defined in the Glastopf Web Honyepot [24]. For our experiments,
we support two of the most popular types of attacks, which are
local file inclusion and SQL injection. If the request matches one
of the regular expressions associated to those attacks, our system
forges and returns a realistic error message to deceive the attackers
and make them believe that the system is indeed vulnerable.

CleaningDeceptive ElementsOur framework keeps and updates
a record of the injected deceptive elements and their locations. For
each incoming HTTP request whose URL is known to contain de-
ceptive elements, our system cleans these elements before handling
the request to the target web application. In this way, our frame-
work does not interfere with the target application, and the latter
only receives original requests where all signs of deception have
been removed.

Reporting and RedirectionWhen the proxy identifies that a user
has interacted with one of the deceptive elements, our framework
logs the incoming request including the source IP address, the
deceptive element, and any user-supplied data that may contain
attack information. The framework can also be configured to to
redirect incoming requests whose URLmatches a regular expression
to another application by modifying the back-end server of the
reverse proxy. This functionality, for example, allows defenders
to redirect attackers from the target application to a similar but
protected version of it so as to contain them and better observe
their behaviors.

3.3 Deployment Strategy
The proper placement and integration of various deceptive ele-
ments into a target web application is still an open research ques-
tion. For our purpose, we manually identified the position in which
each technique was deployed by following the OWASP testing
guide [25], which presents the best practices for web penetration
testing. OWASP testing methodology is based on a black-box ap-
proach where testers have little information about the target ap-
plication. In this situation, the testers play exactly the role of an
external attacker. Moreover, this guide provides concrete examples
of the techniques to use to discover vulnerabilities, which makes it
a good starting point to select the placement of deceptive elements
right where testers/attackers would most likely look for existing
vulnerabilities.

As a result, we combined existing deception techniques with the
methodology proposed by OWASP testing guide to devise decep-
tion at enticing locations under the perspective of an attacker. For
example, at the information gathering stage, we place honey trap
resources in robot.txt files, as the OWASP testing guide suggests
to review them for information leakage. We then designed specific
honey accounts disguised as a configuration file of the web appli-
cation, which relates to the second step of the configuration and
deployment management testing. Regarding the identity, authen-
tication and session management testing, we deploy at both the
login page and password reset page multiple deception techniques
such as honey accounts only visible in source HTML code, hidden
honey form fields and additional session-related cookies. Lastly, we
placed additional HTTP GET and POST parameters both in the web
pages and in the client JavaScript code that are subject to the input
validation testing. The name of such parameters were carefully
selected according to the content of the web application. On top
of these parameters, we further deployed the two classes of fake
vulnerabilities discussed above.

4 EXPERIMENT DESIGN
In this section, we present two experiments designed respectively
to measure the number of generated false alarms due to the deploy-
ment of deception techniques in a production environment, and
evaluate their ability to detect realistic web attacks.

This is a challenging task, as deception should be evaluated
against human attackers that manually try to exploit an unknown
application. In fact, automated scripts that target known vulnera-
bilities would not trigger any detection element, as they are pro-
grammed to generate exactly the request required to exploit the
target, without visiting or interacting with anything else. For this
reason, honeypots are not suitable to perform this test, and collect-
ing data about hundreds of real attackers is a gigantic effort. We
solved this problem by splitting the experiment in two parts. First,
we deployed our solution on a real application, and monitored its
users to detect any possible false alarm raised by our deception
proxy. However, since this deployment cannot provide the data
required to test the detection rate, we also performed a second
experiment, this time deploying similar deceptive techniques in an
application designed for a penetration testing experiment.

4.1 Use of Deception in a Real Content
Management System

In the first experiment, we implemented deception inside a Con-
tent Management System (CMS) that is publicly accessible on the
Internet. The testing of known deception techniques in such a pro-
duction environment allows us to monitor real user interactions
with the system, and to evaluate the false positives rate caused by
these techniques.

4.1.1 CMS Application. The web application is based on Open
Atrium 1, which is an extensible collaboration framework. It pro-
vides out-of-the-box functionalities such as dashboard, document
sharing, forum, agenda, and user access control. The software was
customized to allow research project members to access andmanage

1https://www.drupal.org/project/openatrium

https://www.drupal.org/project/openatrium

(a) Public space (b) Private space

Figure 2: CMS application tree structure

publicly accessible project websites. These websites allow access to
users (not members of the project), who are granted access only to
the public content of each website. Collaborators of each project
may also access to a private space that requires authentication by
the service. Figures 2a and 2b illustrate respectively the structure
of the public and private spaces. The public space consists of public
documents, a search page, and a login page. Once authenticated, a
user may view and edit private pages. The administrator can further
add/remove users and manage user access.

4.1.2 Deception Placement. This experiment aims at evaluat-
ing the false positive rate of deception techniques in presence of
legitimate users. While the two CMSes are different in structure
and scope, we placed the deception elements to resemble as close
as possible the deployment adopted in the CTF exercise. Table 1
and 2 present respectively the deception techniques that have been
introduced in the public and in the private space.

4.2 Use of Deception in a Capture-The-Flag
Competition

In the second experiment, we integrate deception techniques in
a Capture The Flag (CTF) exercise, in which participants are pre-
sented with a specific environment where vulnerabilities are pur-
posely planted. By successfully exploiting a vulnerability, the partic-
ipant finds a flag which allows him to score points. The participant
with the highest final score wins the exercise.

While CTF participants are not necessarily a perfect model of
real attackers on the Internet, the red team exercise is designed
to mimic what users would do to discover vulnerabilities in an
unknown piece of software. Moreover, using a CTF competition to
evaluate the accuracy of deception techniques at detecting attackers
has the advantage of providing access to hundreds of “attackers”,
something that would be very difficult by simply collecting data
using a real application.

Table 1: Deception in public CMS space

URL path Deception technique Quantity FV Protected
/robots.txt Honey trap resource 3 ✓
/search/* Honey POST parameter 1 ✓

/usr/login
Additional cookie 1 ✓
Honey GET parameter 1 ✓
Honey account 1

/usr/password Hidden input field 1 ✓

Table 2: Deception in private CMS space

URL path Deception technique Quantity FV Protected
/node/add/* Honey GET parameter 1 ✓
/node/0/* Honey trap resource 1 ✓
/node/*/edit Honey GET parameter 1 ✓
/user/*/edit Honey GET parameter 1 ✓
/user/*/view Honey GET parameter 1 ✓
*FV: fake vulnerability enabled
*Protected: fake protected area requiring authentication

Figure 3: CTF Application Workflow

4.2.1 CTF Environment. The CTF exercise we used for our test
was organized by Orange Labs and aimed at simulating a situation
where participants audit the security of an e-commerce application
in a black-box approach. The e-commerce application has been
purposely developed for the experiment, following the workflow
illustrated in Figure 3. Each visitor is first presented with a user
agreement page that already presents the first challenge. This page
contains an obfuscated JavaScript code that requires the user to read
at least for one hour the user terms and conditions. By successfully
hijacking the client side check, the user may visualize the list of
products supplied by the platform, and the user comments on each
product. Furthermore, users can create an account and use it to log
in and checkout their orders, and finally perform online payment.
In addition, there is also a form that allows authenticated users to
post public messages.

Many classic vulnerabilities such as cross site scripting, local file
inclusion, SQL inject, and remote code execution have been planted
at different locations including the user profile, product comment
page, order page and in particular the online payment page. In total,
15 flags have been inserted inside the CTF application.

4.2.2 Deception Placement. Our main goal is to evaluate the
ability of deception techniques to detect web attacks in their early
stage. Following the placement strategy described in Section 3, we
manually inserted a number of deception tokens, as summarized
in Table 3. Note that when the deception elements are properly

Table 3: Deception in CTF exercise

Page Deception technique Quantity FV Protected
User agreement Honey POST parameter 1 ✓

Additional cookie 1 ✓
Shop login Honey POST parameter 1 ✓

Honey account 1
Forum login Honey account 1
Account API Honey GET parameter 1 ✓
Product comment Honey POST parameter 1 ✓
/robots.txt Honey trap resource 3 ✓
/web.config Honey trap resource 1 ✓
/web.config Honey account 1
*FV: fake vulnerability enabled
*Protected: fake protected area requiring authentication

designed, they cannot be identified by an attacker without first
interacting with them.

We started by modifying robots.txt and web.config (a classic
configuration file for Windows web server) to insert four honey
trap resources and one honey account. We then added an additional
HTTP POST parameter and a fake cookie in the user agreement
page to see how deception affects the advancement of participants.
We also added fake HTTP GET and POST parameters and honey
accounts in most of the login-related pages and APIs. Lastly, we
placed another fake HTTP POST parameter in the product comment
page. Note that we did not place any deception on pages such as
orders and payment where many real vulnerabilities (i.e. flags) have
been planted. The main reason is that we focus our experiments on
evaluating the ability of deception elements to detect attackers in
the very early stages of their interaction with the target application.
The second reason is that we were asked by the organizers to
minimize the interference between deception techniques and real
CTF vulnerabilities, so that we may not discourage the participants.

5 RESULTS
In this section we present and discuss the results that we obtained
during our two experiments.

5.1 CMS Experiment
The experiment on the real CMS application has been performed
during a period of seven months, from December 2016 to June
2017. Over this period, the application has been used to host 13
active projects, each of which had its own dedicated sub-domain
name. In total, we observed 258 users that have successfully au-
thenticated and interacted with the application. All users are the
internal employee of the company where the experiment has been
performed.

Public Space – Four alerts have been triggered from the honey trap
resources placed inside the robots.txt file. The four subsequent
connections were originating from the same remote IP address.
According to the web server access logs, this IP address was actually
performing a scan attempt to test the system and to check for known
vulnerabilities. We also found similar abuse reports for the same IP

address in the AbuseIPDB 2 service, which confirms that our system
has indeed detected a malicious IP address.

Private Space – Over the total period of our experiments, no alerts
have been triggered by the deception elements that were placed
inside the private space. Therefore, and based on our experimental
setup, deception techniques that have been deployed inside the
CMS application have generated zero false positives. This seems
to confirm that, since these deception techniques are implemented
at the protocol or source HTML code level, they remain mostly
invisible to normal (i.e. benign) users.

5.2 CTF Experiment
The CTF competition has been conducted in a local network for
a period of 8 hours in September 2016. In total, the event counted
150 participants (each clearly identifiable by a different IP address),
which included a mix of information security students and security
professionals.

Overall, only 25 (16.7%) of them successfully discovered at least
one flag, while 84 (56%) have triggered at least one of the 12 decep-
tion traps – e.g., by trying to tamper with a fake cookie or form
parameter, by trying to use a honey credential to log in, or by vis-
iting some of the honey URLs. These results seem to suggest that
the deceptive elements were easier to trigger than the real vulnera-
bilities, which is exactly what a good deployment strategy should
achieve. Interestingly, 64% of the participants that discovered a real
vulnerability also triggered a deception trap, showing that while an
attacker who spends enough time and resources trying to discover
a real bug is also likely to raise an alert due to his interaction with
the deceptive elements, this is not always the case.

5.2.1 Manual vs Automated Actions. A first interesting question
we want to understand is whether our traps were triggered by
manual interactions or by automated tools and scanners. To answer
this question we inspected the user agent strings in the access
log of the web server. In the context of a CTF exercise, we believe
the user agent is a reliable source of information since there is no
incentive for the participants to hide their actions or disguise their
activities.

We found that five participants triggered the four honey trap
resources (placed in the robots.txt and /web.config files) us-
ing popular scanner tools (Nikto and DirBuster). For the remain-
ing honey traps, the trigger connection originated from popular
browsers. We thus consider that those participants have discovered
manually the traps. Interestingly, we also found evidence of users
who run the sqlmap tool to try to exploit the fake SQL injection
vulnerability, and others used the hydra tool to brute force the
HTTP authentication of a fake URL. This supports the hypothesis
that these two new form of deception we introduced in our frame-
work are successful in slowing down attackers by tricking them
into focusing their effort on fake parts of the application.

5.2.2 Impacts of Deception Placement. In order to measure the
impacts of deception placed at different locations, we evaluate the
number of participants that triggered each trap. Furthermore, we
analyze the average number of manual attempts that have been

2https://www.abuseipdb.com/

https://www.abuseipdb.com/

Table 4: Number of distinct IP addresses detected

Page Traps Detected Participants Average N. of Attempts
Configuration files 5 14 8
User agreement 2 56 28
Account API 1 22 6
Product comment 1 16 446
Shop login 2 22 11
Forum login 1 7 2
*Configuration files: /robots.txt and /web.config

performed on top of the deception element, which reflects the extent
to which the participants are enticed by the given deception.

As illustrated in Table 4, for each location, we present the number
of traps implemented, the number of distinct IP addresses detected
and the average number of manual attempts that modified the traps
on that location. The user agreement page is the most effective
location to detect the participants using deception. This page is
actually situated just after the starting point of the application
workflow, which seems to suggest that deception placed at the first
pages of the workflow is quite effective to detect attackers since
among the 84 detected IP addresses, 56 of them have been detected
at the user agreement page.

On the other hand, deception at product comment page has
received the largest average number of manual attempts per de-
ception element, which indicates that this location is particularly
interesting for participants. One possible explanation is that the
product comment page accepts user-provided comments, so the par-
ticipants spent more time playing with its parameters looking for a
possible injection vulnerability. This kind of insight is quite useful
and should be integrated while devising and deploying deceptions
for a web application.

5.2.3 Effectiveness. In order to shed some light on whether de-
ception techniques are effective in detecting attackers, we analyze
the potential relationship between the triggered honey traps and
the flags that were found by each participant. For each participant
who found at least one flag, we collected the time at which each
flag was discovered and each trap (if any) was triggered. Figure 4
presents the cumulative rate of honey traps triggered and flags
found by the 25 participants. The horizontal axis describes the time
during which the CTF has been played. The vertical axis presents
the cumulative rate. The red and blue curves illustrate respectively
the cumulative rates of the triggered honey traps and the discovered
flags.

Almost 35% of honey traps have been triggered even before any
flag could be found. This seems to indicate that honey traps may
be used as an early warning system to detect attackers before they
may identify true vulnerabilities and weaknesses in the target ap-
plication. Further investigation shows that 16 of the 25 participants
who have discovered at least one flag have triggered at least one
honey trap. Moreover, 14 out of 16 have triggered a trap *before*
finding a flag.

By the time 80% of the discovered traps had been triggered, only
30% of flags had been found. This seems to indicate that the more
the attacker advances in his attack plan (by getting deeper in his
attack path and finding new flags), the more he will get exposed and
tricked by additional traps (80% of traps activated at this stage). We

09:00
10:00

11:00
12:00

13:00
14:00

Time

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
R

at
e

Flag

Trap

Figure 4: Cumulative distribution of detection and flag

can deduce from those figures that the expected efficiency rapidly
increases when the attacker advances further in his attack scenario,
which may enhance the detection rates. This means that to be more
effective, honey traps need to be composed and intertwined within
the workflow of an application, and not only as a single layer or on
the front page.

6 DISCUSSION
In this paper, we presented the design and implementation of a de-
ception framework for web applications. We used our framework to
conduct two experiments to evaluate respectively the effectiveness
of deception techniques to detect web attacks and the false positive
rate of the same techniques when deployed in a production envi-
ronment. Even though the two experiments have been conducted
in different conditions, we have implemented and deployed similar
deception techniques in both of them.

Our test on a real application raised no false alarms over a period
of seven months. This seems to confirm one of the main advantage
of deception-based defenses: the ability to provide detection with
zero false alarms.

The detection accuracy was obtained through a red teaming
exercise, which we consider the most appropriate method available
to perform such measurement in a controlled environment. While
the results depend largely on the profile of the participants, our
tests included a considerable number (150) of users with different
skills and knowledge in web security. Nonetheless, a drawback of
using a CTF scenario instead of observing real attackers is that CTF
participants are more aggressive and have no incentives in being
stealthy and in reducing their footprint on the target system. A
real attacker may be more cautious, thus resulting in a different
(probably lower) rate of deception elements triggered and vulnera-
bility discovered. Hence, the results of this second experiment are
positive but still far from perfect – with 36% of the attackers that
were successfully able to find and exploit a vulnerability without
interacting with any deceptive elements. We believe that this can
be a consequence of the placement strategy we adopted, and maybe
a more aggressive deployment would provide a higher detection
rate. However, too many deceptive elements can tip of the attackers

about the presence of this type of defense, therefore actually reduc-
ing the overall efficiency of the technique. More tests are required
to better understand this phenomenon and the intricacies of an
“optimal” solution to deploy deception on a web application.

7 RELATEDWORK
The literature is brimming with approaches to protect web ap-
plications [21] against attacks. Nevertheless, current web attacks
detection techniques fail to reliably and proactively detect attacks
in their early stage. Due to these limitations, complementary solu-
tions such as deception techniques have been recently investigated
by the research community [1, 4]. In this paper, we focus mainly
on those solutions that adopt a deception-based web application
protection scheme. We further group existing approaches into two
categories, one used to enhance attack detection and the other used
for the purpose of attack mitigation.

7.1 Attack Detection
Brewer et al. [8] proposed a web application that integrates decoy
links. These links are invisible to normal users, but are expected to
be triggered by crawlers and web bots that connect to the applica-
tion. Similarly, Gavrilis et al. [13] presented a deceptive method that
detects denial of service attacks on web services by using fake links
hidden in the web page. In the same way, McRae and Vaughn [22]
submitted honey accounts which contained decoy URL to phishing
sites to track phishers while they viewed the honey accounts.

Another approach to deceive web-based attacks consists of us-
ing fake information disguised as web server configuration errors.
Only malicious users are expected to manipulate or exploit these
errors, which expose them to detection by the system. In this scope,
Virvilis et al. [36] introduced honey configuration files, such as
robots.txt, including fake entries, hidden links, and HTML com-
ments that indicate honey accounts, in order to detect potential
attackers. Other studies proposed decoy forms [18] and honey URL
parameters [28] that display fake configuration errors in an effort
to mislead attackers and protect the target system.

In [2], Almeshekah proposed centralized deceptive server which
enables the implementation of deception to protect target web
servers. In each web server, the proposed system hooks incoming
requests and further sends their metadata toward the centralized
server where a decision is taken on whether the system should re-
spondwith deception. The author further analyzed the performance
overhead introduced by the system.

7.2 Attack Mitigation
Julian [17] proposed to alter the response time of aweb-based search
engine by injecting random delays in reply to malicious requests
in order to confuse an attacker. Anagnostakis et al. [3] introduced
“shadow honeypots” that extend traditional honeypotswith anomaly-
based buffer overflow detection to protect web application. The
shadow honeypot is a copy of the target application, with common
context and application state. It is used to analyze anomalous traffic
and to enhance the accuracy of anomaly detection.

Finally, Araujo et al. [5] presented a technique to transform
traditional patches into “honey-patches”, designed to remove the
vulnerability while at the same deceives the attackers into believing

that the attacks have succeeded. On the detection of an attack
targeting the known vulnerability of the web server, the system
forwards the attacker to an unpatched but isolated instance of the
same web server.

The work in this paper differs from previous work in that we fo-
cus on attack detection instead of attack mitigation. Unfortunately,
most of the previous work in deception-based attack detection
did not provide experiments and evaluations of the proposed tech-
niques. Therefore, in this paper we present two experiments we
conducted to evaluate the effectiveness and the false positive rate
of deception-based web application protection.

8 CONCLUSION
In this paper, we present the design and implementation of two
experiments we performed to evaluate the use of deception-based
techniques to detect web attacks in their early stage. The first ex-
periment measured the number of false alarms under a production
environment. During a period of seven months, zero false alarms
were raised during the interaction of 258 authenticated users. We
also conducted a red teaming experiment with 150 participants.
Our experiment setup was able to detect 64% of participants that
successfully exploited at least one vulnerability. Our test shows
interesting results which support the idea of deception as a low-
FP detection approach, but also shows a false negative rate that
is still quite high for a standalone solution. We hope to see more
experiments in this area, in order to confirm the use of deception
techniques for attack detection and better identify its limitations.

REFERENCES
[1] M. Almeshekah and E. Spafford. The case of using negative (deceiving) infor-

mation in data protection. In International Conference on Cyber Warfare and
Security, 2014.

[2] M. H. Almeshekah. Using deception to enhance security: A Taxonomy, Model, and
Novel Uses. PhD thesis, 2015.

[3] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. P. Markatos, and
A. D. Keromytis. Detecting targeted attacks using shadow honeypots. In Usenix
Security, 2005.

[4] C. Anton. “Deception as Detection" or Give Deception a Chance?, 2016.
[5] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser. From patches to

honey-patches: Lightweight attacker misdirection, deception, and disinformation.
In ACM SIGSAC conference on Computer and Communications Security (CCS),
2014.

[6] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai, L. Rokach, and Y. Elovici. Hon-
eyGen: An automated honeytokens generator. In IEEE International Conference
on Intelligence and Security Informatics(ISI), 2011.

[7] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo. Baiting inside
attackers using decoy documents. International Conference on Security and
Privacy in Communication Systems, 2009.

[8] D. Brewer, K. Li, L. Ramaswamy, and C. Pu. A link obfuscation service to detect
webbots. International Conference on Services Computing (SCC), 2010.

[9] A. Čenys, D. Rainys, L. Radvilavičius, and N. Goranin. Implementation of Hon-
eytoken Module In DBMS Oracle 9ir2 Enterprise Edition for Internal Malicious
Activity Detection. In IEEE Computer Society’s TC on Security and Privacy, 2005.

[10] F. Cohen. A note on the role of deception in information protection. Computers
& Security, 1998.

[11] M. Crouse, B. Prosser, and E. W. Fulp. Probabilistic performance analysis of
moving target and deception reconnaissance defenses. InWorkshop on Moving
Target Defense. ACM, 2015.

[12] Ecommerce Foundation. Global b2c e-commerce report 2016. https:
//www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/
Global_B2C_Ecommerce_Report_2016.pdf, 2016.

[13] D. Gavrilis, I. Chatzis, and E. Dermatas. Flash crowd detection using decoy
hyperlinks. International Conference on Networking, Sensing and Control (ICNSC),
2007.

[14] H. C. Goh. Intrusion deception in defense of computer systems. Technical report,
2007.

https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf
https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf
https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf

[15] Internet Live Stats. Total number of websites.
http://www.internetlivestats.com/total-number-of-websites/, 2017.

[16] A. Juels and R. L. Rivest. Honeywords: Making password-cracking detectable.
In ACM SIGSAC conference on Computer & communications security, 2013.

[17] D. P. Julian. Delaying Type Response for Use By Software Decoys. PhD thesis, 2002.
[18] C. Katsinis, B. Kumar, S. Technology, and R. Systems. A Framework for Intrusion

Deception on Web Servers. In International Conference on Internet Computing,
ICOMP’13, 2013.

[19] G. H. Kim and E. H. Spafford. The design and implementation of tripwire: A file
system integrity checker. In ACM Conference on Computer and Communications
Security. ACM, 1994.

[20] S. Lance. The Value of Honeypots, Part One: Definitions and Values of Honeypots,
2001.

[21] X. Li and Y. Xue. A survey on server-side approaches to securingweb applications.
ACM Comput. Surv., 2014.

[22] C. M. McRae and R. B. Vaughn. Phighting the phisher: Using Web bugs and
honeytokens to investigate the source of phishing attacks. Proceedings of the
Annual Hawaii International Conference on System Sciences, 2007.

[23] B. Michael, M. Auguston, N. Rowe, and R. Riehle. Software Decoys: Intrusion De-
tection and Countermeasures. In Proceedings of the IEEEWorkshop on Information
Assurance, 2002.

[24] MushMush Foundation. Glastopf. https://github.com/mushorg/glastopf/blob/
master/glastopf/requests.xml, 2017.

[25] OWASP. Testing guide v4. https://www.owasp.org/images/1/19/OTGv4.pdf,
2014.

[26] OWASP. Appsensor project guide. https://www.owasp.org/index.php/File:
Owasp-appsensor-guide-v2.pdf, 2015.

[27] A. Paes de Barros. RES: Protocol Anomaly Detection IDS - Honeypots, 2003.
[28] A. R. Petrunić. Honeytokens as active defense. International Convention on Infor-

mation and Communication Technology, Electronics and Microelectronics(MIPRO),
2015.

[29] N. Provos et al. A virtual honeypot framework. In USENIX Security Symposium,
2004.

[30] G. Reimer. Hoxy. http://greim.github.io/hoxy/, 2015.
[31] L. Spitzner. Honeytokens: The other honeypot, 2003.
[32] C. Stoll. The cuckoo’s egg: tracking a spy through the maze of computer espionage.

1989.
[33] Symantec. Internet security threat report.

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-
2016-en.pdf, 2016.

[34] UK Government Digital Service. How digital and technology transformation
saved Âč1.7bn last year. https://gds.blog.gov.uk/2015/10/23/how-digital-and-
technology-transformation-saved-1-7bn-last-year/, 2015.

[35] V. E. Urias,W.M. Stout, and C. Loverro. Computer network deception as amoving
target defense. In International Carnahan Conference on Security Technology
(ICCST). IEEE, 2015.

[36] N. Virvilis, B. Vanautgaerden, and O. S. Serrano. Changing the game: The art
of deceiving sophisticated attackers. International Conference on Cyber Conflict,
CYCON, 2014.

[37] J. Yuill, M. Zappe, D. Denning, and F. Feer. Honeyfiles: deceptive files for intrusion
detection. Proceedings from the Fifth Annual IEEE SMC Information Assurance
Workshop, 2004., 2004.

[38] J. J. Yuill. Defensive Computer-security Deception Operations: Processes, Principles
and Techniques. PhD thesis, 2006.

https://github.com/mushorg/glastopf/blob/master/glastopf/requests.xml
https://github.com/mushorg/glastopf/blob/master/glastopf/requests.xml
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.owasp.org/index.php/File:Owasp-appsensor-guide-v2.pdf
https://www.owasp.org/index.php/File:Owasp-appsensor-guide-v2.pdf
http://greim.github.io/hoxy/

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Deceptive Elements
	3.2 Deception Framework
	3.3 Deployment Strategy

	4 Experiment Design
	4.1 Use of Deception in a Real Content Management System
	4.2 Use of Deception in a Capture-The-Flag Competition

	5 Results
	5.1 CMS Experiment
	5.2 CTF Experiment

	6 Discussion
	7 Related Work
	7.1 Attack Detection
	7.2 Attack Mitigation

	8 Conclusion
	References

