
Stocator: An Object Store Aware Connector for Apache Spark∗

Gil Vernik, Michael Factor, Elliot K. Kolodner,
Effi Ofer

IBM Research – Haifa
(gilv,factor,kolodner,effio)@il.ibm.com

Pietro Michiardi, Francesco Pace
Eurecom

(pietro.michiardi,francesco.pace)@eurecom.fr

ABSTRACT
Data is the natural resource of the 21st century. It is being produced
at dizzying rates, e.g., for genomics, for media and entertainment,
and for Internet of Things. Object storage systems such as Amazon
S3, Azure Blob storage, and IBM Cloud Object Storage, are highly
scalable distributed storage systems that offer high capacity, cost
effective storage. But it is not enough just to store data; we also
need to derive value from it. Apache Spark is the leading big data
analytics processing engine combiningMapReduce, SQL, streaming,
and complex analytics. We present Stocator, a high performance
storage connector, enabling Spark to work directly on data stored
in object storage systems, while providing the same correctness
guarantees as Hadoop’s original storage system, HDFS.

Current object storage connectors from the Hadoop commu-
nity, e.g., for the S3 and Swift APIs, do not deal well with eventual
consistency, which can lead to failure. These connectors assume
file system semantics, which is natural given that their model of
operation is based on interaction with HDFS. In particular, Spark
and Hadoop achieve fault tolerance and enable speculative execu-
tion by creating temporary files, listing directories to identify these
files, and then renaming them. This paradigm avoids interference
between tasks doing the same work and thus writing output with
the same name. However, with eventually consistent object storage,
a container listing may not yet include a recently created object,
and thus an object may not be renamed, leading to incomplete or
incorrect results.

Solutions such as EMRFS [1] from Amazon, S3mper [4] from
Netflix, and S3Guard [2], attempt to overcome eventual consistency
by requiring additional strongly consistent data storage. These solu-
tions require multiple storage systems, are costly, and can introduce
issues of consistency between the stores.

Current object storage connectors from the Hadoop community
are also notorious for their poor performance for write workloads.
This, too, stems from their use of the rename operation, which
is not a native object storage operation; not only is it not atomic,
but it must be implemented using a costly copy operation, fol-
lowed by delete. Others have tried to improve the performance of

∗The research leading to these results has received funding from the European Union
Horizon 2020 Research and Innovation Programme (grant agreement 644182 – IOStack)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5028-0/17/09.
https://doi.org/10.1145/3127479.3132569

object storage connectors by eliminating rename, e.g., the Direct-
ParquetOutputCommitter [5] for S3a introduced by Databricks, but
have failed to preserve fault tolerance and speculation.

Stocator takes advantage of object storage semantics to achieve
both high performance and fault tolerance. It eliminates the rename
paradigm by writing each output object to its final name. The name
includes both the part number and the attempt number, so that mul-
tiple attempts to write the same part use different objects. Stocator
proposes to extend an already existing success indicator object writ-
ten at the end of a Spark job, to include a manifest with the names
of all the objects that compose the final output; this ensures that a
subsequent job will correctly read the output, without resorting to
a list operation whose results may not be consistent. By leveraging
the inherent atomicity of object creation and using a manifest we
obtain fault tolerance and enable speculative execution; by avoiding
the rename paradigm we greatly decrease the complexity of the
connector and the number of operations on the object storage.

We have implemented our connector and shared it in open
source [3]. We have compared its performance with the S3a and
Hadoop Swift connectors over a range of workloads and found
that it executes many fewer operations on the object storage, in
some cases as few as one thirtieth. Since the price for an object
storage service typically includes charges based on the number of
operations executed, this reduction in operations lowers the costs
for clients in addition to reducing the load on client software. It
also reduces costs and load for the object storage provider since it
can serve more clients with the same amount of processing power.
Stocator also substantially increases performance for Spark work-
loads running over object storage, especially for write intensive
workloads, where it is as much as 18 times faster.

CCS CONCEPTS
• Information systems→MapReduce-based systems; Cloud
based storage;

REFERENCES
[1] Jeff Barr. 2014. Amazon EMRFS Blog. (2014). https://aws.amazon.com/blogs/

aws/emr-consistent-file-system/
[2] Chris Nauroth. 2016. Apache Hadoop S3Guard JIRA. (2016). https://issues.apache.

org/jira/browse/HADOOP-13345
[3] Gil Vernik. 2017. IBM Stocator Source Code. (2017). https://github.com/SparkTC/

stocator
[4] Daniel C. Weeks. 2014. Netflix S3mper Blog. (2014). http://techblog.netflix.com/

2014/01/s3mper-consistency-in-cloud.html
[5] Reynold Xin. 2016. [SPARK-10063][SQL] Remove DirectParquetOutputCommit-

ter. (2016). https://github.com/apache/spark/pull/12229

https://doi.org/10.1145/3127479.3132569
https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
https://aws.amazon.com/blogs/aws/emr-consistent-file-system/
https://issues.apache.org/jira/browse/HADOOP-13345
https://issues.apache.org/jira/browse/HADOOP-13345
https://github.com/SparkTC/stocator
https://github.com/SparkTC/stocator
http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html
http://techblog.netflix.com/2014/01/s3mper-consistency-in-cloud.html
https://github.com/apache/spark/pull/12229

	Abstract
	References

