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Abstract—In this paper, we investigate the downlink per-
formance of dense cellular networks with elevated base sta-
tions (BSs) using a channel model that incorporates line-
of-sight (LOS)/non-line-of-sight (NLOS) propagation into both
small-scale and large-scale fading. Modeling LOS fading with
Nakagami-m fading, we provide a unified framework based on
stochastic geometry that encompasses both closest and strongest
BS association. Our study is particularized to two distance-
dependent LOS/NLOS models of practical interest. Considering
the effect of LOS propagation alone, we derive closed-form ex-
pressions for the coverage probability with Nakagami-m fading,
showing that the performance for strongest BS association is the
same as in the case of Rayleigh fading, whereas for closest BS
association it monotonically increases with the shape parameter
m. Then, focusing on the effect of elevated BSs, we show that
network densification eventually leads to near-universal outage
even for moderately low BS densities: in particular, the maximum
area spectral efficiency is proportional to the inverse of the square
of the BS height.

Index Terms—Coverage probability, elevated base stations,
Nakagami-m fading, performance analysis, stochastic geometry,
ultra-dense networks, 5G.

I. INTRODUCTION

Ultra-dense networks (UDNs), i.e., dense and mas-
sive deployments of small-cell base stations (BSs) with
wired/wireless backhaul connectivity, are foreseen as a core
element to realize the vision of 5th generation (5G) wireless
systems. UDNs are expected to achieve higher data rates and
enhanced coverage by exploiting spatial reuse while retaining
seamless connectivity and low energy consumption [3], [4].
Recent studies using stochastic geometry models have shown
that the throughput can grow linearly with the BS density in
the absence of background noise and for closest BS association
[5], i.e., when each user equipment (UE) is associated with
the closest BS; similar results are reported in [6] for strongest
BS association, i.e., when each UE is associated with the BS
with the highest signal-to-interference-plus-noise ratio (SINR).
Nevertheless, most prior performance analyses assume simple
models—mostly for tractability reasons—in which i) BSs are
located according to a homogeneous Poisson point process
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(PPP) and are placed at the same height as the UEs, and ii)
the signal propagation is modeled using the standard single-
slope pathloss and the Rayleigh distribution for the small-scale
fading.

In parallel with UDNs coming to prominence, there has
been a growing interest in devising increasingly realistic
models for their system-level performance evaluation. In this
respect, [7] studies the impact of dual-slope pathloss on
the performance of downlink UDNs and shows that both
coverage and throughput strongly depend on the network
density. In [8], [9], stochastic geometry based frameworks
for millimeter wave and pathloss with line-of-sight (LOS)
and non-line-of-sight (NLOS) propagation are proposed. More
comprehensive models can be found in [10]–[13], where the
pathloss exponent changes with a probability that depends
on the distance between BSs and UEs. Under such models,
the throughput does not necessarily grow monotonically with
the BS density due to the different scaling of desired signal
and interference; this is further investigated in [14], where
the effect of shutting down idle BSs is taken into account.
Moreover, coverage and rate scaling laws in UDNs are derived
in [15] using regular variation theory and extreme value
theory. Lastly, [16] introduces an approximation that allows to
obtain simpler expressions with the above mentioned models
while incorporating blockage effects and non-isotropic antenna
patterns.

Several previous works effectively capture the effect of
LOS propagation on the large-scale fading (i.e., the pathloss),
although they do so by modeling the small-scale fading using
the Rayleigh distribution. This assumption is justified for
NLOS propagation and is widely adopted mainly due to
tractability. However, when the BS density increases, assuming
NLOS for the received signal may not be realistic, significantly
altering the coverage and throughput performance; in fact,
it is commonly accepted that LOS propagation is subject to
Rician fading. In addition to modifying the pathloss exponent
according to a distance-dependent probability function, [1],
[17], [18] consider varying the small-scale fading distribution
as well and use Nakagami-m fading to model LOS propaga-
tion conditions. Likewise, previous studies often neglect the
possible difference in height between BSs and UEs, which
implicitly sets a limit on how close UEs can be to their
serving BSs regardless of the BS density. The practically
relevant case of elevated BSs has been recently incorporated
into the discussion on network densification in [19], where the
detrimental effect of the elevation difference between BSs and
UEs was shown, together with the existence of an optimal BS
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density. Furthermore, [20] proposes a stretched exponential
pathloss model suitable for short-range communication and
considers a minimum link distance of 5 m due to the difference
in elevation between BSs and UEs.

A. Contributions

The overall contribution of this paper broadens prior stud-
ies on network densification by investigating the downlink
performance of UDNs under a system model that combines
elevated BSs and dual-slope LOS/NLOS propagation affecting
both small-scale and large-scale fading. More specifically, the
main contributions are as follows:
• Modeling Rician fading by means of Nakagami-m fading,

we propose a general framework based on stochastic
geometry that accommodates both closest and strongest
BS association; as performance metrics, we consider
the coverage probability and the potential throughput.
In addition, we particularize our study to two practical
distance-dependent LOS/NLOS models, i.e., the widely
used 3GPP model and a newly proposed model with
randomly placed buildings.

• Considering the effect of LOS propagation alone, we
derive closed-form expressions of the coverage probabil-
ity with Nakagami-m fading and provide useful asymp-
totic trends. Interestingly, the coverage probability for
strongest BS association is the same as in the case
of Rayleigh fading, whereas for closest BS association
it monotonically increases with the shape parameter m
until it converges to the value obtained for strongest BS
association. In general, the performance turns out to be
dominated by the pathloss and is marginally affected by
the small-scale fading.

• Considering the effect of elevated BSs alone, we charac-
terize the interference power and derive both closed-form
(for closest BS association) and integral (for strongest
BS association) expressions of the coverage probability
and the optimal BS density. In particular, we show that
the maximum area spectral efficiency is proportional to
the inverse of the square of the BS height. Indeed, the
BS height proves to be the most prominent factor in
degrading the system performance, since it leads to near-
universal outage regardless of the other parameters and
even at moderately low BS densities.

We note that the proposed general framework allows to per-
form a more fine-grained analysis with respect to our previous
works [1], [2] and to provide new results on the impact of the
different aspects affecting network densification.

The remainder of the paper is structured as follows. Sec-
tion II introduces the system model. Section III provides ex-
pressions for the coverage probability using general distance-
dependent LOS/NLOS models. Section IV analyzes the effect
of Nakagami-m fading, whereas Section V focuses on the
impact of BS height. In Section VI, numerical results are
reported to corroborate our theoretical findings and to quantify
the individual and combined effect of each of the above
factors. Finally, Section VII summarizes our contributions and
draws some concluding remarks.

II. SYSTEM MODEL

A. Network Model

We consider a dense downlink cellular network, in which
the location distribution of the single-antenna BSs1 is modeled
according to a marked PPP Φ̂ , {(xi, gxi)} ⊂ R2 ×R+. The
underlying point process Φ , {xi} ⊂ R2 is a homogeneous
PPP with density λ, measured in [BSs/m2], and the mark
gxi ∈ R+ represents the channel power fading gain from
the BS located at xi to a randomly chosen downlink UE
referred to as typical UE, which is located at the origin of
the Euclidean plane. In this setting, the employment of PPPs
allows to capture the spatial randomness of real-world UDN
deployments (often not fully coordinated) and, at the same
time, obtain precise and tractable expressions for system-
level performance metrics [5], [21]; considering more involved
random spatial models goes beyond the scope of this paper.
The UEs, also equipped with a single antenna, are distributed
according to some independent and homogeneous point pro-
cess Φu (e.g., PPP) whose intensity λu is sufficiently larger
than λ in order to ensure that each BS is active, i.e., it has
at least one UE associated within its coverage. The typical
UE is associated with a serving BS following one of the BS
association policies described in Section II-C; the remaining
BSs are thus interfering BSs. Lastly, we assume that all BSs are
elevated at the same height h ≥ 0, measured in [m], whereas
the typical UE is at the ground level; alternatively, h can be
interpreted as the elevation difference between BSs and UEs
if the latter are all placed at the same height.

B. Channel Model

Let rx , ‖x‖ denote the horizontal distance between
x and the typical UE, measured in [m]. We consider a
distance-dependent LOS probability function pLOS(rx), i.e., the
probability that a BS located at x experiences LOS propagation
depends on the distance rx. Therefore, we use ΦLOS , {x ∈ Φ :
x in LOS} and ΦNLOS , Φ \ΦLOS to denote the subsets of BSs
in LOS and in NLOS propagation conditions, respectively. We
remark that each BS is characterized by either LOS or NLOS
propagation independently from the others and regardless of
its operating mode as serving or interfering BS.

The propagation through the wireless channel is character-
ized as the combination of pathloss attenuation and small-
scale fading.2 For the former, we adopt the standard power-law
pathloss model and define the pathloss functions `LOS(rx, h) ,
(r2
x+h2)−

αLOS
2 if x ∈ ΦLOS and `NLOS(rx, h) , (r2

x+h2)−
αNLOS

2

if x ∈ ΦNLOS, with αNLOS ≥ αLOS > 2. For the latter, we as-
sume that the channel amplitudes are Nakagami-m distributed
for LOS propagation conditions and Rayleigh distributed for
NLOS propagation conditions. Observe that the commonly
used Rician distribution is well approximated by the more
tractable Nakagami-m distribution with the shape parameter m
computed as m , (K+ 1)2/(2K+ 1), where K is the Rician
K-factor representing the ratio between the powers of the

1The case of multi-antenna BSs is considered in Appendix I-B.
2Here, we do not consider correlated shadowing between links; nonetheless,

this simplification causes minor loss in accuracy, especially when the size of
blockages is small compared with the lengths of links [22].



3

Pcov(θ) =

∫ ∞

0

(
pLOS(r)

m−1∑

k=0

[
(−s)k

k!

dk

dsk
LI(s)

]

s=mθ/`LOS(r,h)

+
(
1− pLOS(r)

)
LI
(

θ

`NLOS(r, h)

))
frx(r)dr, (8)

LI(s) , LNLOS
I (s) exp

(
− 2πλ

∫ ∞

ν(r)

pLOS(t)

(
1

1 + s`NLOS(t, h)
− 1

(1 + s
m`LOS(t, h))m

)
tdt

)
(9)

direct and scattered paths.3 Hence, the channel power fading
gain gx follows the Gamma distribution Γ

(
m, 1

m

)
if x ∈ ΦLOS,

with complementary cumulative distribution function (CCDF)
given by

F̄LOS(z) , 1− γ(m,mz)

Γ(m)
= e−mz

m−1∑

k=0

(mz)k

k!
(1)

where the last equality holds when the shape parameter m
is an integer; on the other hand, gx follows the exponential
distribution exp(1) if x ∈ ΦNLOS and its CCDF F̄NLOS(z) can
be obtained from F̄LOS(z) in (1) by simply setting m = 1.
Although the shape parameter m should intuitively depend on
the link distance, a fixed value of m is considered here for
analytical tractability; in Section VI-C, it is shown that the
performance obtained with a distance-dependent m is very
well captured by a fixed m in our UDN scenario.

C. SINR and BS Association

The SINR when the typical UE is associated to the BS
located at x is given by

SINRx ,
gx`Q(rx, h)

I + σ2
(2)

where the sub-index Q takes the form Q = LOS if x ∈ ΦLOS

and Q = NLOS if x ∈ ΦNLOS, I is the aggregate interference
power defined as

I ,
∑

y∈ΦLOS\{x}

gy`LOS(ry, h) +
∑

y∈ΦNLOS\{x}

gy`NLOS(ry, h) (3)

and σ2 is the additive noise power.4 For the sake of simplicity,
we consider the interference-limited case, i.e., I � σ2, and
we thus focus on the signal-to-interference ratio (SIR). Our
analysis can be extended with more involved calculations to
the general case.

In this paper, we consider a unified framework that encom-
passes both closest [5] and strongest (i.e., highest SINR) [6]
BS association. For this purpose, we introduce the following
preliminary definitions [1]:

frx(r) ,

{
2πλe−πλr

2

r, closest BS
2πλr, strongest BS,

(4)

ν(r) ,

{
r, closest BS
0, strongest BS. (5)

3Note that, in order to use such formulation, the value of m is rounded to
the closest integer.

4Observe that downtilted antennas can be incorporated into our frame-
work by multiplying each signal coming from BS y ∈ Φ by the term∣∣ cosβ

(
arctan

(
h
ry

)
−ϑ
)∣∣, where β depends on the vertical antenna pattern

and ϑ is the downtilt angle [23].

Note that frx(r) in (4) represents the probability density
function (PDF) of the distance rx between the serving BS
and the typical UE for closest BS association.

III. COVERAGE PROBABILITY

In this section, we provide the general expression of the
coverage probability when both serving and interfering BSs in-
dependently experience LOS or NLOS propagation conditions
with respect to the typical UE depending on their distance
from the latter. The coverage probability is defined as the
probability that the received SIR is larger than a target SIR
threshold θ, i.e., Pcov(θ) , P[SIRx > θ]. This metric allows
to compute the potential throughput (as in [7], [16]), defined
as PT(θ) , λPcov(θ) log2(1 + θ), measured in [bps/Hz/m2].

Let us use LLOS
I (s) and LNLOS

I (s) to denote the Laplace trans-
forms of the interference when pLOS(r) = 1 and pLOS(r) = 0,
∀r ∈ [0,∞), respectively, which correspond to the cases of
LOS or NLOS interference:

LLOS
I (s) , exp

(
− 2πλ

∫ ∞

ν(r)

(
1− 1

(1 + s
m`LOS(t, h))m

)
tdt

)
,

(6)

LNLOS
I (s) , exp

(
− 2πλ

∫ ∞

ν(r)

(
1− 1

1 + s`NLOS(t, h)

)
tdt

)
.

(7)

A. General LOS/NLOS Model

We begin by considering a general expression of pLOS(r).
In this setting, the coverage probability is formalized in the
following theorem.

Theorem 1. The coverage probability is given in (8) at the top
of the page, where LI(s) is defined in (9) and represents the
Laplace transform of the interference I in (3), with LNLOS

I (s)
defined in (7).

Proof: See Appendix I-A.
The result of Theorem 1 is extended to the case of multi-
antenna BSs in Appendix I-B for closest BS association.

Remark 1. Due to the contribution from the interfering BSs in
LOS propagation conditions, we have that LI(s) ≤ LNLOS

I (s),
with LNLOS

I (s) in (7). This can be equivalently seen from the
argument of the exponential function in (9), which is always
negative since αNLOS > αLOS and m ≥ 1. On the other hand,
the possibility of LOS desired signal enhances the coverage
probability in (8).

Remark 2. Observe that LI(s) in (9) reduces to LLOS
I (s) in (6)

if pLOS(r) = 1, ∀r ∈ [0,∞) (see Section IV) and to LNLOS
I (s)

in (7) if pLOS(r) = 0, ∀r ∈ [0,∞).
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P(C)
cov(θ) = 2πλ

(∫ D

0

m−1∑

k=0

[
(−s)k

k!

dk

dsk
L̃I(s)

]

s=mθ/`LOS(r,h)

e−πλr
2

rdr +

∫ ∞

D

LNLOS
I

(
θ

`NLOS(r, h)

)
e−πλr

2

rdr

)
, (13)

P(S)
cov(θ) = 2πλ

(∫ D

0

m−1∑

k=0

[
(−s)k

k!

dk

dsk
L̃I(s)

]

s=mθ/`LOS(r,h)

rdr +

∫ ∞

D

L̃I
(

θ

`NLOS(r, h)

)
rdr

)
, (14)

L̃I(s) , LNLOS
I (s) exp

(
− 2πλ

∫ ∞

ν(r)

(
1

1 + s`NLOS(t, h)
− 1

(1 + s
m`LOS(t, h))m

)
tdt

)
(15)

So far, it is not straightforward to get clear insights on how
fading, pathloss, and BS height individually affect the network
performance. Hence, in Sections IV and V, we separately
examine the effect of Nakagami-m fading and BS height,
respectively.

Let PNLOS
cov (θ) (resp. PLOS

cov(θ)) denote the coverage probability
in presence of NLOS (resp. LOS) propagation. The following
corollary provides the asymptotic trends of the coverage
probability in (8).

Corollary 1. Assume that the LOS probability function
pLOS(r) is monotonically decreasing with r. Then, the follow-
ing hold:
(a) lim

λ→0
Pcov(θ) = PNLOS

cov (θ);

(b) lim
λ→∞

Pcov(θ) = PLOS
cov(θ).

Proof: (a) Since the average distance between the typical
UE and the nth nearest BS is proportional to 1√

λ
[21, Ch. 2.9],

when λ → 0 we have ΦLOS = ∅ almost surely. (b) Likewise,
when λ → ∞, the serving BS is in LOS propagation condi-
tions almost surely, whereas the interference is also dominated
by BSs in LOS propagation conditions.

The derivatives of the Laplace transform of the interference
arise in presence of multiple signal components [24]: some
examples are when the received signal is subject to Nakagami-
m fading (as in (1) above and [18]) or when multiple antennas
are involved (as in Appendix I-B and [25], [26]). A useful
upper bound for this type of expression is provided in the
following proposition.5

Proposition 1. For any LX(z) , EX
[
e−zX

]
and N > 1, the

following inequality holds:
N−1∑

n=0

[
(−s)n

n!

dn

dsn
LX(s)

]

s=z

<

N∑

n=1

(−1)n−1

(
N

n

)
LX
(
n
(
Γ(N + 1)

)− 1
N z
)
. (10)

Proof: The upper bound is based on Alzer’s inequality;
we refer to [25] for details.

So far we have assumed no particular expression for pLOS(r).
In Sections III-B and III-C, we introduce practical distance-
dependent LOS/NLOS models that are special cases of the
general case characterized in Theorem 1 and that will be used

5A lower bound with a similar expression can be also obtained; however,
such bound is usually not sufficiently tight and it is thus not considered.

in Section VI when obtaining numerical results. Observe that
the LOS/NLOS model presented here can be extended to a
more general multi-slope model considering multiple values
of both the pathloss exponent and the shape parameter m, at
the cost of more involved and less insightful expressions.

B. 3GPP LOS/NLOS Model

A widely used distance-dependent LOS/NLOS model is the
ITU-R UMi model [27] (referred to as 3GPP LOS/NLOS
model in the following), which is characterized by the LOS
probability function

pLOS(r) = min
(

18
r , 1

)(
1− e−

r
36
)

+ e−
r
36 . (11)

Observe that, using (11), the propagation is always in LOS
conditions for r ≤ 18 m. In practice, this implies that for BS
densities above λ = 10−2 BSs/m2 and closest BS association,
the probability of LOS coverage is very close to one and, as a
consequence, some NLOS terms in (8)–(9) can be neglected.

Following this line of thought, a simplified LOS/NLOS
model that is suited for analytical calculations can be obtained
by means of the LOS probability function

pLOS(r) =

{
1, r ∈ [0, D)
0, r ∈ [D,∞)

(12)

with D being the critical distance below which all BSs are
in LOS propagation conditions.6 The system performance
resulting from (12) with D = 18 m in terms of coverage
probability very accurately approximates that obtained with
the original 3GPP LOS probability function (11), as shown
by the numerical results in Section VI. In this scenario, the
coverage probabilities for closest and strongest BS association,
given in the general form (8), simplify to (13) and (14),
respectively, at the top of the page, with LNLOS

I (s) defined
in (7) and L̃I(s) defined in (15). The coverage probabilities
(13)–(14) can now be evaluated via numerical integration
and differentiation, although the latter can be cumbersome
in practice, especially for large values of m. Thus, to make
numerical evaluation more efficient, one can use Proposition 1
to obtain tractable upper bounds with no derivatives.

C. LOS/NLOS Model with Randomly Placed Buildings

In this section we propose a practical model for pLOS(r) that
takes into account the combined influence of the link distance

6Note that such LOS/NLOS model is equivalent to the dual-slope pathloss
model proposed in [7]; similar models are also used in [9], [18].
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Figure 1. LOS/NLOS model with buildings randomly placed between the
BSs and the typical UE.

and the BS height through the probability of the link being
blocked by a building. Other options exist in the literature:
for instance, in [28], the BS height, the link distance, and the
pathloss exponent are related through the effect of the ground-
reflected ray.

Given a BS located at x, we assume that buildings with
fixed height h̃, measured in [m], are randomly placed between
x and the typical UE. If the straight line between the elevated
BS at x and the typical UE does not cross any buildings,
then the transmission occurs in LOS propagation conditions;
alternatively, if at least one building cuts this straight line,
then the transmission occurs in NLOS propagation conditions.
A simplified example is illustrated in Figure 1. Note that, in
this context, the probability of x being in LOS propagation
conditions depends not only on the distance rx, but also on
the parameter τ , min

(
h̃
h , 1
)
. More precisely, the LOS prob-

ability corresponds to the probability of having no buildings
in the segment of length τrx next to the typical UE.

If the location distribution of the buildings follows a one-
dimensional PPP with density λ̃, measured in [buildings/m],
the LOS probability function is given by pLOS(rx, τ) = e−λ̃τrx .
In this setting, pLOS(rx, τ) = 1 (all links are in LOS propaga-
tion conditions) when λ̃ = 0 or h̃ = 0, whereas pLOS(rx, τ) = 0
(all links are in NLOS propagation conditions) when λ̃→∞.
The advantage of this model is that it has only one tuning
parameter, i.e., the building density λ̃ in the line connecting
transmitter and receiver.7 In Section VI, we will numerically
illustrate the effect of different building densities and com-
ment on the interplay between LOS/NLOS desired signal and
interference.

IV. THE EFFECT OF LOS FADING

In this section, we consider the effect of LOS propagation
alone by extending the framework proposed in [5], [6] to the
case of Nakagami-m fading. In doing so, we fix pLOS(r) = 1,
∀r ∈ [0,∞) so that all signals from both serving and inter-
fering BSs are subject to Nakagami-m fading. Furthermore,
we consider a single pathloss exponent α and we neglect
the BS height by fixing h = 0: under this setting, we have
`LOS(r, h) = `NLOS(r, h) = r−α. Hence, the results derived

7Rectangular obstacles randomly distributed in a two-dimensional space
are considered in [22], whereas the cumulative effect of multiple obstacles is
studied in [29].

in this section implicitly assume non-elevated BSs; in turn,
we make the dependence on the shape parameter m explicit
in the resulting expressions of the Laplace transform of the
interference and coverage probability.

Let us introduce the following preliminary definitions:

η(s,m, r) , 2F1

(
m,− 2

α , 1−
2
α ,−

s
mrα

)
, (16)

ζ(m) , −
Γ
(
m+ 2

α

)
Γ
(
− 2

α

)

αΓ(m)
(17)

with 2F1(a, b, c, z) denoting the Gauss hypergeometric func-
tion. In addition, we introduce the notation (z)k , Γ(z+k)

Γ(z) =

z(z + 1) . . . (z + k − 1).

Proposition 2. For LOS propagation conditions, the Laplace
transforms of the interference for closest and strongest BS
association are given by

LLOS,(C)
I (s,m) , exp

(
− πλr2

(
η(s,m, r)− 1

))
, (18)

LLOS,(S)
I (s,m) , exp

(
− 2πλζ(m)

(
s
m

) 2
α
)

(19)

respectively, with η(s,m, r) and ζ(m) defined in (16)–(17).
For NLOS propagation conditions, the Laplace transforms of
the interference for closest and strongest BS association are
given by

LNLOS,(C)
I (s) , LLOS,(C)

I (s, 1), (20)

LNLOS,(S)
I (s) , LLOS,(S)

I (s, 1) (21)

respectively, and the corresponding coverage probabilities can
be written as

PNLOS,(C)
cov (θ) ,

1

η(θ, 1, 1)
, (22)

PNLOS,(S)
cov (θ) ,

1

2ζ(1)θ
2
α

(23)

respectively.

Proof: The Laplace transforms of the interference subject
to Nakagami-m fading are obtained by solving (7) for closest
and strongest BS association. Furthermore, the coverage prob-
abilities in presence of Rayleigh fading can be derived from
[5], [6], respectively.

Let Bk
(
z1, z2, . . . , zk

)
=
∑k
j=1Bk,j

(
z1, z2, . . . , zk−j+1

)

denote the kth complete Bell polynomial, where
Bk,j

(
z1, z2, . . . , zk−j+1

)
is the incomplete Bell polynomial.

The following theorem provides closed-form expressions of
the coverage probabilities in presence of LOS propagation,
i.e., with Nakagami-m fading.

Theorem 2. For LOS propagation conditions, the coverage
probability is given as follows.
(a) For closest BS association, we have P

LOS,(C)
cov (θ,m) in (24)

at the top of the next page, with η(s,m, r) defined in (16)
and ψk(θ,m) defined in (25).

(b) For strongest BS association, we have

PLOS,(S)
cov (θ,m) = PNLOS,(S)

cov (θ) (26)

with P
NLOS,(S)
cov (θ) defined in (23).

Proof: See Appendix. I-C.
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PLOS,(C)
cov (θ,m) ,

1

η(mθ,m, 1)

(
1 +

m−1∑

k=1

k∑

j=1

j!

k!
Bk,j

(
ψ1(θ,m)

η(mθ,m, 1)
,
ψ2(θ,m)

η(mθ,m, 1)
, . . . ,

ψk−j+1(θ,m)

η(mθ,m, 1)

))
, (24)

ψk(θ,m) , −
(
− 2

α

)
k

(
η(mθ,m, 1)−

k∑

j=1

(m)k−j(
1− 2

α

)
k−j

θk−j(1 + θ)−m−k+j

)
(25)

Remark 3. For strongest BS association, Theorem 2–(b)
states that Nakagami-m fading does not affect the coverage
probability with respect to Rayleigh fading: this stems from
the fact that, under LOS fading, the desired signal power grows
with the shape parameter m at the same rate as the interference
power.

The expression in Theorem 2–(a), although in closed form, is
quite involved: in this respect, Corollary 2 formally character-
izes the trend of the coverage probability for LOS propagation
conditions and closest BS association.

Corollary 2. For LOS propagation conditions and closest BS
association, recalling the definition of P

NLOS,(S)
cov (θ) in (23), the

following hold:
(a) P

LOS,(C)
cov (θ,m + 1) > P

LOS,(C)
cov (θ,m) > P

NLOS,(C)
cov (θ),

∀m ≥ 1;
(b) limm→∞ P

LOS,(C)
cov (θ,m) = P

NLOS,(S)
cov (θ).

Proof: See Appendix I-D.

Remark 4. For closest BS association, Corollary 2 highlights
the beneficial effect of Nakagami-m fading on the coverage
probability: this stems from the fact that, under LOS fading,
the desired signal power grows at a higher rate than the inter-
ference power. In addition, as the shape parameter m increases,
the performance with closest BS association converges that
with strongest BS association.

V. THE EFFECT OF BS HEIGHT

We now focus on the effect of BS height on the coverage
probability by extending the framework proposed in [5], [6]
to the case of elevated BSs. In doing so, we set the shape
parameter m = 1 and, as in Section IV, we consider a single
pathloss exponent α, which yields `LOS(r, h) = `NLOS(r, h) =
(r+h)−

α
2 . Hence, the results derived in this section implicitly

assume that all signals from both serving and interfering BSs
are subject to Rayleigh fading. While the coverage probability
for both closest and strongest BS association is independent
on the BS density λ when h = 0, as can be observed from
(22)–(23) (see also [5] and [6], respectively, for details), the
impact of BS height becomes visible as λ increases, as recently
revealed in [19]. Therefore, we make the dependence on λ
explicit in the resulting expressions of the coverage probability
and the potential throughput.

A. Impact on Interference

The interference with elevated BSs is characterized here. We
begin by observing that `(rx, h) yields a bounded pathloss
model for any BS height h > 0, since BS x cannot get

closer than h to the typical UE (this occurs when rx = 0).
The following lemma expresses the Laplace transforms of the
interference for a fixed BS height h.

Lemma 1. For elevated BSs, the Laplace transforms of the
interference for closest and strongest BS association can be
written as

L(C)
I (s) , LNLOS,(C)

I (s)

× exp

(
2πλ

∫ √r2+h2

r

(
1− 1

1 + st−α

)
tdt

)

(27)

= exp
(
− πλ(r2 + h2)

(
η
(
s, 1,

√
r2 + h2

)
− 1
))
,

(28)

L(S)
I (s) , LNLOS,(S)

I (s) exp

(
2πλ

∫ h

0

(
1− 1

1 + st−α

)
tdt

)

(29)

= exp
(
− πλh2

(
η(s, 1, h)− 1

))
(30)

respectively, where LNLOS,(C)
I (s) and LNLOS,(S)

I (s) are the
Laplace transforms of the interference with non-elevated BSs
defined in (20)–(21).

Proof: The Laplace transforms of the interference (27)
and (29) can be obtained from (7) first by substituting√
t2 + h2 → th and then by splitting the integration intervals

in two parts; see also Appendix II-B.

Remark 5. From (27) and (29), it is straightforward to see that
the interference is reduced when h > 0 with respect to when
h = 0, since the original Laplace transforms are multiplied by
exponential terms with positive arguments.

For strongest BS, we provide a further interesting result on
the expected interference power. Recall that, for strongest BS
association and for h = 0, the expected interference power is
infinite [21, Ch. 5.1]. Let U(a, b, z) , 1

Γ(a)

∫∞
0
e−ztta−1(1 +

t)b−a−1dt denote Tricomi’s confluent hypergeometric func-
tion and let En(z) ,

∫∞
1
e−ztt−ndt be the exponential

integral function. A consequence of the bounded pathloss
model is given in the following lemma, which characterizes
the expected interference with elevated BSs for strongest BS
association.

Lemma 2. For elevated BSs, the expected interference power
for strongest BS association is finite and is given by
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E
[ ∑

y∈Φ\{x}

gy`(ry, h)

]

<

∞∑

i=1

(πλ)ih2i−αU
(
i, i+ 1− α

2 , πλh
2
)

(31)

where the expected interference power from the nearest in-
terfering BS, whose location is denoted by x1, corresponds
to

E
[
gx1

`(ry1 , h)
]

= πλh2−αeπλh
2

Eα
2

(πλh2). (32)

Proof: See Appendix II-A.

B. Impact on Coverage Probability and Potential Throughput

We now focus on the effect of BS height on the coverage
probability and on the potential throughput. Theorem 3 pro-
vides the coverage probabilities for a fixed BS height h.

Theorem 3. For elevated BSs, recalling the definition of
η(s,m, r) in (16), the coverage probability is given as follows.
(a) For closest BS association, we have

P(C)
cov(θ, λ) , PNLOS,(C)

cov (θ) exp
(
− πλh2

(
η(θ, 1, 1)− 1

))
(33)

where P
NLOS,(C)
cov (θ) is the coverage probability with non-

elevated BSs defined in (22).
(b) For strongest BS association, we have

P(S)
cov(θ, λ) , 2πλ

∫ ∞

h

exp
(
− πλh2

(
η(θrα, 1, h)− 1

))
rdr.

(34)

Proof: See Appendix II-B.
Notably, for closest BS association, a closed-form expression
is available; therefore, Corollary 3 gives the optimal BS
density in terms of potential throughput.

Corollary 3. For elevated BS and closest BS association, let
PT(C)(θ, λ) , λP

(C)
cov(θ, λ) log2(1 + θ) denote the potential

throughput. Then, the optimal BS density is given by

λ
(C)
opt , argmax

λ
PT(C)(θ, λ) =

1

πh2
(
η(θ, 1, 1)− 1

) (35)

and the maximum potential throughput corresponds to

PT(C)
max(θ) , PT(C)(θ, λ

(C)
opt) (36)

=
e−1

πh2η(θ, 1, 1)
(
η(θ, 1, 1)− 1

) log2(1 + θ).

(37)

Proof: The optimal BS density λ
(C)
opt is simply obtained

as the solution of d
dλλP

(C)
cov(θ, λ) = 0.

Theorem 3 unveils the detrimental effect of BS height on
the system performance. In particular, (33) quantifies in closed
form the degradation previously shown in [19], whereas (35)
confirms the existence of an optimal BS density from the
perspective of the potential throughput. This degradation stems
from the fact that the distance of the typical UE from its
serving BS is more affected by the BS height than the distances

from the interfering BSs and, therefore, desired signal power
and interference power do not grow at the same rate as in
the case with h = 0. The following corollary strengthens this
claim by showing the asymptotic performance for both closest
and strongest BS association.

Corollary 4. For elevated BSs, recalling the definitions of the
coverage probabilities with non-elevated BSs P

NLOS,(C)
cov (θ) and

P
NLOS,(S)
cov (θ) in (22)–(23), the following holds:

(a) lim
λ→0

P(C)
cov(θ, λ) = PNLOS,(C)

cov (θ);

(b) lim
λ→0

P(S)
cov(θ, λ) = PNLOS,(S)

cov (θ);

(c) lim
λ→∞

P(C)
cov(θ, λ) = lim

λ→∞
P(S)

cov(θ, λ) = 0.

Proof: See Appendix II-C.

Remark 6. For a fixed BS height h > 0, the coverage proba-
bility monotonically decreases as the BS density λ increases,
eventually leading to near-universal outage: as a consequence,
the area spectral efficiency also decays to zero as λ→∞. On
the other hand, the effect of BS height becomes negligible as
λ→ 0.

In practice, we will see in Section VI that the coverage
probability and the potential throughput decay to zero even
for moderately low BS densities (i.e., for λ ' 10−2 BSs/m2).

Remark 7. For a fixed BS density λ, the coverage probability
monotonically decreases as the BS height h increases. More
specifically, from Corollary 3, we have that PT(C)

max(θ) ∝ 1
h2 .

Therefore, the optimal BS height is h = 0.

When serving and interfering BSs are characterized by the
same propagation conditions, the optimal BS height is always
h = 0. Moreover, as illustrated in Section VI, the same usually
holds in the more general case where serving and interfering
BSs are subject to the same distance-dependent LOS proba-
bility function (as the one described in Section III-C), which
confirms the findings in [19]. However, under a propagation
model where LOS interference is nearly absent (which can
be obtained, for instance, by assuming downtilted antennas),
a non-zero optimal BS height is expected: in fact, in this
case, the desired signal would be subject to a tradeoff between
pathloss (for which a low BS is desirable) and probability of
LOS propagation conditions (for which a high BS is desirable).

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to assess
our theoretical findings. In particular, we aim at answering
the following general question: what is the individual and
combined effect of LOS/NLOS fading, LOS/NLOS pathloss,
and BS height on the UE and network performance?

In the following, we perform Monte Carlo simulations with
5 × 106 iterations. Integral expressions are evaluated using
Matlab, whereas the derivatives of the Laplace transform of
the interference and Bell polynomials are computed using
Mathematica.
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Figure 2. Coverage probability with the 3GPP LOS/NLOS model (cf. Section III-B), m = 10, α = 4, and non-elevated BSs against BS density λ for closest
(left) and strongest (right) BS association.

A. The Effect of LOS Fading

We begin by examining the distance-dependent 3GPP
LOS/NLOS model presented in Section III-B. Considering a
shape parameter m = 10 (which corresponds to a Rician K-
factor K ' 13 dB), a single pathloss exponent α = 4, non-
elevated BSs (h = 0), and SIR threshold θ = 0 dB, Figure 2
illustrates the coverage probability based on the LOS proba-
bility function (11) against the BS density λ. The coverage
probability based on the simplified LOS probability function
(12) with D = 18 m and the corresponding upper bound,
obtained by applying Proposition 1 followed by numerical
integration, are also plotted. In accordance with Corollary 1,
the coverage probability corresponds to the NLOS case for low
BS densities (i.e., λ ≤ 10−4 BSs/m2) and to the LOS case for
high BS densities (i.e., λ ≥ 10−2 BSs/m2): in particular, these
two cases coincide for strongest BS association, as stated in
Theorem 2–(b). Furthermore, the upper bound is remarkably
tight for low BS densities and, in general, tighter for closest
BS association than for strongest BS association.

Now, let us consider the LOS setting of Section IV, i.e., all
signals from both serving and interfering BSs are subject to
Nakagami-m fading, with a single pathloss exponent α = 4,
non-elevated BSs (h = 0), and SIR threshold θ = 0 dB.
Figure 3 plots the coverage probability against the shape
parameter of the Nakagami-m fading. Firstly, the analytical
expressions derived in Theorem 2 match the numerical curves
exactly. Secondly, in accordance with Corollary 2, the cov-
erage probability for closest BS association increases with
m until it approaches the (constant) value of the coverage
probability with strongest BS association: in particular, the
two values are approximately the same already for m = 25.

B. The Effect of BS Height

Here, we focus on the effect of BS height alone and, as in
Section V, we set the shape parameter m = 1 and consider
a single pathloss exponent α = 4 and SIR threshold θ =
0 dB. Figure 4 plots the coverage probability with elevated
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0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

Shape parameter m

C
ov
er
ag
e
p
ro
b
ab

il
it
y

Closest BS (simulations)
Closest BS (analytical)
Strongest BS (simulations)
Strongest BS (analytical)

Figure 3. Coverage probability with Nakagami-m fading (cf. Section IV),
α = 4, and non-elevated BSs against shape parameter m.

BSs against the BS density λ; two BS heights are considered,
i.e., h = 10 m and h = 20 m. First of all, the analytical
expressions derived in Theorem 3 match the numerical curves
exactly. Interestingly, it is shown that the coverage probability
decays to zero even for moderately low BS densities, i.e., at
λ ' 10−2 BSs/m2 with h = 20 m and at λ ' 3×10−2 BSs/m2

with h = 10 m. For comparison, the coverage probabilities
with h = 0 m, i.e., P

NLOS,(C)
cov (θ) and P

NLOS,(S)
cov (θ) in (22)–(23),

are also depicted. In accordance with Corollary 4, the coverage
probability with elevated BSs converges to that with h = 0 as
λ→ 0: this is already verified at λ ' 10−5 BSs/m2, when the
BSs are so far away from the typical UE that the effect of BS
height become negligible.

In Figure 5, we show the potential throughput with elevated
BSs against the BS density λ; three BS heights are considered,
i.e., h = 10 m, h = 15 m, and h = 20 m. Here, the
detrimental effect of BS height on the system performance
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Figure 4. Coverage probability with elevated BSs (cf. Section V), m = 1,
and α = 4 against BS density λ.

appears even more evident. As an example, considering closest
BS association, the maximum potential throughput is 0.84 ×
10−3 bps/Hz/m2 for h = 10 m and 0.21×10−3 bps/Hz/m2 for
h = 20 m; likewise, considering strongest BS association, the
maximum potential throughput is 1.04× 10−3 bps/Hz/m2 for
h = 10 m and 0.26×10−3 bps/Hz/m2 for h = 20 m. Hence, in
accordance with Corollary 3, doubling the BS height reduces
the maximum potential throughput by a factor of four (see
also Remark 7). Furthermore, it is worth noting that the BS
density that maximizes the potential throughput for closest BS
association, (i.e., λ(C)

opt , which is derived in closed form in (35))
coincides with the optimal BS density for the case of strongest
BS association: this corresponds to λ ' 4× 10−3 BSs/m2 for
h = 10 m and to λ ' 10−3 BSs/m2 for h = 20 m.

C. The General Case

In this section, we resort to the distance-dependent
LOS/NLOS model with randomly placed buildings presented
in Section III-C. The parameters used for obtaining the nu-
merical results are the following: pathloss exponents αLOS = 3
and αNLOS = 4, building height h̃ = 10 m, building densities
λ̃ = 10−4 buildings/m and λ̃ = 10−1 buildings/m, and SIR
threshold θ = 0 dB.

The coverage probability against the BS height h with
m = 1 is illustrated in Figure 6. First of all, we observe that the
coverage probability is always monotonically decreasing for
closest BS association: this is quite straightforward, since the
pathloss increase due to the elevated BSs is more significant
for the desired signal than for the interfering signals (which
correspond to more distant BSs). On the other hand, for
strongest BS association, the coverage probability may not
be monotonically decreasing for h > h̃: in fact, a tradeoff be-
tween higher probability of the serving BS being in LOS prop-
agation conditions and stronger pathloss for the desired signal
arises when increasing the BS height (this can be observed in
Figure 6 for λ̃ = 10−1 buildings/m and λ = 10−3 BSs/m2).
Let us now consider the case of multi-antenna BSs, where
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Figure 5. Potential throughput with elevated BSs (cf. Section V), m = 1,
and α = 4 against BS density λ.

maximum ratio transmission (MRT) beamforming is adopted
(the analytical expression for closest BS association is given
in Appendix I-B). Figure 7 plots the coverage probability
against the BS height h with m = 1, λ = 10−2 BSs/m2,
and λ̃ = 10−1 buildings/m. In this setting, it is evident that
increasing the number of transmit antennas NT produces a
substantial improvement in the network performance. Observe
that the gain derived from MRT does not depend on the
LOS/NLOS propagation conditions of the serving BS and,
therefore, there is no additional advantage in increasing the
BS height with respect to the case of single-antenna BSs.

We now analyze the combined effect of LOS/NLOS fading,
LOS/NLOS pathloss, and BS height. Considering elevated BSs
with h = 20 m, Figure 8 illustrates the coverage probability
and the potential throughput against the BS density λ; two
shape parameters of the Nakagami-m fading are considered,
i.e., m = 1 and m = 10. Observing the curves in Figure 8, the
detrimental effects on the system performance can be ranked
in decreasing order of importance as follows:

1) The BS height is evidently the dominant effect, since
it eventually leads to near-universal outage regardless of
the other parameters and even for moderately low BS
densities (cf. Figures 4–5).

2) The LOS pathloss, which is determined by the building
density, is the second most important effect: specifically,
a high building density is beneficial in this setting since it
creates nearly NLOS pathloss conditions, whereas a low
building density leads to a nearly LOS scenario.

3) The LOS fading, also determined by the building density,
has a minor impact as compared to the pathloss: in
particular, for closest BS association, the coverage with
m = 10 is slightly improved at low BS densities and
marginally deteriorated at high BS densities with respect
to the case with m = 1.

Moreover, for λ̃ = 10−1 buildings/m and strongest BS
association, we observe a peak in the coverage probability
around λ = 10−3 BSs/m2 due to the choice of the parameters
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Figure 6. Coverage probability with the LOS/NLOS model with randomly placed buildings (c.f. Section III-C), αLOS = 3, αNLOS = 4, m = 1, and h̃ = 10 m
against BS height h for λ̃ = 10−4 (left) and λ̃ = 10−1 (right).
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Figure 7. Coverage probability with the LOS/NLOS model with randomly
placed buildings (c.f. Section III-C), αLOS = 3, αNLOS = 4, m = 1, and
h̃ = 10 m against BS height h for different numbers of transmit antennas
NT.

h and h̃.
Lastly, we consider the case where each BS x is char-

acterized by a different distance-dependent shape parameter
m(rx) = (K(rx) + 1)2/(2K(rx) + 1) (rounded to the nearest
integer), where the Rician K-factor depends on the link
distance. Building on the measurements for the urban micro-
cell scenario in [30, Sec. 5.4.11], we express the Rician K-
factor in dB as KdB(r) = 13 + 0.0142r.8 The coverage
probabilities with m = 10 and with the distance-dependent
m are compared in Figure 9. The excellent matching between
the two curves justifies our approach of using a fixed value of
the shape parameter m: in fact, as the link distance increases,
the LOS probability decreases and the impact of the increasing
Rician K-factor becomes negligible.

8Observe that KdB(0) implies m = 10, which is the value considered so
far for our numerical results.

VII. CONCLUSIONS

In this paper, we study the downlink performance of dense
cellular networks with elevated BSs and LOS/NLOS small-
scale and large-scale fading. We introduce a stochastic ge-
ometry based framework that accommodates both closest and
strongest BS association, dual-slope pathloss, and Nakagami-
m fading for the LOS small-scale fading. First, we con-
sider two special—yet practically relevant—cases of distance-
dependent LOS/NLOS models, i.e., a 3GPP inspired model
and a newly proposed model with randomly placed buildings.
Second, considering the effect of LOS propagation alone, we
derive closed-form expressions of the coverage probability
with Nakagami-m fading. Interestingly, the coverage probabil-
ity for strongest BS association is the same as in the case of
Rayleigh fading, whereas it monotonically increases with the
shape parameter m for closest BS association. Lastly, we focus
on the effect of elevated BSs and show that the maximum area
spectral efficiency is proportional to the inverse of the square
of the BS height. Therefore, densifying the network leads to
near-universal outage regardless of the other parameters and
even at moderately low BS densities.

Further extensions to this framework may include incor-
porating spatial models with repulsion or minimum separa-
tion between BSs (such as Ginibre and Matern processes,
respectively) and clustered point processes, as well as non-
homogeneous UE distributions. Other factors affecting the per-
formance of real-world networks, such as non-homogeneous
BS and building heights, BS height-dependent pathloss, and
downtilted antennas, can be also considered in future work.
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Figure 8. Coverage probability with the LOS/NLOS model with randomly placed buildings (c.f. Section III-C), αLOS = 3, αNLOS = 4, h = 20 m, and
h̃ = 10 m against BS density λ for m = 1 (left) and m = 10 (center); corresponding potential throughput (right).
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Figure 9. Coverage probability with the LOS/NLOS model with randomly
placed buildings (c.f. Section III-C), αLOS = 3, αNLOS = 4, h = 20 m, and
h̃ = 10 m against BS density λ for fixed m (m = 10) and distance-dependent
m (with KdB(r) = 13 + 0.0142r).

APPENDIX I
COVERAGE PROBABILITY

A. Proof of Theorem 1

The coverage probability is given by

Pcov(θ) = P
[
gx`Q(rx, h)

I
> θ

]
(38)

=

∫ ∞

0

P
[
gx >

θI

`Q(r, h)

∣∣∣r
]
frx(r)dr (39)

=

∫ ∞

0

(
pLOS(r)EI

[
F̄LOS

(
θI

`LOS(r, h)

)]

+
(
1−pLOS(r)

)
EI
[
F̄NLOS

(
θI

`NLOS(r, h)

)])
frx(r)dr

(40)

where (40) derives from the fact that Q = LOS with prob-
ability pLOS(r) and Q = NLOS with probability 1 − pLOS(r);
recall that F̄LOS(z) is the CCDF of gx for LOS propagation
conditions defined in (1), whereas the CCDF of gx for NLOS
propagation conditions F̄NLOS(z) can be obtained from F̄LOS(z)
by setting m = 1. Then, the expression in (8) readily follows
from

EI
[
F̄LOS(zI)

]
= EI

[
e−mzI

m−1∑

k=0

(mz)k

k!
Ik
]

(41)

=

m−1∑

k=0

[
(−s)k

k!

dk

dsk
LI(s)

]

s=mz

, (42)

EI
[
F̄NLOS(zI)

]
= EI [e−zI ] = LI(z). (43)

On the other hand, the Laplace transform in (9) is obtained
as in (44)–(47) at the top of the next page, where (46)
results from applying the moment generating function of the
Gamma and exponential distributions to the first and second
expectation terms in (45), respectively, and in (47) we have
used the probability generating functional of a PPP. Finally,
the expression in (9) is obtained by including (7) into (47),
and this completes the proof.

B. Multi-Antenna BSs

Suppose that the BSs are equipped with NT transmit an-
tennas and adopt MRT beamforming to serve their associated
UEs. If the serving BS is located at x, the channel power
fading gain gx follows the Gamma distribution Γ

(
NTm,

1
m

)

if x ∈ ΦLOS and the chi-squared distribution χ2
2NT

if x ∈ ΦNLOS,
with CCDFs given by

F̄LOS(z) = e−mz
NTm−1∑

k=0

(mz)k

k!
, (48)

F̄NLOS(z) = e−z
NT−1∑

k=0

zk

k!
(49)
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LI(s) = EI [e−sI ] (44)

= EΦ

[ ∏

y∈ΦLOS\{x}

Egy
[

exp
(
− sgy`LOS(ry, h)

)] ∏

y∈ΦNLOS\{x}

Egy
[

exp
(
− sgy`NLOS(ry, h)

)]]
(45)

= EΦ

[ ∏

y∈ΦLOS\{x}

1

(1 + s
m`LOS(ry, h))m

∏

y∈ΦNLOS\{x}

1

1 + s`NLOS(ry, h)

]
(46)

= exp

(
− 2πλ

∫ ∞

ν(r)

(
1− pLOS(r)

1

(1 + s
m`LOS(t, h))m

−
(
1− pLOS(r)

) 1

1 + s`NLOS(t, h)

)
tdt

)
(47)

Pcov(θ) = 2πλ

∫ ∞

0

(
pLOS(r)

NTm−1∑

k=0

[
(−s)k

k!

dk

dsk
LI(s)

]

s=mθ/`LOS(r,h)

+
(
1− pLOS(r)

)NT−1∑

k=0

[
(−s)k

k!

dk

dsk
LI(s)

]

s=θ/`NLOS(r,h)

)
e−πλr

2

dr (50)

2πλ

∫ ∞

0

[
(−s)k

k!

dk

dsk
LLOS,(C)
I (s)

]

s=mθrα
e−πλr

2

rdr

= 2πλ

∫ ∞

0

[
(−s)k

k!

dk

dsk
exp

(
− πλr2η(s,m, r)

)]

s=mθrα
rdr (53)

= 2πλ

∫ ∞

0

[
(−s)k

k!
exp

(
− πλr2η(s,m, r)

)

×Bk
(
− πλr2 d

ds
η(s,m, r),−πλr2 d2

ds2
η(s,m, r), . . . ,−πλr2 dk

dsk
η(s,m, r)

)]

s=mθrα
rdr (54)

= 2πλ
1

k!

∫ ∞

0

exp
(
− πλr2η(mθ,m, 1)

)
Bk
(
− πλr2ψ1(θ,m),−πλr2ψ2(θ,m), . . . ,−πλr2ψk(θ,m)

)
rdr (55)

=
1

η(mθ,m, 1)

k∑

j=1

j!

k!
Bk,j

(
ψ1(θ,m)

η(mθ,m, 1)
,
ψ2(θ,m)

η(mθ,m, 1)
, . . . ,

ψk−j+1(θ,m)

η(mθ,m, 1)

)
(56)

respectively. On the other hand, the channel power gains
from the interfering BSs are distributed as in Section II-B
or, equivalently as in (48)–(49) with NT = 1. For closest BS
association, the coverage probability (8) becomes as in (50) at
the top of the page, where LI(s) is the Laplace transform of
the interference defined in (9); we refer to Appendix I-A and
[25, App. I-B] for details.

C. Proof of Theorem 2

The proof is quite involved. Building on (8), the coverage
probability in presence of LOS propagation is given by

PLOS
cov(θ,m) =

m−1∑

k=0

∫ ∞

0

[
(−s)k

k!

dk

dsk
LLOS
I (s)

]

s=mθrα
frx(r)dr.

(51)

(a) Let us focus on closest BS association and let us recall
the definition of LLOS,(C)

I (s) in (18). In addition, let us recall
the property of the derivatives of the Gauss hypergeometric
function, by which dk

dzk 2F1(a, b, c, z) = (a)k(b)k
(c)k 2F1(a+k, b+

k, c + k, z); furthermore, when c = b + 1, we build on [31,
Eq. 9.137(11)] to obtain d

dz 2F1(a, b, b+1, z) = b
z

(
(1−z)−a−

2F1(a, b, b+1, z)
)
, which allows us to write the kth derivative

of η(s,m, r) in (16) as

dk

dsk
η(s,m, r) = (−s)−k

(
− 2

α

)
k

(
η(s,m, r)

−
k∑

j=1

(m)k−j(
1− 2

α

)
k−j

(
s

mrα

)k−j(
1 + s

mrα

)−m−k+j
)
. (52)

For a given k ≥ 1, we can now derive the kth term of the
summation in (51) as in (53)–(56) at the top of the page, with
ψk(θ,m) defined in (25). Finally, since (53) for k = 0 is equal
to 1

η(mθ,m,1) , we obtain P
LOS,(C)
cov (θ,m) in (24) from (51).

(b) Let us now consider strongest BS association and let us
recall the definition of LLOS,(S)

I (s) in (19). Since

dk

dsk
s

2
α = (−1)k

(
− 2

α

)
k
s

2
α−k (57)

for a given k ≥ 1, we can derive the kth term of the summation
in (51) as in (58)–(62) at the top of the next page, where in
(59) we have introduced

φk(θ,m) , −
(
− 2

α

)
k
ζ(m)θ

2
α . (63)
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2πλ

∫ ∞

0

[
(−s)k

k!

dk

dsk
LLOS,(S)
I (s)

]

s=mθrα
rdr

= 2πλ

∫ ∞

0

[
(−s)k

k!
LLOS,(S)
I (s)Bk

(
− 2πλ

ζ(m)

m
2
α

d

ds
s

2
α ,−2πλ

ζ(m)

m
2
α

d2

ds2
s

2
α , . . . ,−2πλ

ζ(m)

m
2
α

dk

dsk
s

2
α

)]

s=mθrα
rdr (58)

= 2πλ
1

k!

∫ ∞

0

LLOS,(S)
I (mθrα)Bk

(
− 2πλr2φ1(θ,m),−2πλr2φ2(θ,m), . . . ,−2πλr2φk(θ,m)

)
rdr (59)

=
1

2ζ(m)θ
2
α

k∑

j=1

j!

k!
Bk,j

(
φ1(θ,m)

ζ(m)θ
2
α

,
φ2(θ,m)

ζ(m)θ
2
α

, . . . ,
φk−j+1(θ,m)

ζ(m)θ
2
α

)
(60)

=
1

2ζ(m)θ
2
α

k∑

j=1

j!

k!
Bk,j

(
−
(
− 2

α

)
1
,−
(
− 2

α

)
2
, . . . ,−

(
− 2

α

)
k−j+1

)
(61)

=
2

α

ζ(k)

kζ(m)
PNLOS,(S)

cov (θ) (62)

and with P
NLOS,(S)
cov (θ) defined in (23). Finally, it is not difficult

to show that
m−1∑

k=0

ζ(k)

kζ(m)
=
α

2
(64)

and we thus obtain P
LOS,(S)
cov (θ,m) = P

NLOS,(S)
cov (θ) from (51).

D. Proof of Corollary 2

(a) Building on [31, Eq. 9.137(2)], we have

η(2θ, 2, 1) =

(
1 + 2

α )(1 + θ)η(θ, 1, 1)− 2
α

1 + θ
(65)

which allows us to write

PLOS,(C)
cov (θ, 2)

=
1

η(2θ, 2, 1)

(
1 +

2
α

(
η(2θ, 2, 1) + (1 + θ)−2

)

η(2θ, 2, 1)

)
(66)

=

(
1 + 2

α

)
(1 + θ)

((
1 + 2

α

)
(1 + θ)η(θ, 1, 1)− 2

α

)
− 2

α((
1 + 2

α

)
(1 + θ)η(θ, 1, 1)− 2

α

)2
(67)

> PNLOS,(C)
cov (θ). (68)

The same property can be used recursively to show that
P

LOS,(C)
cov (θ,m + 1) > P

LOS,(C)
cov (θ,m), ∀m ≥ 1, with more

involved calculations.
(b) Building on Corollary 2–(a), and since P

LOS,(C)
cov (θ,m) ≤

P
LOS,(S)
cov (θ,m), it follows that limm→∞ P

LOS,(C)
cov (θ,m) =

P
LOS,(S)
cov (θ,m), where P

LOS,(S)
cov (θ,m) = P

NLOS,(S)
cov (θ) (as derived

in Theorem 2–(b)).

APPENDIX II
THE EFFECT OF BS HEIGHT

A. Proof of Lemma 2

Assume that the points of Φ are indexed such that their
distances from the typical UE are in increasing order, i.e.,
rxi ≤ rxi+1

, ∀i = 1, . . . ,∞. For strongest BS association, the

expected interference power is given by

E
[ ∑

y∈Φ\{x}

gy`(ry, h)

]
< E

[ ∑

xi∈Φ

gxi`(rxi , h)

]
(69)

=

∞∑

i=1

E
[
gxi`(rxi , h)

]
(70)

=

∞∑

i=1

E
[
`(rxi , h)

]
(71)

=

∞∑

i=1

∫ ∞

0

(r2 + h2)−
α
2 frxi (r)dr

(72)

where (71) follows from E
[
gy`(ry, h)

]
= E[gy]E

[
`(ry, h)

]

with E[gy] = 1 and where frxi (r) in (72) is the pdf of the
distance between the typical UE and the i-th nearest BS [21,
Ch. 2.9]:

frxi (r) , e−πλr
2 2(πλr2)i

rΓ(i)
. (73)

Solving (72) for generic i and plugging the result into (71)
gives the expression on the right-hand side of (31). On the
other hand, solving (72) for i = 1 yields the expected
interference power from the nearest interfering BS in (32).
Evidently, since the terms in the summation in (70) are strictly
decreasing with i and the dominant interference term (32) is
finite, then the aggregate interference power is also finite.

B. Proof of Theorem 3

Consider the pathloss function `(rx, h) = (r2 +h2)−
α
2 and

recall the definition of η(s,m, r) in (16).
(a) The coverage probability for closest BS association is

derived as in (74)–(77) at the top of the next page, where in
(75) we have substituted

√
t2 + h2 → th in the inner integral.

Finally, solving the integral in (77) yields the expression of
P

(C)
cov(θ, λ) in (33).
(b) The coverage probability for strongest BS association is
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P(C)
cov(θ, λ) = 2πλ

∫ ∞

0

exp

(
− 2πλ

∫ ∞

r

(
1− 1

1 + θ `(t,h)
`(r,h)

)
tdt

)
e−πλr

2

rdr (74)

= 2πλ

∫ ∞

0

exp

(
− 2πλ

∫ ∞
√
r2+h2

(
1− 1

1 + θ(r2 + h2)
α
2 t−αh

)
thdth

)
e−πλr

2

rdr (75)

= 2πλ

∫ ∞

0

exp
(
− πλ(r2 + h2)

(
η(θ, 1, 1)− 1

))
e−πλr

2

rdr (76)

= 2πλ

∫ ∞

0

exp
(
− πλr2η(θ, 1, 1)

)
rdr exp

(
− πλh2

(
η(θ, 1, 1)− 1

))
(77)

derived as

P(S)
cov(θ, λ)

= 2πλ

∫ ∞

0

exp

(
− 2πλ

∫ ∞

0

(
1− 1

1 + θ `(t,h)
`(r,h)

)
tdt

)
rdr

(78)

= 2πλ

∫ ∞

h

exp

(
− 2πλ

∫ ∞

h

(
1− 1

1 + θrαh t
−α
h

)
thdth

)
rhdrh

(79)

where in (79) we have substituted
√
t2 + h2 → th in the inner

integral and
√
r2 + h2 → rh in the outer integral. Finally,

solving the inner integral in (79) yields the expression of
P

(S)
cov(θ, λ) in (34).

C. Proof of Corollary 4

First, (a) can be easily obtained from Theorem 3–(a).
Furthermore, (b) is a consequence of Lemma 1. Lastly, (c)
follows from

P(S)
cov(θ, λ)

< 2πλ

∫ ∞

0

exp

(
− 2πλ

∫ ∞

r

(
1− 1

1 + θ `(t,h)
`(r,h)

)
tdt

)
rdr

(80)

= 2πλ

∫ ∞

0

exp
(
− πλ(r2 + h2)

(
η(θ, 1, 1)− 1

))
rdr (81)

=
1

η(θ, 1, 1)− 1
exp

(
− πλh2

(
η(θ, 1, 1)− 1

))
(82)

and, since (79) decays to zero as λ→∞, so does P
(S)
cov(θ, λ)

(see Appendix II-B for details).
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