
2017-ENST-0039

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Xiao HAN
le 25 Septembre 2017

Mesure et Supervision de la Sécurité

du Point de Vue d’un Fournisseur de Services

Directeur de thèse : Davide BALZAROTTI

Jury
M. Engin KIRDA, Professeur, Secure Systems Lab, Northeastern University Rapporteur
Mme. Isabelle CHRISMENT, Professeur, Équipe MADYNES, Telecom Nancy, Université de Lorraine Rapporteur
M. Hervé DEBAR, Professeur, Réseaux et Services de Télécommunications, Telecom SudParis Examinateur
M. Nizar KHEIR, Responsable Programme de Recherche, Thales Examinateur
M. Adam OUOROU, Directeur du Domaine de Recherche Confiance & Sécurité, Orange Labs Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

2017-ENST-0039

EDITE - ED 130

ParisTech Ph.D.

Ph.D. Thesis

to obtain the degree of Doctor of Philosophy issued by

TELECOM ParisTech

Specialisation in « Computer Science and Networking »

Publicly presented and discussed by

Xiao HAN
September 25th, 2017

Measurement and Monitoring of Security

from the Perspective of a Service Provider

Advisor : Davide BALZAROTTI

Committee in charge

Engin KIRDA, Professor, Secure Systems Lab, Northeastern University Reporter
Isabelle CHRISMENT, Professor, MADYNES Team, Telecom Nancy, Lorraine University Reporter
Hervé DEBAR, Professor, Networks and Telecommunication Services, Telecom SudParis Examiner
Nizar KHEIR, Research Program Manager, Thales Examiner
Adam OUOROU, VP Trust and Security Research, Orange Labs Examiner

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

A C K N O W L E D G M E N T S

First, I would particularly like to thank my advisor, Davide Balzarotti,
for his valuable guidance and availability for my Ph.D study even
though most time I worked at Orange Labs instead of being at Eure-
com. His advice and support helped me during all time of research,
and also for the writing of the thesis.

I’m grateful to my supervisor, Nizar Kheir, for his support and
for the numerious discussions that we had together throughout my
entire Ph.D study. It was a great pleasure to work with him.

I would also like to express my gratitude to Prof. Engin Kirda,
Prof. Isabelle Chrisment, Prof. Hervé Debar and Adam Ouorou, VP
Trust and Security Research from Orange Labs for accepting to be the
committe members for my Ph.D defense.

It’s my pleasure to thank the present and past colleagues from the
security department of Orange Labs, for their inspirations, encour-
agement and the coffee breaks. I also want to thank all fellows at
Eurecom S3 group for the warm reception each time I stayed at Eure-
com. I am also grateful to all of those who have provided the data for
the work in this disseratation and Ph.D students that have designed
and implemented the previous honeypot system.

My thanks also goes to Aurélien, Ayoub, Clément, Florent and Jean-
Baptiste, for the CTF that we have played together.

I also want to thank all my friends in France, for their kindly sup-
port.

Special thanks to my wife, Xu, for her love and support.
I owe my deepest gratitude to my parents, for their encouragement,

unconditional support during my studies.

This dissertation would not be possible without the funding of Or-
ange Labs and French Ministry of Education.

A B S T R A C T

Today Internet connects about half of the world populations, of-
fering a variety of services – such as email, e-commerce, and online
banking – which facilitate the life of billions of users. Unfortunately,
the highly connected Internet and its increasing number of users have
also appealed to attackers who constantly deliver advanced and so-
phisticated attacks. Meanwhile, defenders struggle to develop new
solutions to detect attacks and protect legitimate services and users.
In this context, the service providers may play a very important role
in securing both their services, their customers, and the final users
– a role that has been often neglected or under-estimated in existing
security models and solutions.

In this dissertation, we explore several directions a service provider
may follow, in addition to merely secure its infrastructure, to pro-
vide better security for its customers and also for other Internet users.
More precisely, we leverage the valuable information providers have
access to in order to measure and monitor a diverse set of security
threats, including malware abuses, compromised instances hosting
phishing kits, and external web attacks.

Recent anecdotal evidence shows that service providers, in particu-
lar cloud service providers, are routinely abused by malware writers.
However, little attention has been paid to this phenomenon. We thus
present a systematic large-scale study of about one million malware
samples, and our results showed an increasing trend in the number
of malicious dedicated cloud-based domains from 2008 to 2014. The
existing security mechanisms adopted by service providers were in-
sufficient to correctly measure and detect this type of abuses.

In the second part of the dissertation, we look at a provider ability
to monitor attacks that are otherwise difficult to study for third-party
researchers. In particular, we designed and implemented PhishEye, a
system specifically designed to analyze phishing kit in an ethical way,
which enabled us for the first time to understand the entire life-cycle
of phishing attacks. Our results showed that most of the victims ac-
tivity takes place in the short period after the phishing kit is installed,
and before the security community even discovers its existence.

Lastly, we explore alternative techniques, in particular deception
techniques, that a service provider may employ to add an additional
layer of security for its customers. We present a comprehensive classi-
fication of existing techniques, allowing us to identify open research
directions – including the design and modeling of deception tech-
niques, their deployment, and the evaluation of such techniques. Fur-
thermore, we designed and implemented two experiments to evalu-

ate the detection accuracy and the number of false alarms of decep-
tion techniques when they were used to protect web applications. In
a red teaming experiment with deception techniques enabled, our
approach was able to detect 64% of the participants who have suc-
cessfully exploited at least one vulnerability. In the other long term
experiment conducted in a production environment, zero false alarm
had been triggered by 258 different users of the system.

L I S T O F P U B L I C AT I O N S

conference and journal publications

1. Xiao Han, Nizar Kheir, Davide Balzarotti. The Role of Cloud Ser-
vices in Malicious Software: Trends and Insights. Detection of In-
trusions and Malware, and Vulnerability Assessment (DIMVA),
2015, Milan, Italy.

2. Xiao Han, Nizar Kheir, Davide Balzarotti. PhishEye: Live Moni-
toring of Sandboxed Phishing Kits. Proceedings of the 23rd ACM
conference on Computer and communications security (CCS),
2016, Vienna, Austria.
(Best European Student Paper Award)

3. Xiao Han, Nizar Kheir, Davide Balzarotti. Deception Techniques
in Computer Security: a Research Perspective. ACM Computing
Surveys (CSUR). (Under submission)

4. Xiao Han, Nizar Kheir, Davide Balzarotti. Evaluation of Deception-
based Web Attacks Detection. Proceedings of the 4th ACM Work-
shop on Moving Target Defense. ACM, 2017.

C O N T E N T S

1 introduction 1

1.1 Current Security Model 1

1.2 Thesis Objective . 3

1.3 Thesis Overview . 4

1.4 Document Overview . 6

2 related work 9

2.1 Nefarious Use of Cloud Services 9

2.2 Understanding Phishing Attacks 12

2.2.1 Anatomy of Phishing 12

2.2.2 Anti-Phishing Techniques 13

2.2.3 Evaluation of Anti-Phishing Techniques 14

2.3 Deception Techniques in Computer Security 15

2.3.1 Previous Surveys 15

2.3.2 Previous Classifications 16

2.3.3 Deception-Based Web Application Protection . 17

3 role of cloud services for malicious software 19

3.1 Approach . 20

3.1.1 Platform Description 21

3.2 Experiments . 26

3.2.1 Role of Public Cloud Services in Malware In-
frastructures . 29

3.2.2 Dedicated Domains Lifetime Estimation 30

3.3 Discussion . 33

3.4 Conclusion . 34

4 live monitoring of phishing attacks 35

4.1 Background . 38

4.2 Data Collection . 40

4.3 Sandbox and PK Neutralization 41

4.3.1 Design Goals . 41

4.3.2 System Overview 42

4.3.3 Implementation 43

4.4 Phishing Attack Global Picture 45

4.4.1 Attackers Behavior 46

4.4.2 Victims Behavior 47

4.4.3 PK Lifetime . 49

4.4.4 Effectiveness of Phishing Blacklist 49

4.4.5 Measurement Bias 50

4.5 Case Studies . 51

4.5.1 Dropping Techniques 51

4.5.2 Blacklist Evasion 52

4.5.3 Victim Time Distribution 54

4.5.4 Real-time Email Detection 55

xii contents

4.6 Conclusions . 56

5 deception techniques in computer security : a

research perspective 57

5.1 Definition & Scope . 60

5.1.1 Deception techniques: concept and terminology 60

5.1.2 Scope of this survey 61

5.2 Classification . 62

5.2.1 Multi-Dimension Classification 62

5.2.2 Overview of Intrusion Deception Techniques . . 64

5.3 Modeling . 69

5.3.1 Deception Planning 70

5.3.2 Interactions between Attackers and Deception
Techniques . 71

5.4 Deployment . 72

5.4.1 Mode of Deployment 72

5.4.2 Placement . 74

5.4.3 Realistic Generation 77

5.4.4 Monitoring . 79

5.5 Measurement & Evaluation 81

5.5.1 Evaluation of Deception Placement 82

5.5.2 Evaluation of Deception Generation 84

5.5.3 Evaluation of Deception Effectiveness 87

5.5.4 False Alarms Evaluations 92

5.5.5 Summary . 93

5.6 Conclusions . 93

6 evaluation of deception-based web attacks de-
tection 95

6.1 Methodology . 96

6.1.1 Deceptive Elements 97

6.1.2 Deception Framework 98

6.1.3 Deployment Strategy 100

6.2 Experiment Design . 101

6.2.1 Use of Deception in a Real Content Manage-
ment System . 101

6.2.2 Use of Deception in a Capture-The-Flag Com-
petition . 102

6.3 Results . 105

6.3.1 CMS Experiment 105

6.3.2 CTF Experiment 105

6.4 Discussion . 108

7 conclusions and future work 111

a appendix 115

a.1 Résumé . 115

a.2 Introduction . 115

a.2.1 Modèle de sécurité actuel 116

a.2.2 Objectif de la thèse 117

contents xiii

a.2.3 Aperçu de la thèse 119

a.2.4 Synthèse du manuscrit 121

a.3 État de l’art . 123

a.3.1 Utilisation néfaste des services cloud 123

a.3.2 Comprendre les attaques par hameçonnage . . 127

a.3.3 Évaluation de techniques d’anti-hameçonnage . 129

a.3.4 Techniques de diversion/leurre dans la sécurité
informatique . 130

a.4 Conclusions et travaux futurs 134

bibliography 137

L I S T O F F I G U R E S

Figure 1.1 Shared responsibility model 2

Figure 1.2 Thesis overview 4

Figure 3.1 Architecture of our platform 21

Figure 3.2 Composition of our malware dataset 24

Figure 3.3 Malware dataset analysis 28

Figure 3.4 Rate of dedicated malicious EC2-based domains
contact per malware sample 30

Figure 3.5 Lifetime of dedicated malicious EC2-based do-
mains . 31

Figure 4.1 Typical Phishing Attack 38

Figure 4.2 High Level System Overview 40

Figure 4.3 Phishing Attack Timeline 46

Figure 4.4 Visitor time distribution of the kit with black-
list evasion technique 53

Figure 4.5 Victims time distribution for the most signifi-
cant phishing kits 54

Figure 6.1 Deception Framework 99

Figure 6.2 CMS application tree structure 102

Figure 6.3 CTF Application Workflow 104

Figure 6.4 Cumulative distribution of detection and flag . 108

Figure a.1 Modèle de responsabilité partagée 117

Figure a.2 Aperçu de la thèse 120

L I S T O F TA B L E S

Table 3.1 Top 20 PPI services in our dataset 23

Table 3.2 EC2-based service categories 24

Table 3.3 Top 20 malware family 27

Table 3.4 Examples of domains that rotated their IP ad-
dresses on EC2 over time 32

Table 4.1 Drop mechanisms of the live phishing kits . . 51

Table 5.1 Detailed overview of deception techniques . . 65

Table 5.2 Evaluation of deception placement for attack
detection . 84

Table 5.3 Evaluation of deception generation 84

Table 5.4 Evaluation of deception effectiveness 87

Table 5.5 False positive evaluation of deception techniques 91

Table 6.1 Deception in public CMS space 103

list of tables xv

Table 6.2 Deception in private CMS space 103

Table 6.3 Deception in CTF exercise 104

Table 6.4 Number of distinct IP addresses detected . . . 107

1
I N T R O D U C T I O N

Internet has rapidly evolved from a small regional network that
interconnected a few academic and military institutions to a highly
connected global network offering a variety of services – such as the
World Wide Web (WWW), electronic mails, telephony, and file shar-
ing. In 2017 [124] it was estimated that over 49% of the world popu-
lation used Internet for various aspects of their life, including social
interactions, electronic business, and telecommunication.

The first commercial Internet Service Providers (ISPs) appeared in
the early 1990s to provide Internet access along with a limited num-
ber of services. Today, this offer has broaden to include a multitude
of providers offering payment services, cloud computing, and online
storage solutions for customer ranging from large enterprise to indi-
vidual end users. To cope with this diversity of these offers, in this
dissertation the term of service providers is not only used to describe
ISPs, but also to refer to application, website, and public cloud service
providers.

Unfortunately, the rapid expansion of Internet and its increasing
number of users have also appealed to malicious users. Miscreants
routinely target lucrative services (e.g., online banking), organization
websites, and personal computer and smartphone, mostly looking
for a financial gain. To reach this goal, cyber criminals often resort
to a combination of zero day vulnerabilities, sophisticated malicious
software (malware), phishing attacks, and web-based exploits. This
has resulted in a continuous arm race with the security community
engaged in a continuous struggle to develop new solutions to detect
attacks and protect legitimate services. In this context, the service
providers play a very important role in securing both the services and
their users, a role that has been often neglected or under-estimated in
existing security models and solutions.

1.1 current security model

The security guarantees that are offered by each service provider
may greatly vary depending on the type of service offered, its scale
and also on country’s regulations where the provider resides. This di-
versity of conditions makes it almost impossible to compare the secu-
rity of different service providers. However, even though sometimes
the security model is not clearly defined, service providers usually ad-
here to a generic shared responsibility model, first proposed by Amazon
Web Services (AWS) [10] in 2014. Figure 1.1 illustrates a simplified

2 introduction

Figure 1.1 – Shared responsibility model

version where we distinguish four main actors: the customer who run
a legitimate service that leverages the service provider infrastructure,
the end user of this service and the attacker who may target both the
infrastructure of the service provider and the legitimate service.

The shared responsibility model defines the security measures that
the service provider and the customer may agree upon and operate
respectively. The provider is responsible for managing the security
of the infrastructure together with all the back-end software that sup-
ports the customer service. For instance, the service provider should
protect the infrastructure against distributed denial of service attacks,
and patch the known software flaws and vulnerabilities. On the other
hand, the customer needs to take the necessary security measures to
protect the running application of the end users, which are consid-
ered so far to be out of reach for the service provider.

While simple to understand, this model also presents some lim-
itations. One straightforward example is the case of a miscreant
who abuses a vulnerable customer service to perform malicious ac-
tivities that threaten the security of other users on the Internet. In
this scenario, the current shared responsibility model attributes the
responsibility to the customer running this service. Yet, the provider
is without doubt also responsible because its infrastructure is in fact
abused to perform malicious activities. This phenomenon has further
been confirmed by our study in Chapter 3. The shared responsibility
model offloads the security burdens from the service provider to the
customer, which is unfortunate as the provider has a vantage point
to provide security measures and to better monitor the security and
finally protect the customer.

1.2 thesis objective 3

1.2 thesis objective

Currently, under the shared responsibility model a service provider
has little incentive to provide proactively better security for its cus-
tomers. This is confirmed by a recent study on web service providers [36],
in which the authors found that most providers failed to detect even
the most obvious signs that the customers applications had been com-
promised.

In this dissertation we want to explore what a service provider
could do, in addition to merely focus on securing its infrastructure,
to take advantage of its privileged position between the end users (or
the attacker) and the target service, in order to provide better security.

For instance, a service provider has access to valuable information
that are unavailable to its customers, including a global view over the
entire infrastructure, the network traffic, and also has entire control
over the software layers below the customer application. To show
how this valuable information is current under-utilized to develop
security mechanisms and study security phenomena, we identified
three distinct research objectives:

O1. Service providers focus their effort to protect their own infras-
tructures against external threats. However, little is known about
whether the service provider itself can be abused for malicious
purposes – i.e., in the special case in which the role of the at-
tacker and of the customer are played by the same actor. For
instance, the customer may abuse a service to attack other ma-
chines on the Internet or she can host part of her malicious in-
frastructure on the premise of the service provider. While there
are anecdotal evidence that services providers, and in particular
cloud service providers, are actually being abused by malware
authors, little attention had been paid to this phenomenon and
a more rigorous study is needed to measure this emerging phe-
nomenon.

O2. Over the past decade, the research community has put a con-
siderable effort to study different online attacks, such as web
exploits or phishing kits. Unfortunately, most previous stud-
ies were only able to perform experiments by collecting pub-
licly available data (e.g., either by analyzing already reported
infected pages or by crawling the web for signs of malicious
content). This dramatically limited the scope of these studies,
as the behavior of a service just after it was compromised, and
before it was discovered by the security community, remained
largely unknown. However, the infrastructure logs and the thor-
ough analysis of incoming connections may provide a better
view over certain type of attacks, compared to what has been
reported by external researchers. In particular, in this objective
we focus on the analysis of the lifetime of phishing kits (which

4 introduction

Figure 1.2 – Thesis overview

are very often installed to monetize compromised web appli-
cations), to pinpoint the differences between the view of the
provider and the view of a third party researcher.

O3. For our final objective, we look at service providers that wants
to add an additional layer of security to their customer appli-
cations, in particular in the common case of web applications.
Traditional security solutions that fit this requirement, such as
network monitoring and intrusion detection systems, generates
too many false alarms or are unable to cope with advanced,
previously-unknown attacks. Therefore, we want to investigate
if deception techniques would be a better choice in this setting,
and what are the scientific challenges that still prevent these
solutions to be deployed on a large scale.

The goal of this dissertation is to advance the state of the art along
these three different objectives, by conducting measurements and de-
signing analysis and protection systems from the perspective of a
service provider.

1.3 thesis overview

Motivated by the three objectives presented above, this dissertation
presents a number of techniques that leverage the vantage point of
a service provider to measure the abuses (Objective O1.), monitor the
compromise (Objective O2.) and enhance the protection (Objective O3.)
of online services (as illustrated in Figure 1.2).

1.3 thesis overview 5

For the first objective, we focused our effort on cloud services
providers – as they are one of the most prominent type of service
providers and their nature make them more prone to possible abuses.
Cloud services offers additional advantages such as greater resiliency,
hypervisor protection against network attacks, low-cost disaster re-
covery, on-demand security controls, real time detection of system
tampering and rapid re-constitution of services [175]. Many of these
advantages make the cloud attractive also to host malicious services
and attackers often rely on cloud providers the same way and for the
same reasons as legitimate customers [169]. In Chapter 3, we analyze
the role cloud services play today in malicious software, presenting a
systematic approach to measure the security of public cloud service
provider against malware abuses. The results of our study showed
that criminals obtained long-sustained malicious activities on public
cloud, which makes prominent the need of novel monitoring mecha-
nism for service providers as conjectured in objective O2..

In the second objective we look at a provider ability to monitor
attacks that are otherwise difficult to be fully understood. In this
context, we focus on phishing attacks that compromise vulnerable
websites hosted on the premise of a service provider to install phish-
ing sites. Phishing attacks remain a major threat for Internet Ser-
vice Providers (ISPs), cloud service providers, as well as for email
providers, as confirmed by the fact that the number of unique phish-
ing sites have reached an all-time record in the second quarter of
2016 [2]. However, previous studies conducted by researchers using
external data (i.e., without access to the application logs or network
traffic) have failed to monitor the entire life-cycle of phishing attacks.
The work in this dissertation proposes a novel approach for an appli-
cation service provider to monitor phishing attacks in order to gain
an insight on the different actors and their behaviors, as depicted in
Chapter 4.

In our final objective we explore alternative techniques a service
provider can adopt to protect its customer applications. From a
provider perspective, run-time protection is the only viable solution,
due to its scalability and the fact that it does not require to touch
or modify customers applications. Traditional runtime protection
schemes rely either on signature-based application firewall or resort
to anomaly detection [112]. Signature-based solutions are efficient
but incapable of detecting unknown attacks, while it is challenging
for anomaly-based approaches to balance the detection accuracy and
the false positive rate – especially in the web domain. Due to these
limitations, the work in this dissertation investigates the use of de-
ception techniques that can be integrated obliviously above the target
application by the service provider, promising extremely low false

6 introduction

positives rate combined with high detection of known and unknown
attacks.

Although deception is not a novel concept, during our effort to
summarize existing work on this topic, we found that we still lack
a global understanding about deception techniques and their appli-
cation in computer security. In particular, there is not yet a wide
consensus among researchers about what are the mains goals and
technical challenges to solve when deception techniques are adopted
as a defense mechanism. In particular, the modeling, deployment,
and evaluation of deception techniques were scarcely and poorly ap-
proached in the literature. To shed light on this topic, Chapter 5

presents a comprehensive survey on the use of deception techniques
in computer security.

Finally, while deceptive schemes are well studied in certain do-
mains, this is not the case for web applications. Previous work in the
area [92] only studied the use of deception to delay known attacks. In
this dissertation, we explore the use of deception to proactively detect
web attacks in their early stage. This is an area that is recently attract-
ing a lot of attention in the industry, but it is still largely unexplored
from a research perspective and to the best of our knowledge there
is no previous work that has designed experiments to evaluate the
accuracy and the false positive rate while using deception to enhance
the detection of web attacks. We present in Chapter 6 the design and
implementation of two preliminary experiments on the application of
deception to detect web attacks.

1.4 document overview

This dissertation proposes a number of techniques to measure and
monitor the security from the perspective of a service provider. Chap-
ter 2 discusses the previous work related to this topic.

In Chapter 3 we propose a systematic approach to measure the
role of cloud services in malicious software (Chapter 3). In particular,
we investigate the way cyber-criminals abuse public cloud services
to host part of their malicious infrastructures. We conducted a large
scale analysis of all the malware samples submitted to the Anubis
malware analysis system between 2008 and 2014. Our results reveal
that cyber-criminals sustain long-lived operations through the use of
public cloud resources, either as a redundant or a major component
of their malware infrastructures. We also observe that the number of
malicious and dedicated cloud-based domains has increased almost 4
times between 2010 and 2013. To understand the reasons behind this
trend, we also present a detailed analysis using public DNS records.

Chapter 4 presents a novel approach leveraging the vantage point
of a service provider to monitor attacks and compromise against web
applications, with a focus on phishing kits (Chapter 4). We propose

1.4 document overview 7

a novel technique to sandbox live phishing kits to observe their be-
havior while protecting the privacy of possible victims. By using this
technique, we performed a comprehensive real-world assessment of
phishing attacks, their mechanisms, and the behavior of the criminals,
their victims, and the security community involved in the process –
based on data collected over a period of five months. Our infrastruc-
ture allowed us to draw the first comprehensive picture of a phishing
attack, from the time in which the attacker installs and tests the phish-
ing pages on a compromised host, until the last interaction with real
victims and with security researchers.

Finally, we investigate how a provider can monitor and protect its
customers from web attacks, by using a combination of deception
techniques – which provide an interesting alternative compared to
other traditional security mechanisms.

We start in Chapter 5 by presenting a survey of the current use
of deception techniques in computer security, introducing a compre-
hensive classification of existing solutions. Furthermore, we analyze
several open research directions, including the design of strategies
to help defenders to design and integrate deception within a tar-
get architecture, the study of automated ways to deploy deception
in complex systems and, most importantly, the design of new tech-
niques and experiments to evaluate the effectiveness of the proposed
deception techniques. Finally, we discuss the limitations of existing
solutions and provide insights for further research on this topic.

In Chapter 6 we then present the preliminary design and evaluation
of a deception-based web attack detection approach, which aims at
detecting attacks at their early stage. During a one day red-team
experiment where participants searched for vulnerabilities in a target
web application, our system was able to detect 64% of the participants
that have successfully exploited at least one vulnerability. We also
conducted a long term experiment in a production environment over
a period of seven months to evaluate the rate of false alarms. During
the time frame of our test, the service was used by 258 different users,
generating zero false alerts.

Finally, in Chapter 7 we draw the conclusions and discuss possible
future work in the area.

2
R E L AT E D W O R K

The work in this dissertation covers the broad area of measurement
and monitoring of security, and their application to detect and pro-
tect a service provider from a variety of threats – including malware
abuse, compromised websites hosting phishing kits, and web attacks.

In this Chapter, we summarize previous studies that are related
to the techniques we present in following parts of this thesis. More
precisely, this spans three different areas. In section 2.1 we intro-
duce related work on the measurement of malicious use of cloud
services. In section 2.2 we discuss existing works that studied and
monitored phishing attacks. Lastly, in section 2.3 we review previous
surveys and classifications of deception techniques in computer secu-
rity. Moreover, we overview related work that used deception-based
technique in order to protect web application.

2.1 nefarious use of cloud services

The security of cloud services have been extensively studied in the
literature. As discussed in [184], many studies have been dedicated
to secure the virtual machine monitor in order to provide security
for client software and data against exploits and side channels at-
tacks. Other works have proposed to use virtual machine introspec-
tion to identify guest operating system [56] or to detect the presence
of rootkit in the guest OS [86, 152]. Finally, many papers have pro-
posed solutions to build of secure virtual network domain [34], secure
storage [66], and secure boot [64] on cloud machines.

In [3], Aceto et al. surveyed the existing platforms and services for
cloud monitoring. Previous work covered various aspects of cloud
monitoring, including the performance, service level agreement, qual-
ity of services, capacity and resource management, and security. How-
ever, the abuse of cloud services remains one of the top nine critical
threats to cloud computing [118]. Indeed, the threat of abuse and ne-
farious use is more of an issue for cloud service providers than cloud
consumers. Unfortunately, from the perspective of a service provider,
the measurement and monitoring of security is still insufficient to
detect and protect against abuses, compromise, and attacks.

Side effects may exist when an attacker abuses cloud services. First,
certain abuses may lead to side-channels attacks that leak customer
information [153] or that allow an attacker to extract customer private
keys [201]. Second, such abuses may be used as an amplifying factor
to trigger last stage distributed attacks, for instance by sending a large

10 related work

number of spam messages [31] or by joining distributed efforts to
break cryptography keys [14].

Moreover, this kind of abuse allows miscreants to resort to cloud
services to host part of their malware infrastructure [23, 60]. The
term “malware” is generally used in the security community to desig-
nate unwanted software such as viruses, Trojan horses, ransomware,
worms, and botnets – that exhibit harmful behavior to fulfill the at-
tackers’ intent [58]. Miscreants usually start by infecting the victim’s
system either through technical sabotage (e.g. by exploiting vulner-
able network services or by performing drive-by download attacks
targeting web browsers) or through social engineering methods.

Once the target machine has been infected, modern malware is usu-
ally equipped with communication and remote control mechanisms
that provide the attacker with full control over the infected host. Con-
sider the example of a bot, which is a type malware that is under the
control of a malicious entity, also known as the bot-master. A bot al-
lows the bot-mastere to deliver commands and control at distance the
victim’s system. In addition, bots may be capable of exfiltrating the
victim’s confidential data such as credit card number and online bank-
ing credentials to a remote server under the control of attacker. This
kind of functionality requires specific infrastructure support, includ-
ing a number of malicious servers to collect the uploaded information
and orchestrate the command and control (C&C) communication.

To detect malicious C&C servers, previous works have focused
on the analysis of the local area network, where they analyzed the
spatial-temporal correlation of pre-programmed activities related to
C&C, such as coordinated communication and propagation [68]. More
recently, researchers shifted their focus to large scale Internet Service
Provider (ISP) networks [24]. However, little has been known about
the malware infrastructure, and in particular about the role of cloud
services to host malicious software.

Prior abuse cases of public cloud providers have attracted a lot
of interests in the recent years [23, 60, 77, 182]. For instance, cloud
services are listed by Solutionary among the major components of
modern cybercrime, and “attackers seem to use these services the same
way and for the same reasons as legitimate customers” [169]. Despite this
popularity, we are aware of only few research studies that managed
to evaluate the real extent of this phenomenon.

Hamza et al. [71] presented a survey of possible techniques to
abuse cloud services in modern cybercrime. The authors provided
interesting insights on the way cyber-attacks were perpetrated from
within cloud platforms, including examples such as host hopping at-
tacks and abuse of privileges. However, this survey only focuses on
strong attack signals, and does not consider other weak signals that
determine possible ways in which the cloud services are used as part
of the attackers command and control infrastructures.

2.1 nefarious use of cloud services 11

In [132], Nappa et al. analyzed drive-by download attacks and ex-
ploited servers that were managed by the same organizations. They
found that 60% of the service providers that hosted the exploit servers
were indeed public cloud service providers. More interestingly, they
evaluated the abuse report procedures implemented by public cloud
service providers. The authors discovered that out of 19 abuse re-
ports they submitted, only 7 were investigated by cloud providers.
Moreover, the authors computed that it takes on average 4.3 days for
a cloud provider to take down an exploit server after it has been re-
ported. It is important to note that the authors of this study only
focus on drive-by-download attacks that involve cloud services. Al-
though drive-by-download servers constitute a major component of
a modern malware infrastructures, in this dissertation we go beyond
this unique use case to provide a more comprehensive assessment
about the way cloud services are being integrated in malware infras-
tructures in modern cybercrime. We also try to understand whether
clouds constitute core elements of the malware structure, or whether
they are only used as redundant or failover components.

Canali et al. [36] proposed an active approach to evaluate the se-
curity mechanisms implemented by web hosting providers. They in-
stalled vulnerable web services on 22 distinct hosting providers, and
triggered multiple attacks to leverage the reaction capabilities of these
providers. To test the security mechanisms implemented by cloud ser-
vice providers, in Chapter 3 we adopt a less intrusive approach where
we only observe malware interactions with the cloud. In our study
we only focus on Amazon EC2. While this choice may limit the extent
of our observations, at the same time eliminate as much as possible
the impact of rogue or other hosting providers that do not guarantee
minimal security SLA requirements to their users. We believe that fo-
cusing only on the biggest cloud providers in terms of market share
also shed light on the limits of current security and accountability
mechanisms implemented by today’s cloud providers.

Wang et al. [188] proposed a system that measures the churn rates
in public cloud service providers (e.g. EC2 and Azure) in order to
evaluate the efficiency of IP blacklists against cloud-based malicious
activities. The authors actively probed the EC2 and Azure IP ranges,
and proposed a clustering mechanism that groups together IP ad-
dresses implementing the same services. They also observed all web
services hosted by cloud providers, spanning both benign and mali-
cious activities. The results of their experiments showed only small
amounts of malicious activity (mostly phishing and malware host-
ing) by comparing data from their system with public blacklists. In
Chapter 3 we propose a complementary approach that observes only
malware interactions with the cloud in order to leverage the true ex-
tent of the malicious activity hosted by public cloud providers.

12 related work

More recently, Liao et al. [114] analyzed systematically the public
cloud repositories that have been abused by miscreants for the pur-
pose of illicit activities. The authors also characterized the effective-
ness of long-tail search engine optimization spam that abused cloud
hosting services [115]. Tajalizadehkhoob et al. [177] analyzed the data
of C&C communication over a period of seven years and found that
attackers have little preference for the providers where C&C domains
have a relatively long lifespan.

Finally, in a recent paper published in 2017, Lever et al. [111] stud-
ied the network activities of about 26M malware samples collected
from 2011 to 2015. They were able to confirm a similar trend and ob-
tain results in line with what we present in Chapter 3, but on a larger
scale that covered several cloud providers. They also found that po-
tentially unwanted program (PUP) families were the ones among dif-
ferent malware families that used the most cloud infrastructure and
content delivery networks (CDNs).

To conclude, the work in this dissertation presents the first system-
atic measurement of the security of public cloud services with respect
to malware abuses. Recent studies focused on the abuses of cloud ser-
vices in different point of view.

2.2 understanding phishing attacks

The scientific literature includes a large number of papers related
to phishing attacks. In particular, researchers have proposed many
techniques to study, block, and take down phishing sites. However,
there is not yet a comprehensive monitoring system that enables the
observation of the entire life-cycle of a phishing kit. We classify exist-
ing studies into the following three categories: anatomy of phishing,
anti-phishing techniques, and evaluation of anti-phishing techniques.

2.2.1 Anatomy of Phishing

The work most closely related to this dissertation was performed
by Waston et al., who described two phishing incidents [190] that
were discovered by the Honeynet Project [172]. Authors describe how
phishers behave and the techniques used to set up the phishing sites.
One of the two phishing kits received 256 incoming HTTP requests,
but apparently no personal data was submitted by the visitors. Yet,
authors had to shut down the honeypot because they did not have
any system to prevent user data from being stolen by the attackers.
Our work presented in Chapter 4 adopts a similar honeypot-based
approach but focuses on providing an ethical system to study how
real-world phishing attacks are structured. McGrath et al. [120] an-
alyzed the way phishers performed their attacks, the characteristics
of phishing links, the domains, and their hosting infrastructure. The

2.2 understanding phishing attacks 13

authors also estimate the lifetime of phishing domain names by us-
ing periodically collected DNS records. Moore et al. [126] present
the evidence that miscreants use search engine (“Google Hacking")
to compromise and re-compromise machines, which are further used
to host phishing sites. In another work, Moore et al. [129] studied
the temporal correlations between spam and phishing websites in
order to understand the attackers behavior, and to evaluate the ef-
fectiveness of phishing site take-down. Sheng et al. [165] conducted
a demographic analysis of victims’ susceptibility to phishing attacks
and discussed the effectiveness of educational materials.

A few studies have focused on estimating the success rate of phish-
ing emails. Jagatic et al. first reported the success rate of simulated
phishing emails [82], while Jakobsson et al. proposed ethical phish-
ing experiments on a popular online auction website [85], in order to
measure the success rate of simulated phishing emails. The reported
success rate is respectively about 15% and 11% (compared to 9% we
found in our study). However, these works measured the success rate
based only on simulated phishing attacks.

Multiple studies measured the impact of phishing on potential vic-
tims. Moore et al. have empirically measured the lifetime of phishing
sites and the number of victim responses [125]. Authors retrieved
confirmed reports from PhishTank, and then relied on the records
generated by Webalizer, a free web server log analysis tool, in case
where it was already installed on the compromised websites. How-
ever, this tool saves merely the number of hits for a given web page
instead of the unique number of visits, which makes the reported
results a very rough estimation. The authors were also able to esti-
mate the number of victims for 20 phishing sites, based on the as-
sumption that only users who fall victim of a phishing would be redi-
rected to a confirmation page after they have provided their creden-
tials. Trusteer measured the effectiveness of phishing attacks based
on the statistics gathered by a browser plugin over a period of three
months [180]. The authors found that in 2009, 45% of observed vic-
tims who were connected to a phishing site disclosed their personal
credentials. However, their study provides only a partial view of a
phishing attack.

Finally, Cova et al. in [49] dissected freely available phishing kits
and a few online phishing sites. They analyzed the target organi-
zations, the techniques used to exfiltrate data, and the obfuscation
methods implemented in the phishing kits.

2.2.2 Anti-Phishing Techniques

Phishing countermeasures have attracted a lot of interest from the
research community. The proposed countermeasures can be grouped

14 related work

into three categories: phishing page detection, blocking, and user
training.

Most phishing detection techniques identify phishing pages by build-
ing a classifier using different heuristics based on URL features [62,
110] or on the web page content [144, 195, 203]. Some studies aim
at detecting and blocking phishing attacks at different stages. For
instance, Fette et al. [61] use machine learning to identify and block
phishing emails. Several studies propose a browser plugin to protect
users from phishing [40, 54, 88]. Another popular approach to block
phishing is to compile and distribute blacklists, such as Google Safe
Browsing and PhishTank. A number of studies have focused on ed-
ucation against phishing attacks and how to train users to identify
phishing [102–104, 139]. Finally, only one study focused on identify-
ing drop email addresses through the use of verified phishing web-
sites from PhishTank and metadata provided by email providers [127].
However, this method introduces a significant latency compared to
our approach since public blacklists may not be efficient enough to
promptly detect live phishing kits.

2.2.3 Evaluation of Anti-Phishing Techniques

In 2006, a number of studies concluded that anti-phishing solu-
tions [202], security indicators [55], and browsers toolbars [196] were
ineffective in detecting phishing sites and protecting users.

In 2007, Ludl et al. [119] and Sheng et al. [166] specifically focused
on the effectiveness of blacklists to prevent phishing, reaching con-
tradictory results. In the first study, the authors collected online
phishing URLs from PhishTank, and tested them against Google Safe
Browsing along with the Phish Filter of Microsoft Internet Explorer.
This study concluded that the blacklist approach is efficient in pro-
tecting users, especially Google which correctly detected almost 90%
of the phishing URLs [119]. In the second study, Sheng et al. eval-
uated five blacklists (including the ones tested by Ludl et al.) with
phishing URLs less than 30 minutes old, collected from the Univer-
sity of Alabama Phishing Team’s email data repository. The paper
found that those blacklists were inefficient as most of them detected
less than 20% of the fresh phishing pages [166].

Egelman et al. conducted an empirical study to evaluate the effec-
tiveness of web browser phishing warning and provided some guid-
ances on how to enhance security indicators [59]. In 2014, Gupta et
al. [69] evaluated the effectiveness of phishing education pages [102]
to determine if they were effective at helping users identify phishing
attempts.

To summarize, most existing studies evaluated the effectiveness of
anti-phishing techniques only after the phishing page was reported
publicly or privately. Our study assesses instead the effectiveness of

2.3 deception techniques in computer security 15

the blacklist approach right from the beginning of the phishing at-
tacks. To achieve this goal, the work presented in this dissertation
proposes a monitoring mechanism that takes advantage of the van-
tage point of a service provider, which enables the observation of the
entire life-cycle of a phishing attack in the wild.

2.3 deception techniques in computer security

In this thesis, we survey existing deception techniques and pro-
pose a new classification along four dimensions. We also resort to de-
ception techniques to achieve better protection for web applications.
In the following, we first overview existing surveys and classifica-
tions on this topic, and leave a more complete overview of deception-
related techniques to the survey presented in Chapter 5. Then we
summarize previous work that used deception techniques to monitor,
detect and mitigate web attacks.

2.3.1 Previous Surveys

In [170], Spitzner discussed the use of honeypot and honeytoken
technologies as a way to protect against the insider threat. In [157],
Rowe discussed the different possibilities to integrate deception in
honeypot systems – such as decoy information, delays, fake error
messages – and compared them to other opportunities for using de-
ception in real computer systems. Voris et al. [187] discussed the
multiple use cases where decoys may be relevant for computer secu-
rity. Juels and Tech [91] discussed the use honey objects (a generic
term they used to refer to multiple types of deception) to improve
the security of information systems. Jogdand and Padiya [87] also
analyzed IDS solutions and the way they may implement honey to-
kens, which are indeed a specific type of deception. In [46], Cohen et
al. overviewed multiple issues that arise when applying deception in
computer security, and further introduced their own framework for
deception. The authors also discussed the major challenges to per-
form practical deceptions using this framework to defend the infor-
mation system. Cohen also surveyed in [44] the historical and recent
uses (until 2005) of honeypots and decoys for information protection,
as well as the theory behind deceptions and their limitations.

Our work is different as it surveys the recent contributions, focus-
ing on the technical challenges and evaluations of deception, rather
than to study the history of this concept and how it found its way
into computer security.

16 related work

2.3.2 Previous Classifications

Early deception classification schemes followed a traditional mili-
tary deception classification scheme. For example, Cohen [42] exam-
ined deception techniques based on the nature of these techniques, in-
cluding the “concealment, camouflage, false and planted information, ruses,
displays, demonstrations, feints, lies and insight”. The historical exami-
nation revealed that deception was far from being fully exploited in
computer security. The same type of taxonomy has also been used in
later works [159, 160].

Rowe and Rothstein [159] developed a theory of deception that is
inspired from the computational linguistic theory of semantic cases.
The semantic case roles may contain participant (agent, beneficiary),
space (direction, location), time, causality (cause, purpose), quality
(content, value), etc. The authors explained a deception operation
as an action that modifies the values of the associated case role. Co-
hen [44] proposed a model of computer deceptions that groups de-
ceptions by the hierarchical level of the computer at which they are
applied, from the lowest hardware level to the highest application
level. Information and signals between different levels can either
be induced or inhibited in order to implement deception. Similarly,
Almeshekah and Spafford [7] classified deceptions based on the sys-
tem state and components where deception may be deployed. The
top-level categories include the functionality of the system (system
decisions, software and services, internal data) and state of the sys-
tem (activities, configurations and performance).

Gartner [149] proposed a four layer deception stack including the
network, endpoint, application and data layers. It further analyzed
the deception techniques implemented by current commercial prod-
ucts. Both Gartner [149] and Almeshekah and Spafford [8] have
examined the possibilities to deploy deception techniques during the
different phases of a cyber attack, without any systematic classifica-
tion.

Most previous classification considered only one dimension, such
as the component or the granularity of each technique [7], or the layer
where deception is applied [149]. These mono-dimensional classify-
ing fail to capture other aspects of deception that are of equal impor-
tance, such as the threats covered by each technique, and the way
the deception mechanism can be integrated inside a target system.
To take all these different aspects into account, this dissertation in-
troduces a new comprehensive classification system based on four
orthogonal dimensions.

2.3 deception techniques in computer security 17

2.3.3 Deception-Based Web Application Protection

The literature is brimming with approaches to protect web appli-
cations [112] against attacks. Nevertheless, current web attacks de-
tection techniques fail to reliably and proactively detect attacks in
their early stage. Due to these limitations, complementary solutions
such as deception techniques have been recently investigated by the
research community [8, 13]. In this dissertation, we focus mainly on
those solutions that adopt a deception-based web application protec-
tion scheme. We further group existing approaches into two cate-
gories, one used to enhance attack detection and the other used for
the purpose of attack mitigation.

2.3.3.1 Attack Detection

Brewer et al. [30] proposed a web application that integrates decoy
links. These links are invisible to normal users, but are expected to
be triggered by crawlers and web bots that connect to the applica-
tion. Similarly, Gavrilis et al. [65] presented a deceptive method that
detects denial of service attacks on web services by using fake links
hidden in the web page. In the same way, McRae and Vaughn [121]
submitted honey accounts which contained decoy URL to phishing
sites to track phishers while they viewed the honey accounts.

Another approach to deceive web-based attacks consists of using
fake information disguised as web server configuration errors. Only
malicious users are expected to manipulate or exploit these errors,
which expose them to detection by the system. In this scope, Virvilis
et al. [185] introduced honey configuration files, such as robots.txt,
including fake entries, hidden links, and HTML comments that in-
dicate honey accounts, in order to detect potential attackers. Other
studies proposed decoy forms [97] and honey URL parameters [147]
that display fake configuration errors in an effort to mislead attackers
and protect the target system.

In [6], Almeshekah proposed centralized deceptive server which en-
ables the implementation of deception to protect target web servers.
In each web server, the proposed system hooks incoming requests
and further sends their metadata toward the centralized server where
a decision is taken on whether the system should respond with de-
ception. The author further analyzed the performance overhead in-
troduced by the system.

2.3.3.2 Attack Mitigation

Julian [92] proposed to alter the response time of a web-based
search engine by injecting random delays in reply to malicious re-
quests in order to confuse an attacker. Anagnostakis et al. [12] in-
troduced “shadow honeypots” that extend traditional honeypots with

18 related work

anomaly-based buffer overflow detection to protect web application.
The shadow honeypot is a copy of the target application, with com-
mon context and application state. It is used to analyze anomalous
traffic and to enhance the accuracy of anomaly detection.

Finally, Araujo et al. [16] presented a technique to transform tra-
ditional patches into “honey-patches”, designed to remove the vulner-
ability while at the same deceives the attackers into believing that
the attacks have succeeded. On the detection of an attack target-
ing the known vulnerability of the web server, the system forwards
the attacker to an unpatched but isolated instance of the same web
server. Authors further extended their honey-patch system with an
instrumented compiler that automatically clean credentials in the un-
patched version of the web server [15].

The work in this dissertation differs from the above work in that we
focus on attack detection instead of attack mitigation. Unfortunately,
our survey emphasizes how most of the previous work in deception-
based attack detection did not provide experiments and evaluations
of the proposed techniques. Therefore, in Chapter 6 we present two
experiments we conducted to evaluate the effectiveness and the false
positive rate of deception-based web application protection.

3
R O L E O F C L O U D S E RV I C E S F O R M A L I C I O U S
S O F T WA R E

In this chapter, we investigate the way cyber-criminals abuse service providers,
and in particular public cloud providers, to host part of their malicious in-
frastructures. This includes using the provider to host exploit servers to
distribute malware, C&C servers to manage infected terminals, redirectors
to increase anonymity, and drop zones to host stolen data.

Public cloud services have rapidly expanded in the recent years,
with almost half of US businesses now using cloud computing in
some capacity [48]. The worldwide market of cloud services is pro-
jected to grow 18 percent in 2017 to reach 246.8 billion dollars [148].
Public cloud services offer a straightforward pay-as-you-go pricing
model where users dynamically create virtual machines at will, pro-
vide them with public IP addresses and on-demand compute and
storage resources, and then delete them without any sustainable cost.
Major providers of public cloud services, such as Amazon EC2 [11]
and Microsoft Azure [18], also propose scalable services and default
configuration options that contributed to the wide adoption of cloud
services.

Unfortunately, the rapid growth of cloud services has also attracted
cyber-criminals, paving the way to an active underground economy.
As a result, Los et al. [118] listed the abuse of cloud services among
the top nine critical threats to cloud computing. In fact, public infrastructure-
as-a-service clouds provide users with virtually unlimited network,
compute, and storage resources. These are coupled with weak reg-
istration processes that facilitate anonymity, and so anyone with a
valid credit card can easily register and use cloud services. For exam-
ple, an early case of cloud service abuse was publicly uncovered in
2009, where a Zeus command and control (C&C) server was found
to be hosted on Amazon EC2 [60]. More recent examples include
the SpyEye banking trojan that was found to be using Amazon S3

storage [23], Android malware that exploited the Google Cloud Mes-
sage service [182], and more advanced persistent attacks that used
Dropbox and Wordpress services as a cover [77]. Despite these mul-
tiple examples, we are unaware of any existing study that measures
the extent at which public cloud services are being abused by cyber-
criminals. Such study would advise the service provider to better
understand the threat, different actors involved and finally to imple-
ment necessary protection measures. More precisely, we do not know

20 role of cloud services for malicious software

if cyber-criminals use cloud-based servers only as redundant compo-
nents of their malware infrastructure, or whether they specifically use
cloud services to achieve a better sustainability. Besides, we do not
know if public clouds add more resilience to malware infrastructures,
what is the time it takes to detect a malicious server hosted on a pub-
lic cloud, as well as the time required to take down this server after
it was first discovered.

In this Chapter we present a framework to measure and analyze
malicious activity that involves public cloud services. Unlike previ-
ous work that actively probed public cloud IP addresses [188] or only
use passive DNS records [74], we directly collect malware commu-
nications by analyzing the network traffic recorded by the Anubis
dynamic analysis system [20]. Anubis is a publicly accessible service
that analyzes malware samples in an instrumented sandbox. As part
of its analysis, the system also records which domains and IP ad-
dresses are contacted by each malware sample, and part of the data
that is transferred through the connection. Unfortunately, malware
can communicate with the cloud for multiple reasons, including ma-
licious activities but also other innocuous connections which range
from simple connectivity checks, to the use of public benign services.
This greatly complicated the analysis, and required the development
of several heuristics to discard malware samples using public services
hosted on the cloud, as this cannot be considered an abuse of the
cloud itself.

In our experiments, we analyzed the network communication of
over 30 million samples, submitted between 2008 and 2014. Our sys-
tem identified 1.08 million (roughly 3.6%) that connected to at least
one publicly routable Amazon EC2 IP address. These IPs were as-
sociated to 12,522 distinct cloud-based domains. Interestingly, we
observed that over the same period, only 32, 225 samples connected
to Microsoft Azure. Due to the relatively low number of samples that
interacted with Azure, we only focused our study on Amazon EC2.

3.1 approach

To identify malicious servers hosted on Amazon EC2, we first col-
lected the range of IP addresses assigned to the cloud images, as
reported by the Amazon website 1. Moreover, to account for possi-
ble yearly changes, we also retrieved previous versions of the page
from the web archive project 2. We then extracted and analyzed the
network traffic generated by all the malicious samples that have been
collected and executed in Anubis, a popular malware analysis sand-
box [20], over the past six years.

1. http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

2. https://archive.org/web/

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://archive.org/web/

3.1 approach 21

Malware clusteringMalware
traffic

Cloud IP
ranges

Scanner Filter

DNS
records

Database

Domain analysis

DNS lookup

Input dataset Feature analysisSamples selection

Figure 3.1 – Architecture of our platform

The main goal of our study is to verify the way miscreants make
use of cloud services, whether they specifically target cloud infras-
tructures, and measure the time it takes for the provider to detect
and drop malicious services hosted on EC2. To do so, our system
tracks all domain names associated with the EC2 IP addresses that
were contacted at least once by a malicious sample. Then, it further
extracts and analyzes the DNS features and the content of network
communications between the malware and the EC2 machines.

A major challenge in our study is that domain names extracted
from the Anubis database do not only include dedicated malicious
servers, and so we cannot simply mark as suspicious every connec-
tion toward a cloud-based IP address. In fact malware often contacts
other public and benign cloud-based services, such as IP lookup ser-
vices, advertisement websites, and URL shortening. These services
are not part of the malicious activity and therefore need to be identi-
fied and discarded from our subsequent analysis.

On the other hand, real malicious domains may have been sink-
holed by security organizations at the time the malware was analyzed
in Anubis. Malware will be thus redirected towards sinkhole ser-
vices that are sometimes hosted on EC2, even though the original
domains may have not been hosted on the cloud. Our system filters
these cases and does not consider them as cloud-related malicious
activities. Finally, in our experiments we discovered that many mal-
ware samples were adwares that leverage pay-per-install (PPI) services
hosted on Amazon or other cloud providers. PPI services allow soft-
ware publishers to pay affiliates by the number of installations that
they perform on target machines. Caballero et al. analyze in [33] the
modus-operandi of PPI services and measure their use for malware dis-
tribution. Although the use of PPI services to distribute malware still
constitutes a malicious activity, PPI services are not malicious per-se,
and so they need to be discarded from our dataset as we only focus
in this chapter on dedicated malicious services that were hosted on
EC2.

3.1.1 Platform Description

To setup our experiments, we designed and implemented the plat-
form illustrated in Figure 3.1. Our system consists of two main com-
ponents: the samples selection and the feature analysis modules. The

22 role of cloud services for malicious software

first extracts from the Anubis database all malware samples that ex-
hibited at least one network connection towards the Amazon cloud.
During the period of our study, we identified 1.08 million malware
samples that satisfied this criterion. The samples selection module
further discards samples that have contacted benign public services
hosted on EC2, and keeps only dedicated malicious services as input to
the feature analysis module. Finally, the feature analysis module clas-
sifies the remaining malware samples and analyzes their dedicated
malicious services hosted on cloud.

3.1.1.1 Samples Selection.

The samples selection module aims at building a database of mal-
ware samples that, during their analysis, connected to malicious ser-
vices hosted on EC2 – as well as the domain names or IP addresses
that were associated with these services.

malware scanner : this module first extracts from Anubis all
malicious samples that interacted with EC2 machines. We seed this
module with the list of publicly routable IP ranges that were associ-
ated to the Amazon cloud in the year in which the analysis was per-
formed. During the six years of our study, we identified 1, 079, 318
distinct samples that connected to EC2.

The first thing we noticed in our experiments is that a large num-
ber of samples in our dataset were executables that leveraged pay-
per-install (PPI) services hosted on EC2. PPI services have recently
emerged as a key component of modern cybercrime and miscreants
often refer to these services to outsource the global distribution of
their malware. They supply PPI services with malware executables,
which in turn charge them for successful installations based on the
requested features for the desired victims. PPI service providers oper-
ate directly or through affiliate programs. They develop downloaders
that retrieve and run the requested software (possibly malware) upon
execution on the victim computer.

To identify PPI downloaders in our dataset, we refer to multiple
public sources such as PPI forums [178] and public PPI web sites. The
main challenge in our case was to identify the different PPI brands,
since there are new brands that constantly appear over time. In order
to address this challenge, we analyzed the public PPI services that
were mostly contacted by the samples in our dataset, and we tried to
infiltrate these services by supplying a small program we developed
for distribution. By testing and manually reverse engineering the re-
sulting installer we developed a set of 13 distinct network signatures
that match the download URLs associated with different families of
PPI services. By using these signatures on the malware traffic we
could further discard their associated samples in our dataset. As
illustrated in Figure 3.2, we were able to discard 1, 003, 289 PPI down-

3.1 approach 23

PPI Domain name Samples PPI Domain name Samples

getapplicationmy.info 116306 torntv.net 16578

sslsecure1.com 71965 powerpackdl.com 15586

oi-imp1.com 68255 oi-config3.com 15578

secdls.com 52857 webfilescdn.com 14050

oi-config1.com 43526 torntvz.com 12440

ppdserver.com 39434 premiuminstaller.com 11879

optimum-installer.com 38777 ppdistro.us 10463

optimuminstaller.com 35510 bestringtonesmaker.com 10136

leadboltapps.net 31918 baixakialtcdn2.com 9946

xtrdlapi.com 18615 oi-config2.com 9601

Table 3.1 – Top 20 PPI services in our dataset

loaders, which corresponds to up to 93.2% of our initial dataset. Table
3.1 summarizes the top 20 PPI domain names that were contacted by
malware in our dataset and the number of samples that were associ-
ated with each service.

In addition to PPI downloaders, our dataset also includes benign
files that were submitted for analysis in Anubis. In fact Anubis is
a public service where Internet users freely submit suspect files for
analysis. These files may turn out to be benign files that connect
to benign cloud-based services and so they also need to be discarded
from our dataset as they do not belong to the malware category. Since
our dataset covers a period where the most recent samples are few
months old, we use anti-virus (AV) signatures to identify and discard
benign samples. We refer to public services such as VirusTotal 3 to
scan our dataset, and we consider as benign files all samples that are
detected by less than five AV editors. Our dataset finally includes
45, 422 confirmed malicious malware samples. The remaining 30, 607
samples (2.83% of the initial malware dataset) were discarded as we
do not have enough confidence about the malicious nature of these
files.

domain filter : The domain filter module further discards from
our dataset all domains that are associated with benign cloud-based
services. Although these domains supply public Internet services
that can be used by malware, they are not part of dedicated malicious
services. Out of the initial set of 12, 522 distinct EC2-based domain
names or IP addresses, the malware scanner discarded 8, 619 associ-
ated to PPI services or that were also contacted by benign programs.
The domain filter classifies the remaining 3, 903 domains into four
categories, as illustrated in Table 3.2.

3. http://www.virustotal.com

http://www.virustotal.com

24 role of cloud services for malicious software

Figure 3.2 – Composition of our malware dataset

Service Domain Names Malware Samples

Public Services

Advertising 930 22,216

File sharing 796 7,657

Domain redirection 270 479

Others 211 1,723

Sinkholed 26 4,249

Infected 22 231

Dedicated
1,648 7,884

N/A 983

Total 3,903 45,422

Table 3.2 – EC2-based service categories

The first category includes public benign services that were con-
tacted by malware. We found multiple examples in this category,
including public IP resolvers (e.g. hostip.info), advertising and
affiliate services, file sharing (e.g. dropbox), URL shortening (e.g.
notlong.com), and multiple other free services (e.g. about.me, spring.me).
To identify known public services in our dataset, the domain filter
leverages multiple sources such as the Alexa list of top domains, pub-
lic repositories that provide URL shortening services (e.g. bit.do)
and file sharing 4. We also refer to AV labels in VirusTotal in order
to identify generic adwares. The domain filter module identifies as
advertisement services all domains that were only contacted by Ad-
wares samples. To be conservative, these domains were classified by
our system into the public services category.

The second category includes domain names that have been sink-
holed, and so they were redirected to sinkhole destinations that are
hosted on the cloud. EC2 hosts multiple sinkhole destinations that
are used to subvert BOT communications with their remote C&C

4. http://online-file-sharing-services-review.toptenreviews.com/

http://online-file-sharing-services-review.toptenreviews.com/

3.1 approach 25

domains. These domains were not originally hosted on EC2, and
so they need to be discarded from our dataset. We leverage the
X-sinkole HTTP header 5 in order to identify sinkhole destinations
in our dataset.

The last two categories include both dedicated malware domains
and domains that were once infected and temporarily used as part of
the malicious infrastructure. The separation between these two cate-
gories is more difficult and more prone to errors. Our system relies
on multiple empirical observations in order to discriminate between
the two cases. First, we assume that dedicated malware machines
that were hosted on EC2 more than one year ago have all been de-
tected or abandoned at the time we run our experiments. We show
in Section 3.2 that this is a reasonable assumption, consistent with
the average lifetime of dedicated malicious domains hosted on EC2.
Based on this assumption, the domain filter module actively probes
all the domains and if the domain is still in use and points to a pop-
ulated web page, we classify it as an infected host. Unfortunately,
domain name vendors often return a HTML page to sell expired do-
mains. Therefore, to correctly identify these domains, we parsed
the HTML response page using multiple keywords (e.g. ’domain
expired’, ’domain for sale’) and we removed these domains from
the infected domains category. On top of this first heuristic, we also
leveraged the history of DNS requests towards expired domains in
order to assess the average lifetime of these domains. We use for this
purpose DNS records that we extracted from DNSDB, a passive DNS
duplication service 6. In this case, our assumption is that infected do-
mains usually have a longer turnover than other dedicated malicious
domains. In other terms, infected domains are expected to appear in
DNS records a long time before the associated malware first appears
in the wild. Dedicated domains instead, usually appear a short time
before the malware is released and go offline a short time after the
malware has been detected. By combining these two heuristics we
were able to identify 22 infected services hosted on EC2 over the six
years of observation. The remaining 1, 648 domain names were iden-
tified by our system as being associated with dedicated malicious
services.

Most of the connections were initiated using a domain name, but
983 malware samples directly connected to EC2-based IP addresses
that were hard-coded in the malware itself, without any prior DNS
request. To summarize, 8, 867 of the 45, 422 samples used at least
one dedicated server hosted on Amazon EC2. For these, we also ana-
lyzed the content of their network communications. Almost 90.3% of
these samples used the standard HTTP protocol (either GET, POST,

5. http://www.iss.net/security_center/reference/vuln/HTTP_Malware_

XSinkhole.htm

6. https://www.dnsdb.info/

 http://www.iss.net/security_center/reference/vuln/HTTP_Malware_XSinkhole.htm
 http://www.iss.net/security_center/reference/vuln/HTTP_Malware_XSinkhole.htm
https://www.dnsdb.info/

26 role of cloud services for malicious software

or HEAD methods). Few samples were IRC bots (19 distinct samples)
and spam bots (136 distinct samples) that connected to malicious IRC
and SMTP servers hosted on EC2. The remaining samples belonged
to the Zeus version 3 and the Sality peer to peer (P2P) malware fam-
ilies, and were using the UDP protocol to connect to malicious P2P
services hosted on EC2.

3.1.1.2 Feature Analysis.

The analysis module processes the output dataset provided by the
feature extraction module in order to extract main trends. First, it
clusters malware families according to their antivirus labels, in order
to figure out whether there exists a general trend towards moving
malware infrastructures into the cloud, or whether this phenomenon
is limited to some specific malware families. Second, it analyzes the
network activity of each malware sample, computing the distribution
of IP addresses and the domain flux to tell if miscreants specifically
target cloud services, or if they use these services as part of their
redundant malware infrastructure. Third, the feature analysis mod-
ule observes the average duration a dedicated malicious server re-
mains publicly accessible on the cloud. This can be used to estimate
how effective are cloud providers in detecting abuse of their services,
and whether malware writers sustain long lived malicious activities
through the use of public cloud services. The following section pro-
vides the details and the main results of our experiments.

3.2 experiments

The dataset provided by the feature extraction module (as described
in Table 3.2) allows us to analyze both the malware families that are
using EC2 cloud services in some capacity, as well as the distribution
and lifetime of malicious domains that are hosted on EC2. There-
fore, a first question that we would like to address in this section is
whether the use of public cloud services is still limited to a small set
of malware families, or whether it can be generalized to different fam-
ilies of malware. A straightforward approach to answer this question
is to analyze the 8, 867 distinct malware samples that we found to be
connecting to dedicated malicious EC2 machines.

Since our dataset includes malware samples that are at least few
months old at the time we run our analysis, we believe it is reasonable
to use AV labels as a reference to understand and classify our dataset.
More complex behavioral clustering mechanisms, as proposed for in-
stance by Bayer et al. [19] and Perdisci et al. [146], could be applied
to refine the classification. However, since we only need a broad un-
derstanding of the major malware families that use cloud services
and we can tolerate few misclassification errors, a simple AV-based
solution is better suited for our study.

3.2 experiments 27

AV label # samples AV label # samples

Downloader Fosniw 1249 Trojan Kryptik 160

Worm Vobfus 909 Ramnit 129

Android DroidAp/SmsSend 634 Downloader Banload/Zlob 128

Downloader Murlo/Renos 567 Trojan Kazy 127

Backdoor QQRob 528 Downloader Virut/Virtob 127

Downloader Small BKY 208 Zbot 117

Delf Downloader 196 Malware SoftPulse 108

Trojan Injector 194 Downloader Karagany 90

Downloader 8CCBF09D99CF 186 Trojan Krap 89

Clicker Agent 172 Downloader Cutwail 80

Table 3.3 – Top 20 malware family

It is well known that different AV vendors assign different labels
for the same malware sample. For example, the SpyEye malware
can be identified by Kaspersky as Trojan-Spy.Win32.SpyEyes, and by
McAfee as PWS-Zbot.gen.br. To limit the impact of such inconsisten-
cies, we applied a majority voting to assign the labels to our dataset.
In order to do so, we pre-process each label by splitting it in multiple
elementary keywords according to non-alphanumeric characters We
then discarded common prefixes such as W32, Mal and Trojan, as well
as Generic malware identifiers, such as Heur, Worm, Gen, and malware.
To handle malware aliases, we referred to multiple public sources
such as the spywareremove website 7 to group together all aliases of
a given malware family. For example, the labels win32.spammy by
Kaspersky and W32/Sality by McAfee were identified as aliases for
the same sality malware, and therefore grouped as part of the same
family.

cloud-based malware families : We mainly focus in this chap-
ter on malware that uses dedicated malicious services hosted on EC2.
Therefore, we build clusters of malware families for our dataset in-
cluding 8, 867 distinct samples that belong to this category. Using
our approach, we are able to identify 377 distinct malware families.
As clearly illustrated in Table 3.3, which provides the list of top 20

malware families, we were not able to identify a predominant mal-
ware family that uses dedicated malicious cloud services. More inter-
estingly, our dataset includes malware that uses different topologies,
including also decentralized peer-to-peer networks such as the Sality
malware. Clearly the use of dedicated malicious cloud services is not
limited to a small set of malware families, but it could be generalized
to all categories of malware.

7. http://spywareremove.com/

http://spywareremove.com/

28 role of cloud services for malicious software

Oct
2010

Apr 2
011

Oct
2011

Apr 2
012

Oct
2012

Apr 2
013

Oct
2013

Apr 2
014

0

100

200

300

400

500

600

700

800

#
 s

a
m

p
le

s

samples
% samples

0.0%

0.01%

0.02%

0.03%

0.04%

0.05%

%
 s

a
m

p
le

s

(a) Number and ratio of distinct
malware samples that connected
to dedicated malicious domains
hosted on EC2

May 2010

Nov 2010

May 2011

Nov 2011

May 2012

Nov 2012

May 2013

Nov 2013

May 2014
0

10

20

30

40

50

60

70

80

#
 m

a
lw

a
re

 f
a
m

ili
e
s

malware families
domain names

0

50

100

150

200

250

#
 d

o
m

a
in

 n
a
m

e
s

(b) Number of distinct malware fam-
ilies that used dedicated EC2-
based malicious services and num-
ber of their associated malicious
domain names

Figure 3.3 – Malware dataset analysis

time evolution : Since the hosting and usage of malicious ser-
vices on public cloud infrastructures such as EC2 is not limited to
specific malware families, our next goal is to identify if there is a
clear trend on the amount of malicious software that make use of
cloud services. Figure 3.3a illustrates the number of distinct samples
that connected to dedicated malicious domains hosted on EC2 during
the period of our observation. To account for changes in the overall
number of submissions, the figure also shows the percentage of dis-
tinct samples compared to the total number of samples submitted to
Anubis in the same period. Figure 3.3b shows instead the number
of distinct malware families, and the number of their associated ma-
licious domains that were found to be hosted on EC2 over the same
period.

On average, the number of malware that uses dedicated cloud-
based malicious services has grown by almost 4 times between 2010

and 2013. The overall trend also includes multiple peaks, that after
a manual analysis resulted to be associated with multiple instances
of malicious servers found to be temporarily hosted on Amazon EC2.
While the fast growing number of malware samples that use cloud-
based services may appear as a natural consequence of the general
increase in the number of malware attacks [80], Figure 3.3a shows
that this is not the case and that the ratio between these malware
samples and the total number of malware submitted to Anubis has
been increasing at the same rate. As illustrated in Figure 3.3b, this
trend can be generalized to all malware families, which means there
is a growing appetite towards using cloud infrastructures to host ma-
licious servers. This could be due to multiple elements, including the
fact that cloud services have been rapidly expanding in the past few
years, and the fact that they are ease to access and still lack a strict
accountability and control over their hosted machines [100].

3.2 experiments 29

3.2.1 Role of Public Cloud Services in Malware Infrastructures

In this section we describe the different ways malicious software
makes use of public cloud services. In particular, we are interested in
understanding whether miscreants specifically target cloud services
or whether they use these services as small parts in a much larger
redundant infrastructure.

For this purpose, we measured the ratio of remote malicious desti-
nations that were hosted on EC2, compared to all malicious destina-
tions contacted by the malware during the analysis. Then, for those
malicious services that were hosted on EC2, we determined if they
were hosted on EC2 only as part of a redundant mechanism. In this
case, we extracted the DNS requests executed by the malware and we
monitored the DNS records history using DNSDB service in order to
compute the ratio of IP addresses that belong to the EC2 IP range,
compared to all IP addresses associated with that malicious domain
in other moment in time. This technique works particularly well in
the presence of round-robin DNS and DNS fast-flux techniques that
are often adopted by botnet herders. For instance, miscreants can as-
sociate different IP addresses with the same malicious domain name,
where only some of these IPs may be hosted on EC2.

Figure 3.4 presents the average distribution of the ratio of remote
malicious destinations that were hosted on EC2, compared to all mali-
cious destinations contacted by all malware samples. We present our
findings as a box plot where malware samples are classified accord-
ing to their submission date to Anubis. The Y-axis characterizes the
ratio of dedicated malicious domains that were hosted on EC2, with
respect to all malicious domains contacted by malware. Since we in-
cluded in this experiment only malware samples that used dedicated
malicious services on the Cloud, the percentage is always greater than
0%. On the other hand, a malware would fit into the 100% category
in case all dedicated malicious domains that were contacted by the
malware were strictly found to be hosted on EC2.

As shown in Figure 3.4, miscreants mostly use public cloud ser-
vices in order to host only certain components of their malware in-
frastructures. Note that while in 2010, and for malware that uses
EC2 to host its dedicated malicious services, only few components
of its malware infrastructures were found to be hosted on EC2 (less
than 40% of remote malicious domains in average); the use of pub-
lic clouds to host dedicated malicious services has rapidly evolved
in the recent years, including malware samples that were found to
be exclusively communicating with dedicated cloud-based malicious
domains in years 2013 and 2014. In other terms, miscreants have
been recently referring to public cloud services in order to setup and
manage their entire malware infrastructure. Therefore, although the
use of public cloud services is still limited to only specific compo-

30 role of cloud services for malicious software

2010 2011 2012 2013 2014
Year

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

E
C

2
-b

a
se

d
 d

e
st

in
a
ti

o
n
 r

a
te

 p
e
r

m
a
lw

a
re

 s
a
m

p
le

Figure 3.4 – Rate of dedicated malicious EC2-based domains contact per
malware sample

nents of malware infrastructures, we observe an increasing appetite
for miscreants towards using public cloud services to setup and man-
age additional components of their malware infrastructures.

Since most miscreants refer to public cloud services to host only cer-
tain components of their malware infrastructure, the second question
we would like to answer is whether they specifically refer to public
cloud services for this purpose, or whether they use these services
as redundant or failover components. We observed for this purpose
the history of DNS records for all dedicated malicious EC2-based do-
mains in our dataset until they were blacklisted, then we identified
all IP addresses that were associated with these domains and their
registrars in the DNSDB service. The results of our investigation
were compelling. Out of the initial 1, 648 dedicated malicious EC2-
based domains that constitute our dataset, 1, 620 domains (almost
98.3% of our dataset) were exclusively associated with IP addresses
that belong to the EC2 IP range. Note that while 87.5% of dedicated
malicious domains were associated with only a single EC2-based IP
address, another 10.8% where found to be associated with multiple
IP addresses that all belong to the EC2 IP range. In other terms, mis-
creants were specifically using public cloud infrastructures such as
EC2 to host their dedicated malicious services.

While the use of public cloud services to host dedicated malicious
domains is still limited to only certain components of today’s mal-
ware infrastructures, miscreants appear to be specifically targeting
cloud infrastructures for this purpose, and do not use public clouds
only as redundant components of their malware infrastructures.

3.2.2 Dedicated Domains Lifetime Estimation

In the last part of our study, we tried to estimate the average time
that malicious domains persist on EC2 cloud. Our approach leverages
the lifetime of the EC2-based malicious domains in order to estimate

3.2 experiments 31

100 101 102 103 104

Number of days (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

2010
2011
2012
2013
2014

(a) Time elapsed until a dedicated
malicious EC2-based domain was
first observed in Anubis

100 101 102 103 104

Number of days (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

2010
2011
2012
2013
2014

(b) Time until a dedicated malicious
domain was no longer hosted on
EC2, after it was observed in Anu-
bis

Figure 3.5 – Lifetime of dedicated malicious EC2-based domains

whether the use of public cloud providers such as EC2 adds more
resilience to malware infrastructures.

In the following, we refer to the lifetime of a EC2-based malicious
domain as the duration when it was consecutively associated with
EC2 cloud IP address in the passive DNS records. Note that the
use of passive DNS service only provides an estimation of the real
lifetime of these domains but this is an approximation that is often
used for this type of measurements [113]. Since domains first appear
in the passive DNS services when they are actively requested on the
Internet, we consider that the use of this service provides a reliable
estimation of the real duration in which a given domain remained
active and accessible on the wild. In this section, we observe only
dedicated malicious domains that were hosted on EC2, and that were
contacted by our malware dataset collected over a period that ends by
June 2014. Hence, we only consider historical DNS records associated
with malicious servers that are no longer hosted on EC2 cloud at the
time of writing. Note that these domains may be still accessible but
no longer associated with any EC2 IP address.

We defined two metrics for our experiments. First of all, we mea-
sured the time between the domain first appeared in the passive DNS
service and the time the malware was analyzed by Anubis. Second,
we extract the time when a dedicated malicious domain is no longer
associated with an EC2 IP address, after the malware was first sub-
mitted to the Anubis service.

The results of our experiment are summarized by the cumulative
distributions that are illustrated in Figure 3.5. The graphs separately
illustrate the results of our experiments for the last five years since
2010, in order to extrapolate some trends and assess the efficiency
of security measures implemented by Amazon over time. The first
graph shows that the distribution is clearly moving toward the top-

32 role of cloud services for malicious software

Id Domain IP address First seen Last seen
Duration

(months)

1 09sp.co.tv 174.129.222.176 August 2010 October 2010 3

174.129.242.247 January 2011 November 2012 22

2 47gr.co.tv 174.129.222.176 July 2010 July 2010 1

174.129.242.247 February 2011 November 2012 21

3 dl.ka3ek.com 107.20.206.69 January 2013 November 2013 11

54.209.129.218 January 2014 January 2014 1

4 hightool.com 107.20.206.69 January 2013 December 2013 12

54.209.168.250 March 2014 September 2014 7

54.208.247.222 September 2014 September 2014 1

5 hzmksreiuojy.com 54.241.7.53 April 2013 April 2013 1

50.18.179.196 April 2013 October 2013 7

50.17.195.149 July 2014 July 2014 1

Table 3.4 – Examples of domains that rotated their IP addresses on EC2 over
time

left corner, meaning that each domain was observed in Anubis soon
after it first appeared in the wild. For instance, while in 2011 around
50% of the domains were already present in the passive DNS service
(and therefore active in the wild) for 100 days before some malware
in Anubis contacted them, in 2014 they had only been active for two
days. In other words, the security community became very efficient
to promptly detect, collect, and submit malware samples.

Unfortunately, Figure 3.5b shows that the time these domains were
hosted on EC2 after the malware was analyzed remained stable over
the same period. While many factors are involved in this process, this
seems to suggest that Cloud providers did not improve their ability to
detect and report abusive behaviors. In other words, our observations
suggest that the security mechanisms implemented by public cloud
service providers have not contributed to reducing the lifetime of
malicious domains hosted by these providers.

In order to confirm these findings, and since cloud providers may
take-down malicious IPs and not their associated domain names, we
analyzed the way malicious EC2 domains resolve to different IP ad-
dresses over time. We wanted to evaluate how long malicious ma-
chines remain active on EC2 before they are taken down by the cloud
provider, and so miscreants may be forced into migrating their ma-
licious domains towards other IP addresses. We monitored for this
purpose all DNS records in the DNSDB service, searching for differ-
ent IP addresses that were associated with every malicious domain in
our dataset. Confirming our hypothesis, we found multiple instances
of malicious machines that remained active on EC2 even for several
months before they were migrated towards other IP addresses in the
cloud.

3.3 discussion 33

As illustrated by the examples in Table 3.4, the first two malicious
domains were associated with the same EC2 IP address for up to
twenty consecutive months before they went out from the EC2 IP
ranges. Interestingly, certain malicious domains, such as domains 1

and 2, as well as domains 3 and 4 in Table 3.4, were associated with
the same IP address during the same period of time, which seems to
indicate that miscreants may associate different domain names with
their malicious machines in the cloud in order to obtain a better re-
silience against domain blacklisting. Moreover, they also seem to
benefit from the flexibility offered by the cloud in order to migrate to-
wards new IP addresses in EC2 as soon as their current IP addresses
have disappeared from the active DNS records, which may suggest
that their malicious machines have been identified and taken down by
the cloud provider (EC2 in our study). In total, we observed similar
behaviors in over 240 malicious domains in our dataset.

3.3 discussion

When we started our experiments, we were surprised to discover
that over 3.5% of the malware samples in our dataset exhibited at
least one network connection with a machine hosted on the Amazon
cloud. However, as clearly depicted in Figure 3.2, the vast majority of
these connections had nothing to do with the fact that criminals were
intentionally using the Cloud as part of their infrastructure. In fact,
once PPI and other benign services were filtered out, we discovered
that less than 1% of the traffic toward Amazon involved a malicious
EC2 machine.

Even though this number may seem incredibly small (roughly one
every 3200 malicious samples), it is still relevant when scaled to the
entire dataset containing tens of millions of malicious samples. More-
over, our experiments show that the use of public cloud services by
malicious software has been increasing over the last six years, despite
the measures taken by certain cloud providers to limit the extent of
these abuses. It also seems that the use of dedicated malicious cloud
services is not limited to a small set of malware families, but it can
be generalized to most of the malware categories – as summarized by
Table 3.3.

The final observation of our study is related to how the cloud
providers, Amazon in our case, respond to this threat. Even though
we did not have a direct way to observe their reaction, we were able
to measure for how long – after the malware was publicly known –
the malicious domains it contacted were resolving to IPs hosted on
EC2. While the absolute value is not very important, the fact that it
remained constant over the past four years seems to indicate that the
cloud provider did not make any substantial improvement in detect-
ing and taking down malicious machines.

34 role of cloud services for malicious software

3.4 conclusion

Public cloud services have rapidly expanded in recent years, yet
they have attracted cyber criminals because of the wealth of resources
they make available, and the lack of accountability over the usage
of these resources. In order to measure the extent at which public
cloud services are being abused by cyber-criminals, we conducted a
longitudinal study of malware in order to better understand the way
it interacts with public cloud services.

In particular, in this chapter we study several characteristics of the
traffic observed between malicious samples and the Amazon EC2

cloud. Based on our measurements, we discuss the evolution of this
phenomenon over the past six years, and we present few key obser-
vations and insights into this growing problem.

We hope that our study can shed some light on a key component
of the modern cyber crime infrastructure, and would provide useful
input to devise appropriate mitigation strategies.

4
L I V E M O N I T O R I N G O F P H I S H I N G AT TA C K S

In this Chapter we investigate how a service provider can take advantage
of its position to better investigate online attacks. In particular, we chose to
focus on phishing kits, as all existing studies on the topic were performed
by third-party researchers and therefore were unable to capture the entire
process and life cycle of the attack. To solve this problem, in this chapter
we present a novel approach to sandbox live phishing kits that completely
protects the privacy of victims. By using this technique, we perform a com-
prehensive real-world assessment of phishing attacks, their mechanisms, and
the behavior of the criminals, their victims, and the security community
involved in the process.

Despite the large effort and the numerous solutions proposed by
the security community, phishing attacks remain today one of the
main threats on the Internet [95]. They usually aim at deceiving users
into visiting fake web pages that mimic the graphic appearance of real
and authentic websites [84]. The main goal of an attacker, also known
as phisher, is to collect sensitive user data such as login credentials,
banking information, or credit cards numbers. The stolen data can
then be monetized by leveraging hijacked accounts and performing
fraudulent online transactions, or indirectly through the resale of the
stolen information to other cyber-criminals, mostly on the Internet
black market [78].

Phishing attacks constitute a major challenge for Internet Service
Providers (ISPs), as well as for email providers, browser vendors, reg-
istrars, cloud service providers, and law enforcement agencies. To
mitigate these attacks, a broad set of solutions have been proposed,
tackling each of the three different stages that constitute a phishing
attack [78]. At the first stage, they try to prevent phishing emails
from reaching the end users by applying email filters [61], or by de-
tecting [122, 144, 195, 197, 203], blocking, or taking down phishing
web sites [125]. At a second stage, existing solutions focus on provid-
ing better user interfaces, such as browser plugins, that inform users
about the reputation of a target web site, and notify users as soon as
they are redirected towards a potentially malicious page [59, 196]. Fi-
nally, the last line of defense relies on proper education to help users
recognize phishing sites [103, 104]. Despite this considerable effort,
the phishing problem is far from being solved and a recent report by
the Anti-Phishing Working Group (APWG) shows that the number
of unique phishing sites was still increasing in 2015 [2], and that the

36 live monitoring of phishing attacks

number of phishing reports the APWG receives has almost doubled
between 2014 and 2015.

In order to discern phishing attacks, diverse efforts have been made
by security researchers, and that involve different actors in the phish-
ing ecosystem. However, previous studies focused mainly on the
technical aspects of the problem, i.e., how phishers compromise vul-
nerable servers [190], and how phishing kits work [49]. Researchers
also remotely analyzed existing phishing pages, based on ground
truth datasets such as spamtraps [129] and phishing blacklists [125],
in order to provide a real world assessment of the number of vic-
tims and to measure the efficiency and extent of take-down oper-
ations. Recently, Bursztein et al. [32] advanced our understanding
about phishing by studying criminals incentives and the way they
monetize stolen user credentials.

Unfortunately, previous studies have been confronted to two main
dilemmas. First, most phishing kits were monitored only after they
had been detected by public or private anti-phishing services. This
drastically limits the extent of these studies, since an important part
of the phishing life cycle (preceding any detection) has mostly re-
mained unknown. Second, researchers have never observed the way
real victims interact with phishing kits because of obvious ethical rea-
sons. In this dissertation, we try to fill the gaps in the understanding
of the phishing ecosystem by analyzing the attackers behavior and
the way the potential victims interact with phishing kits in the wild.

As discussed in [128], “a natural tension exists between conducting
accurate, reproducible research and reducing the harm caused by the content
that is being removed”. Two are the main challenges that affect research
on phishing attacks: “Should researchers notify affected parties in
order to expedite take-down of phishing sites? Should researchers
intervene to assist victims” [128]?

Bearing these issues in mind, this chapter proposes a new approach
that lifts the barriers imposed by these ethical considerations in order
to provide a first comprehensive real world assessment of phishing
attacks, their mechanisms, and the behavior of all the actors involved
in the process. Our approach leverages the valuable information to
which a service provider have access, including the traffic log of the
infrastructure. However, due to the privacy issue of a service provider
while dealing with real customer data, we adopted a similar but re-
alistic scenario to collect data where a web honeypot was used to
attract real attackers into installing phishing kits in a compromised
web application. This is inspired by the fact that, according to the
APWG’s Global Phishing Survey, 71.4% of the domains that hosted
phishing pages were compromised domains [1]. We then present a
novel sandbox technology designed to neutralize a phishing kit while
maintaining it functional for a long period of time. Our approach is
designed to strictly preserve the victim privacy, without interfering

live monitoring of phishing attacks 37

with the attack process in order to make sure that attackers can com-
promise the honeypot, install phishing kits, and conduct functional
tests without being alerted about the sandbox configuration.

Preserving the user privacy is a very challenging task. Most phish-
ing kits instantly exfiltrate the newly collected victim credentials to
the attacker, leaving no time to remove these credentials from our
servers. Even worse, almost 97% of malicious phishing pages are
accessible via unprotected HTTP connections [1], which may expose
the cleartext compromised credentials to eavesdropping over the net-
work. Finally, as discussed in section 4.5, some phishing pages re-
route the HTTP requests to a different server directly controlled by
the attacker [190], using the compromised application only to host
the page but not to collect the data.

Our sandbox proposes a comprehensive solution to these problems,
allowing us to collect real world data about the behavior of both at-
tackers and victims, and to perform the first thorough investigation
regarding phishing attacks. To the best of our knowledge, no previ-
ous work was able to monitor, in a white-box fashion, the lifecycle of
a phishing kit.

Based on these elements, we discuss a number of interesting find-
ings. For example, our experiments show that phishing kits are only
active for less than 10 days since their installation and over this time
most of them collect a limited number of user credentials (fewer than
reported in past experiments). Therefore, attackers rely on compro-
mised websites to install a large number of phishing kits in a sort of
shot-and-forget approach, rapidly moving to new phishing pages as
the old ones get blacklisted. We also confirm that Google Safe Brows-
ing (GSB) and Phishtank are very effective tools to protect end users.
However, our experiments show that both services tend to blacklist
phishing URLs between 10 and 20 days after their first appearance,
and this is often too late as most of the victims already connected to
the page. Finally, we observed a considerable flash crowd effect once
phishing URLs appear in public blacklists. If not properly modeled,
this phenomenon can completely skew the analysis results, by con-
fusing security researchers with potential victims.

To summarize, we make the following contributions:

— We present a novel approach to sandbox live phishing kits that
completely protects the privacy of end users.

— We observed the interaction of attackers, victims, and security
researchers with the phishing pages, reconstructing for the first
time the entire lifecycle of a phishing kit.

— For the first time, we measure the impact of blacklisting ser-
vices on phishing pages from the time in which they are first
installed (and not from the time they are reported or discovered
by security companies). We also discuss new techniques to use

38 live monitoring of phishing attacks

Figure 4.1 – Typical Phishing Attack

the collected data to promptly identify the email address used
by criminals to retrieve the stolen information.

Beyond these main findings, we also discovered two new phishing
techniques that have never been reported before, and we conducted a
thorough analysis of the modus-operandi of the corresponding cam-
paigns.

4.1 background

In this section we provide a more detailed description of phishing
attacks and their main actors. We then describe in more details the
ethical issues we encountered during each phase of our experiments.

Anatomy of Phishing Attacks: A typical phishing attack, as depicted
in Figure 4.1, consists of three main actors: a phisher, a set of potential
victims, and possibly a number of third party visitors – such as re-
searchers and security editors. Phishers mostly seek to compromise
vulnerable web applications, install phishing kits that mimic victim
web sites, and advertise the phishing URLs using, for example, spam
emails and posts on social networks. The victims are the end users
who receive these messages and connect to the phishing pages. Phish-
ers usually seek limited interactions with their victims as their main
goal is to hijack sensitive data without disclosing the real nature of
their phishing pages. Therefore, they often redirect victims to the
authentic website after they have provided their credentials, or they
redirect them towards error pages to make them disconnect from the
phishing site. As soon as a victim connects to a phishing page, she can
either realize the real malicious nature of the site and disconnect, or
she can be fooled by the legitimate-looking page appearance and at-
tempt to login, thus providing her credentials. Finally, the third party
category includes visitors from security companies, public crawlers,
and independent researchers. They usually examine and monitor the
phishing pages only after the presence of the phishing kit is included
in popular blacklists (e.g., PhishTank), as discussed in details in sec-
tion 4.5.2. The behavior of third party visitors can be very similar to
the behavior of real victims, which makes it difficult to separate these
two actors within the same experimental setup.

Ethical Considerations: Researchers have already proposed the use
of honeypot systems as a tool to analyze phishing attacks [190]. How-

4.2 data collection 39

ever, conduct live phishing experiments and evaluations inside hon-
eypots has always been confronted with ethical considerations that
have severely limited the scope of all previous research studies about
phishing attacks. The result is that previous experiments were often
limited to the analysis of how phishers compromise the honeypot,
as well as the static analysis of the collected phishing kits. Unfortu-
nately, honeypots have never been used to study the behavior of the
victims as they connect and interact with the installed phishing pages.
As soon as victims are being enrolled into a honeypot experimental
setup, ethical considerations cover all aspects related to the protection
and perfect secrecy of user identities, as well as the secrecy of their
credentials in case where they may be exposed during the attack. In
order to properly address this important ethical problem, one should
have a better understanding about the key steps of a phishing attack
where the user identity or credentials may be exposed. We divide
these ethical issues into two main categories, depending on whether
they may be addressed on the server or on the client-side.

On the server side, the phishing kits aim at collecting user submit-
ted data. The stolen data may be either locally stored on the honeypot
server until it is retrieved by the phisher, or it may be instantly sent
to the phisher by email or direct HTTP connections. Therefore, it is
important to prevent any user data to be locally stored on the server,
or even processed by the phishing application. Moore et al. used
public accessible data collected on vulnerable web servers, including
statistics of the web page hits and credentials that the attackers had
collected and forgotten to remove from the vulnerable server [125,
126]. Following the publication of their study, more ethical issues
concerning the user credentials were exposed, most of which being
still unanswered [128].

Apart from the above ethical problems on how to prevent informa-
tion from being stored on the server, ethical issues also exist on the
client-side. In fact, phishing kits may collect user credentials by post-
ing them to other malicious servers that are under the direct control
of the attacker. Moreover, 97% of the phishing pages are accessible
via clear-text HTTP connections [1], thus exposing the victim’s sen-
sitive data to eavesdropping over the network. Therefore, and even
though no sensitive data would be hosted on the remote server, there
may still be a considerable risk because of the clear-text sharing of
user credentials on the network.

Finally, it is important to note that our institution does not have an
IRB, but we asked advice from the company legal department, and
were granted permission to perform the research.

40 live monitoring of phishing attacks

Honeypot

Attacker
Tracking

Public gateway

Client-side
Protection

Server-side
Protection

Data
Collection

Controlled
SMTP

Figure 4.2 – High Level System Overview

4.2 data collection

We leverage an existing honeypot infrastructure [35] as a basis to
implement our system. As shown in Figure 4.2, our architecture con-
sists of two main components: a public proxy gateway and a private
backend server that implements the main honeypot applications. The
gateway was hosted on a number of public hosting providers, includ-
ing Amazon EC2, which previous research has revealed to be a popu-
lar target for attackers looking for machines to compromise and con-
duct malicious activities on the Internet [72]. The proxy server does
not host any content and acts purely as a reverse proxy to forward all
HTTP connections through a secured VPN channel towards the hon-
eypot server hosted in our premises. For security reasons, outgoing
traffic from the honeypot is dropped at the firewall – except for DNS
queries and for a limited number of verified SMTPS connections (as
explained in Section 4.3.3). On the honeypot server, we configured 18

vulnerable PHP pages that can be exploited by attackers and allow
them to upload files and execute shell commands. Note that the hon-
eypot is configured in such a way that attackers cannot modify these
PHP pages.

The data collection module periodically retrieves the data collected
on the honeypot server, including the server access logs and the up-
loaded files (such as web shells, phishing kits, defacement pages, ex-
ploit kits, and hacking tools).

Elimination of Other Malicious Files: The identification of phish-
ing kits is performed through a number of heuristics, complemented
by a manual classification. For instance, most phishing kits contain
a large number of files and resources required to replicate the tar-
geted website [49], and therefore isolated files are unlikely to be used
for phishing. We also adopted a number of keywords to determine
the content of the files and identify possible targets. However, it is
very difficult (and outside the scope of this chapter) to setup an ac-
curate filter that can precisely separate phishing applications from
other malicious files uploaded to the server (we refer the reader to
existing work on this specific problem [203]). In our study we de-
cided to adopt a conservative approach and we manually analyzed
all the files that did not match our filters in order to be sure that
only phishing pages were hosted on our honeypots. We removed on
a daily basis other malicious files including web shells, exploit kits,
and drive-by download from the honeypot. As part of this activity,

4.3 sandbox and pk neutralization 41

we may have erroneously removed some small phishing kits, but we
believe that it is better to be conservative and avoid exposing users to
other dangerous threats.

Data Exfiltration by Client-Side Side Channels: We also verified
that the phishing kits did not leverage other side-channels to capture
and successfully exfiltrate the credentials from the victim browser.
We found three PKs that had these functionality and used obfuscated
JavaScript code disguised as a HTML img tag to send the user creden-
tials directly to a remote server. However, our client-side protection
described in Section 4.3 acts directly on the typed password, before
the malicious JavaScript retrieves it.

Overall, through an accurate user inspection, we were able to con-
firm that no user credentials were disclosed during our experiments.

4.3 sandbox and pk neutralization

This section presents an overview of our platform and describes
the properties and design configuration that enable us to address the
ethical issues outlined in section 4.1. It also illustrates the deployment
scenario, including the system components and data management
procedures. Finally, it describes the low-level implementation details
and discusses the potential limitations of our approach.

4.3.1 Design Goals

In order to address the ethical issues and to enable a sanitized hon-
eypot platform that preserves the privacy and security of any poten-
tial victim data, our system achieves the following design require-
ments:

Client-Side Data Mangling: To prevent sensitive data from being
sent out of the user terminal, our system injects into all phishing
pages a JavaScript component whose purpose is to replace any posted
information with random data before it is sent over the network. The
injected code protects all potential victims as long as they have not
explicitly deactivated JavaScript in their browsers. For those users
who may have deactivated JavaScript, our system also injects a HTML
noscript tag that redirects user to an error page so that they would
disconnect from the honeypot.

Server-Side Data Randomization: As an emergency backup in case
JavaScript is enabled on the victim terminal but the injected code
fails to replace the posted information, our honeypot server relies on
a custom Apache PHP module that filters all incoming data before it
reaches the phishing kit. In particular, our solution replaces on the fly
all user data that reaches the server with random fake data, making

42 live monitoring of phishing attacks

sure that no sensitive information may ever reach the phishing kit,
nor it can be locally stored on the honeypot.

HTTP Redirection Disruption: To make sure that our honeypot may
not be used by the attacker as an elementary component of a broader
malicious redirection chain [113], our system uses static analysis tech-
niques to detect and disable any form of web redirection, and so to
make sure that no users may be redirected from the honeypot towards
any other malicious website under the control of the attacker.

Concealed Instrumentation: One of the main goals of our system is
to protect the users while being perfectly transparent for the attacker.
Therefore, the honeypot is designed to identify attackers and monitor
their procedures and mechanisms without revealing the real nature
of our experiment. In particular, we noticed that attackers usually
test their kits by inserting fake credentials in the phishing page and
verifying that such credentials are correctly exfiltrated to their pre-
ferred drop-zone. In order to ensure that these testing operations
are successful, our system needs to selectively disable the client- and
server-side randomizations, and to allow phishing kits to send emails
(which is the most popular exfiltration technique implemented by the
phishing kits [49]) when attackers decide to test their pages.

4.3.2 System Overview

As illustrated in figure 4.2, our honeypot implements five main
functionalities, including the attacker tracking module, the client-side pro-
tection module, the server-side protection module, the controlled SMTP mod-
ule, and the data collection and processing module.

As a core component of the system, the attacker tracking module is
responsible for distinguishing attackers who connect to the honeypot
from other benign users such as victims and third party visitors. This
allows us to apply different access control policies whose purpose
is on one hand to enable attackers to verify and test their phishing
kits, and on the other hand to prevent any sensitive data posted by
the victims from being captured by the attacker. This module assigns
the role of the attacker to the user who installed the phishing kit on
the compromised application. The attacker tracking module further
keeps track of all attackers who connect to the honeypot using a his-
tory of attacker IP addresses and their associated user agents, and
provides this information as input to the subsequent protection and
data collection modules.

The client-side and server-side protection modules use the list of at-
tackers provided by the tracking module as input in order to identify
potential victims and to prevent their data from being exported or
hijacked from the user terminal. If the visitor is not an attacker, the
module inspects each outgoing HTTP response and injects in each

4.3 sandbox and pk neutralization 43

page a HTML noscript tag and a static JavaScript file (more details
in Section 4.3.3), which hooks the data submission and replaces the
user’s data with fake information.

The server-side protection module performs two functions: backend
data randomization and malicious redirection disruption. In the first case,
it acts as a second line of defense in addition to the client-side protec-
tion. It operates on the server side, and it replaces the incoming data
with random values before it is passed to the web application. The
server-side protection module also intercepts and blocks all HTTP,
HTML, and JavaScript redirections that point to other remote web-
sites in order to make sure that the honeypot server cannot be used
as a stepping stone within a broader malicious redirection chain. It
detects such redirections through performing static rule-based anal-
ysis over the content of each HTTP response provided by the server.
Our system allows only redirections to other pages hosted in our hon-
eypot, and automatically intercepts and drops any other destination.

Finally, as most phishing kits exfiltrate the stolen data by emails,
and since our honeypot is configured to drop outgoing SMTP con-
nections to prevent attackers to send spam, we also implemented an
SMTP module that allows each attacker identified by the tracking
module to send a configurable amount of messages (two in our ex-
periments) to test a freshly-installed phishing kit.

4.3.3 Implementation

The experimental setup on the honeypot leverages two Apache
HTTP modules, namely mod_php and mod_security. We configure
and extend these two modules in order to incorporate our system
functionalities. In the following, we describe in details our system
implementation.

mod_php provides PHP support to the Apache HTTP server, and
was extended to implement the attacker identification and server-
side protection modules. In particular, we hook the PHP function
rfc1867_post_handler, which is actually the form-based file upload
handler, and we save the IP address of the attacker who has suc-
cessfully uploaded a file in a privileged location. To implement our
server-side protection module, we modify the functions php_std_post_handler
and php_default_treat_data, which provide respectively the han-
dler for HTTP POST and GET requests. These handlers whitelist the
18 pre-installed vulnerable pages to ensure that attackers can reach
and use the honeypot. For requests toward other pages, the handlers
perform the attacker verification and further replace the data with
fake ones when the request is not originating from an attacker. The
handlers identify specific types of information (such as login, email,
and credit card fields) by using a pre-defined set of keywords and
regular expressions, and overwrite these fields with randomly gener-

44 live monitoring of phishing attacks

ated data that reproduces the same format. In other words, emails
are replaced with seemingly valid (but non-existent) email addresses,
credit-card numbers by other fake numbers, and so on. If the system
is unable to recognize the type of a field, its value is replaced with a
random string of alphanumeric characters.

mod_security is a web application firewall that provides attack de-
tection, traffic monitoring, logging and real-time analysis 1. We ex-
tend the core functionalities of this module in order to implement the
client-side data mangling, the malicious redirection disruption, and
the data collection modules. The client-side data mangling behaves al-
most the same way as for the server-side data modification. The only
difference is that it injects a HTML noscript tag and a static JavaScript
code in the HTTP response in case the destination has not been iden-
tified by the attacker tracking module. The static JavaScript code,
executed on the remote victim browser, modifies any data provided
by the user before it is sent over the network. To achieve this, the
injected JavaScript first replaces the native form submission function
submit() with a custom handler that dispatches automatically a sub-
mit event on the page. Then it adds a submit event listener that hooks
the form submission and modifies the submitted data. Note that the
static JavaScript is prepended to the HTML page so that it is always
executed before other JavaScript. During our experiment, we did not
observe any PK that tried to detect this kind of hooking. If JavaScript
is deactivated on the victim browser, the HTML noscript tag redirects
the victim to an error page to prevent him from disclosing his cre-
dentials. Moreover, in order to prevent potential victims from being
redirected towards other remote malicious destinations, we configure
mod_security to drop all HTTP responses that contain redirections.
Note that malicious redirections are only disabled for potential vic-
tims that cannot be identified by the attacker tracking module. The
HTTP redirection can be detected by combining the response status
code and the Location field in the HTTP header. To identify HTML
and JavaScript redirections, our module parses the content of the re-
sponse body and analyzes its HTML and JavaScript code. The last
configuration option that we have added to the mod_security module
is the ability to collect files uploaded to the honeypot. We configure
the SecUploadDir and SecUploadKeepFiles functions in order to save
a copy of the uploaded files into a protected location that is invisible
to the attackers.

Controlled SMTP: The honeypot is configured to send all emails with
a free email service provider through sSMTP 2. To prevent attackers
from sending spam emails from our honeypot, we limit to 2 the num-
ber of emails that each attacker can send. The original binary of

1. https://www.modsecurity.org/

2. http://linux.die.net/man/8/ssmtp

https://www.modsecurity.org/

4.4 phishing attack global picture 45

sSMTP is replaced with a modified version that checks the presence
of a specific flag in the arguments passed by the caller. Only the PHP
mail handler is configured to call the sSMTP with the desired specific
flag. Moreover, we modify the PHP mail handler so that it keeps only
the first recipient when the destination contains multiple recipients.

Experiment Limitations: To mitigate denial of service attacks or bot-
net scans, we rate-limited to 5 the number of concurrent connections
from the same IP address. We opted for this configuration because
we detected multiple scan attempts to our honeypot using a com-
mon proxy server, and that most of these attempts did not lead to
any attack. Moreover, we believe that it is highly unlikely to have
more than five victims connecting simultaneously from the same IP
address and it is equally unlikely to have more than five simultane-
ous attackers interacting with our honeypot using the same proxy IP
address. Therefore, we believe that this rate-limiting has a marginal
impact on our experiment.

Our strict attacker identification process would inevitably prevent
attackers from submitting fake credentials to the site in case they use
a combination of IP address and user agent that is different to the
one used to upload the PK. However, we believe that this solution
offers the best trade-off to achieve a complete protection of the user
privacy. Nonetheless, based on the number and diversity of the col-
lected kits and the potential victims, we believe that our experiment
is sufficiently representative of existing phishing attacks in the wild,
as discussed in section 4.4.4.

4.4 phishing attack global picture

We collected 643 unique phishing kits, which were uploaded on
our honeypot over a period of five months from September 2015 to
the end of January 2016. Out of this initial dataset, 474 kits (74%
of our initial dataset) have been correctly installed by 471 distinct
attackers. The remaining kits were likely automatically uploaded by
exploitation bots but never unpacked nor configured by the attackers.
The installed phishing kits targeted 36 distinct organizations, mostly
online banks, but also social networks and e-commerce portals. The
five most frequent targets were Paypal (375), Apple (26), Google (10),
Facebook (9) and the French online tax payment system (6).

This section presents an overview of our main findings, includ-
ing the way attackers setup and operate their phishing attacks, the
behavior of victims as they interact with the phishing kits, and our
assessment for the lifetime of live phishing kits on the Internet. We
initially focus on aggregated statistics and on understanding the big
picture, and then we discuss the technical aspects related to how we
identify victims, and how we separate them from attackers and third
party visitors.

46 live monitoring of phishing attacks

1m 10m 20m 30m 40m 50m 1h 5h 9h 13h 17h 21h 1d 2d 3d 4d 5d 6d 1w 2w 3w 4w 5w 6w

Time elapsed after the kit upload

Detection
(Kits without victims)

Detection
(Kits with victims)

Last Victim

First Victim

Testing

Installation

Figure 4.3 – Phishing Attack Timeline

Figure 4.3 illustrates an aggregated timeline of all phishing attacks
we observed in our study. On the graph, the Y-axis shows the major
phases of an attack, and the X-axis indicates the time elapsed since
the phishing kit was first uploaded to the honeypot. During our
experiment, and as shown in Figure 4.3, we split the lifecycle of an
attack in five separate phases: installation, testing, interaction with
the first and last victims, and detection by popular blacklists.

The installation phase includes the actions performed by the phish-
ers to unpack, install, and set up the phishing kit on the compromised
machine. The testing phase describes how phishers test and verify the
correct behavior of their newly installed kits. The first and last victims
capture the time elapsed until we observe respectively the first and
last connections from a victim. Lastly, the detection phase covers the
time at which the phishing URL is added to public phishing blacklists
(Google Safe Browsing and/or PhishTank in our experiment). All re-
sults are illustrated using a box plot that captures the distribution of
the data spanning from the first quartile to the third quartile, with
the red line showing the median value.

4.4.1 Attackers Behavior

Based on the referer field, 29% of attackers located our honeypot us-
ing search engine queries, mostly on Google (28%), and Yahoo (0.8%).
Interestingly, over 40% of the attacks came with a Facebook-related
referer, which seems to indicate that attackers are increasingly using
social networks to share data (e.g., the location of web shells) or sim-
ply forge the referer field to make their traffic look more legitimate.

While most of the attackers installed only one copy of the phishing
kit, some (26%) have installed their phishing kits on multiple sub-
directories. After the installation was completed, 70% of the attackers
visited the phishing pages and 58% of them submitted fake creden-
tials to verify whether the kit was operating correctly. This confirms
our initial hypothesis that a phishing sandbox needs to protect the
victims but let the attacker freely play and test the installed pages,
as described in Section 4.3. Without this feature, almost 60% of the
uploaded kits would have been abandoned by the attackers.

4.4 phishing attack global picture 47

As illustrated in Figure 4.3, phishers installed the uploaded kits
very quickly on the compromised web server, just few minutes after
the kit was uploaded. The testing phase was also performed immedi-
ately after the installation. However, the few minutes of delay and the
irregular patterns suggest that this was performed manually and not
through automated bots. Quite interestingly, after the testing phase
was completed, we never observed any connection to the phishing
pages from the same IP address.

In the second stage of a phishing attack, attackers would make use
of standard social engineering techniques in order to drive potential
victims into connecting to their phishing pages. During the entire pe-
riod of our study, we observed only one attacker who has tried to use
the compromised machine to also send the phishing emails (all mes-
sages were blocked by our firewall). This seems to suggest that attack-
ers have decoupled the process of compromising public servers and
installing phishing kits, from the process of sending phishing mes-
sages. A possible explanation is that using different infrastructures
is more robust and decreases the probability that the compromised
server is detected by security solutions.

4.4.2 Victims Behavior

To study the behavior of victims as they connect to the phishing
pages, we first need to separate them in our dataset from other ac-
tors such as public crawlers and third party visitors. We leverage
multiple heuristics and empirical observations that we describe as
follows. First of all, users who were assigned the role attacker by the
attacker tracking module do not belong to the victims category. We
also discard public crawlers by looking at the user-agent header field
in incoming HTTP requests – since it is reasonable to assume that
a victim would not spoof its browser user-agent to mimic a search
engine.

The most challenging part of our study was to separate victims
from other third party visitors, such as researchers and security edi-
tors who may find the phishing URLs on public blacklists and connect
to the honeypot to verify the content of the phishing pages. First of
all, the source IP address may reveal valuable information that en-
abled us to classify users as either potential victims or third party vis-
itors. For example, after verification in the whois database, we found
that a large number of connections to our honeypot originated from
university researchers (e.g. IP ranges belonging to Boston Univer-
sity, University of Pennsylvania, Carnegie Mellon, and Massachusetts
Institute of Technology) and security companies such as Kaspersky,
Symantec, Bluecoat, and Fortinet. To be conservative, we consider all
these users as third party visitors (even though this can misclassify
students who fell victim of the phishing attacks) and we remove them

48 live monitoring of phishing attacks

from the victims’ category. This approach does not allow us to iden-
tify other third party visitors, such as independent researchers and
curious individuals who found the URL on public blacklists or hack-
ing forums. To identify this specific category of users, we leverage a
number of additional heuristics, such as the fact that researchers may
connect at regular intervals to verify whether the phishing pages are
still available, or they spend a considerable amount of time inves-
tigating different sub-pages or other resources used by the phishing
kit. Based on these observations, we filter out a large number of users
from the victims category. We believe that our cleaning approach was
very conservative and had potentially over-estimated the number of
third-party researchers and reduced the number of victims. However,
as we explain in more details later, in our experiments we noticed
that a large amount of incoming HTTP requests were not from real
victims and therefore would inflate the results if included in our anal-
ysis.

After our aggressive filtering, we counted a total number of 2,468

victims who have connected to 127 distinct phishing kits. Although
the total number of victims seems to be relatively small compared
to previous work that measured the impact of phishing attacks, our
study has the merit of providing the first fine-grained assessment of
the number of victims for a phishing attack. In fact we addressed two
main limitations that have contributed in the past to overestimate the
number of victims for a phishing attack.

First of all, we observed a spike in the number of (third party)
visitors just after a phishing page first appears on public phishing
blacklists (details in section 4.5.2). While such crowd phenomenon
is a natural consequence of blacklisting a phishing page, previous
studies did not separate such connections from the set of real vic-
tims, which could have contributed to largely overestimating the real
number of victims. Using our sandbox configuration we were able
to identify and clearly separate this phenomenon, whose impact is
further explained in details in Section 6.

Second, our honeypot configuration also enabled us for the first
time to observe the victims submitting their credentials to the phish-
ing page. This is made possible as we analyze the behavior of victims
on a per-user basis, and so we can verify whether each victim has
performed any HTTP POST request, which suggests that the user has
submitted data to the phishing page. Over the period of our study,
we found that 215 users (9% of the total) have indeed posted their
credentials to the phishing page. Note that since our system replaces
automatically the submitted data with fake values, we are however
unable to estimate the number of victims who send fake credentials
to the phishing page.

Finally, the geolocation of the victims did not provide any partic-
ular insight, except for confirming that PKs are often targeted to a

4.4 phishing attack global picture 49

particular audience (e.g., French citizens for the French tax payment
system), and in fact many PKs received the majority of their victims
from a single country.

4.4.3 PK Lifetime

We measure the effective lifetime of a phishing kit as an indicator
of the time interval during which a phishing kit remains operational
on the Internet. We consider a phishing kit to be operational as long
as new victims connect to the phishing page. Note that even though
the phishing kits are kept online on the honeypot server throughout
the duration of our study, we did not observe new victims after the
phishing URLs were blacklisted by a large enough number of anti-
phishing services and browser plugins.

A main challenge when measuring the effective lifetime of a phish-
ing kit is that it would be very difficult to capture the exact time for
the last victim who connect to the phishing page. In particular, we
may still observe few users connecting to a phishing kit days after
the phishing kit has been abandoned by the attacker, thus causing us
to overestimate the lifetime of a phishing kit. To address this chal-
lenge, and so to eliminate such outlier observations, we cut the tails
of the distribution and only consider the time interval during which
we observed 90% of victims connections. As shown in Figure 3, the
first victim captures the time elapsed until we observed 5% of victims
connecting to a given phishing page, and the last victim captures the
time elapsed until we have observed 95% of victims. Using this def-
inition, we observed during our study that the first victims connect
to a phishing page in average two days after the page was installed
by the attacker. The last victims (at the 95% threshold) connect in av-
erage to the phishing page after 10 days. This gives us an estimated
lifetime of eight days.

4.4.4 Effectiveness of Phishing Blacklist

To evaluate the reaction of the security community against phish-
ing attacks, we leverage two anti-phishing services: GSB and Phish-
Tank. We chose these two actors first because GSB is integrated by
default into Chrome and Firefox, which together account for 87.1%
of the market of Internet browsers 3, and second because PhishTank
has been extensively used as a source feed in many previous research
studies [119, 125, 202]. Our main goal in this section is to measure the
time it takes for an anti-phishing service to blacklist phishing URLs
since the corresponding kits were first uploaded to the honeypot. To
do so, and throughout the duration of our experiment, we periodi-

3. http://www.w3schools.com/browsers/browsers_stats.asp

http://www.w3schools.com/browsers/browsers_stats.asp

50 live monitoring of phishing attacks

cally check, multiple times per day, both blacklists for all phishing
URLs that were installed in our honeypot.

While almost all phishing pages that were installed on the hon-
eypot (98% of them) were correctly detected and blacklisted by the
two phishing blacklists, we observed an average detection latency
of 12 days. More precisely, we split this value in two separate cate-
gories: phishing kits for which we observed victims were blacklisted
in average 20 days after installation, while kits with no victims were
blacklisted in average 10 days after their installation. As illustrated
in Figure 4.3, the detection latency varies quite a lot depending on
the phishing pages and the evasion techniques used by the attack-
ers, as further discussed in Section 4.5.2. More importantly, 62% of
the phishing kits were blacklisted only after 75% of victims had al-
ready connected to the corresponding phishing page. While these ob-
servations seem to indicate that the anti-phishing services were not
effective against a certain category of phishing attacks, they were in-
deed very proactive against another 27% of the phishing kits during
our study, as they blacklisted these URLs even before 25% of victims
have yet connected to the phishing page.

Another interesting aspect is the fact that GSB initially blacklisted
only individual phishing kits. However, after many phishing pages
had been reported for the same domain name, GSB changed its policy
and started blacklisting entire directories subtrees in those domains.
This approach may have proactively blacklisted other kits that were
installed within these same directories.

4.4.5 Measurement Bias

Clayton et al. [41] draw the attention to the potential measurement
bias in this type of studies. For instance, PhishTank only contains
40% of all phishing URLs, but 100% of all PayPal phish. Therefore, if
the composition of the PhishTank dataset is not understood, the focus
on attacking PayPal will be overestimated. In our study, we evaluate
the effectiveness of the PhishTank dataset against the 471 phishing
kits installed in our honeypot. Even though an important amount
(375, i.e., about 80%) of these PKs involved PayPal, only a small por-
tion (about 1%) of them have been reported and thus included in the
PhishTank dataset. This in return corroborates to some extent the di-
versity and the representativeness of our dataset. We thus argue that
our measurement is relatively representative.

Another concern may be related to the large number of PKs that
received no victims. It is hard to know the real reason, but we do not
believe that the fact that attackers could have recognized the honey-
pot is the main explanation behind this phenomenon (even though in
some cases it could certainly be the case).

4.5 case studies 51

Drop Techniques Live Kits

Email 443

File 30

POST 2

MAILTO 1

Table 4.1 – Drop mechanisms of the live phishing kits

In 34% of the PKs that did not receive any victims, the system
did not receive any follow-up connection after the PK was uploaded.
These PKs are mostly uploaded by automated exploitation bots with-
out any human activity. In this case, it is possible that the attackers
had many available targets that were compromised by their bot, and
simply did not choose to use our system. In the remaining 66% of the
kits with no victims, the attacker connected to the PK and explicitly
tested it by submitting some credentials. Our logs did not report any-
thing anomalous and the PK correctly sent the email with the testing
credentials to the attacker, but then received no victims. Even though
we do not know the reason, it is possible that no victims clicked on
the phishing link, or that the phishing emails were largely stopped
by antispam solutions. Overall, since we observed that PKs are often
fire-and-forget pages uploaded in large numbers and used only for
few days, it can be normal that some of them are never used and
some have zero-success rate.

4.5 case studies

In this section we provide details about four interesting cases we
observed in our experiments including a new phishing kit dropping
technique, a blacklist evasion technique, the time distribution of vic-
tims as they connected to the phishing pages, and we discuss a pos-
sible way to use our system to detect drop email addresses from live
phishing kits.

4.5.1 Dropping Techniques

Most of the phishing kits contain the complete phishing web sites
in a ready-to-deploy package. One of the main function of these kits
is to automatically send the collected information to the attackers. In
order to assess the technical evolution of the phishing kits since a
previous study [49] conducted in 2008, we analyze the mechanisms
that the phishing kits use to exfiltrate information.

As illustrated in Table 4.1, the vast majority of kits use email ac-
counts to send data to the attackers. Few kits save directly the col-
lected information on the server, and only two send it to a remote

52 live monitoring of phishing attacks

server using a HTTP POST request. Interestingly, we observed dur-
ing our study that attackers experimented a new drop technique that
aimed at sending the information in a HTML form through an email
directly from the end user terminal. In order for this to work, attack-
ers configured the HTML form action to mailto the values directly
to their email address. Even though this technique is already well
documented 4, this is the first time that phishers were observed to
implement it inside a phishing kit. However, note that this method
is very unreliable and only works with a particular combination of
Internet Explorer and Outlook Express.

To further discover new techniques adopted by phishers, we ana-
lyze all the external links included in the kits uploaded to our hon-
eypot. We found that 10 kits made use of resources directly fetched
from the content distribution network (CDN) of the target organiza-
tion. More interestingly, we also found that another 98 kits contained
code to contact other computers likely under control of the phish-
ers. These were either carefully disguised backdoors to exfiltrate the
stolen credentials on a second channel (which was blocked by our
firewall), or ways to retrieve information provided by the attackers,
typically blacklists of endpoints or user-agents to block from viewing
the page.

4.5.2 Blacklist Evasion

During our experiments we experienced an unexpected service
outage caused by disk space exhaustion. Further investigation re-
vealed that the exhaustion was caused by a phishing kit whose entry
page, namely index.php, automatically creates a random subdirec-
tory, copies the content of the entire kit inside it, and then redirects
the visitor to the newly generated random location. The following
PHP code presents an example of such behavior:

$random=rand(0,100000000000);

$md5=md5("$random");

$base=base64_encode($md5);

$dst=md5("$base");

$src="New Folder";

recurse_copy($src, $dst);

header("location:$dst");

After the PK was installed, the phisher visited the entry page,
which generated a copy of the kit at a random location. Interestingly,
the phisher could distribute either the newly generated link to con-
ceal the original phishing page location, or the link to the entry page
so that each visitor would be automatically redirected to a different
location. To understand the intended function of this phishing kit,
we leverage the server access log to observe the first victims of this

4. http://www.html-form-guide.com/email-form/email-form-mailto.html

4.5 case studies 53

102 103 104

Time elapsed after the kit upload (hours in log scal)

0

2

4

6

8

10

12

14

N
um

be
ro

fv
is

ito
rs

PhishTank
GSB

Figure 4.4 – Visitor time distribution of the kit with blacklist evasion tech-
nique

kit. We found that the phisher conducted a phishing campaign with
a link to the entry page of the phishing kit, as the first victims landed
directly to the entry page. This approach may seem controversial at a
first glance, as the phishers exposed the real link to the phishing kit
instead of hiding it from being blacklisted. In order to understand
the reason behind this, we examine how PhishTank and Google Safe
Browsing react to such phishing kit.

PhishTank publishes phishing reports submitted by different users,
which allows us to retrieve the reported links and further compare
them with the original link to the entry page. Unfortunately, most
of the users had been fooled by this technique, and reported the ran-
domly generated locations instead of the entry page, as illustrated by
the following anonymized web server access log:

[12/Nov/2015:18:57:41] 14.xx.xxx.198

GET /kit/ 302

User-Agent: curl/7.25.0

[12/Nov/2015:19:01:35] 213.xx.xxx.100

GET /kit/8c5fcf4518e94a9f272d60ee75c309a7 301

User-Agent: Mozilla/4.0

[12/Nov/2015:19:20:45] 213.xx.xxx.100

GET /kit/8c5fcf4518e94a9f272d60ee75c309a7/redirection.php 200

User-Agent: Mozilla/4.0

The user first leveraged a command line tool (curl) to visit the link
distributed by the phisher, which referenced the entry page of the
phishing kit. As a consequence, a new phishing link has been gener-
ated, which however has not yet been visited until the reporter ver-
ified it a few minutes later with an IP address different to his first
connection. The reporter was then redirected to the phishing page
under a random location, which was also the link reported to Phish-
Tank.

This PK confirms the existence of the crowd effect described in
the previous section. In fact, while real victims would visit different
randomly generated URLs, we observed hundreds of incoming con-
nections toward the same link blacklisted by PhishTank. In Figure 4.4,
the X-axis presents the number of hours in log scale that have elapsed
after the kit was uploaded to the honeypot. The Y-axis describes the

54 live monitoring of phishing attacks

100 101 102 103 104

Time elapsed after the kit upload (hours in log scal)

0

5

10

15

20

25

30

N
um

be
ro

fv
ic

tim
s

PhishTank
GSB

(a) Kit 1 that is detected by
GSB and PhishTank

100 101 102 103 104

Time elapsed after the kit upload (hours in log scal)

0

10

20

30

40

50

60

N
um

be
ro

fv
ic

tim
s

PhishTank
GSB

(b) Kit 2 that is detected by
GSB and PhishTank

101 102 103 104

Time elapsed after the kit upload (hours in log scal)

0

5

10

15

20

25

30

N
um

be
ro

fv
ic

tim
s

GSB

(c) Kit 3 that is detected by
GSB

101 102 103 104

Time elapsed after the kit upload (hours in log scal)

0

5

10

15

20

25

30

35

N
um

be
ro

fv
ic

tim
s

GSB

(d) Kit 4 that is detected by
GSB

Figure 4.5 – Victims time distribution for the most significant phishing kits

number of visitors that have connected to the phishing kit. The ver-
tical lines correspond to the time upon which Google Safe Browsing
or PhishTank has detected the given phishing kit. During the first
few days the phisher was able to attract few victims, who connected
directly to the entry page. After the random link was published by
PhishTank we received many connections from researchers and secu-
rity companies, which connected to the reported link instead of the
entry page of the phishing kit. However, our technique was able to
correctly remove these visits from the victim set.

Google Safe Browsing publishes only the MD5 digest of the phishing
links, which are represented as host-suffix/path-prefix expressions.
These expressions can match arbitrary URLs as long as they have the
required host suffix and path prefix. This approach helps to protect
against sites where the attacker uses randomly generated sub-paths
to evade blacklists 5.

4.5.3 Victim Time Distribution

To illustrate and further confirm our measurement of the effective
lifetime of phishing kits discussed in Section 4.4.3, we plot the victim

5. https://code.google.com/p/google-safe-browsing/wiki/

SafeBrowsingDesign

https://code.google.com/p/google-safe-browsing/wiki/SafeBrowsingDesign
https://code.google.com/p/google-safe-browsing/wiki/SafeBrowsingDesign

4.5 case studies 55

time distribution from four of the most significant phishing kits, as
presented by Figure 4.5.

In general, we observe two different distribution shapes: (1) a
skewed right distribution where the majority of victims connected
to the phishing kit within a short period of time after the kit was
uploaded on the honeypot and (2) a bimodal distribution where two
groups of victims connected to the phishing kit during two different
periods. Kits 1-3, as presented in Figures 4.5a, 4.5b and 4.5c belong
to the first category, having a single group of victims within a short
period, followed by a long tail of very few victims. The phishers of
the three kits performed probably only one phishing campaign af-
ter which they abandoned these kits. Different to the previous kits,
Kit 4 in Figure 4.5d belongs to the second category, with two dis-
tinct groups of victims. The first group connected to the phishing
kit within 24 hours, while the second burst arrived after exactly 70

hours (about 3 days). This is probably a consequence of two different
phishing campaigns.

As shown in Figure 4.5, even if phishing kits remain online for a
long period of time, they are only active for a short duration after the
kit is uploaded to a compromised server. Besides, this effective life-
time is largely unaffected by the time at which Google Safe Browsing
(GSB) or PhishTank blacklist the phishing pages, since these services
usually become effective only after most victims have already visited
the phishing pages. This victim time distribution further supports the
way we measure the effective lifetime of the phishing kits described
in Section 4.4.3.

4.5.4 Real-time Email Detection

Our results show that GSB and PhishTank are not fast enough to
blacklist new phishing kits, which leaves victims on their own to
identify and protect against phishing attacks. We believe that honey-
pot systems, as the one described in this chapter, could be deployed
to provide an early detection mechanism to promptly identify drop
email addresses used by the attackers. These addresses can be further
used by the email service providers to disable the email accounts to
prevent phishers from retrieving the stolen credentials.

Our custom PHP interpreter records constantly the attempts to
send an email even when the attacker makes use of the error control
operators (@) 6 to silence all error messages. Each attempt is logged
along with the file path of the script that tried to send an email and
the destination address. Our system can detect the drop email as
soon as an email is sent to the phisher, which may be either triggered
by the phisher who verifies the good behavior of the phishing kit or
by the first victim who submits some data.

6. http://php.net/manual/en/language.operators.errorcontrol.php

http://php.net/manual/en/language.operators.errorcontrol.php

56 live monitoring of phishing attacks

In order to assess the effectiveness of this approach, we manually
check the emails sent to the attackers to estimate how many attacker
email accounts could have been detected during our study. In to-
tal, we have found 68 distinct drop email addresses in the sent box
– so each email address has been used in average by two different
phishing kits. Unfortunately, only four of these addresses were dis-
abled or were unreachable at the moment when the phishing kits
attempted to send the first stolen credentials. This shows that email
providers already disable drop email accounts. However, this pro-
cess can greatly benefit from using a more systematic infrastructure
(like the one presented in this chapter) to collect more addresses in
an efficient manner.

4.6 conclusions

In this chapter we present the design and implementation of a hon-
eypot system especially designed to analyze and disarm phishing kits.
Our system provide a new way for an application service provider to
monitor the security of its customer applications without compromis-
ing the user privacy. Using this infrastructure, we conducted a five-
month experiment to understand and measure the entire life cycle of
this type of attack.

Different from previous works, our approach is able to measure
the effective lifetime of phishing kits, which starts immediately after
the kit installation. We are also the first to clearly distinguish the
victims from the attackers and the other third party visitors. Our
results show that less victims divulge their credentials compared to
previous studies conducted in 2009 [180], maybe due to an increased
user education in the past seven years against this threat.

5
D E C E P T I O N T E C H N I Q U E S I N C O M P U T E R
S E C U R I T Y: A R E S E A R C H P E R S P E C T I V E

In this Chapter we look at alternative techniques a service provider can
deploy to add an additional security layer in front of its customers applica-
tions. In particular, a recent trend both in academia and industry is to ex-
plore the use of deception to achieve proactive attack detection and defense –
to the point of marketing intrusion deception solutions as zero-false-positive
intrusion detection. However, there is still a general lack of understanding
of deception techniques from a research perspective and it is not clear how
the effectiveness of these solution can be measured and compared with other
security approaches. To shed light on this topic, this Chapter presents a com-
prehensive survey on the use of deception techniques in computer security.

In recent years we have witnessed a surge in advanced cyber at-
tacks, that are rapidly increasing both in number and in sophistica-
tion [176]. This threat affects both enterprises and end-users alike,
and inflicts severe reputation, social, and financial damage to its vic-
tims 1. Unfortunately, despite the numerous efforts to raise awareness
against cyber attacks, attackers are still able to infiltrate their target
systems, leveraging multiple attack vectors such as zero-day vulner-
abilities, flaws in software configuration, access control policies, or
by social engineering their target into installing or running malicious
software.

To thwart this vicious trend, the security community has proposed
and developed numerous solutions to enhance the security of net-
works and information systems. Current solutions cover all tradi-
tional aspects of security, including intrusion prevention [163], system
hardening [135], and advanced attack detection and mitigation [17].
These traditional measures, although essential in any modern secu-
rity arsenal, cannot provide a comprehensive solution against Inter-
net threats. Hence, complementary solutions have been recently in-
vestigated, with the aim to be more proactive in anticipating threats
and possibly warn against attacks in their very early stages. In this
scope, deception techniques have attracted a considerable amount of
interest among the research community [8, 13]. These techniques,
initially inspired by the use of deception in the military domain, con-
sists of orchestrating a “planned set of actions taken to mislead attackers

1. https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/

the-impact-of-targeted-attacks

https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/the-impact-of-targeted-attacks
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/the-impact-of-targeted-attacks

58 deception techniques in computer security : a research perspective

and to thereby cause them to take (or not to take) specific actions that aid
computer-security defenses” [199].

Most recently, during the French President election campaign, the
digital team of Mr. Macron created fake accounts with a large num-
ber of fake documents [137]. They submitted such fake accounts to
phishing attacks, and have successfully delayed the advancement of
the attackers by the large quantity of fake documents they created.
Interestingly, attackers rushed to modify some of the leaked docu-
ments, leaving some traces in their meta-data that provided informa-
tion about their identity.

During our efforts to summarize existing work on deception and
its application in computer security, we realized that many security
solutions already implement deception up to a certain level, as also
mentioned by Cohen [42]. The diversification of military deception
and its application in the cyber space has been also actively develop-
ing over the last few decades [83, 160]. Nonetheless, from a research
perspective, we still lack a global understanding about deception tech-
niques and their application in information and communication sys-
tems security. In particular, there is not yet a wide consensus among
the research community about what are the main goals and techni-
cal challenges to achieve when using deception techniques as a de-
fense mechanism. The real benefits for such techniques are also not
clearly emphasized, nor the way deception techniques may comple-
ment other traditional security solutions. The modeling, deployment,
update, and evaluation of deception techniques are also scarcely ad-
dressed in the literature – often resorting to qualitative statements
and thus making difficult to compare such techniques with other ap-
proaches.

This Chapter discusses all these issues by providing an overview of
deception techniques in computer security, divided in four separate
categories:

classification and current applications : A first question
to address when referring to deception techniques is why should
we use such techniques, and how do they complement other
traditional security mechanisms [7, 8]. Only two decades ago,
researchers were still wondering whether deception may be ac-
ceptable from a legal and ethical perspective [42]. Today, it is
obvious that such questions are no longer an issue, opening the
door to a large number of proprietary (e.g TRAPX 2, CANARY 3,
ThreatMatrix 4) and open source (e.g. DCEPT 5, Canarytokens 6)
solutions that explicitly mention and use deception for com-

2. https://trapx.com/
3. https://canary.tools/
4. https://attivonetworks.com/product/deception-technology/
5. https://github.com/secureworks/dcept
6. https://github.com/thinkst/canarytokens

deception techniques in computer security : a research perspective 59

puter security defense. A main goal of this Chapter is thus
to propose a comprehensive classification, survey the current
applications of deception in computer security, and shed light
on the key technical domains where deception has been imple-
mented.

modeling : Deception modeling refers to the set of rules and strate-
gies that drive the defender into designing and integrating de-
ception within the architecture and workflow of a target system.
During our survey of scientific literature, we identified multi-
ple deception strategies that leverage different properties of the
target system, and different assumptions about the attacker be-
havior. For example, Cohen et al. [45, 47] leveraged the use
of attack graphs, which provides a compact representation of
known attack scenarios and the way attackers can break into a
target system. The authors integrated deception techniques in
different position of the graph, in order to lure attackers and
to drive them towards fake targets. In [37], authors proposed
an alternative approach, leveraging models based on game the-
ory, in order to describe different interaction sequences between
attackers and the target system, and to apply deception while
maximizing the defender’s gain.
In this Chapter, we survey existing deception modeling tech-
niques and we discuss their main benefits and limitations. In
particular, we observe that most deception modeling techniques
either cover only specific attacks and use cases, or they try to
adapt and implement high-level strategies whose applicability
remains questionable.

deployment : Another key aspect of deception is the way it is de-
ployed inside a target environment. The mode of deployment
refers to the technical environment where the deception is being
implemented inside a target system [160]. In this scope, decep-
tion may be either implemented as a standalone solution (e.g.
honeypots), or fully integrated within the target system (e.g.
fake documents [186]). Moreover, deployment also includes the
placement strategies (either manual or automated) that place
deception at specific locations within the architecture and work-
flow of a target system. To be effective, deception elements
needs to be generated to achieve perfect realism with regard to
real data and system integration. However, it is still unclear
how the deployment and placement strategy affects the effec-
tiveness of the solution. Moreover, while the importance of re-
training machine learning models or update attack signatures is
well known in the intrusion detection domain, the importance
of updating the deception element is still largely unexplored.

evaluation : The last aspect that we cover in this survey is the ex-
perimental setup and the way previous work evaluate the pro-

60 deception techniques in computer security : a research perspective

posed deception techniques. We discuss the main challenges
researchers are faced with when evaluating deception, and dis-
cuss how these problems may drastically limit the soundness
of obtained results (both including the efficiency and accuracy
of the proposed solutions). Other solutions are typically evalu-
ated by measuring their detection and false alarm rates – both
of which are difficult to assess in the deception domain.
Finally, we provide insights and key features that should be
taken into account in the future when evaluating deception tech-
niques.

Motivated by these key questions, this chapter presents a system-
atic organization of previous work on deception techniques and their
application in the cyber security domain. It discusses the main tech-
nical challenges that were addressed using these techniques and em-
phasizes the gaps and the pieces of the puzzle we still miss in this
complex field of research.

5.1 definition & scope

5.1.1 Deception techniques: concept and terminology

One of the first documents to mention the term deception as a way
to enhance the security of computer systems is “The Cuckoo’s Egg”
book [173], published by Cliff Stoll in 1989. The author describes how
he set up a fictitious system environment, including a user account
populated with a large number of fake documents to deliberately
attract and delay an attacker, while tracking his incoming connec-
tions to reveal his origin and identity. Such fictitious environment,
designed to capture the interaction with an attacker, later became
popular as a honeypot [105]. In 1994, a system called Tripwire [99] of-
fered a new approach for file integrity checking by planting fictitious
files and placing them under a file integrity monitor to detect intrud-
ers [98]. The concept of planted fictitious files have then evolved into
a diversified set of solutions including honeyfiles [198], and decoy doc-
uments [27].

In the following years, deception has been routinely used to protect
computer systems and networks. Honeypots became a popular solu-
tion for the monitoring, analysis, understanding, and modeling of at-
tackers’ behavior [42, 133, 150, 172]. In 2003, soon after the first com-
puter honeypot was released, the concept of honeytoken was proposed
by Augusto Paes de Barros [143]. Then Spitzner [171] broadened this
concept to cover “a digital or information system resource whose value lies
in the unauthorized use of that resource” and brought it to the attention
of a larger public. He illustrated practical examples of honeytokens,
including bogus social security numbers and fake credentials, which
have later inspired many follow-up contributions such as honey pass-

5.1 definition & scope 61

words [90], honey URL parameters [147], database honey tokens [22,
38] and honey permissions [93].

The use of deception techniques for computer security has been
widely driven by the analogy with more conventional deceptive mil-
itary tactics. In this scope, the concept has been broadened towards
intrusion detection (IDS) and prevention (IPS) systems. Instead of
indicating to the intruder a violation of a security policy, deception
consists in responding to attackers with some pre-defined decoy ac-
tions, such as fake protocol messages [67], response delays [92], and
crafted error messages [123]. For example, instead of blocking a de-
tected intrusion on the web server, Katsinis and Kumar [96] examined
the use of a deceptive module that analyzes incoming HTTP requests
and advises deceptive responses in case of an ongoing attack.

It is worth mentioning that during our efforts to summarize ex-
isting work on deception techniques, we observed that many tradi-
tional security solutions already implement deception up to a certain
level. For example, widely known techniques such as software diver-
sity [106], as well as anti-forensics techniques [63], are deceptive in
nature, as they aim to hide and conceal system information against
unauthorized access. Similarly, security scanners and crawlers mostly
behave in a deceptive way in order to mimic normal users and hide
their real purposes. Malware analysis systems also try to deceive ma-
licious binaries by executing them in an instrumented sandbox as if
they were running on a real victim terminal. To further complicate
this already multifaceted domain, the existing literature often adopts
a confusing terminology – interchangeably using terms such as con-
cealment, fakes, baits, decoys, traps, and honey(pots|tokens|files|accounts|...).

5.1.2 Scope of this survey

The first part of this survey aims at providing a multi-dimension
classification of deception techniques in computer security. It reaches
this goal by organizing the existing deceptive approaches along four
orthogonal directions, as discussed in Section 5.2. The second part of
the survey emphasizes instead the research gaps, by focusing on open
problems in the modeling, deployment, and evaluation of deception
techniques.

Unfortunately, the concept of deception is too broad to cover in a
single document – as it manifests in different forms in almost all se-
curity domains. Therefore, in the rest of the document we will only
focus on those techniques that are used to deceive an attacker while
he is interacting with his target. This definition (sometimes called
Intrusion Deception) covers only those solutions that can be applied
to secure real systems. It rules out instead other loose forms of de-
ception adopted in the security field (such as faking the user agent
of a web scanner) as well as standalone deceptive systems used to

62 deception techniques in computer security : a research perspective

monitor the overall threat and attack landscape (such as standalone
honeypots [134]).

5.2 classification

In this section we introduce a classification of deception techniques
along four orthogonal dimensions, including the unit of deception,
the layer where deception is applied, the goal of the deception solu-
tion, and its mode of deployment.

5.2.1 Multi-Dimension Classification

Because of the wide spectrum of deception techniques and the dif-
ferent ways they may apply to computer security, it is very difficult
to classify all of them along a single dimension that successfully in-
corporates the different research aspects. Traditional military decep-
tion classifications (such as [42]) and semantic classifications (such
as [159]) allowed us to understand the use of deception techniques
from different angles, which however are difficult to match with the
needs of computer security. Moreover, most previous classifications
considered only one dimension, such as the component, the granular-
ity of each technique [7], or the layer where deception is applied [149].
Unfortunately, these mono-dimensional classifications miss other as-
pects of deception that are of equal importance, such as the threats
covered by each technique, and the way they can be integrated inside
a target system.

To address these limitations, we introduce in this chapter a new
classification system based on four orthogonal dimensions. In our
system, categories are mutually exclusive, which means that each ex-
isting deception technique may be classified within only one single
four-dimensional vector Our classification is also complete, so all ex-
isting deception techniques find a place in our schema. The four
dimensions that we use for our classification are defined as follows.

Goal of deception captures the main purpose a specific deception
technique is trying to achieve. This could be either to improve
and complement attack detection, to enhance prevention, or to
mitigate successful attacks. The first category includes those so-
lutions designed to detect an attack, typically because it interacts
with active traps or because it uses passive decoy information
that are intentionally left accessible to be discovered by the at-
tacker (e.g., decoy documents [21]). The second category covers
instead those mechanism that aim at confusing or distract at-
tackers from the real targets before an attack occurs (e.g. the
deployment of deceptive network topology [179]). Finally, the
last category targets on-going attacks and tries to reduce their

5.2 classification 63

damage, for instance by replying in a delayed manner [92] or by
redirecting attackers to a safe copy of the target system [12, 16].

Unit of deception refers to the granularity of the decoy asset that
is used to implement deception. We use the same definition of
granularity introduced by Almeshkah et al. [7], which includes
the following units of deception: decision (e.g., by accepting a con-
nection towards an unused IP address [26, 116]), response (e.g. a
forged network response [26]), service (e.g., a decoy service [43]),
activity (e.g., a decoy computation activity [101]), weakness (e.g.
a simulated vulnerability [16]), performance (e.g. a delayed re-
sponse [92]), configuration (e.g. a fake network topology [179])
and data.
We further refine the data unit into separate types, such as pa-
rameter (e.g., a honey URL parameter [147] or a honey form
field [97]), file (e.g., honey files [198] and decoy documents [21]),
account (e.g. honey account [28, 39]), user profile (e.g., honey pro-
files [191]), source code (e.g., decoy source code elements [145])
and database record (e.g., database honey token [38]).

Layer of deception indicates the layer in which the deception ele-
ment is applied. While there are different ways to organize the
layers of an information system, we use a standard classifica-
tion divided in network, system, application, and data layers.
The network layer covers deception techniques that are acces-
sible over the network, and that are not bound to any specific
host configuration. The system layer covers host-based deception
techniques. The application layer covers deception techniques
that are linked to specific classes of applications, such as web ap-
plications or databases. Finally, the data layer covers deception
techniques that leverage user-specific data, such as fake accounts
or fake documents.

Deployment of deception characterizes the way a deception tech-
nique may be integrated within a target system. Possible deploy-
ment modes include (1) built-in deceptions solutions that are in-
tegrated in the system at the design phase (e.g., in the source
code [92]), (2) deceptions that are added-to the system during op-
eration (e.g., documents inserted in a file system [186]), (3) de-
ceptions that are set in-front of a target system (such as a proxy
or gateway [30]), and finally (4) isolated solutions separated from
the target system (e.g., fake accounts of a decoy server [28, 39]).

Table 5.1 presents a survey of previous work on deception and clas-
sifies them over the four aforementioned dimensions. Note that few
studies that are referenced in Table 5.1 do not explicitly mention de-
ception in their core contributions. Moreover, since deception is a
generic concept that may apply to different aspects of security, cer-
tain studies introduce deception as an add-on functionality within a

64 deception techniques in computer security : a research perspective

more comprehensive security framework. Table 5.1 lists all existing
work as long as their contribution fits with our definition of deception
introduced in Section 5.1.

5.2.2 Overview of Intrusion Deception Techniques

During our survey, sometimes we found it particularly challenging
to associate a given publication to a specific deception category, since
many techniques may have been presented in a single work. There-
fore, to keep a consistent classification of existing work on deception,
we associate each publication to its main deception technique, or to
the one that has not been introduced before in case of multiple con-
tributions.

For sake of clarity, since our classification leverages four distinct
dimensions, we organize this section based on the layer of deception.
But we discuss all four dimensions as part of our classification.

Layer I: Network
The network-based deception techniques we observed in the litera-
ture were mostly designed to address three categories of threats: net-
work fingerprinting, eavesdropping, and infiltration and attack propagation.

scanning & fingerprinting – These typically occurs during
the early stage of an attack, in particular the reconnaissance phase,
and enables an attacker to acquire information about the network
topology and available assets by fingerprinting and scanning the net-
work.

One of the first deception techniques that offered to interfere with
the reconnaissance phase in order to obfuscate its results relied on
sinkholing attack traffic, by redirecting malicious traffic to a set of
fake machines that mimic the behavior of real terminals on the net-
work [26]. Such decoy machines are commonly known as network
tarpits [116]. They create sticky connections with the aim to slow or
stall automated scanning, and to confuse human adversaries. Shing [167]
further brought a few improvements to this idea by tuning the differ-
ent options of the sticky connections to conceal network tarpits and
prevent them from being easily recognized.

Another way to lure attackers and to randomize the outcome of
their fingerprinting attempts was proposed by Le Malécot in [109].
They authors introduced a technique to skew the topology of the tar-
get network through random connection dropping and traffic forging.
For example, Trassare [179] defeated a particular type of scan, tracer-
oute probes, by misleading an attacker through constantly revealing
a false network topology.

Another type of threat, OS Fingerprinting, allows an attacker to
gain valuable information about available Operating Systems (OS),
and so to identify potential flaws and vulnerabilities. To conceal OS-

5.2 classification 65

Reference Technique Unit Layer Goal Deployment

[116] Network Tarpit Decision Network Mitigation Added-to

[26] Network Tarpit Decision Network Mitigation In-front of

[167] Network Tarpit Decision Network Mitigation Added-to

[109] Traffic forging Response Network Mitigation In-front of

[179] Deceptive topology Configuration Network Prevention In-front of

[168] OS obfuscation Response Network Mitigation In-front of

[28] Honey accounts Configuration Network Detection Isolated

[39] Honey accounts Configuration Network Detection Isolated

[47] Deceptive attack graph Configuration Network Prevention Added-to

[45] Deceptive attack graph Configuration Network Prevention Added-to

[43] Decoy services Service Network Prevention Added-to

[150] Decoy services Service Network Detection Added-to

[161] Deceptive simulation Activity Network Prevention Added-to

[101] Decoy computation Activity System Prevention In-front of

[183] Deceptive simulation Service System Mitigation Added-to

[189] Multi-layer deception Multiple Multiple Detection Added-to

[130] OS obfuscation Parameter System Mitigation Added-to

[158] Fake honeypots Configuration System Mitigation Added-to

[93] Honey permissions Configuration System Detection Built-in

[162] Decoy network device Service System Detection Added-to

[123] Software Decoys Response Application Detection In-front of

[16] Honey patches Weakness Application Mitigation In-front of

[50] Software trap Weakness Application Detection Added-to

[92] Delayed response Performance Application Mitigation Built-in

[12] Shadow honeypots Service Application Mitigation In-front-of

[30] Decoy hyperlinks Parameter Application Detection In-front of

[65] Decoy hyperlinks Parameter Application Detection Added-to

[121] Honey URL Parameter Application Detection Added-to

[147] Honey URL parameters Parameter Application Detection Built-in

[97] Decoy form field Parameter Application Detection In-front of

[185] Honey accounts Configuration Application Detection Added-to

[25] Honey password Account Data Prevention Added-to

[90] Honey password Account Data Detection Added-to

[89] Honey encryption Account Data Prevention Built-in

[29] Honey accounts Account Data Detection Isolated

[4] Honey accounts Account Data Detection Isolated

[138] Honey accounts Account Data Detection Isolated

[198] Honey files File Data Detection Added-to

[107] Honey files File Data Detection Added-to

[38] Database honey tokens Record Data Detection In-front of

[22] Database honey tokens Record Data Detection Added-to

[142] Database honey tokens Record Data Detection Built-in

[145] Decoy source code Code Data Detection Added-to

[27] Honey files File Data Detection Added-to

[21] Honey files File Data Detection Added-to

[186] Honey files File Data Detection Added-to

[136] Honey files File Data Detection Added-to

[117] Honey files File Data Detection Added-to

[94] Honey web pages File Data Detection Added-to

[191] Honey profiles Profile Data Detection Added-to

[174] Honey profiles Profile Data Detection Added-to

[51] Honey profiles Profile Data Detection Added-to

Table 5.1 – Detailed overview of deception techniques

66 deception techniques in computer security : a research perspective

related information and prevent it from being fingerprinted by an
attacker (e.g. using the Nmap tool), multiple deception techniques
have been proposed – that offer to mimic the network behavior of fake
operating systems [130, 168] in an effort to mislead potential attackers.
The use of deception techniques against this category of threat mainly
aims at confusing attackers and delaying their advancement.

eavesdropping Network eavesdropping is a challenging attack
to detect using traditional detection systems since the attacker usu-
ally remains silent on the network. Deception techniques have been
introduced as an alternative way to protect against such attacks. A
deception technique that is particularly relevant in this area is the
use of honey accounts. These are usually dummy credentials that are
shared over the network in order to be captured and used by elusive
attackers, thus revealing their presence in specific networks such as
wireless [28] and Tor [39] networks.

infiltration & propagation Cohen et al. in [45, 47] con-
ducted red teaming experiments on deception, through leveraging
structured attack graph representations, in order to drive attackers
into following fake attack paths that would distract them from their
real targets. Similarly, HoneyD [150] and the Deception ToolKit [43]
offer to spawn multiple fictitious services and network IP addresses
in order to fool the attackers and make them attack false targets. In
addition to their application in traditional networks, deceptive sim-
ulation techniques [161] have been also applied in the context of in-
dustrial control systems. These tools offer to monitor the network
topology and to create fake but indistinguishable attack targets that
are aimed to fool attackers and conceal potential victims.

Layer II: System
Deception techniques that have been implemented at the system layer
were mainly aimed at addressing two categories of threats, namely
external attacks and insider threats.

system compromise Wang et al. [189] suggested the use of de-
ception techniques in an effort to enhance the detection of system
compromise attempts by introducing a multi-layer decoy framework
that included decoys for user profiles, files, servers, and network /
system activity. These decoys were supposed to conceal the real as-
sets of an organization and protect them against targeted attacks. In a
similar approach, Rrushi [162] proposed the use of a decoy Network
Interface Controller (NIC) for Windows operating systems. This de-
coy interface was intentionally set in order to lure and detect mali-
cious software that may be running on the system. The idea is that
benign software is not expected to use the decoy interface, which is

5.2 classification 67

how the authors were able to detect other malicious applications run-
ning on the system.

As opposed to the previous techniques that were mainly aimed at
enhancing detection, Rowe et al. [158] adopted a proactive deception
approach that aims at preventing system compromise attempts. They
suggested the use of fake honeypots that make ordinary but critical
systems appear as real honeypots, which may confuse an attacker
and turn him away from the compromised system. Similarly, Urias et
al. [183] offered to clone and migrate machines that are suspected of
being compromised, and to place them in a deceptive environment
where network and system configurations are duplicated to mimic
the real network environment. Lastly, Kontaxis et al. [101] proposed
to duplicate multiple times the entire application server to generate
decoy computation activities.

insiders To detect and mitigate insider threats, Kaghazgaran and
Takabi [93] offered to extend role-based access control mechanisms
with honey permissions. These are fake permissions in the sense that
they assign unintended access permissions to only fake versions of
sensitive system assets. By monitoring attempts to access or modify
such fake assets, the authors are able to detect insiders who triggered
these malicious attempts. Note that many other techniques applied at
the data layer, such as decoy documents and fake source code, have
also been proposed to deal with insider threats, and we discuss them
in the last part of this section.

Layer III: Application
State of the art deception techniques applied at the application layer
mainly address two threat categories, which are host-based software
compromise and remote web-based attacks.

software compromise Deception techniques have been exten-
sively used in the literature as a way to protect software from com-
monly known vulnerabilities. They usually consist of deceiving at-
tackers by either pretending fake (non-existent) vulnerabilities, or by
randomly responding to common vulnerability scan attempts. For
example, a straightforward deceptive response would be to simulate
system saturation by randomly adding delays in order to deceive po-
tential adversaries [92]. Michael et al. [123] introduced the notion
of intelligent software decoys that detect and respond to patterns of
suspicious behavior (e.g. the interaction between a worm and the
system component that it tries to infect), and maintain a repository
of rules for behavior patterns and decoying actions. Araujo et al. [16]
converted software patches into fake but valid-looking vulnerabilities
(aka “honey-patches”) that drastically limits the attackers capability
to determine the successfulness of their attacks. In this scope, and
upon detection of an attack exploiting the fake vulnerability, the sys-

68 deception techniques in computer security : a research perspective

tem seamlessly forwards the attacker to a vulnerable decoy version of
the same software. Authors further extended their honey-patch sys-
tem with an instrumented compiler that automatically redacts secrets
in order to elude attackers and to reduce their chances of finding ex-
isting and unpatched vulnerabilities [15]. In [12], Anagnostakis et al.
introduced shadow honeypots that extend honeypots with anomaly-
based buffer overflow detection. The shadow honeypot is an instance
of the target application, and shares its context and internal state. It
is used to process anomalous traffic and to enhance the accuracy of
anomaly detection.

Finally, Crane et al. introduced in [50] software traps, that are
dissimulated in the code as gadgets, and detect return-oriented pro-
gramming attacks. These traps detect and notify an ongoing attack
as soon as they are manipulated by the exploit.

web attacks Brewer et al. [30] proposed a web application that
embeds decoy links. These links are invisible to normal users, but
are expected to be triggered by crawlers and web bots that connect
to the application. Similarly, Gavrilis et al. [65] presented a deceptive
method that detects denial of service attacks on web services by using
decoy hyperlinks embedded in the web page.

Another approach to deceive web-based attacks also consists of us-
ing fake information disguised as web server configuration errors.
Only malicious users are expected to manipulate or exploit these er-
rors, which expose them to detection by the system. In this scope,
Virvilis et al. [185] introduced honey configuration files, such as robots.txt,
including fake entries, invisible links, and HTML comments that in-
dicate honey accounts, in order to detect potential attackers. Other
studies proposed decoy forms [97] and honey URL parameters [147]
that display fake configuration errors in an effort to mislead attackers
and to protect the target system.

Layer IV: Data
This section discusses state of the art techniques that use fake or de-
coy data to deceive attackers. They mainly protect against four cat-
egories of threats, namely identity theft, data leakage, privacy violation
and impersonation.

identity theft Honey accounts have been used in the literature
to track phishers [121], detect malware [4, 29] and also provide possi-
bilities for researchers to study the malicious activities performed on
stolen webmail accounts [138]. In the same vein, Lazarov et al. [107]
created five fake Google spreadsheets containing decoy banking in-
formation and wire transfer details, in order to shed light on the way
that cyber-criminals use these fake spreadsheets. There are also other
approaches that applied deception techniques to protect stolen user
passwords. For example, to protect against situations where hashed

5.3 modeling 69

user passwords have been leaked, Juels et al. introduce in [90] honey-
words (false passwords) in order to conceal true authentic passwords.
Bojinov et al. [25] introduced instead the concept of a theft-resistant
password manager that executes on the client side, and that randomly
generates new password instances. Finally, Juels et al. [89] proposed
“honey encryption”, which creates a ciphertext that, when decrypted
with an incorrect key or password, result in a valid-looking decoy
message.

data leakage and insiders To mitigate or report a data leak-
age, multiple studies [21, 27, 186] suggested the use of decoy docu-
ments that implement honeytokens, and beacon alerts that call home
when they are opened. Alternatively, honey tokens that mimic sensi-
tive information have been also integrated within databases (e.g. [22,
38]) – mainly as a way to detect insiders who scan the database to
obtain an unauthorized access to data. In the same vein, Park et
Stolfo [145] generated fake but believable Java source code to detect
the exflitration of proprietary source code.

privacy violation Honey files that raise an alert when accessed
or modified have been used in the literature in order to detect privacy
violations for documents shared on web hosting providers [136] and
Peer-to-Peer networks [117].

More recently, Kapravelos et al. [94] proposed honey web pages
that adapt the page structure and content according to a browser
extension’s expectations. These honey web pages allowed the au-
thors to identify malicious behavior in the form of privacy violation
in browser extensions.

impersonation De Cristofaro et al. [51] created and promoted 13

honey Facebook pages to study the fake likes that they would receive.
Honey profiles have also been deployed on social networks in order
to identify accounts that are operated by spammers [174, 191].

5.3 modeling

In this section, we look at theoretical models that had been pro-
posed for deception techniques in computer security. In particular,
we have identified two main axes of deception modeling in the lit-
erature. First, many works have proposed models to support plan-
ning and integration of deception in a target infrastructure or system.
These models mainly propose some sort of methodology (that can
either be process, a probabilistic model, or a practical model based
on attack graphs) to design where, when and how deception may be
integrated in computer security. Second, few works have tried to un-
derstand the affects of deception in computer security by modeling

70 deception techniques in computer security : a research perspective

the interaction between attackers and deception-enabled defenders
using game theory.

5.3.1 Deception Planning

We group the proposed models to plan deception into three cate-
gories by the modeling method that are 1) process model that defines
the desired process and how they should be performed, 2) probabilis-
tic model that uses probability to evaluate the benefits and cost of
deception, and 3) practical model that used attack graphs to build
deception.

5.3.1.1 Process Model

Yuill [199] presented a process model covering four major steps: 1)
deception-operation development, 2) deployment, 3) target engaged
and 4) continuation decision and termination. The first step involves
the planning of goals, the identification of possible targets, the cre-
ation of the deceptive element, and the preparation of the mechanism
to engage the target. The next step consists of deploying the decep-
tion scenario at the location that is visible to the potential target. The
target is engaged once he perceives and believes the deception sce-
nario, and subsequently takes the planned action, which may be re-
ported by properly designed feedback channels. Finally, a decision
on whether to continue or terminate the deception is taken based on
the results and the efficiency of the deception operation.

Similarly, Almeshekah and Spafford [7] proposed a model that in-
cludes three general phases: design, implementation and integration,
and monitoring and evaluation. The first phase consists of specify-
ing the strategic goals, defining the way that the target may interact
with deception, creating the deception story, and identifying the feed-
back channels. Then defenders should integrate deception within
a real environment, instead of being a separate disjoint component.
Finally, the previously established feedback channels should be care-
fully monitored in order to enhance deception. Heckman et al. [75]
presented a similar but iterative deception life cycle management pro-
cess while De Faveri and Moreira [52] proposed a similar but adaptive
process model. Hassan and Guha [73] proposed an abstract model
based on a state machine with four states (default, ready, production,
and determine) to provide a basic elementary view of the aforemen-
tioned models.

De Faveri et al. [53] designed a goal-based approach to incorpo-
rate deception in the software development process in three separate
phases. The first phase consists of modeling the system architecture
and its goal in a specific domain of application. Then the security
requirements are identified and a threat model is produced. The last
step requires the application of the deceptive solution based on previ-

5.3 modeling 71

ously built models. The applied deception model is actually similar
to the aforementioned process models.

Finally, Yuill et al. [200] proposed a model that describes deceptive
methods by the way that defenders may use to disable the attackers
to discover a hidden asset. More precisely, the process model affects
the attackers ability or behavior, by altering the results of their direct
observation, the findings of their investigation, and the information
they learned from other users.

5.3.1.2 Probabilistic Model

Rowe [155] provided a probabilistic model of attacker beliefs in
false excuses such as system crush, communication breakdown, and
also the attacker’s suspiciousness about whether he is being deceived.
This model is helpful for defenders to plan when and how to de-
ceive, while monitoring the attacker’s belief in the proffered excuses.
Rowe [154] also proposed a cost-effective probabilistic model to as-
sess the cost and benefits while planning deception. Wang et al. [189]
modeled the design of the multilayered deception system including
decoys of user profile, files, servers and network or system activity as
a problem of optimization which aims to reduce the cost of deception
deployment and the loss in case of a successful compromise.

5.3.1.3 Practical Model

Cohen et al. [45, 47] modeled the process and path that attackers
might use to compromise a computer using attack graphs. By intro-
ducing false targets in the attack graph, they modeled how to drive
the attackers away from real targets.

5.3.2 Interactions between Attackers and Deception Techniques

To the best of our knowledge, only two studies have modeled the af-
fects of deception with respect to attackers using game theory. Carroll
and Grosu [37] modeled how deception affects the attack-defense in-
teractions based on a game theory, where the players (defenders and
attackers) have incomplete knowledge of each other. In this game,
defender can deploy two deception defenses by either concealing a
legitimate server as a honeypot, or by making a honeypot to look like
a legitimate server. Gutierrez et al. [70] presented a primer of model-
ing the interaction between adversaries and system defenders using
hypergames. Using this approach, the authors were able to model
misperceptions resulted from the use of deception.

72 deception techniques in computer security : a research perspective

5.4 deployment

Most deception techniques take advantage from their interactions
with the remote attacker. Hence, the efficiency of such techniques
hinges largely on their credibility, their coverage, and the location in
which the deceptive elements are placed inside the target environ-
ment. In this section, we discuss these fundamental properties and
we survey how these requirements were fulfilled in previous work.

In particular, the rest of the section focuses on the following four
aspects: 1) how deception is deployed and integrated into a target
environment, 2) how previous work approached the problem of op-
timal placement of deception elements, 3) how to achieve realistic
and plausible deception, and finally 4) how to monitor, update and
replace deceptive elements already deployed on the field.

5.4.1 Mode of Deployment

We start our deployment study by looking at how deception tech-
niques are positioned with respect to the target environment under
protection. The techniques that we introduced in the previous section
often adopt different deployment strategies, based on their granular-
ity and on the objectives the defender wants to achieve when adopt-
ing a given deception technique. According to the taxonomy we pre-
sented in Section 5.2, we classify the different modes of deployment
into four categories, depending on whether the deception is built in-
side the target system, it is placed in-front of it, it is later added-to
the system, or finally it comes as a isolated standalone solution. Un-
fortunately, not all existing deception techniques come with a clear or
unique deployment strategy. Therefore, this section covers only those
techniques whose deployment may be clearly identified with respect
to the target system.

Built-In

Only few studies in the literature suggest integrating deception
already at the system design phase. In this scope, honey encryp-
tions [89] offer to protect messages by creating dummy honey to-
kens and instilling them in the system by design. Similarly, Kaghaz-
garan [93] proposed to embed, during the policy setup phase, honey
permissions inside role-based access control models. In the same cat-
egory, some other deception techniques have been integrated directly
in the source code of an application. Examples include the injection
of random delays in order to modify the normal behavior of a web-
based search engine [92], honeytokens added during the creation of a
new database using aspect-oriented programming [142], and setting
honey HTTP request parameters in a web application in order to lure
attackers by exposing dummy URL attributes [147].

5.4 deployment 73

In-Front of

Deception techniques that are implemented in-front of a target sys-
tem mainly consist of interposing the deception elements between
the attacker and the system. This can be achieved by multiple ways,
depending on whether the deception is integrated at the network, at
the system, or at application layer. For instance, at the system layer
the deployment requires to intercept the execution flow of a process
or application, while at the network layer it is necessary to intercept
the traffic, often using reverse proxies and trusted certificates (in case
of encrypted connections).

We identified two distinct methods in the literature that offer to
modify the execution flow of an application in order to deploy decep-
tion. First, Michael et al. [123] instrumented the software component
to implement decoy actions. Other work leveraged specific applica-
tion features. In particular, Cenys et al. [38] used the Oracle database
to intercept insert, select and update operations and to integrate hon-
eytokens. Similarly, the modular design of the Apache web server
enables to register a hooking module that can implement deception
techniques [6, 30, 97].

At the network layer, deception is often used to mitigate network
scanning and fingerprinting. These solutions are usually deployed
on specific network devices, such as routers [179], gateways [26, 101,
168], firewalls [109], or on dedicated monitoring modules (anomaly
detection [12]). Note that it may also be possible to achieve similar re-
sults without intercepting the traffic. For example, the authors of [116,
167] proposed techniques to monitor and reply to unanswered ad-
dress resolution protocol (ARP) requests in order to produce false
network topologies, and to reduce the attacker’s ability to scan the
network.

Added-To

This category includes techniques that are added or integrated into
the system at runtime. Many existing approaches leverage this mode
of deployment, and use deception as a way to complement other tra-
ditional security mechanisms. In particular, decoy assets (IPs, ser-
vices, applications, vulnerability or data) are usually integrated in
the infrastructure in order to mislead attackers and turn them away
from other sensitive assets. To build such decoy assets, previous work
adopted different approaches, such as the use of honey patches that
simulate fake vulnerabilities [16], simulation [161], or by duplicating
legitimate services [183]. Another interesting trend consists of adding
artifacts to a real benign service in order to make it appear for attack-
ers as a honeypot [158].

Previous studies have also suggested to use honey files to detect
privacy violations, by placing them on online sharing platforms and

74 deception techniques in computer security : a research perspective

cloud hosting services [117, 136]. In the same vein, other studies
suggested to use the same concept of honey files in order to detect
data leakage within corporate or private networks [21, 27, 186, 189].

The concept of (honey-)assets has also been extended to honey pass-
words [25, 90], honey profiles [51, 174, 191], and even honey hyper-
links in the context of web applications [65], in order to detect mali-
cious usages and abuses of sensitive applications and data.

Standalone

This category includes deception techniques that are isolated from
the target system. While honeypots are the most common type of
isolated deception system, other methods have been also explored
in the literature, such as the use of honey accounts to drive attack-
ers into connecting to a decoy service that is isolated from the real
authentic service [28, 39]. Onaolapo et al. performed a real world ex-
periment in which they (deliberately) leaked fake webmail accounts
that are isolated from any other benign accounts on the webmail ser-
vice [138]. During their experiments, the authors had been able to
monitor abuses of leaked webmail accounts and to learn more about
the tactics used by attackers.

5.4.2 Placement

We now look at different strategies that have been proposed to sup-
port the placement of deceptive components. This covers the way
existing deception techniques are deployed inside a target system (ei-
ther manually or automatically), and the way these techniques are
displayed to attract and deceive attackers. We organize this section
into three parts, based on the ultimate objective of deception: attack
prevention, detection, or mitigation.

5.4.2.1 Attack Prevention

The application of deception techniques for intrusion prevention
currently takes two different aspects. On the one hand, it deters an
attacker by displaying, for example, false targets among the path that
attackers may go through [45]. In this case, the placement of false
targets is guided by the knowledge of existing attack graphs.

On the other hand, deceptive techniques may also be used as chaff,
to confuse an attacker by hiding important information in a large
amount of data. For example, to protect real user passwords Bojinov
et al. [25] offer to conceal them through dissimulating a large number
of other decoy passwords. Similarly, Kontaxis et al. generate decoy
computing activities [101], and Rrushi et al. generate decoy network
traffic [161], in order to respectively dissimulate sensitive applications
and network connections, so they may be less likely to be identified

5.4 deployment 75

and compromised by an attacker. In this case, decoys are usually
placed alongside the valuable assets.

5.4.2.2 Attack Detection

Many deception placement strategies have been previously explored
in order to enhance attack detection. We may classify these strate-
gies into two different categories, depending on whether deception
is being integrated inside the target system, or whether it is publicly
exposed in order to enhance threat intelligence and to anticipate un-
known attacks.

integrated deception placement In the first category, Gavrilis
et al. [65] use decoy hyperlinks in order to protect a website against
flash crowds. The authors develop a placement strategy where they
represent the target website as a undirected graph. The graph nodes
represent the individual pages of the website, and the edges repre-
sent the hyper links between the pages. The attacker is modeled as a
random walker, and the strategy consists of finding the optimal sub-
set of decoy hyperlinks that minimizes the survival probability of the
random walker in the graph.

Another example includes the placement of honeyfiles inside a tar-
get file system. First, Bowen et al. [27] manually placed the honey files
at selected locations in the file system. Alternatively, Voris et al. [187]
developed an automated placement strategy that first searches the
target file system to locate folders that have been recently used, and
also the folders of large number of files sharing similar features such
as extensions. These folders are further selected as favorite locations
to place honey files. The same authors further distinguished two
modes of automatic deployment: integrated and separated [186]. In
an integrated deployment, decoy documents are co-located with real
documents, while in a separated placement, decoy documents are de-
ployed in isolated subfolders within the same root directory. Finally,
Whitham [193] suggested a more aggressive placement strategy, offer-
ing to place honey files in all directories of the file system.

Finally, researchers have also studied the placement of decoy per-
missions within role-based access control policies[93]. The placement
strategy consists first in identifying high risk permissions. These are
further duplicated as honey permissions, and their corresponding ob-
jects are duplicated as decoy objects. The authors select the sensitive
roles in the policy whose risk exceeds a predefined threshold, and
assign the honey permissions to these roles for monitoring and detec-
tion.

isolated deception placement Isolated deception techniques
follow different placement strategies, which may also depend on the
defender’s objectives and the monitored attacks. In particular, honey

76 deception techniques in computer security : a research perspective

profiles are being commonly created on social networks, and used in
order to monitor and detect spam and infection campaigns [174, 191].
Different strategies can be used to advertise and share these decoy
profiles, including the use of dedicated advertisement services, and
other underground services [51].

On the other hand, honey files have been manually leaked on
public hosting services [136] and file sharing networks [117]. This
approach is commonly used to attract potential attackers, and as
early warning system in case of unauthorized access to personal user
data. Moreover, honey accounts are actively provided to be collected
and exfiltrated by malware, to study the goals of the attackers [4,
29]. Similar information has been also deliberately distributed on
malicious hacking forums to attract attackers and infiltrate criminal
groups [138]. Finally, honey URLs are used when testing and con-
necting to phishing sites in order to track the activities of the at-
tacker [121].

Apart from honey files, the placement strategy has been however
under-studied for the majority of deception techniques. For instance,
previous work has discussed how to implement honey tokens in a
database [38], but it is still unclear how these tokens should be placed
– e.g., in a separated fake table or alongside legitimate data. A similar
problem exist for honey parameters placed in a web application to en-
hance attack detection. Honey parameters can be added in any field
of HTTP protocol and in the HTML source code, which results into a
large possibility of possible placements. Moreover, a web application
usually consists of multiple and various services. Currently, there is
no systematic approach to place honey parameters to achieve opti-
mal attack detection. The fundamental difficulty in achieving this is
the lack of methods to describe the web application logic. As Li and
Xue [112] have pointed out, there is actually “an absence of a general and
automatic mechanism for characterizing the web application logic”, which
is however a prerequisite to achieve an effective deception placement.

5.4.2.3 Attack Mitigation

When deception techniques are used for the purpose of attack mit-
igation, the placement strategy is generally in line with the type of
attack whose damage needs to be reduced. For instance, upon the
detection of a network scan, mitigation techniques such as network
tarpits [116, 167], and traffic forging [109] can be put in place. To
mitigate software exploits, the safe duplication of target application
enables to redirect attackers [12, 16], and even contain them [183].
Note that some techniques, such as chaff, can be deployed both for
attack prevention and mitigation. For instance, if an attacker is able
to steal the password file, populating it with a large number of fake
entries [25] could somehow mitigate the password theft attack.

5.4 deployment 77

5.4.2.4 Summary

Most previous work focus on the presentation of a technique or
on new deception elements, but rarely explain where and how such
elements should be placed in the system to protect. When they do, it
is unclear if the proposed placement provides any guarantee of being
better than other approaches. In fact, without a clear methodology
to test and measure the accuracy of deception techniques, a problem
we will discussed in more details in Section 5.5.1, it is impossible to
compare different placement strategies and conclude which one is
better among several options.

5.4.3 Realistic Generation

A key property of any deception element is that it should be able
to deceive an attacker into believing that it is real. Therefore, we now
look at different approaches that have been proposed in the literature
to create plausible and realistic deception elements. We divide again
this section into four parts, based on the layer where deception is
applied.

5.4.3.1 Network Layer

A common approach to generate fake network activity is to load
and replay real network traffic, after replacing confidential informa-
tion with decoy data. For example, Bowen et al. [28] suggested to
simulate decoy network communication by recording real network
traffic, and inject into it decoy information such as fake IP addresses
and payloads. Kontaxis et al. [101] also discuss the generation of
decoy HTTP traffic. In this case the authors introduce templates to
describe protocol messages and their parameters, and then generate
random permutations and modification of these parameters in order
to create decoy HTTP connections. Shing [167] tuned the parameters
of sticky connection to produce more realistic traffic in order to evade
the detection proposed by Alt et al. [9]

5.4.3.2 System Layer

In general, there are two approaches to reproduce realistic system
behaviors, either by duplication or by simulation. The first approach
consists of duplicating a legitimate server [101, 183] or a target ap-
plication [12, 15] while removing possible sensitive information. The
second solution relies instead in simulating the appearance, the exact
behaviors, and the overall activity of an entire process and equip-
ment [161].

78 deception techniques in computer security : a research perspective

5.4.3.3 Application Layer

Different mechanisms have been proposed in the literature to gener-
ate realistic deception at the application layer. We can roughly classify
these mechanisms into three categories, based on the goal of decep-
tion.

First, deception may consist of purposely modifying the behavior
of an application in response to specific requests or attacks. In this
scope, Julian [92] proposed to alter the response time of an applica-
tion to confuse an attacker by adding artificial delays proportionate
to the average time the same application would take to process that
specific user request.

The second category consists of altering the structure of an applica-
tion in order to showcase a fake attack surface. For example, to render
a decoy server less suspicious, Rowe [156] generated fake, yet realistic
file systems using pieces extracted from a real file system. The author
added random modifications, such as changes to the folder tree, cre-
ation of fake directories, or generation of fake files by combing pieces
of real files. In the same category, Whitham [193] describes the gener-
ation of honey files by combining statistics (such as file names, sizes,
access control attributes and modification dates) from public files ac-
cessible on the Internet with statistics of usage behavior for the target
system.

The third category includes techniques that consist of creating fake
content in order to attract and detect attackers. To generate such
realistic honey file content, Bowen et al. [27] instrumented genuine
and common financial documents such as invoices and tax forms
by adding honey accounts, realistic (but fake) names, addresses and
other user familiar information. Whitham et al. [194] proposed a
more elaborated approach that consists of using natural language
processing to generate realistic honey-text content. The authors first
selected a median size file from the target directory to generate the
template using language processing tags. They then collected charac-
teristics from the target file system that are used to redistribute the
original words. Finally, they placed the honey file into selected places
inside the target directory.

5.4.3.4 Data Layer

The generation of realistic fake data mostly overlaps with the gen-
eration and simulation of artificial data (see for instance [79] for an
overview of this area). Given the large scope of these techniques, we
limit ourselves in this survey to those methods that have been previ-
ously used to generate honey tokens for deception.

In [192] the authors introduced a method to create honey tokens
that represent fake US citizens. They first observed the statistic fea-
tures, values, frequencies and dependencies of representative sam-

5.4 deployment 79

ples. Then they generated fake personal information according to
previously obtained characteristics. Moreover, to generate decoy pass-
words, authors in [25] converted real user passwords into a set of
semantic rules. For example, the following rule “l3d1s2” refers to a
password that includes a word of three letters, one digits, and two
special characters. The authors further used a dictionary to generate
similar passwords that match the previously obtained rules. Another
approach by Juels and Rivest [90] offer either to randomly change
the last few characters, digits, or to use a probabilistic model that
characterize real passwords.

On the other hand, Bercovitch et al. [22] presented a method to au-
tomatically generate honey tokens in a database. First, the authors
built various rules to characterize the database structure and relation-
ships. Then, they generated fake, but realistic tokens that satisfied the
previously-generated rules. Finally, they assigned a confidence score
and ranked the honey-tokens based on their similarity with the real
database content. Alternatively, Alese et al. [5] offer to simply shuffle
the records of a real database in order to generate fake honey tokens.

5.4.3.5 Summary

As discussed above, the realistic generation of honey-tokens is rel-
atively well studied for few traditional domains – such as network
traffic, files and file systems, passwords, and database environments.
However, the application of deception techniques has recently broad-
ened in scope to cover many other areas, such as web applications
and cloud images, where a proper generation strategy has not yet
been discussed.

5.4.4 Monitoring

A successful deployment of deception techniques drives attackers
to interact with them, thus revealing their malicious activities. To
collect and analyze such activities, a monitoring mechanism is indis-
pensable. We discuss in this section whether and how the deception
is monitored, and whether the deception can be maintained and up-
dated over the time.

Monitoring is more relevant to deception techniques that are used
to enhance attack detection rather than for those aiming at prevention
and mitigation. We group existing work that have clearly defined
their monitoring approach into two categories, based on whether the
system that raises the alerts is integrated into the technique itself
or is instead implemented as a separate component. Also note that
there are two distinguishable phases of attack detection, namely the
triggering and monitoring of the alerts.

80 deception techniques in computer security : a research perspective

5.4.4.1 Integrated Alert

In this category, Bowen et al. [27] proposed to insert a uniquely
identifiable token hidden in the decoy document, which will be sent
silently toward a remote server to trigger an alert. Two examples have
been presented: a remote image embedded in MS Word document,
and a snippet of JavaScript code included in a PDF file [136].

Another example is the use of decoy URLs or hyperlinks that when
they are included in a web page automatically fetch some content
from a backend server. The use of such links always require a web
server that these links point to, which can be the same as the legiti-
mate server if decoy URLs are integrated within the target web appli-
cation [30, 65]. Otherwise, a separate web server is necessary [121] to
handle the deception elements. In any case, the monitoring is usually
performed off-line by parsing the access log of the web server.

Finally, a software trap [50] triggers an alert when is exploited by
an attacker. It also needs an extra handler to detect and respond to
the attackers. However, no details of the way that the handler monitor
the software trap was provided by the authors. Likewise, deception
techniques such as honey URL parameters can be implemented in the
source code together with the monitoring mechanism [147]. Authors
proposed to use centralized log management systems to identify and
prevent attackers.

5.4.4.2 Separated Alert

The first version of honey files proposed by Yuill et al. [198] relied
on a centralized monitoring approach. Honey files were deployed
on a file server where all file access operations werer monitored. In
case of an access to a honey file, an alert is sent from the file server.
In the same vein, Wang et al. [189] implemented a system service
on Microsoft Windows operating system that registers and monitors
honey files and triggers an alert when an access to a honey file is
detected.

Bowen et al. [27] proposed another type of honey files that contain
honey accounts from prevalent web services, in particular Gmail. The
authors then adopted a set of custom scripts to monitor and gather
information about the account activity to detect attackers. A sim-
ilar solution of including honey accounts in honey files also been
reused in other works [107, 117]. Honey accounts usually requires
a dedicated module to monitor and detect attackers that use them.
Chakravarty et al. [39] created manually honey accounts on their de-
coy servers where they monitored the unauthorized accesses. Honey
encryption [89] and honey passwords [90] enforced the generation of
honey passwords at the moment of user account creation. In order
to detect the misuse of generated fake passwords, they require online

5.5 measurement & evaluation 81

monitoring at the server side. Finally, honey permissions [93] also
require an extra module to monitor their use.

Lastly, to detect the selection of a particular honey token in a database,
Cenys et al. [38] also suggested the use of a specific handler module.

summary Independently from the way the actual alert is triggered,
most deception techniques require an extra module or even a dedi-
cated server to monitor and detect attacks. However, there is not yet
a comprehensive monitoring system that incorporates all the differ-
ent deception techniques to build a multi-layer proactive deception-
based threat detection system. Moreover, it’s still unclear for the users
how they should integrate such system with respect to traditional de-
fense mechanisms, and in particular with other existing monitoring
systems.

Finally, a very important aspect to consider is the update and re-
deployment of deception elements. After a deception technique has
been deployed, if its not constantly modified attackers can learn its
nature and location and simply avoid it in their future attempts to
break into a system. This sets intrusion deception apart from other
detection mechanisms, where the knowledge of the defense solution
does not necessarily undermine its effectiveness. Despite its funda-
mental importance and the fact that the re-deployment problem has
already been mentioned by other studies [97, 189], this aspect has
been almost completely ignored by the research community. In fact,
if we know well how to update signature-based solutions or re-train
model-based approaches, we know almost nothing on when, how,
and how often a set of deceptive elements should be replaced with
new ones. We do not even know what is the actual impact, in terms
of reduced effectiveness, of not updating a deception deployment for
long periods of time.

To the best of our knowledge, only one work exists in this space,
in which Whitham [193] implemented a form of continuous manage-
ment in the case of honey files. The system was designed to randomly
retire honey files, update their timestamp attributes, and create new
honey files to maintain a desired ratio in the system.

5.5 measurement & evaluation

This section covers the different techniques and existing experi-
ments that have been used to evaluate the efficiency and coverage of
intrusion deception. In as early as 2006, Cohen discussed the existing
experiments that evaluate deception, and came to the conclusion that
most of them do not cover all the relevant aspects [44]. In particular,
the author stressed the fact that more elaborated experiments were
required to better understand the issues behind the application of
deception for cyber-defense. In this section, we review the previous

82 deception techniques in computer security : a research perspective

experiments that offer to measure and evaluate deception techniques,
with an emphasis on recent contributions that were not covered by
Cohen’s book [44].

Note that during our effort to summarize existing experiments,
we observed different objectives for the evaluation process itself, de-
pending on the design criteria and the main properties the authors
wanted to achieve by using deception. For example, Yuill et al. dis-
cussed properties such as the “plausibility, receivability, verifiability, ef-
ficiency, and implementation” [199]. Bowen et al. further introduced
a new set of properties for deception, including “believability, entice-
ment, conspicuousness, detectability, variability, non-interference and differ-
entiability” [27]. In 2014, Juels et al. [91] added two additional proper-
ties, namely the “indistinguishability” and “secrecy” of deception tech-
niques, and suggested to use them to tune the decisions of an access
control system against potential attackers.

While all these properties play an important role to achieve an effi-
cient deception, most of them are difficult to formalize and measure,
which makes their evaluation very challenging. We discuss in this sec-
tion how previous work managed to evaluate these properties, and
the main lessons that we learned from those experiments.

The rest of the section is organized into four distinct categories, that
respectively cover the following aspects: 1) the way previous works
evaluated deception placement strategies, 2) the way they evaluated
the plausibility and realism of deception, 3) the way they measured
the efficiency and effectiveness of deception, and finally 4) the way
they evaluated the accuracy of deception and its false positives rate.

5.5.1 Evaluation of Deception Placement

We discuss in this section the way how previous work managed
to evaluate the proposed deception placement strategies. We struc-
ture those evaluations depending on whether deception was used to
enhance intrusion prevention, detection, or mitigation.

5.5.1.1 Attack Prevention

To the best of our knowledge, their is not yet a structured approach
in the literature to evaluate the deception placement strategies when
it comes to intrusion prevention. Previous work mainly evaluated
the additional effort introduced by the presence of deception, and the
attacker’s extra effort to compromise the target system [25]. Alterna-
tively, other contributions suggested to evaluate the indistinguishabil-
ity property for a deception technique. It consists of evaluating the
level at which a decoy deception technique may confuse potential at-
tackers, and the way it may be discerned from other genuine assets
or services to be protected [161]. Nonetheless, previous experiments
were mainly aimed at evaluating the intrinsic properties of deception,

5.5 measurement & evaluation 83

but not the different placement strategies and the way they can be
leveraged in order to achieve an optimal attack prevention.

5.5.1.2 Attack Detection

We observed two alternative approaches in the literature to eval-
uate the effect of deception techniques and their impact on attack
detection.

On the one hand, Garvilis et al. [65] introduced a theoretical ap-
proach to embed decoy hyperlinks in a web site in order to detect
Denial of Service (DoS) attacks. To evaluate the placement strategy
for those hyperlinks, the authors introduced a probabilistic method
that leverage a graph-based representation of the target web site. The
nodes in the graph capture the individual web pages, and the edges
capture the hyperlinks between the pages. Attackers are treated as
random walkers in the graph, and the evaluation model computes
the probability to detect an attacker with respect to the number and
placement of decoy hyperlinks in the graph. Using their theoretical
evaluation model, the authors were also able to compare their ap-
proach to other decoy placement strategies, such as for example the
one based on genetic algorithms.

As opposed to this theoretical approach, other contributions in the
literature experimentally evaluated the effect of deception placement
strategies, mostly using groups of students or volunteers. For in-
stance, Ben Salem and Stolfo [21] set up an experiment that involved
13 computer science students divided into 4 groups. The authors
deployed a system that includes honey files, and run the system dur-
ing one week to observe how students would interact with the system
and whether they will be able to unveil the decoy files. They observed
that the location of a honey file in the system drastically impacts the
number of users who will be tricked into accessing and opening the
decoy document. Similarly, Voris et al. [186] evaluated their decep-
tion tool by operating an experiment where decoy files were automat-
ically placed on a benign user system, and a few volunteer users were
asked to attack the system. They found that their automated decoy
placement achieved similar results compared to a manually designed
placement.

5.5.1.3 Attack Mitigation

The placement of deception techniques when it comes to attack
mitigation is tightly coupled to the detection system that triggers the
mitigation, such as anomaly detection [12]. Therefore, previous work
has mostly focused on evaluating the efficiency of detection. So far,
none has evaluated the efficiency of the deployed mitigation actions,
mainly relying on expert knowledge for validation.

84 deception techniques in computer security : a research perspective

Reference Experiment subject Metric

[65] [none] detection probability

[21] 52 students detection number

[186] Students comparison with manual placement

Table 5.2 – Evaluation of deception placement for attack detection

Reference Layer Experiment subject Metric

[28] Network 15 students accuracy

[167] Network tarpit detector rate of detection

[179] Network traceroute response of scan

[161] Network students signal detection theory

[101] System [none] control flow graph similarity

[156] System [none] statistic similarity

[92] Application 4 students, 4 colleagues evaluator reaction

[194] Application [none] file content similarity

[192] Data 100 testers number of detection

[22] Data 109 students and researchers honeytokens quality

Table 5.3 – Evaluation of deception generation

5.5.1.4 Summary

Sadly, we are aware of only three controlled experiments that were
dedicated to the measurement of decoy placement, as illustrated in
Table 5.2. Nevertheless, many studies evaluated implicitly this prop-
erty while they were evaluating the effectiveness of deception, as dis-
cussed in section 5.5.3.

5.5.2 Evaluation of Deception Generation

The part mostly pertains to the intrinsic and inner features of de-
ception. Its evaluation relates to the human perception of the gen-
erated deception techniques, and whether they are discernible from
other genuine assets of the target system. Table 5.3 lists the existing
approaches in the literature that performed an evaluation of the de-
ception generation approach, including the metric used for the eval-
uation and the individual subjects involved in the experiment. Note
that most experiments have been performed in controlled and instru-
mented environments, involving mostly volunteer human subjects.
This section discusses the different evaluation strategies and the ob-
tained results.

5.5.2.1 Network Layer

We observed in this layer two experimental approaches to evaluate
the deception generation mechanism, including an automated, tool-
based approach and a manual, human-based approach.

5.5 measurement & evaluation 85

In the first category, Trassare [179] proposed a network-based ap-
proach that deceives malicious traceroute attempts in order to con-
ceal the topology and assets of a physical data communications net-
work. To evaluate the generated deceptive topology, the author con-
ducted experiments using the traceroute tool against different net-
work topologies. The results of the experiments showed that the gen-
erated deceptive topology drastically limits the ability of traceroute
probes to scan the network. Similarly, Shing [167] measured the effi-
ciency of deceptive network tarpits against an automated detector [9].
The author found that only 2.8% of the tarpit hosts had been identi-
fied as decoys by the detector.

The second category covers human-based evaluation attempts. In
this area, Bowen et al. [28] evaluated the believability of the gener-
ated decoy traffic by using 15 human subjects, including students
in network security, researchers and security professionals. The par-
ticipants were asked to manually discern the decoy traffic from the
real one. During the experiments, even the most skilled participants
successfully discerned in average 49.9% of the decoy traffic, which
is equivalent to the probability of guessing randomly. Alternatively,
Rrushi introduced in [161] a network-based deceptive approach that
is aimed at protecting industrial control systems. By generating de-
coy network traffic, the proposed solution enables a defender to inter-
vene in the process of an attacker to select a target, and thus steer it
towards simulated fake devices. To evaluate the solution, the author
asked students to try to discern genuine assets from other decoy as-
sets in the target deceptive system using signal detection theory. The
results of those experiments showed that decoy traffic drastically in-
creased the uncertainty of students when picking and attacking their
targets.

5.5.2.2 System Layer

To measure the similarity between a decoy and a genuine file sys-
tem, Rowe [156] used 36 statistical metrics such as the mean, standard
deviation, minimum and maximum values in order to characterize
the structure and type of filenames, file types, size, the distribution
of date, and the directory shape. The author found that the gener-
ated fake files remain statistically discernible from other real files in
the file system, but that the difference is small enough that it remains
difficult for individual users to discern decoy and benign files. Kon-
taxis et al. introduced in [101] a deceptive system that uses fake com-
putation activities to prevent attackers from accessing unauthorized
confidential information in the cloud. To evaluate the efficiency of
the generated scheme, the authors proposed a binary instrumentation
tool that compared the similarity between the control flow graphs for
both replicated decoy servers and benign servers. In their evaluation,

86 deception techniques in computer security : a research perspective

the authors have shown that it is difficult to notice the difference be-
tween legitimate and generated activities. Adversaries would have
either to take the risk to trigger an alert, or investigate significantly to
identify data that they are interested in, which may reveal themselves.

5.5.2.3 Application Layer

In [194], Whitham et al. proposed an automated tool to process the
content of benign documents in order to generate fake documents
with the same structure and semantic. To evaluate their approach,
the authors introduced a similarity score that leverages the percent-
age of common words among a decoy and genuine documents. The
similarity is expected to be the highest between the decoy document
and its originating genuine document, and the lowest between the
decoy document and other documents in the file system.

In a different use case, Julian [92] conducted an experiment where
users were asked to perform normal and harmful queries against a
web application that add deceptive delays. The author measured the
reaction of test subjects to determine whether the subjects were able
to discern deceptive from other regular processing delays for the ap-
plication. During the experiment, all users had been misled by the
delaying tactic.

5.5.2.4 Data Layer

White conducted in [192] two sets of experiments that involve 100

participants. These participants were asked to discern real data from
other automatically generated decoy content. In the first experiment,
participants were unaware of the existence of honey tokens. When
they were given a list of 20 genuine data, they believed that in aver-
age 3.67 of them were indeed decoys. Afterwards, participants cor-
rectly found in average almost the same number (3.36) of fake data
within 3 lists of data in which generated decoys have been inserted.
A second experiment revealed that the participants failed to correctly
select the honey tokens, even when they were aware that the samples
did include for sure decoy elements. The correctly selected number
of honey tokens was similar to what would have been obtained if the
participants had selected randomly.

Similarly, Bercovitch et al. [22] evaluated the quality of generated
honey tokens by showing both genuine data and generated examples
to 105 individual subjects. The authors used the results of this study
to tune their likelihood-based rating and to select undetectable honey
tokens.

5.5.2.5 Summary

The most commonly used type of evaluation to measure the real-
ism of deception consists of using a human evaluator to judge the

5.5 measurement & evaluation 87

Type Reference Experiment subject Metric

Controlled

[47] 27 students duration of attack

[45] 7 students ability to control attack path

[198] 3 students number of detection

[27] 20 users ability to detect attackers

[30] 3 web bots bot detection accuracy

[21] 40 students number of detection

[164] 173 students detection rate

[76] 4 red/blue teams user reaction

[16] [none] practicality

Real-world

[191] spammer spammer detection

[174] spam bot spammer detection

[117] potential attackers privacy violation detection

[28] snoopers at Defcon’09 snooper detection

[39] malicious Tor exit nodes eavesdropping detection

[26] potential attackers attack reduction

[136] potential attackers privacy violation detection

[108] potential attackers detection of malicious activities

[138] potential attackers detection of malicious behaviors

[29] malware malware detection

[4] malware attack detection

[121] phishing site phisher detection

Table 5.4 – Evaluation of deception effectiveness

generated deception, which is similar to a Turing test where a human
is used to judge the behavior of a machine. Generally, previous work
managed to evaluate and produce realistic deception, but in specific
application domain such as network, files, and database. Equivalent
experiments are still missing for other domains, including web appli-
cations.

5.5.3 Evaluation of Deception Effectiveness

The effectiveness of a given deception technique refers to its ability
to achieve the desired functionality. Different methodologies have
been used in the literature in order to evaluate the effectiveness of
deception. We classify them into two main categories, as illustrated in
table 5.4. The first category includes evaluations that were conducted
in a controlled environment, typically by involving few participants.
The second category includes instead evaluations where deception
techniques have been publicly exposed to the Internet and evaluated
against real users and attackers.

5.5.3.1 Evaluation in Confined Environments

Different experimental setups have been introduced in the litera-
ture to evaluate the effectiveness of deception in instrumented and

88 deception techniques in computer security : a research perspective

confined environments. These experiments have also adopted differ-
ent strategies for evaluation, depending on whether deception applies
at the network, system, application, or the data layers.

network layer Cohen et al. [47] measured the effects of network-
based deceptive defenses by conducting experiments over simulated
attack graphs. Participants to these experiments included students
and few security experts (both security professionals and researchers).
The participants were divided into two groups, including those who
were not aware of existing deception techniques, and those who have
been informed about the existence of deception. The obtained results
have shown that network-based deception techniques were indeed ef-
fective as attackers spent more time trying to go thorough deceptive
paths rather than the real attack paths. The authors were also able
to drive some conclusions on the cognitive confusing factors related
to deception, through analyzing the forms filled by the participants
during the experiment.

In [45], Cohen et al. extended the previous experiments by intro-
ducing a more generic attack graph model designed to drive attack-
ers towards fake targets. The experiments involved seven students
who were asked to attack and try to compromise the system. The re-
sults were promising, with students constantly misguided and driven
through fake attack paths that were introduced for this purpose.

system layer Heckman et al. [76] organized a cyber-wargame
within an instrumented environment. The game involved two distinct
teams. A so-called blue team was tasked to set-up a command and
control system and try to protect the system against attacks from a
second red team. The blue team experimented multiple deception
techniques to mislead the adversaries. The log analysis following the
experiments resulted in very promising observations. In particular,
the adopted deception techniques had a significant impact on the red
team operation, as attackers spent a long time trying to compromise
fake targets.

application layer Araujo et al. [16] offered to mitigate known
vulnerabilities by implementing the concept of honey patches. In
this scope, the effectiveness of their solution largely hinges to its ap-
plicability to a larger number of known existing vulnerabilities. The
authors evaluated their approach using an experimental environment
that included an Apache HTTP server and a simulated web applica-
tion. They evaluated the effectiveness of their approach according
to the number of real application vulnerabilities that they were able
to transform into decoy vulnerability through the concept of honey
patch. In particular, the authors collected a total number of 75 vul-
nerabilities that affect their configuration, and that were reported be-

5.5 measurement & evaluation 89

tween years 2005 and 2013. Overall, they found that 49 out of the 75

analyzed vulnerabilities (almost 65%) were indeed convertible into
honey patches.

data layer As described in Section 5.2, state of the art data layer
deception techniques mostly consisted of generating and placing de-
coy user accounts or content. The evaluation of these techniques in in-
strumented environments mainly involved human participants who
were asked to analyze and tell apart decoy from other real authentic
accounts and data. In this scope, Yuill et al. [198] tested their honey
file system by deploying it on a honeynet, and then asking a group of
students to test and try to compromise the system. During the exper-
iment, a honey file was considered as effective when it contributed
to detecting at least one attacker, and that the attacker did not realize
the fake nature of the honey file before an alert had been triggered.
Overall, the authors found that the most effective honey files were
those placed closer to the root directory of the file system.

In [27], Bowen et al. evaluated their deception system by integrat-
ing it into a honeynet of several virtual machines. The authors posted
multiple message invitations with dedicated accounts to their plat-
form in order to encourage volunteer participants to connect and test
their deception system. After one week of observation, the authors
were able to collect 20 unique users. Five out of these participants
triggered at least one alert associated with a decoy document.

In [21], Ben Salem and Stolfo designed an experiment to evalu-
ate the enticing and conspicuous nature of decoy documents. The
authors asked a group of students to access an unlocked computer
system, looking for financial documents. Several decoy documents
were also placed in the system in order to evaluate the reaction and
attitude of users when they discovered such documents. The results
of the study show that the use of decoys was very efficient in detect-
ing malicious access to the system. In particular, all attackers were
detected in the first ten minutes after they had connected to the target
computers.

Finally, Shabtai et al. [164] organized an experiment that involved
173 distinct participants. The experiment consisted of generating 50

loan requests, some including deceptive honey tokens. Participants,
acting as individual bank employees, could choose to behave in a
honest way by validating the loan request and obtaining a 10% com-
mission. Alternatively, they could have acted in a malicious way by
suggesting a private funding program from a competitor, and thus
obtaining a 20% illegal commission. The participants were divided
into two distinct groups, one informed about existing honey tokens
in the loan requests and the other unaware of this fact. The results
of the experiment showed that all malicious participants could be de-
tected by planting honey tokens in 20% of the loan requests.

90 deception techniques in computer security : a research perspective

5.5.3.2 Real-World Evaluations

In open evaluations conducted on the Internet the administrator
does not fully control the users who interact with the deception sys-
tem. Therefore, these experimental setups usually enable to collect
and analyze a wider set of interactions with the system. Nonetheless,
they often lack the appropriate ground truth about the number and
nature of each attack, as well as information about user incentives
and real intentions when connecting to the system.

In this category, Borders et al. [26] evaluated the effectiveness of
decoy IP addresses in misleading external attackers. To do so, the
authors have set up an experimental testbed including an OpenFire
gateway that controlled the traffic from the Internet towards three dis-
tinct workstations. Three experiments were conducted over a period
of 21 days, involving both a normal and a deceptive OpenFire con-
figurations. The normal configuration included default firewall rules
that drop access to unauthorized ports and protocols. The decep-
tive configuration included also 36 unallocated IP addresses towards
which the gateway would accept connections in an effort to mislead
the attackers. An intrusion detection system was also configured to
notify the administrator in case of successful attacks towards the three
workstations. After the experiment, the number of successful attacks
when using the deceptive configuration was reduced by almost 65%
compared with the number of attacks that where reported when us-
ing the normal configuration.

To evaluate the effectiveness of honey files, Nikiforakis et al. [136]
uploaded such decoy documents to 100 public file hosting services.
These files were designed to call back a dedicated server so that the
authors will be informed when someone downloaded the decoy file.
Over a period of one month, 80 unique IP addresses accessed the
honey files and triggered the notification to the remote server. More
interestingly, the decoy files also included decoy credentials that en-
abled the remote users to connect to a fake web application that was
implemented for the purpose of the experiment. The authors were
able to observe that miscreants from 43 distinct IP addresses have suc-
cessfully logged in 93 times with the fake account information leaked
in the decoy document. Similarly, Liu et al [117] posted five honey
files containing decoy accounts on a public file sharing network. Over
a period of one month, 192 distinct users downloaded the honey files,
including also 45 users who used the decoy accounts in a deliberate
attempt to conduct identity theft attacks. Finally, Lazarov et al. [108]
constructed five fake Google spreadsheets with decoy banking infor-
mation and hidden links. Over a period of 72 days, they found that
the decoy document have been accessed 165 times and modified 28

times. Moreover, there were 174 clicks on the hidden links inside the
same document.

5.5 measurement & evaluation 91

In a rather different attempt to detect spammers, Webb et al. [191]
created 51 honey profiles on MySpace, and used these profiles to
monitor and detect scam accounts. The authors were then able to
collect 1,570 distinct friend requests over a period of four months.
Similarly, Stringhini et al. [174] produced 300 honey profiles on three
distinct social networks. During their one year long experiment, the
authors were able to detect 173 distinct spammers on Facebook, 8

spammers on MySpace, and 361 spammers on Twitter.
Finally, the evaluation of honey accounts has been mostly performed

through open deployment and advertisement on popular and pub-
licly accessible Internet services. For example, during one week,
McRae and Vaughn [121] submitted 11 honey accounts which con-
tained decoy URL to phishing sites to track down the phishers while
they viewed the honey accounts. However, only two out of 11 worked
successfully. Similar experiments with honey accounts have been
performed on the wireless network at the Defcon 09 hacking con-
ference [28], on malware executables [4, 29], on the Tor network [39],
and also on underground forum and online paste tool [138]. All of
them have been able to detect a variety of attackers, which empirically
shows the effectiveness of honey account at detecting attackers.

5.5.3.3 Summary

Considering the current application domain, deception is found to
be effective to delay and detect attackers both in controlled and real-
world environment. Future deployment of deception in other domain
still requires similar evaluation.

More importantly, only two studies has evaluated the false nega-
tive rate [21, 164] (testing honey tokens and honey documents respec-
tively), which is fundamental to compare deception solutions with
more traditional intrusion detection approaches. In real-world evalu-
ations, the false negative rate is rarely measurable due to the lack of
ground truth information about the number of attackers. In contrast,
such evaluation is feasible in a controlled environment. Therefore, we
believe future effort in this space should shift their focus on assessing
the false negative rate.

Reference Experiment subject Metric

[65] students and faculty members number of false alerts

[30] human subjects number of false alerts

[21] 57 students number of false alerts

[186] 27 users interference with normal activities

Table 5.5 – False positive evaluation of deception techniques

92 deception techniques in computer security : a research perspective

5.5.4 False Alarms Evaluations

Compared to the previous metrics discussed in this section, the
evaluation of the false positives rate when using deception in cyber
defense has attracted much less interest among the security research
community. In particular, we are unaware of any structured approach
and methodology to evaluate the false positive rate when deception
is being used for intrusion prevention and mitigation.

False positive measurements have been conducted in only a hand-
ful of publications that proposed deceptive techniques for intrusion
detection.

For example, Garvilis et al. [65] conducted a real-world experiment
where they exposed decoy links on the public web site of their uni-
versity. The authors manually examined the web server logs to deter-
mine whether interactions with the decoy links were benign requests
that would have resulted in false alarms. The experiment run over
a period of one month, during which the authors collected a total of
45,121 distinct requests – only 19 of which were marked as benign
(corresponding to a 0.04% false positive rate). The remaining hits
were originated from various bots. Nonetheless, a main limitation of
this approach is the lack of ground truth about the origin and real
nature of false positives. In fact, the authors were unable to verify
that the triggered links were indeed benign, and not the result of
malicious users who accidentally interacted with the server.

Following a similar approach, Brewer et al. [30] introduced an ex-
perimental testbed that simulated a real web site. Multiple decoy
links were also introduced to the web site in order to detect potential
attackers. The authors further asked multiple participants to navigate
through the web site in order to mimic benign user interactions with
the server. All requests towards decoy links during this experiment
were then considered false positives since the organizers were not ex-
pecting the participants to attack the system. In this case, no user
have triggered the decoy links during the experiment, which led to a
0% false positives rate.

Similarly, Ben Salem and Stolfo [21] evaluated the false positive
generated while using decoy documents to detect attackers. Authors
grouped 52 student into 4 groups installing respectively 10, 20, 30 or
40 decoy documents on their file system. Whenever a benign user
opens the decoy document, an alert is generated. The number of
alerts detected starting from one hour after the students have placed
the decoy were respectively 2, 6, 9 and 24. Therefore, the authors
concluded that the false positive rate increases with more decoy files.
Finally, Voris et al. [186] also measured the false positive rate of de-
coy documents. In their experiment, 27 normal users were asked to
install 40 generated decoy documents inside their file system. The
authors then collected more than 318 hours of file access logs across

5.6 conclusions 93

all participants, finding that legitimate users accidentally touched de-
coys less than 7 times over a 8 hour workday. Thus, they suggested
a simple threshold should be used to differentiate between attackers
and legitimate users.

5.5.5 Summary

This section has reviewed different aspects of how to conduct ex-
periments to rigorously evaluate deception techniques. Previous re-
search have analyzed some of these aspects, such as the assessment
of the quality of newly generated deception elements, better than
others. Overall, results seems to suggest that intrusion deception is
an effective solution that can complement other defense approaches.
However, three points in particular still need more measurement ex-
periments: 1) the assessment of optimal way to manually or automat-
ically place deception elements in a target system, 2) the evaluation
of the false negative rate to understand how many attack are per-
formed without triggering any deception element, 3) the evaluation
of the false positive rate, in particular in relationship with different
placement approaches, 4) the evaluation of how detection degrades
over time if deception elements are not constantly replaced with new
ones.

5.6 conclusions

In this Chapter, we first present a four dimensional classification of
existing deception techniques. Note that our focus was not to discuss
all deception techniques presented to date, but mainly to identify the
different approaches that can be used to reinforce or substitute cur-
rent intrusion detection and protection solutions. Our work presents
an comprehensive analysis of previous studies, addressing a number
of key aspects including the theoretical models that had been pro-
posed for deception techniques in computer security as well as the
generation, placement, deployment, and monitoring of deception ele-
ments. Finally, we examined previous measurements and evaluations
of the effectiveness of deception techniques.

During our study, we found that the use of deception and the type
of elements that can be used to deceive an attacker are well covered
in dozens of publications. However, we identified several shortcom-
ings involving different aspects of deception techniques. In particular,
there is not yet a clear methodology to test and measure the place-
ment, the accuracy, the false negative rate, and the false positive rate
of such techniques. Therefore, we believe future research should fo-
cus designing and conducting real-world experiments to measure the
effectiveness of the proposed solutions.

94 deception techniques in computer security : a research perspective

In the next Chapter, we will present some preliminary experiments
we performed to answer some of those questions.

6
E VA L U AT I O N O F D E C E P T I O N - B A S E D W E B
AT TA C K S D E T E C T I O N

During our survey of previous work on deception techniques we learned
that, despite the fact researchers have proposed several approaches so far, it is
still unclear how well these solution work in practice. Evaluation have been
purely qualitative, and measure of detection and false positive rates are still
missing. In this final Chapter, we try to address these limitations by per-
forming two real-world experiments on the effectiveness of using deception
techniques to detect attacks against web applications.

It has been estimated that there are over one billion websites on
the World Wide Web today [81], and this number is steadily increas-
ing over time. In 2015 alone, the global business-to-consumer e-
commerce turnover grew by about 20 percent, reaching a value of
2.2 billion dollars [57]. Even governments are becoming increasingly
dependent on web services to reduce their budget [181].

Unfortunately, this popularity regularly attracts a large number of
attackers and according to Symantec [176] three quarters of the web-
sites they scanned in 2015 contained unpatched vulnerabilities.

A large number of techniques have been proposed to secure web
applications on the server side. Li et al. [112] classified these tech-
niques into three categories: 1) secure construction of new web ap-
plications, 2) security analysis and testing of legacy applications and
3) runtime protection of legacy applications. The first category of
techniques usually requires the design of new languages or frame-
works, whereas the challenge of security analysis and testing stems
from finding the right balance between correctness and completeness.
Runtime protection typically provides a scalable solution to secure
legacy applications at the cost of certain performance overhead.

These traditional measures, although being essential in any mod-
ern security arsenal, cannot provide a comprehensive solution against
Internet threats. Due to these limitations, complementary solutions
have been recently investigated to help anticipating threats and pos-
sibly warn users against attacks in their very early stages. As we
already summarized in the previous Chapter, deception techniques
have attracted a lot of interest among the security research commu-
nity [8, 13].

In Chapter 5 we pointed out as one of the main gap in the current
understanding of deception techniques is the lack of precise measure-
ments of the detection accuracy, the false positive rate, and to de-

96 evaluation of deception-based web attacks detection

cide whether these techniques alone are sufficient to detect attackers.
Taking these issues into account, in this Chapter we present some pre-
liminary experiments we conducted to evaluate these three important
aspects.

To perform our tests we first implemented a web deception frame-
work that allows to easily introduce different forms of deceptive el-
ements to any web application. Our solution is deployed as a trans-
parent reverse proxy which intercepts outgoing HTTP connections,
injecting deceptive elements based on pattern matching rules and
further removing them from the incoming HTTP connections before
forwarding the request to its destination. When deceptive element is
triggered, it allows to generate an alert or redirect the current HTTP
session to another endpoint.

Using our framework, we first focused on ways to measure the false
alarms that are generated by a deception-based protection. For this
purpose we conducted a second experiment in which we used our
framework to protect a production content management system used
internally by Orange for a period of seven months – from Decem-
ber 2016 to June 2017. To be able to compare results, the framework
was configured to re-use the same techniques we adopted in the red
team experiment. During our experiment, the CMS system was used
by 258 authenticated users and no false alert were reported by the
system. These tests seems to support the hypothesis that deception-
based techniques are good candidates for the purpose of attack detec-
tion in the web domain.

We then performed a one-day red team experiment hold by Or-
ange Labs where 150 participants were asked to find vulnerabilities
within a custom developed e-commerce application. We introduced
examples of all known web deception techniques we could find in
the literature, and added two new ones we developed specifically for
this task. We found that in our experiment setup deception was able
to detect 64% of the 25 participants who have successfully exploited
at least one vulnerability while missing the remaining 36% of them.
Among the 25 participants that have found at least one vulnerability,
14 of them have triggered a trap even *before* finding the vulnera-
bility, which may indicate that deception may be used as an early
warning system to detect attackers before they may identify true vul-
nerabilities.

6.1 methodology

Our aim is to design experiments to evaluate the efficiency of deception-
based techniques to detect web attacks. To achieve this goal, we first
survey existing work to collect a catalogue of deception techniques
that had been previously proposed for web attack detection. We then
implemented a framework that allowed us to quickly and transpar-

6.1 methodology 97

ently insert these elements in an existing web application. At the end
of this Section we discuss the strategy that we use to deploy decep-
tion techniques, which finally allows us to perform the experiments
described in Section 6.2.

6.1.1 Deceptive Elements

Most deception techniques for the purpose of web attack detection
actually find their root in the concept of honeytoken, which is “a
digital or information system resource whose value lies in the unauthorized
use of that resource” [171]. Early examples of this technique mainly
consisted of using honey hyperlinks to detect phishers [121], flash
crowd attack [65] and web bots [30]. Most recently, several works
promoted the use of deception for web applications [97, 147, 185].
Moreover, the OWASP AppSensor project [141] that aims at detecting
and responding to attacks from within the application, provides a
detailed descriptions of honey traps that may be used as detection
points inside a web application. More precisely, it classifies these
detection points into three categories: 1) alteration to honey trap data,
which mainly refers to honeytoken in HTTP protocol such as fake
hidden form fields, additional URL parameters and cookies, 2) honey
trap resource requested, for instance, fake page and directory listed
in the application’s robot.txtfile and 3) honey trap data collected
and used by the attacker, where a typical example is the use of honey
accounts information only visible in source HTML code.

In this dissertation, we design our system using aforementioned
deception techniques. Furthermore, we extend them by adding two
additional deceptive elements. The first is a fake protected area (e.g.,
and administration console) that require HTTP authentication. This
is similar to a normal fake page, but it contains no content and the
fact that it prompts the client for an authentication can catch both
humans and automated tools that try to brute-force the password to
gain access to the protected resource.

The second additional technique consists of set of fake vulnerabil-
ities that, when triggered, returns realistic error messages based on
the pre-defined attack types. The focus of this particular type of de-
ceptive element is to maintain the attackers busy trying to exploit
some bug that does not exist.

For our experiment we supported two types of fake vulnerabilities:
local file inclusion and SQL injection. For instance, if an attacker
alters the honey trap by attempting a SQL injection as illustrated
below, the fake vulnerability returns a classic error that exposes a
valid-looking vulnerability.

Injection: ’ or 1=1 --

Response: Invalid query: You have an error in your SQL syntax;

98 evaluation of deception-based web attacks detection

check the manual that corresponds to your MySQL server version

for the right syntax to use near ’’ at line 1

6.1.2 Deception Framework

We now describe the design requirements and the implementation
details of our deception framework, which allows a service provider
to transparently add different deceptive elements without the need
of modifying the target application. While the framework is not the
main contribution of our work, it is necessary to quickly test different
approaches and conduct experiments on their actual effectiveness on
a real-world deployment.

6.1.2.1 Design Requirements

To build a deception framework that enables the application of de-
ception techniques to most web application, our system achieves the
following design requirements:

— Language/Framework Independent
In order to keep our system applicable to a large number of
different web applications, our application should not be tied
to any programming language nor any particular framework.

— No Access to Source Code
One of the main goals of our system is to provide an additional
layer of protection without touching or modifying the target
web applications.

— Non-Interference.
The system needs to support the insertion of any type of decep-
tive elements, including additional URL or form parameters,
fake pages, or honey accounts. However, it is important that
these elements do not interfere with the normal behavior of the
target application.

To satisfy these requirements, our system was designed to work at
the HTTP protocol level, modifying requests and responses on the fly
by acting as a reverse proxy in front of the target application. To avoid
any potential interference with the original application, the system
make sure that any direct sign of deceptive elements or side-effect of
their presence is transparently removed from the incoming traffic and
does not reach the target application.

6.1.2.2 Implementation

Following the above design requirements, we decide to deploy our
system in-front of the target web application in the form of a trans-
parent reverse proxy, as illustrated in Figure 6.1. Our framework
implements common mechanisms to modify the HTTP protocol and

6.1 methodology 99

Figure 6.1 – Deception Framework

HTML content such as adding additional cookies, hidden input form
fields, additional HTTP GET and POST parameters, fake protected
areas, and fake vulnerabilities, which enables the injection of all de-
ceptive elements described in 6.1.1.

The deception framework is configured using simple regular ex-
pression rules that specify which request or response needs to be in-
tercepted and modified, the type of deceptive element that need to be
inserted, and the fake data associated to that element. For each rule,
the reverse proxy is responsible for adding the specified deception
technique to outgoing responses, and removing them from incoming
requests, before relaying them to the target web application.

The reverse proxy is implemented based on an open source HTTP
hacking tool, Hoxy [151]. It enables the interception of HTTP request
and responses, observing and altering all aspects of the requests and
responses. Coupled with a HTML parsing library, it allows us to
modify the HTML content at runtime.

Adding Deceptive Elements While Hoxy intercepts the HTTP re-
sponse, it exposes the HTTP header and also the body in the form
of JSON, string, jQuery or raw buffer. It is quite straightforward to
add deceptive elements which are located in the HTTP header. For
instance, to add a fake cookie, we simply add a set-cookie field with
the desired data. Similarly, the fake protected area is implemented by
adding a WWW-Authenticate field in the HTTP header. To implement
a deceptive HTTP GET parameter, we modify the HTTP response sta-
tus code to 302, which then redirects the original request toward the
new URL that has been appended with the fake parameter.

There are also a few types of deceptive elements that require mod-
ifications of HTTP body such as the fake hidden input field and fake
data in JSON response. Hoxy supports by default the edit of HTML
as a DOM object similar to jQuery. We implement hidden input field
by search the form field in the DOM object and further add the hid-
den field inside it. It is also possible to convert the HTTP body to
JSON object to which we can easily adding fake data.

Finally, in order to implement the fake vulnerability, we detect any
modification on the deceptive elements and then apply regular ex-
pressions to determine whether the modification belongs to a known
attack pattern. For this purpose we reuse the type of attacks defined
in the Glastopf Web Honyepot [131]. For our experiments, we sup-

100 evaluation of deception-based web attacks detection

port two of the most popular types of attacks, which are local file
inclusion and SQL injection. If the request matches one of the reg-
ular expressions associated to those attacks, our system forges and
returns a realistic error message to deceive the attackers and make
them believe that the system is indeed vulnerable.

Cleaning Deceptive Elements Our framework keeps records of the
injected deceptive elements and their locations. For each incoming
HTTP request whose URL is known to contain deceptive elements,
our system cleans these elements before handling the request to the
target web application. In this way, our framework does not interfere
with the target application as it receives only original requests.

Reporting and Redirection When the proxy identifies that a user has
interacted with one of the deceptive elements, our framework logs
the incoming request including the source IP address, the deceptive
element, and any user-supplied data that may contain attack informa-
tion. The framework can also be configured to to redirect incoming
requests whose URL matches a regular expression to another appli-
cation by modifying the back-end server of the reverse proxy. This
functionality, for example, allows defenders to redirect attackers from
the target application to a similar but protected version of it so as to
contain them and better observe their behaviors.

6.1.3 Deployment Strategy

The proper placement and integration of various deceptive ele-
ments into a target web application is still an open research question.
For our purpose, we manually identified the position in which each
technique was deployed by following the OWASP testing guide [140],
which presents the best practices for web penetration testing. OWASP
testing methodology is based on a black-box approach where testers
have little information about the target application. In this situation,
the testers play exactly the role of an external attacker. Moreover, this
guide provides concrete examples of the techniques to use to discover
vulnerabilities, which makes it a good starting point to select the
placement of deceptive elements right where testers/attackers would
most likely look for existing vulnerabilities.

As a result, we combined existing deception techniques with the
methodology proposed by OWASP testing guide to devise deception
at enticing locations under the perspective of an attacker. For exam-
ple, at the information gathering stage, we place honey trap resources
in robot.txt files, as the OWASP testing guide suggests to review
them for information leakage. We then designed specific honey ac-
counts disguised as a configuration file of the web application, which
relates to the second step of the configuration and deployment man-
agement testing. With regarding to the identity, authentication and

6.2 experiment design 101

session management testing, we deploy at both the login page and
password reset page multiple deception techniques such as honey ac-
counts only visible in source HTML code, hidden honey form field
and additional session-related cookies. Lastly, we placed additional
HTTP GET and POST parameters both in the web pages and in the client
JavaScript code that are subject to the input validation testing. The
name of such parameters were carefully selected according to the con-
tent of the web application. On top of these parameters, we further
deployed the two classes of fake vulnerabilities discussed above.

6.2 experiment design

In this section, we present two experiments designed respectively
to measure the number of generated false alarms due to the deploy-
ment of deception techniques in a production environment, and eval-
uate their ability to detect realistic web attacks.

This is a challenging task, as deception should be evaluated against
human attackers that manually try to exploit an unknown application.
In fact, automated script that target known vulnerabilities would not
trigger any detection element, as they are programmed to generate
exactly the request required to exploit the target, without visiting or
interacting with anything else. For this reason, honeypots are not
suitable to perform this test, and collecting data about hundreds of
real attackers is a gigantic effort. We solved this problem by splitting
the experiment in two parts. First, we deployed our solution on a real
application, and monitored its users to detect any possible false alarm
raised by the our deception proxy. However, since this deployment
cannot provide the data required to test the detection rate, we also
performed a second experiment, this time deploying similar decep-
tive techniques in an application designed for a penetration testing
experiment.

6.2.1 Use of Deception in a Real Content Management System

In the first experiment, we implement deception inside an Internet-
facing Content Management System (CMS) used in a production en-
vironment within Orange, in order to evaluate the false positive rate
caused by such technique.

6.2.1.1 CMS Application

The web application is based on Open Atrium 1, is an extensible
collaboration framework. It provides out-of-the-box functionalities
such as dashboard, document sharing, forum, agenda, and user ac-
cess control. The software was customized to allow research project

1. https://www.drupal.org/project/openatrium

https://www.drupal.org/project/openatrium

102 evaluation of deception-based web attacks detection

(a) Public space (b) Private space

Figure 6.2 – CMS application tree structure

members to manage a public accessible project websites (open to the
public) and a private collaboration space (which requires a user ac-
count). Figure 6.2a and 6.2b illustrate respectively the structure of
the public and private space. The public space consists of public doc-
uments, a search page, and a login page. Once authenticated, a user
may view and edit private pages. Administrator can further add/re-
move users and manage user access.

6.2.1.2 Deception Placement

This experiment aims at evaluating the false positive rate of de-
ception techniques in presence of legitimate users. While the two
CMSes are different in structure and scope, we placed the deception
elements to resemble as close as possible the deployment adopted in
the CTF exercise. Table 6.1 and 6.2 present respectively the deception
techniques that have been introduced in the public and in the private
space.

6.2.2 Use of Deception in a Capture-The-Flag Competition

In the second experiment, we integrate deception techniques in
a Capture The Flag (CTF) exercise, in which participants are pre-
sented with a specific environment where vulnerabilities are pur-
posely planted. By successfully exploiting a vulnerability, the partic-
ipant finds a flag which allows him to score points. The participant
with the highest final score wins the exercise.

While CTF participants are not necessarily a perfect model of real
attackers on the Internet, the red team exercise is designed to mimic

6.2 experiment design 103

Table 6.1 – Deception in public CMS space

URL path Deception technique Quantity FV Auth

/robots.txt Honey trap resourse 3 X

/search/* Honey POST parameter 1 X

/usr/login
Additional cookie 1 X

Honey GET parameter 1 X

Honey account 1

/usr/password Hidden input field 1 X

Table 6.2 – Deception in private CMS space

URL path Deception technique Quantity FV Auth

/node/add/* Honey GET parameter 1 X

/node/0/* Honey trap resource 1 X

/node/*/edit Honey GET parameter 1 X

/user/*/edit Honey GET parameter 1 X

/user/*/view Honey GET parameter 1 X

*FV: fake vulnerability enabled

*Auth: basic HTTP authentication required

what users would do to discover vulnerabilities in an unknown piece
of software. Moreover, using a CTF competition to evaluate the accu-
racy of deception techniques at detecting attackers has the advantage
of providing access to hundreds of “attackers”, something that would
be very difficult by simply collecting data using a real application.

6.2.2.1 CTF Environment

The CTF exercise we used for our test was organized by Orange
Labs and aimed at simulating a situation when participants audit the
security of an e-commerce application in a black-box approach. The
e-commerce application has been purposely developed for the experi-
ment, following the workflow illustrated in Figure 6.3. Each visitor is
first presented with a user agreement page that already presents the
first challenge. This page contains a obfuscated JavaScript code that
requires the user to read at least for one hour the user condition. By
successfully hijacking the client side check, the user may visualize the
product list and the comments of each product. Furthermore, users
can create an account and use it to log in and checkout their orders,
and finally perform online payment. In addition, there is also a form
that allows authenticated user to post public messages.

Many classic vulnerabilities such as cross site scripting, local file
inclusion, SQL inject, and remote code execution have been planted

104 evaluation of deception-based web attacks detection

Figure 6.3 – CTF Application Workflow

Table 6.3 – Deception in CTF exercise

Page Deception technique Quantity FV Auth

User agreement Honey POST parameter 1 X

Additional cookie 1 X

Shop login Honey POST parameter 1 X

Honey account 1

Forum login Honey account 1

Account API Honey GET parameter 1 X

Product comment Honey POST parameter 1 X

/robots.txt Honey trap resource 3 X

/web.config Honey trap resource 1 X

/web.config Honey account 1

*FV: fake vulnerability enabled

*Auth: basic HTTP authentication required

at different locations including the user profile, product comment
page, order page and in particular the online payment page. In total,
15 flags have been inserted inside the CTF application.

6.2.2.2 Deception Placement

Our main goal is to evaluate the ability of deception techniques
to detect web attacks in their early stage. Following the placement
strategy described in Section 6.1, we manually inserted a number of
deception tokens, as summarized by Table 6.3.

We started by modifying robots.txt and web.config (a classic con-
figuration file for Windows web server) to insert four honey trap re-
sources and one honey account. We then added additional HTTP POST

parameter and a fake cookie in the user agreement page to see how
deception affects the advancement of participants. We also add fake
HTTP GET and POST parameters and honey accounts in most of the

6.3 results 105

login-related pages and APIs. Lastly, we placed another fake HTTP

POST parameter in the product comment page. Note that we did not
place any deception on pages such as orders and payment where
many vulnerabilities are planted. The main reason is that we wanted
to use our deception element to detecting attackers still at the be-
ginning of their interaction with the target application. The second
reason is that we were asked by the organizer to minimize the inter-
ference between deception techniques and real CTF vulnerabilities,
not to discourage the participants.

6.3 results

In this section we present and discuss the results of the two experi-
ments.

6.3.1 CMS Experiment

The experiment on the real CMS application has been performed
for a period of seven months from December 2016 to June 2017. In this
time frame the application was used to host 13 active projects, each of
which had its own dedicated sub-domain name. In total, we observed
258 users that have successfully authenticated and interacted with the
application.

Public Space – Four alerts have been triggered from the honey trap
resources placed inside the robots.txt file. The four accesses orig-
inated from the same IP address that, according to the web server
access log, was actually performing a scan to test the system for
known vulnerabilities. Similar abuse reports have been found from
AbuseIPDB, which confirms that we have actually detected a malicious
IP address.

Private Space – No alerts have been triggered from the deception
placed in the private space during our experiment. Therefore, based
our experiment setup, deception techniques that have been deployed
in the CMS application have generated zero false positive. This con-
firm that since these techniques are implemented at the protocol or
source HTML code level, they remain mostly invisible to normal
users.

6.3.2 CTF Experiment

The CTF competition has been conducted in a local network for
a period of 8 hours in September 2016. In total, the event counted
150 participants (each clearly identifiable by a different IP address),
which included a mix of information security students and security
professionals.

106 evaluation of deception-based web attacks detection

Overall, only 25 (16.7%) of them successfully discovered at least
one flag, while 84 (56%) have triggered at least one of the 12 deception
traps – e.g., by trying to tamper with a fake cookie or form parameter,
by trying to use a honey credential to log in, or by visiting some of
the honey URLs. These results seems to suggest that the deceptive
elements were easier to trigger than the real vulnerabilities, which is
exactly what a good deployment strategy should achieve. More in-
teresting, 64% of the participants that discovered a real vulnerability
also triggered a deception trap, showing that an attacker who spend
enough time and resources to discover a real bug is likely to raise an
alert due to his interaction with deceptive elements.

6.3.2.1 Manual vs Automated Actions

A first interesting question we want to understand is whether our
traps were triggered by manual interactions or by automated tools
and scanners. To answer this question we inspected the user agent

strings in the access log of the web server. In the context of a CTF
exercise, we believe the user agent is a reliable source of information
since there is no incentive for the participants to hide their actions or
disguise their activities.

We found that five participants triggered the four honey trap re-
sources (placed in the robots.txt and /web.config files) using pop-
ular scanner tools (Nikto and DirBuster). For the remaining honey
traps, the trigger connection originated from popular browsers. We
thus consider that those participants have discovered manually the
traps. Interestingly, we also found evidence of users who run the
sqlmap tool to try to exploit the fake SQL injection vulnerability, and
others that used the hydra tool to brute force the HTTP authentica-
tion of a fake URL. This supports the hypothesis that these two new
form of deception we introduced in our framework are successful in
slowing down attackers by tricking them into focusing their effort on
fake parts of the application.

6.3.2.2 Impacts of Deception Placement

In order to measure the impacts of deception placed at different
locations, we evaluate the number of participants that triggered each
trap. Furthermore, we analyze the average number of manual at-
tempts that have been performed on top of the deception element,
which reflects the extent to which the participants are enticed by the
given deception.

As illustrated in Table 6.4, for each location, we present the number
of traps implemented, the number of distinct IP addresses detected
and the average number of manual attempts that modified the traps
on that location. The user agreement page is the most effective lo-
cation to detect the participants using deception. This page is actu-

6.3 results 107

Table 6.4 – Number of distinct IP addresses detected

Page Traps Detected Participants Average N. of Attempts

Configuration files 5 14 8

User agreement 2 56 28

Account API 1 22 6

Product comment 1 16 446

Shop login 2 22 11

Forum login 1 7 2

*Configuration files: /robots.txt and /web.config

ally situated just after the starting point of the application workflow,
which seems to suggest that deception placed at the first pages of
the workflow is quite effective to detect attackers since among the
84 detected IP addresses, 56 of them have been detected at the user
agreement page.

On the other hand, deception at product comment page has re-
ceived the largest average number of manual attempts per deception
element, which indicates that this location is particularly interesting
for participants. One possible explanation is that the product com-
ment page accepts user-provided comments, so the participants spent
more time playing with its parameters looking for a possible injec-
tion vulnerability. This kind of insight is quite useful and should be
integrated while devising and deploying deceptions for a web appli-
cation.

6.3.2.3 Effectiveness

In order to shed some light on whether deception techniques are
effective in detecting attackers, we analyze the potential relationship
between the triggered honey traps and the flags that were found by
each participant. For each participant who found at least one flag, we
collected the time at which each flag was discovered and each trap (if
any) was triggered. Figure 6.4 presents the cumulative rate of honey
traps triggered and flags found by the 25 participants. The horizontal
axis describes the time during which the CTF has been played. The
vertical axis presents the cumulative rate. Thus the red and blue
curves illustrate respectively the cumulative rate of triggered honey
traps and discovered flags.

Almost 35% of honey traps have been triggered even before any
flag could be found. This seems to indicate that honey traps may be
used as an early warning system to detect attackers before they may
identify true vulnerabilities and weaknesses in the target application.
Further investigation shows that 16 of the 25 participants who have

108 evaluation of deception-based web attacks detection

09:00:00

10:00:00

11:00:00

12:00:00

13:00:00

14:00:00

Time

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 R

a
te

Flag
Trap

Figure 6.4 – Cumulative distribution of detection and flag

discovered at least one flag have triggered at least one honey trap.
Moreover, 14 out of 16 have triggered a trap *before* finding a flag.

By the time 80% of the discovered traps had been triggered, only
30% of flags had been found. This seems to indicate that as long as
the attacker advances further in his attack plan (by getting deeper in
his attack path and finding new flags), he will be more exposed to
additional traps, and quite effectively (80% of traps activated). We
can deduce from those figures that the expected efficiency rapidly
increases when the attacker advances further in his attack scenario,
which may enhance the detection rates. This means that to be more
effective, honey traps need to be composed and intertwined within
the workflow of an application, and not only as a single layer or on
the front page.

6.4 discussion

In this chapter, we presented the design and implementation of a
deception framework for web applications. We used our framework
to conduct two experiments to evaluate respectively the effectiveness
of deception techniques to detect web attacks and the false positive
rate of the same techniques when deployed in a production environ-
ment. Even though the two experiments have been conducted in
different conditions, we have implemented and deployed similar de-
ception techniques in both of them.

Our test on a real application raised no false alarms over a period
of seven months. This seems to confirm one of the main advantage of
deception-based defenses: the ability to provide detection with zero
false alarms.

6.4 discussion 109

The detection accuracy was obtained through a red teaming exer-
cise, which we consider the most appropriate method available to
perform such measurement in a controlled environment. While the
results depends largely on the profile of the participants, our tests
included a considerable number (150) of users with different skills
and knowledge of web security. A drawback of using a CTF scenario
instead of real attackers is that CTF participants are more aggressive
and have no incentives in being stealthy and in reducing their foot-
print on the target system. A real attacker may be more cautious, thus
resulting on a different (probably lower) rate of deception elements
triggered and vulnerability discovered. The results of this second
experiment are positive but still far from perfect – with 36% of the
attackers that were successfully able to find and exploit a vulnera-
bility without interacting with any deceptive elements. We believe
that this can be a consequence of the placement strategy we adopted,
and maybe a more aggressive deployment would provide a higher
detection rate. However, too many deceptive elements can tip of the
attackers about the presence of this type of defense, therefore actu-
ally reducing the overall efficiency of the technique. More tests are
required to better understand this phenomenon and the intricacies of
an “optimal” solution to deploy deception on a web application.

7
C O N C L U S I O N S A N D F U T U R E W O R K

This dissertation discussed several directions a service provider
may follow, in addition to merely secure its infrastructure, to pro-
vide better security for its customers. A number of techniques have
been proposed, from the vantage point of a service provider, to en-
hance its ability to measure and monitor security threats – including
possible abuses, compromised instances, and external attacks.

The thesis first proposed a systematic study to confirm that cloud
service provider has been abused by attackers to host part of their
malicious infrastructure and better understand the extent of this phe-
nomenon. By conducting a large-scale analysis of about one million
malware samples, our results showed that miscreants sustained long-
lived operations through the use of public cloud services. Moreover,
we observed an increasing trend in the number of malicious and ded-
icated cloud-based domains from 2008 to 2014. The existing security
mechanisms employed by the services providers were actually insuf-
ficient to correctly measure and detect this kind of abuses.

The second part of the dissertation explored the valuable informa-
tion a service provider has access to, that can be used to analyze
online attacks – with a focus on the phishing phenomenon that was
previously studied by external researchers in a more limited scope.
In particular, we presented the design and implementation of Phish-
Eye, a system specifically designed to analyze phishing kits in ethical
way. Using this system, we performed a five-month experiment that
enabled for the first time the understanding and measurement of the
entire life-cycle of this type of attack. We were able to distinguish the
victims from the attackers from other third party visitors. Our results
showed that most of the victims activity takes place in the first period
after the phishing kit is installed, and before the security community
discovers its existence.

Finally, we discussed the deception techniques that a service provider
may employ in order to add an additional layer of security for its cus-
tomer applications. We investigated existing deception techniques,
and proposed a comprehensive classification that allowed us to iden-
tify open research directions – including the design and modeling of
deception techniques, their deployment, and the evaluation of such
techniques. Furthermore, we presented the design and evaluation
of a deception-based approach to protect customer web applications.
The results from a red teaming experiment showed that our approach
was able to detect 64% of the participants who successfully exploited
at least one vulnerability. In a separate long term experiment in a pro-

112 conclusions and future work

duction environment, we implemented similar deception techniques
in a system that was routinely used by 258 different users. During a
period of seven months, zero false alert were raised by the system.

The security from the perspective of a service provider have at-
tracted little attention among security researchers before. The work
in this dissertation first revealed the phenomenon that attackers used
public cloud services to host their malicious infrastructure and that
existing security mechanisms were unable to detect timely this type
of abuse. Service providers are always reluctant to conduct research
on this direction due to the privacy concern of working with customer
data. It would be interesting to work together with the public cloud
service providers to fully understand the precise role of such abused
services, which would further enable researchers to build prompt de-
tection of this kind of threat. In our study, we only looked at net-
work communication data, but it would be interesting for a service
provider to combine the network data with the system information
such as CPU usage and performance counters to measure and detect
abusing customers.

Recently, a few works have emerged that proposed to measure and
understand the role of service providers in different cases of abuses,
mostly involved public cloud repositories. Another interesting exten-
sion to our work would be to study the role of service provider in
other types of attacks – such as distributed denial of services or the
distribution of malware. This kind of study would eventually raise
awareness to the importance of this phenomenon, and help other ser-
vice providers to detect related attacks.

The second work in this dissertation showcased the ability of a ser-
vice provider to monitor phishing attacks for their entire life-cycle,
which was previous unknown to external researchers. Our study il-
lustrated the way that an application service provider can implement
the security monitoring in an ethical way. While in our work we
resorted to a honeypot implementation, it would be interesting for
service providers to implement our system in real world production
environments.

Furthermore, other studies could be conducted to understand other
types of attacks that were otherwise difficult to analyze for external
researchers, including the use of exploit kits in the wild. This would
allow researchers to gain some insight of the different actors, their
behaviors, and the entire life-cycle of an exploit kit.

The last part of the dissertation applied deception techniques to
enable services provider to achieve an additional layer of security
for its customers web applications. We conducted two experiments
where we obtained a reasonable detection rate with no false positives.
The results seems to support that service providers are capable to
provide better security for their customer applications but more ex-
periments are necessary to study how the deployment of deception

conclusions and future work 113

elements affects the attack detection rate. It would also be interest-
ing to apply similar techniques on other services such as FTP, email,
and databases. Moreover, there is not yet a consensus among re-
searchers about the way to deploy and evaluate deception techniques
when they are used as a defense mechanism. More experiments are
actually needed to evaluate such techniques in various application
environments.

In conclusion, this dissertation investigated different directions in
which a service provider can measure malicious infrastructure, mon-
itor the phishing attacks installed on compromised services, and fi-
nally protect customers applications using deception techniques. How-
ever, we only look at the tip of the iceberg and we did not fully ex-
plore all the valuable information a service provider has access to,
which could help investigating other attacks or propose other pro-
tection mechanisms. As a results, we believe service providers will
play an increasingly important role to provide secure services to both
customers and other Internet users.

a
A P P E N D I X

a.1 résumé

De nos jours, de nombreux services sur Internet sont proie à des
cyberattaques qui menacent les fournisseurs de ces services et leurs
utilisateurs. De nombreux acteurs peuvent alors rentrer en jeu afin
de mieux contrer les nouvelles menaces. Dans cette thèse, nous ex-
plorons le rôle que peuvent jouer les hébergeurs de services (fournis-
seurs Cloud) pour la sécurisation des services sur Internet ; un rôle
qui est très marginal dans les modèles de sécurité existants.

Nous explorons plusieurs directions qu’un hébergeur de services
peut suivre pour renforcer la sécurité. Plus précisément, nous exploi-
tons les informations dont disposent ces hébergeurs pour mesurer
et surveiller les différentes menaces, y compris les abus de logiciels
malveillants, les sites d’hameçonnage, et les attaques Web.

L’ampleur de l’utilisation des services cloud par les logiciels mal-
veillants est peu appréciée. Nous présentons une étude systématique
et à grande échelle qui montre que les mécanismes de sécurité adop-
tés par les hébergeurs de services sont insuffisants pour mesurer et
détecter ce type d’abus.

Dans la deuxième partie, nous examinons la capacité d’un héber-
geur à surveiller les attaques qui sont autrement difficiles à étudier
pour des chercheurs tiers. En particulier, nous avons conçu et mis en
place PhishEye, un système éthique pour analyser en temps réel les
outils d’hameçonnage, ce qui nous a permis pour la première fois de
comprendre l’ensemble du cycle de vie des attaques de ce type.

Enfin, nous explorons des techniques alternatives, en particulier les
techniques de diversion/leurre, qu’un hébergeur de services pourrait
déployer afin d’améliorer la sécurité des services qu’il héberge. Nous
menons une étude exhaustive des techniques existantes et nous éva-
luons leur efficacité lorsqu’elles sont utilisées pour protéger les appli-
cations Web.

a.2 introduction

L’Internet a rapidement évolué à partir d’un petit réseau régional
qui connectait quelques institutions académiques et militaires jusqu’à
un très grand réseau mondial offrant une variété de services – tels
que les sites web, la messagerie électronique, la téléphonie sur IP et
le partage des fichiers. En 2017 [124] il a été estimé que plus de 49%
de la population mondiale utilisent Internet pour divers aspects de

116 appendix

la vie, y compris les réseaux sociaux, le commerce électronique et la
télécommunication.

Les premiers fournisseurs de services Internet (FAI) sont apparus
au début des années 1990, et au départ ils ne pouvaient offrir qu’un
accès limité sur Internet et nombre réduit de services. Aujourd’hui,
cette offre s’est beaucoup élargie en incluant une multitude de ser-
vices, par exemple, des services de paiement, du cloud computing et
des solutions de stockage en ligne pour les clients allant des grandes
entreprises aux utilisateurs individuels. Pour faire face à ces offres
diversifiées, dans cette thèse le terme fournisseurs de services désigne
non seulement les FAI, mais aussi les hébergeurs d’application, de
sites Web et les hébergeurs de services de cloud public.

Malheureusement, l’expansion rapide d’Internet et ses nombreux
utilisateurs ont également fait appel à des utilisateurs malveillants.
Les cybercriminels ciblent régulièrement des services lucratifs (par
exemple, les services bancaires en ligne), les sites Web d’organisation
cilbe, l’ordinateur personnel et smartphone, la plupart du temps à la
recherche d’un gain financier. Pour atteindre cet objectif, les cybercri-
minels recourent souvent à une combinaison de vulnérabilités 0-day,
logiciels malveillants sophistiqués (malware), attaques par hameçon-
nage (phishing) et exploits Web. Cela a entraîné une lutte continue
avec la communauté de sécurité engagée à développer de nouvelles
solutions pour détecter les attaques et protéger les services légitimes.
Dans ce contexte, les hébergeurs de services jouent un rôle très im-
portant dans la sécurité des services et de leurs utilisateurs, un rôle
souvent négligé ou sous-estimé dans les modèles de sécurité exis-
tants.

a.2.1 Modèle de sécurité actuel

La garantie de sécurité offerte par chaque fournisseur de services
peut grandement varier selon le type de service offert, la taille de l’hé-
bergeur et aussi les règlements du pays où réside l’hébergeur. Cette
diversité rend presque impossible de comparer la sécurité des dif-
férents hébergeurs de services. Cependant, même si parfois le mo-
dèle de sécurité n’est pas clairement défini, les hébergeurs de ser-
vices adhèrent généralement à un modèle de responsabilité partagée, pro-
posé par Amazon Web Services (AWS) [10] en 2014. La Figure a.1
illustre une version simplifiée où nous distinguons quatre acteurs
principaux : le client qui installe un service légitime en utilisant l’in-
frastructure d’hébergeur de services, l’utilisateur final de ce service et
l’attaquant qui peut cibler à la fois l’infrastructure de l’hébergeur de
services et le service légitime.

Le modèle de responsabilité partagée définit les mesures de sécu-
rité que l’hébergeur de service et le client peuvent convenir et mettre
en œuvre respectivement. L’hébergeur est responsable de la gestion

a.2 introduction 117

Figure a.1 – Modèle de responsabilité partagée

de la sécurité de l’infrastructure avec l’ensemble des logiciels qui
prennent en charge le service client. Par exemple, l’hébergeur de ser-
vices doit protéger l’infrastructure contre les attaques par déni de
service distribuées, et corriger les failles logicielles connues et les vul-
nérabilités. D’autre part, le client doit prendre les mesures nécessaires
de sécurité visant à protéger les utilisateurs de l’application, qui sont
considérés jusqu’ici comme hors de portée pour l’hébergeur de ser-
vices.

Bien que simple à comprendre, ce modèle présente également cer-
taines limites. Un exemple simple est le cas où un cybercriminel abuse
un service vulnérable pour effectuer des activités malveillantes qui
menacent la sécurité d’autres utilisateurs sur Internet. Dans ce scéna-
rio, le modèle actuel de responsabilité partagée attribue la responsabi-
lité au client exécutant ce service. Pourtant, l’hébergeur est sans doute
aussi responsable parce que son infrastructure est utilisée de manière
abusive pour effectuer des activités malveillantes. Ce phénomène a
été confirmé par notre étude dans le Chapitre 3. Le modèle de res-
ponsabilité partagée délègue la responsabilité de sécurité de l’héber-
geur de services au client, ce qui est regrettable parce que l’hébergeur
dispose d’un point de vue avantageux pour proposer des mesures de
sécurité et pour mieux surveiller les attaques et enfin protéger leur
clients.

a.2.2 Objectif de la thèse

Actuellement, sous le modèle de responsabilité partagée, un héber-
geur de services a peu d’incitation à fournir de manière active une
meilleure sécurité pour ses clients. Ceci est confirmé par une étude
récente sur les hébergeurs de service web [36], dans lequel les auteurs
ont constaté que la plupart des hébergeurs ont échoué à détecter les

118 appendix

signes les plus évidents que les applications de leur clients ont été
compromises.

Dans cette thèse, nous voulons explorer les mesures de sécurité
qu’un hébergeur de services pourrait proposer, au lieu de se contenter
uniquement de la sécurisation de son infrastructure, en profitant de
sa position privilégiée entre les utilisateurs finaux et les services, afin
de fournir une meilleure sécurité.

Par exemple, un hébergeur de services a accès à des informations
précieuses qui sont indisponibles à ses clients, y compris une vue
globale sur l’ensemble de l’infrastructure, le trafic réseau, et égale-
ment un contrôle total de la couche logicielle en dessous de l’appli-
cation client. Pour montrer que cette information est actuellement
sous-utilisée pour développer des mécanismes de sécurité et étudier
les nouveaux phénomènes de sécurité , nous avons identifié trois ob-
jectifs de recherche distincts :

O1. Les hébergeurs de services concentrent leurs efforts sur la pro-
tection de leur propre infrastructure contre les menaces externes.
Cependant, On sait peu de choses sur le fait si l’hébergeur de
services peut être abusé pour des fins malveillantes – c’est-à-
dire, dans le cas particulier où le rôle de l’attaquant et du client
est joué par le même acteur. Par exemple, le client peut utiliser
un service pour attaquer d’autres machines sur Internet, voir
même héberger des applications malveillantes ou illicites sur
l’infrastructure de l’hébergeur de services. Bien qu’il existe des
preuves anecdotiques que les hébergeurs de services, en particu-
lier les hébergeurs de services cloud, sont en fait abusés par les
logiciels malveillants, peu d’attention a été accordée à ce phéno-
mène et une étude plus rigoureuse est nécessaire pour mesurer
ce phénomène émergent.

O2. Au cours de la dernière décennie, la communauté scientifique
a mis un effort considérable pour étudier différentes attaques,
telles que les exploits Web ou kits de hameçonnage. Malheureu-
sement, la plupart des études précédentes étaient seulement en
mesure de réaliser des expérimentations en recueillant des don-
nées publiquement disponibles (par exemple, soit en analysant
des infections déjà signalées ou en explorant le Web à la re-
cherche de signes de contenu malveillant). Ceci a considérable-
ment limité la portée de ces études, parce que le comportement
d’un service juste après qu’il ne soit compromis, et avant qu’il
ne soit découvert par la communauté de la sécurité, est resté lar-
gement inconnu. Cependant, les journaux d’infrastructure de
l’hébergeur et l’analyse approfondie des connexions entrantes
peuvent fournir une meilleure vue sur certains types d’attaques,
par rapport à ce qui a été étudiées par des chercheurs externes.
En particulier, dans cet objectif, nous nous concentrons sur l’ana-
lyse de la durée de vie de kits de hameçonnage (qui sont très

a.2 introduction 119

souvent installés pour monétiser des applications web compro-
mises), pour identifier les différences entre les vue de l’héber-
geur et celles d’un chercheur tiers.

O3. Pour notre objectif final, nous considérons les hébergeurs de ser-
vices qui veulent ajouter une couche de sécurité supplémentaire
à leurs applications clients, en particulier dans le cas des appli-
cations Web. Des solutions de sécurité traditionnelles adaptées
à cette exigence, comme la surveillance du réseau et le système
de détection d’intrusion, génèrent beaucoup de fausses alarmes
ou sont incapables de faire face aux attaques avancées et incon-
nues auparavant. Par conséquent, nous voulons étudier si les
techniques de diversion/leurre (“deception” en anglais) seraient un
meilleur choix dans ce contexte, et quels sont les défis scienti-
fiques qui empêchent ces solutions d’être déployées à grande
échelle.

Le but de cette thèse est de faire progresser l’état de l’art le long
de ces trois objectifs différents, en effectuant des mesures et en conce-
vant des systèmes d’analyse et de protection du point de vue d’un
hébergeur de services.

a.2.3 Aperçu de la thèse

Motivé par les trois objectifs présentés ci-dessus, cette thèse pré-
sente un certain nombre de techniques qui tirent parti du point de
vue d’un hébergeur de service pour mesurer les abus (Objectif O1.), sur-
veiller la compromission (Objective O2.) et améliorer la protection (Objec-
tive O3.) des applications clients (comme illustré dans la Figure a.2).

Pour le premier objectif, nous avons concentré nos efforts sur les
hébergeurs de services cloud – car ils sont l’un des principaux héber-
geurs de services et leur nature les rend plus enclins aux abus pos-
sibles. Les services cloud offrent des avantages supplémentaires tels
qu’une plus grande résilience, une protection de l’hyperviseur contre
les attaques réseau, la reprise après sinistre à faible coût, le contrôle
de sécurité à la demande, détection en temps réel de la falsification
du système et reconstitution rapide de services [175]. Beaucoup de ces
avantages rendent le cloud particulièrement attrayant pour héberger
des services malveillants et les attaquants comptent souvent sur les
hébergeurs de cloud de la même manière et pour les mêmes raisons
que les clients légitimes [169]. Dans le Chapitre 3, nous analysons
le rôle aujourd’hui des services cloud dans un logiciel malveillant,
présentant une approche systématique pour mesurer la sécurité de
l’hébergeur de services cloud contre les abus de logiciels malveillants.
Les résultats de notre étude ont montré que les criminels ont entre-
tenu des activités malveillantes d’une durée prolongée sur le cloud,

120 appendix

Figure a.2 – Aperçu de la thèse

ce qui révèle le besoin d’un nouveau mécanisme de surveillance pour
les hébergeurs de services comme conjecturé dans l’objectif O2..

Dans le deuxième objectif, nous examinons la capacité d’un hé-
bergeur à surveiller les attaques qui sont autrement difficiles à com-
prendre pleinement. Dans ce contexte, nous nous concentrons sur les
attaques par hameçonnage qui compromettent les sites Web vulné-
rables hébergés sur l’infrastructure d’un hébergeur de services pour
installer des sites d’hameçonnage. Les attaques par hameçonnage res-
tent une menace majeure pour les fournisseurs de services Internet
(FAI), hébergeurs de service cloud, ainsi que les fournisseurs d’email.
En effet, le nombre de sites de hameçonnage uniques a atteint un re-
cord absolu au deuxième trimestre 2016 [2]. Cependant, des études
antérieures menées par des chercheurs utilisant des données externes
(c’est-à-dire sans accès aux journaux d’application ou le trafic réseau)
ont échoué à surveiller l’ensemble du cycle de vie des attaques par
hameçonnage. Le travail dans cette thèse propose une nouvelle ap-
proche pour un hébergeur de services d’application pour surveiller
les attaques par hameçonnage afin d’avoir un aperçu sur les différents
acteurs et leurs comportements, comme décrit dans le Chapitre 4.

Dans notre objectif final, nous explorons des techniques alterna-
tives qu’un hébergeur de services peut adopter pour protéger ses
applications clients. Du point de vu d’un hébergeur, la protection au
moment d’exécution est la seule solution viable, en raison de son
évolutivité et le fait qu’elle ne nécessite pas de toucher ou de mo-
difier les applications client. Les schémas traditionnels de protection
d’exécution reposent soit sur un pare-feu applicatif basé sur la si-

a.2 introduction 121

gnature ou sur la détection d’anomalie [112]. Les solutions à base
de signature sont efficaces mais incapables de détecter des attaques
inconnues, alors qu’il est difficile pour les approches basées sur les
anomalies d’équilibrer la précision de détection et le taux de faux
positif – en particulier dans le domaine du Web. En raison de ces
limitations, cette thèse étudie l’utilisation des techniques de diver-
sion/leurre qui peuvent être intégrées inconsciemment au-dessus de
l’application client par l’hébergeur de service, promettant un taux de
faux positifs extrêmement faible combiné avec un taux de détection
élevé contre des attaques connues et inconnues.

Bien que la diversion/leurre ne soit pas un nouveau concept, lors
de notre effort pour résumer les travaux existants sur ce sujet, nous
avons constaté qu’il manque encore une compréhension globale de
ces techniques et de leur application dans la sécurité informatique. En
particulier, il n’y a pas encore de consensus parmi les chercheurs sur
quels sont les principaux objectifs et les défis techniques à résoudre
quand les techniques de diversion/leurre sont adoptées en tant que
mécanisme de défense. En particulier, la modélisation, le déploiement
et l’évaluation de ces techniques étaient peu ou mal abordées dans la
littérature. Pour élucider ce sujet, le Chapitre 5 présente une étude
complète sur l’utilisation de techniques de diversion/leurre dans la
sécurité informatique.

Enfin, si les schémas de diversion/leurre sont bien étudiés dans
certains domaines, ce n’est pas le cas pour les applications web. Les
travaux antérieurs dans ce domaine [92] ont seulement étudié l’uti-
lisation de la diversion/leurre pour retarder les attaques. Dans cette
thèse, nous explorons l’utilisation de leurre pour détecter de manière
active les attaques Web à leurs débuts. C’est un domaine qui attire
récemment beaucoup d’attention dans l’industrie, mais il est encore
largement inexploré du point de vue de la recherche. Au meilleur
de notre connaissance, aucun travail antérieur n’a effectué des expéri-
mentations pour évaluer la précision et le taux de faux positif tout en
utilisant la diversion/leurre pour améliorer la détection des attaques
Web. Nous présentons dans le Chapitre 6 la conception et la mise en
œuvre de deux expérimentations préliminaires sur l’application de la
diversion/leurre pour détecter les attaques web.

a.2.4 Synthèse du manuscrit

Cette thèse propose un certain nombre de techniques pour mesurer
et surveiller le sécurité du point de vue d’un hébergeur de services.
Le Chapitre a.3 analyse les travaux précédents liés à ce sujet.

Dans le Chapitre 3 nous proposons une approche systématique
pour mesurer le rôle des services cloud dans les logiciels malveillants
(Chapitre 3). En particulier, nous étudions la façon comment les cyber-
criminels abusent les services cloud public pour héberger une partie

122 appendix

de leur infrastructure malveillante. Nous avons effectué une analyse
à grande échelle de tous les échantillons de logiciels malveillants sou-
mis au système d’analyse de logiciels malveillants Anubis entre 2008

et 2014. Nos résultats révèlent que les cybercriminels obtiennent des
opérations d’une longue durée au travers l’utilisation des ressources
de cloud public, en tant que composante redondante ou majeure de
l’infrastructure de logiciels malveillants. Nous observons également
que le nombre de domaines dédiés hébergés dans le cloud ont aug-
menté de près de 4 fois entre 2010 et 2013. Pour comprendre les
raisons de cette tendance, nous présentons également une analyse
à l’aide d’enregistrements DNS publics.

Le Chapitre 4 présente une nouvelle approche tirant parti du point
de vue d’un hébergeur de services pour surveiller les attaques et les
compromis contre les applications Web, en mettant l’accent sur les
kits d’hameçonnage (Chapitre 4). Nous proposons une nouvelle tech-
nique de bac à sable en direct pour observer le comportement de kits
de hameçonnage tout en protégeant la vie privée des victimes pos-
sibles. En utilisant cette technique, nous avons effectué une analyse
réelle et complète des attaques par hameçonnage, leurs mécanismes
et le comportement des cybercriminels, des victimes et de la commu-
nauté de la sécurité impliqués dans le processus – sur une base des
données collectées sur une période de cinq mois. Notre infrastructure
nous a permis de tracer pour la première fois l’image globale d’une
attaque par hameçonnage, depuis un attaquant ait installé et testé les
pages de hameçonnage sur un serveur compromis, jusqu’à la dernière
interaction avec de vraies victimes et avec des chercheurs en sécurité.

Dans la dernière partie de la thèse, nous étudions comment un hé-
bergeur peut surveiller et protéger ses clients contre des attaques Web,
en utilisant une combinaison de techniques de diversion/leurre – qui
fournissent une alternative intéressante par rapport aux mécanismes
de sécurité traditionnels.

Nous commençons dans le Chapitre 5 en présentant un aperçu de
l’utilisation actuelle des techniques de diversion/leurre dans la sé-
curité informatique, introduisant une classification complète des so-
lutions existantes. De plus, nous analysons plusieurs directions de
recherche ouvertes, y compris la conception de stratégies aidant les
défenseurs à concevoir et à intégrer la diversion/leurre dans une ar-
chitecture cible, l’étude des moyens automatisés de déployer la di-
version/leurre dans des systèmes complexes et, le plus important,
la conception de nouvelles techniques et expérimentations pour éva-
luer l’efficacité de ces techniques. Enfin, nous discutons les limites
des solutions existantes et fournissons des indications pour d’autres
recherche sur ce sujet.

Dans le Chapitre 6, nous présentons la conception préliminaire et
évaluation d’une approche de détection d’attaques Web basée sur la
diversion/leurre, qui vise à à détecter les attaques à leurs débuts.

a.3 état de l’art 123

Au cours d’une journée d’évaluation où les participants recherchent
des vulnérabilités dans un site Web, notre système a pu détecter 64%
des participants qui ont réussi à exploiter au moins une vulnérabi-
lité. Nous avons également mené une longue expérimentation dans
un environnement de production sur une période de sept mois pour
évaluer le taux de fausses alarmes. Pendant la période de notre test,
le service a été utilisé par 258 utilisateurs différents, générant zéro
fausse alerte.

Enfin, dans le Chapitre 7 nous tirons les conclusions et discutons
des travaux futurs dans ce domaine.

a.3 état de l’art

Le travail de cette thèse couvre le domaine de la mesure et de la sur-
veillance de la sécurité, et leur application pour détecter et protéger
un hébergeur de services contre une variété de menaces – y compris
l’abus de logiciels malveillants, les sites Web compromis hébergeant
des kits d’hameçonnage et des attaques Web.

Dans ce Chapitre, nous résumons les études antérieures liées aux
techniques que nous présentons dans les parties suivantes de cette
thèse. Plus précisément, ceci couvre trois domaines différents. Dans
la section a.3.1 nous introduisons des travaux connexes sur la mesure
de l’utilisation malveillante des services cloud. Dans la section a.3.2
nous discutons des travaux existants qui étudient et surveillent les
attaques par hameçonnage. Enfin, dans la section a.3.4 nous passons
en revue les études précédentes et les classifications des techniques
de diversion en sécurité informatique. De plus, nous examinons les
travaux connexes qui ont utilisé les techniques de la diversion/leurre
afin de protéger une application Web.

a.3.1 Utilisation néfaste des services cloud

La sécurité des services cloud a été largement étudiée dans la lit-
térature. Comme discuté dans [184], de nombreuses études ont été
dédiées à la sécurisation du moniteur de machines virtuelles afin de
fournir la sécurité pour les logiciels client et les données contre les
exploits et les attaques par canaux auxiliaires. D’autres travaux ont
proposé d’utiliser l’introspection de machine virtuelle pour identifier
le fonctionnement du système d’exploitation [56] ou pour détecter la
présence d’outil de dissimulation d’activité (rootkit) dans le système
d’exploitation invité [86, 152]. Enfin, de nombreux documents ont
proposé des solutions pour construire un domaine de réseau virtuel
sécurisé [34], du stockage sécurisé [66], et le démarrage sécurisé [64]
pour les machines virtuelles.

Dans [3], Aceto et al. ont interrogé les plates-formes existantes et
les services de surveillance pour le cloud. Les travaux antérieurs ont

124 appendix

couvert divers aspects de la surveillance cloud, y compris la perfor-
mance, l’accord sur le niveau de service, la qualité des services, la
gestion de la capacité et des ressources et la sécurité. Cependant,
l’abus des services cloud restent l’une des neuf principales menaces
pour le cloud computing [118]. En effet, la menace d’abus et d’utili-
sation malveillante est davantage un problème pour les hébergeurs
de services de cloud que pour les consommateurs de cloud. Malheu-
reusement, du point de vue d’un hébergeur de services, la mesure
et le contrôle de la sécurité sont encore insuffisants pour détecter et
protéger contres les abus, compromis et attaques.

Des effets secondaires peuvent exister lorsqu’un attaquant abuse
des services cloud. Premièrement, certains abus peuvent conduire à
des attaques par canaux auxiliaires qui fuient les informations du
client [153] ou qui permettent à un attaquant d’extraire les clés pri-
vées du client [201]. Deuxièmement, de tels abus peuvent être utilisé
comme un facteur d’amplification pour déclencher des attaques dis-
tribuées, par exemple en envoyant un grand nombre de messages de
spam [31] ou en rejoignant des efforts distribués pour briser la clé de
chiffrement [14].

De plus, ce genre d’abus permet aux attaquants de recourir aux
services de cloud pour héberger une partie de leur infrastructure de
logiciels malveillants [23, 60]. Le terme logiciel malveillant est généra-
lement utilisé dans la communauté de la sécurité pour désigner un
logiciel indésirable tels que les virus, les chevaux de Troie, les rançon-
giciels, les vers et les réseaux de zombies – qui présentent un compor-
tement malveillant pour répondre à l’intention des attaquants [58].
Les attaquants commencent généralement par infecter le système de
la victime soit par un sabotage technique (par exemple, en exploi-
tant des services réseaux vulnérables ou en effectuant des attaques
de “drive-by download” ciblant les navigateurs Web) ou via des mé-
thodes d’ingénierie sociale.

Une fois que la machine cible a été infectée, les logiciels malveillants
modernes sont généralement équipés de mécanismes de communica-
tion et de télécommande qui fournissent aux attaquants un contrôle
total sur l’hôte infecté. Considérons l’exemple d’un bot, qui est un
logiciel malveillant sous le contrôle d’une entité malveillante, égale-
ment appelée “bot-master”. Un bot permet au bot-master de livrer
des commandes et contrôler à distance le système de la victime. En
outre, les bots peuvent être capables d’exfiltrer les données confiden-
tielles de la victime telles que le numéro de carte de crédit et les
informations d’identification bancaire à un serveur distant sous le
contrôle de l’attaquant. Ce type de fonctionnalité nécessite une infra-
structure spécifique, y compris un certain nombre de serveurs mal-
veillants pour recueillir le téléchargement des informations et orches-
trer la communication de commande et contrôle (C&C).

a.3 état de l’art 125

Pour détecter les serveurs C&C malveillants, les travaux antérieurs
se sont concentrés sur l’analyse du réseau local, où ils ont analysé la
corrélation spatio-temporelle des activités préprogrammées liées au
C&C, telles que la communication coordonnée et la propagation [68].
Plus récemment, les chercheurs se sont tournés vers les réseaux de
fournisseur d’accès Internet (FAI) à grande échelle [24]. Cependant,
on en sait peu sur l’infrastructure des logiciels malveillants, et en
particulier sur le rôle des services cloud pour héberger ces logiciels
malveillants.

Les abus antérieurs des hébergeurs de service cloud ont attiré beau-
coup d’attention au cours des dernières années [23, 60, 77, 182]. Par
exemple, les services de cloud sont répertoriés par Solutionary parmi
les composants majeurs de cybercriminalité moderne, et les attaquants
“semblent utiliser ces services de la même manière et pour les mêmes raisons
que les clients légitimes” [169]. Malgré cette popularité, nous avons
connaissance seulement de quelques études de recherche qui ont
réussi à évaluer l’ampleur réelle de ce phénomène.

Hamza et al. [71] a présenté un aperçu des techniques possibles
pour abuser les services de cloud dans la cybercriminalité moderne.
Les auteurs ont fourni d’intéressantes idées sur la façon dont les
cyber-attaques ont été perpétrées à partir de plates-formes cloud, y
compris des exemples tels que les attaques de saut d’hôte et l’abus
de privilèges. Cependant, cette étude se concentre uniquement sur les
signaux d’attaque forts, et ne considère pas d’autres signaux faibles
qui déterminent les façons possibles dont les services de cloud sont
utilisés dans le cadre des infrastructures de commande et de contrôle
des attaquants.

Dans [132], Nappa et al. ont analysé les attaques de “drive-by down-
load” et les serveurs exploités qui ont été gérés par les mêmes or-
ganisations. Ils ont trouvé que 60% des hébergeurs de services qui
hébergeaient les serveurs d’exploit étaient en effet des hébergeurs de
services cloud. Plus intéressant, ils ont évalué les procédures de rap-
port d’abus mis en œuvre par les hébergeurs de services de cloud
public. Les auteurs ont découvert que sur 19 rapports d’abus qu’ils
ont soumis, seulement 7 ont été étudiés par les hébergeurs de ser-
vice cloud. De plus, les auteurs ont calculé qu’il faut en moyenne 4,3
jours pour un hébergeur de cloud de supprimer un serveur d’exploit
après qu’il a été signalé. Il est important de noter que les auteurs
de cette étude se concentrent uniquement sur les attaques “drive-
by-download” impliquant des services cloud. Bien que les serveurs
“drive-by-download” constituent un composant majeur de l’infrastruc-
ture du logiciel malveillant moderne, dans cette thèse, nous allons
au-delà de ce cas d’utilisation unique pour fournir une évaluation
plus complète sur la façon dont les services de cloud sont intégrés
dans l’infrastructure de logiciels malveillants dans la cybercrimina-
lité moderne. Nous avons aussi essayé de comprendre si les services

126 appendix

cloud constituent les éléments principaux de l’infrastructure du logi-
ciel malveillant, ou si ils ne sont utilisés que comme des composants
redondants ou de basculement.

Canali et al. [36] ont proposé une approche active à évaluer les mé-
canismes de sécurité mis en place par les hébergeurs de sites Web.
Ils ont installé des services Web vulnérables sur 22 hébergeurs dis-
tincts, et déclenché plusieurs attaques pour tirer parti des capacités
de réaction de ces hébergeurs. Pour tester les mécanismes de sécu-
rité implémentés par les hébergeurs de service cloud, dans le Cha-
pitre 3 nous adoptons une approche moins intrusive où nous obser-
vons seulement les interactions de logiciels malveillants avec le ser-
vice cloud. Dans notre étude, nous nous concentrons uniquement sur
le cloud d’Amazon EC2. Bien que ce choix puisse limiter la mesure
de nos observations, en même temps il peut éliminer autant que pos-
sible l’impact des hébergeurs nocif ou ceux qui ne garantissent pas
les exigences minimales de sécurité pour leurs clients. Nous considé-
rons que la concentration seulement sur le plus grand hébergeur de
cloud en termes de part de marché peut également éclairer les limites
de mécanismes de sécurité actuels et de responsabilité mis en œuvre
par les hébergeurs de cloud d’aujourd’hui.

Wang et al. [188] ont proposé un système qui mesure le taux de
désabonnement des hébergeurs de services cloud public (par exemple,
EC2 et Azure) afin d’évaluer l’efficacité des listes noires IP contre
les activités malveillantes basées sur le cloud. Les auteurs ont active-
ment sondé les adresses IP appartenant au cloud EC2 et Azures, et
ont proposé un mécanisme de regroupement qui regroupe ensemble
des adresses IP implémentant les mêmes services. Ils ont également
observé tous les services Web hébergés par les hébergeurs de cloud,
couvrant à la fois les activités malveillantes et bénignes. Les résultats
de leurs expériences n’ont trouvé que une faible quantité d’activités
malveillantes (principalement l’hameçonnage et l’hébergement de lo-
giciels malveillants) en comparant les données de leur système avec
les listes noires publiques. Dans le Chapitre 3, nous proposons une
approche complémentaire qui observe uniquement les interactions de
logiciels malveillants avec les service cloud afin de tirer parti de la vé-
ritable étendue de l’activité malveillante hébergée par les hébergeurs
de cloud public.

Plus récemment, Liao et al. [114] ont analysé les dépôts du cloud
public qui ont été abusés par des cybercriminels dans le but de mener
des activités illicites. Les auteurs ont également caractérisé l’efficacité
des liens de spam qui a abusé les services d’hébergement cloud [115].
Tajalizadehkhoob et al. [177] ont analysé les données de communica-
tion C&C sur une période de sept ans et ont constaté que les atta-
quants ont peu de préférence pour les hébergeurs où les domaines
C&C ont relativement une longue durée de vie.

a.3 état de l’art 127

Enfin, dans un article récent publié en 2017, Lever et al. [111] ont
étudié les activités réseaux d’environ 26M échantillons de logiciels
malveillants recueillis de 2011 à 2015. Ils ont pu confirmer une ten-
dance similaire et obtenir des résultats en ligne avec ce que nous
présentons dans Chapitre 3, mais à plus grande échelle qui couvrait
plusieurs hébergeurs de service cloud. Ils ont également constaté
que les programmes potentiellement indésirables (PUP) étaient celles
parmi les différentes familles de logiciels malveillants qui ont utilisé
le plus l’infrastructure de cloud et les réseaux de diffusion de contenu
(CDN).

Pour conclure, le travail de cette thèse présente la première mesure
systématique de la sécurité des services de cloud public en ce qui
concerne les abus de logiciels malveillants. Des études récentes ont
porté sur les abus des services cloud depuis différents points de vue.

a.3.2 Comprendre les attaques par hameçonnage

La littérature scientifique comprend un grand nombre de docu-
ments liés aux attaques par hameçonnage. En particulier, les cher-
cheurs ont proposé de nombreuses techniques à étudier, bloquer et
supprimer les sites d’hameçonnage. Cependant, il n’y a pas encore
de système de surveillance complet qui permet l’observation de l’en-
semble du cycle de vie d’un kit d’hameçonnage. Nous classons les
études existantes dans les trois catégories suivantes : anatomie de
l’attaque par hameçonnage, techniques d’anti-hameçonnage, et l’éva-
luation des techniques d’anti-hameçonnage.

a.3.2.1 Anatomie de l’attaque par hameçonnage

Le travail le plus étroitement lié à cette thèse a été effectué par
Waston et al., qui a décrit deux incidents d’attaques par hameçon-
nage [190] qui ont été découverts par le projet Honeynet [172]. Les
auteurs ont décrit comment les attaquants se comportent et les tech-
niques utilisées pour mettre en place les sites d’hameçonnage. L’un
des deux kits d’hameçonnage a reçu 256 requêtes HTTP entrantes,
mais apparemment aucune donnée personnelle n’a été soumise par
les visiteurs. Pourtant, les auteurs ont dû fermer le pot de miel (ho-
neypot) parce qu’ils n’avaient pas un système pour empêcher les
données de l’utilisateur d’être volées par les attaquants. Notre tra-
vail présenté dans le Chapitre 4 adopte une approche similaire ba-
sée sur le pot de miel, mais se concentre sur un système éthique
pour étudier comment les attaques par hameçonnage dans le monde
réel sont structurées. McGrath et al. [120] ont analysé la façon com-
ment les hameçonneurs ont effectué leurs attaques, les caractéris-
tiques des liens d’hameçonnage, les domaines et leur infrastructure
d’hébergement. Les auteurs ont estimé également la durée de vie des

128 appendix

noms de domaine utilisés pour l’hameçonnage en utilisant des en-
registrements DNS collectés périodiquement. Moore et al. [126] ont
présenté la preuve que les cybercriminel utilisent le moteur de re-
cherche («Google Hacking») pour compromettre et re-compromettre
des machines, qui sont en outre utilisées pour héberger des sites d’ha-
meçonnage. Dans un autre travail, Moore et al. [129] ont étudié les
corrélations temporelles entre le spam et les sites d’hameçonnage
afin de comprendre le comportement des attaquants, et de évaluer
l’efficacité du retrait du site d’hameçonnage. Sheng et al. [165] ont
mené une analyse démographique pour évaluer la susceptibilité des
victimes face aux attaques d’hameçonnage et discuté l’efficacité du
matériel éducatif.

Quelques études ont porté sur l’estimation du taux de réussite des
emails d’hameçonnage. Jagatic et al. ont d’abord rapporté le taux de
réussite des e-mails d’hameçonnage simulés [82], tandis que Jakobs-
son et al. ont proposé des expérimentations d’hameçonnage éthiques
sur un site web d’enchère en ligne populaire [85], afin de mesurer
le taux de réussite des e-mails d’hameçonnage simulés. Le taux de
succès rapporté est respectivement environ 15% et 11% (comparé à
9% que nous avons trouvé dans notre étude). Cependant, ces travaux
ont mesuré le taux de réussite basé uniquement sur les attaques par
hameçonnage simulées.

Plusieurs études ont mesuré l’impact de l’hameçonnage sur les vic-
times potentiels. Moore et al. ont mesuré empiriquement la durée
de vie des sites d’hameçonnage et le nombre de réponses de vic-
times [125]. Les auteurs ont récupéré des rapports confirmés sur Phi-
shTank, puis se sont appuyés sur les enregistrements générés par We-
balizer, un outil gratuit d’analyse du journal du serveur Web, en cas
où il était déjà installé sur les sites Web compromis. Cependant, cet
outil enregistre simplement le nombre de visites pour une page Web
donnée au lieu du nombre unique de visites, ce qui rend les résultats
d’estimation très approximatives. Les auteurs ont également pu esti-
mer le nombre de victimes de 20 sites d’hameçonnage, en supposant
que seuls les utilisateurs victimes du hameçonnage seraient rediri-
gés vers une page de confirmation après qu’ils aient fourni leurs in-
formations d’identification. Trusteer a mesuré l’efficacité de attaques
par hameçonnage basées sur les statistiques recueillies par un plugin
de navigateur sur une période de trois mois [180]. Les auteurs ont
constaté qu’en 2009, 45% des victimes observés qui ont été connectées
à un site d’hameçonnage ont révélé leur informations d’identification
personnelles. Cependant, leur étude ne fournit qu’une vue partielle
de l’attaque par hameçonnage.

Enfin, Cova et al. ont analysé dans [49] les kits d’hameçonnage li-
brement disponibles et quelques sites d’hameçonnage en ligne. Ils
ont analysé les organisations ciblées, les techniques utilisées pour ex-

a.3 état de l’art 129

filtrer les données et les méthodes d’obfuscation mises en place dans
les kits d’hameçonnage.

a.3.2.2 Techniques d’anti-hameçonnage

Les contre-mesures d’hameçonnage ont suscité beaucoup d’intérêt
dans communauté scientifique. Les contre-mesures proposées peuvent
être regroupées en trois catégories : la détection de pages d’hameçon-
nage, le blocage et la formation des utilisateurs.

La plupart des techniques de détection d’hameçonnage identifient
les pages d’hameçonnage en créant un classifieur utilisant différentes
heuristiques basées sur les caractéristiques d’URL [62, 110] ou sur le
contenu de la page web [144, 195, 203]. Certains études visent à détec-
ter et bloquer les attaques par hameçonnage en différentes étapes. Par
exemple, Fette et al. [61] ont utilisé une machine d’apprentissage pour
identifier et bloquer les emails d’hameçonnage. Plusieurs études ont
proposé un plugin navigateur pour protéger les utilisateurs contre le
hameçonnage [40, 54, 88]. Une autre approche populaire de bloquer
les attaques par hameçonnage consiste à compiler et à distribuer des
listes noires, telles que Google Safe Browsing et PhishTank. De nom-
breuses études ont porté sur l’éducation contre les attaques par ha-
meçonnage et comment former les utilisateurs à identifier l’hameçon-
nage [102–104, 139]. Enfin, une seule étude a porté sur l’identifica-
tion des adresses électroniques des attaquants en utilisant des sites
d’hameçonnage vérifiés par PhishTank et des métadonnées fournies
par les fournisseurs d’email [127]. Cependant, cette méthode intro-
duit une latence significative par rapport à notre approche puisque
les listes noires publiques peuvent ne pas être suffisamment efficace
pour détecter rapidement les kits d’hameçonnage en direct.

a.3.3 Évaluation de techniques d’anti-hameçonnage

En 2006, un certain nombre d’études ont conclu que les solutions
d’anti-hameçonnage [202], les indicateurs de sécurité [55], et Les barres
d’outils de navigateur [196] étaient insuffisantes pour détecter les
sites d’hameçonnage et protéger les utilisateurs.

En 2007, Ludl et al. [119] et Sheng et al. [166] se sont spécifiquement
concentrés sur l’efficacité de listes noires pour empêcher les attaques
par hameçonnage, mais ils ont obtenu des résultats contradictoires.
Dans la première étude, les auteurs ont collecté des liens de site d’ha-
meçonnage en ligne depuis PhishTank, et les a testés contre Google
Safe Browsing et aussi le filtre Phish de Microsoft Internet Explorer.
Cette étude a conclu que l’approche basée sur la liste noire est efficace
pour protéger les utilisateurs, en particulier Google qui a correcte-
ment détecté près de 90% des liens de site d’hameçonnage [119]. Dans
la seconde étude, Sheng et al. ont évalué cinq listes noires (y compris
celles testées par Ludl et al.) avec les URLs d’hameçonnage datant de

130 appendix

moins de 30 minutes, collectées auprès de dépôt de données email de
l’Université de Alabama Phishing Team. Cette étude a trouvé que les
listes noires étaient inefficaces car la plupart d’entre elles détectaient
moins de 20% de nouvelles pages d’hameçonnage [166].

Egelman et al. ont mené une étude empirique pour évaluer l’effica-
cité de l’avertissement d’hameçonnage du navigateur Web et fourni
quelques conseils sur la façon d’améliorer les indicateurs de sécu-
rité [59]. En 2014, Gupta et al. [69] ont évalué l’efficacité des pages
de sensibilisation contre les attaques par hameçonnage [102] pour
déterminer si elles ont aidé les utilisateurs à identifier les tentatives
d’hameçonnage.

En résumé, la plupart des études existantes ont évalué l’efficacité
de techniques d’anti-hameçonnage seulement après que la page d’ha-
meçonnage ne soit rapportée publiquement ou en privé. Notre étude
évalue plutôt l’efficacité de l’approche par liste noire dès le début
des attaques par hameçonnage. Pour atteindre cet objectif, le travail
présenté dans cette thèse propose un mécanisme de surveillance qui
profite du point de vue d’un hébergeur de services, et qui permet
l’observation de tout le cycle de vie de l’attaque par hameçonnage
dans la nature.

a.3.4 Techniques de diversion/leurre dans la sécurité informatique

Dans cette thèse, nous étudions les techniques de diversion/leurre
existantes et proposons une nouvelle classification selon quatre di-
mensions. Nous recourons également aux techniques de diversion/-
leurre, qui nous permettent d’obtenir une meilleure protection pour
les applications Web. Dans la suite, nous présentons d’abord les études
et classifications existantes autour de ce sujet, et laissons une présen-
tation plus complète des techniques liées à la diversion/leurre dans
l’étude présentée au Chapitre 5. Ensuite, nous résumons les travaux
antérieurs qui ont utilisé des techniques de diversion/leurre pour sur-
veiller, détecter et atténuer les attaques Web.

a.3.4.1 Études précédentes

Dans [170], Spitzner a discuté l’utilisation de système de pot de
miel et des techniques de l’honeytoken comme un moyen de protec-
tion contre la menace interne. Dans [157], Rowe a discuté de diffé-
rentes possibilités d’intégrer la diversion/leurre dans les systèmes de
pots de miel – tels que les informations de leurre, les retards, les faux
messages d’erreur – et les a comparés à d’autres possibilités d’utili-
ser la diversion/leurre dans les systèmes informatiques réels. Voris et
al. [187] ont discuté des cas d’utilisation divers où les leurres peuvent
être importants pour la sécurité informatique. Juels et Tech [91] ont
discuté l’utilisation des objets de miel (un terme générique utilisé

a.3 état de l’art 131

pour désigner plusieurs types de diversion/leurre) pour améliorer la
sécurité des systèmes d’information. Jogdand et Padiya [87] ont éga-
lement analysé les solutions IDS et la façon dont ils peuvent mettre
en œuvre des honeytokens, qui sont en effet un type spécifique de
la diversion/leurre. Dans [46], Cohen et al. ont aperçu plusieurs pro-
blèmes lors de l’application de la diversion/leurre dans la sécurité
informatique, et introduit leur propre cadre pour la diversion/leurre.
Les auteurs ont également discuté les principaux défis à relever pour
mettre en œuvre dans la pratique les technique de diversion/leurre
en utilisant ce cadre pour défendre le système d’information. Cohen a
également étudié dans [44] l’utilisation historique et récente (jusqu’en
2005) des pots de miel et des leurres pour la protection de l’informa-
tion, ainsi que la théorie derrière les techniques de diversion/leurre
et leurs limites.

Notre travail est différent des études précédentes parce qu’il exa-
mine les contributions récentes, en se concentrant sur les défis tech-
niques et évaluations de la diversion/leurre, au lieu d’étudier l’his-
toire de ce concept et comment il a trouvé son chemin dans la sécurité
informatique.

a.3.4.2 Classifications précédentes

Les schémas de classification précoce de la diversion/leurre sui-
vaient un système militaire traditionnel de classification de la trom-
perie. Par exemple, Cohen [42] a examiné les techniques de diver-
sion/leurre basées sur la nature de ces techniques, y compris “la dis-
simulation, le camouflage, des informations plantées et fausses, les ruses, les
affichages, les démonstrations, les feintes, les mensonges et la perspicacité”.
L’examen historique a révélé que la diversion/leurre était loin d’être
pleinement exploité en sécurité informatique. Le même type de taxo-
nomie a également été utilisé dans des travaux ultérieurs [159, 160].

Rowe et Rothstein [159] ont développé une théorie de la diversion/-
leurre qui est inspirée de la théorie linguistique computationnelle des
cas sémantiques. Les rôles de cas sémantiques peuvent contenir le
participant (agent, bénéficiaire), l’espace (direction, emplacement), le
temps, la causalité (cause, but), la qualité (contenu, valeur), etc. Les
auteurs ont expliqué une opération de diversion/leurre comme une
action qui modifie les valeurs du rôle de cas associé. Cohen [44] a
proposé un modèle de diversion/leurre informatique qui regroupe
ces techniques par le niveau hiérarchique de l’ordinateur auquel ils
sont appliqués, du plus bas niveau matériel au niveau le plus élevé
d’application. Les informations et signaux entre différents niveaux
peut être induits ou inhibés afin d’implémenter la diversion/leurre.
De même, Almeshekah et Spafford [7] ont classées les techniques de
diversion/leurre basé sur l’état de système et les composants où la di-
version/leurre peut être déployée. Les catégories de premier niveau

132 appendix

incluent la fonctionnalité du système (décisions système, logiciels et
services, données internes) et l’état du système (activités, configura-
tions et performance).

Gartner [149] a proposé une pile de diversion/leurre à quatre couches,
y compris les couches de réseau, d’hôte, d’application et de données.
De plus, il a analysé les techniques de diversion/leurre mises en
œuvre par les produits commerciaux actuels. Gartner [149] et Alme-
shekah et Spafford [8] ont tous examiné les possibilités de déployer
des techniques de diversion/leurre au cours de différentes phases
d’une cyberattaque, sans aucune classification systématique.

La plupart des classifications précédentes ne prenaient en compte
qu’une seule dimension, telle que le composant ou la granularité de
chaque technique [7], ou la couche où la diversion/leurre est appli-
quée [149]. Ces classifications mono dimensionnelles ont échoué à
capturer d’autres aspects de la diversion/leurre qui sont d’égale im-
portance, telles que les menaces couvertes par chaque technique, et
la façon dont le mécanisme de déception peut être intégré à l’inté-
rieur d’un système cible. Pour prendre en compte tous ces différents
aspects, cette thèse introduit un nouveau système de classification
complet basé sur quatre dimensions orthogonales.

a.3.4.3 Protection d’application Web basée sur la diversion/leurre

La littérature déborde d’approches pour protéger les applications
web [112] contre les attaques. Néanmoins, les techniques de la dé-
tection d’attaques Web actuelles ne parviennent pas à détecter de
manière fiable et active les attaques à leurs stade précoce. En raison
de ces limitations, des solutions complémentaires telles que les tech-
niques de diversion/leurre ont été récemment étudiées par la com-
munauté scientifique [8, 13]. Dans cette thèse, nous nous concentrons
principalement sur les solutions qui adoptent une approche de pro-
tection des applications Web basée sur la diversion/leurre. Nous re-
groupons les approches existantes en deux catégories, l’une utilisée
pour améliorer la détection des attaques et l’autre utilisée dans le but
d’atténuation des attaques.

Détection d’attaque Brewer et al. [30] ont proposé une application
web qui intègre des liens contenant des leurres. Ces liens sont invi-
sibles pour les utilisateurs normaux, mais devraient être déclenchés
par les robots d’exploration et les robots Web qui se connectent à
l’application. De même, Gavrilis et al. [65] ont présenté une méthode
qui détecte les attaques par déni de service sur les services Web en
utilisant les faux liens cachés dans la page Web. De la même façon,
McRae et Vaughn [121] ont soumis des faux comptes qui contenait
l’URL avec du leurre aux sites d’hameçonnage pour suivre les atta-
quants quand ils regardaient ces faux comptes.

a.3 état de l’art 133

Une autre approche pour tromper les attaques Web consiste à utili-
ser de fausses informations déguisées en erreurs de configuration du
serveur Web. Seulement les utilisateurs malveillants sont censés ma-
nipuler ou exploiter ces erreurs, qui les exposent à la détection par
le système. Dans ce cadre, Virvilis et al. [185] ont introduit de faux
fichiers de configuration, tels que robots.txt, y compris les fausses
entrées, les liens cachés et des commentaires HTML qui indiquent les
faux comptes, afin de détecter les attaquants. D’autres études ont pro-
posé de faux formulaires en tant que leurre [97] et de faux paramètres
d’URL [147] qui affichent de fausses erreurs de configuration dans le
but d’égarer les attaquants et de protéger le système cible.

Dans [6], Almeshekah a proposé un serveur de diversion/leurre
centralisé ce qui permet l’implémentation de la diversion pour pro-
téger les serveurs web cibles. Dans chaque serveur Web, le système
proposé analyse les requêtes entrantes et envoie leurs méta données
vers le serveur centralisé où une décision est prise quant à l’attitude
du système et s’il devrait répondre avec la diversion/leurre. L’auteur
a ensuite analysé les impacts sur la performance introduits par le
système.

Atténuation d’attaque Julian [92] a proposé de modifier le temps de
réponse d’un moteur de recherche Web en injectant des retards aléa-
toires en réponse aux requêtes malveillantes afin de confondre un
attaquant. Anagnostakis et al. [12] ont introduit “le pot de miel d’ombre
(shadow honeypots)” qui étend les pots de miel traditionnels avec la
détection de dépassement de tampon basé sur les anomalies pour
protéger l’application Web. Le pot de miel d’ombre est une copie de
l’application cible, avec le même contexte et l’état d’application. Il est
utilisé pour analyser le trafic anormal et améliorer la précision de la
détection basée sur les anomalies.

Finalement, Araujo et al. [16] ont présenté une technique pour
transformer les correctif traditionnels en “honey-patches”, conçu pour
supprimer la vulnérabilité tout en leurrant les attaquants en leur fai-
sant croire que leurs attaques ont réussi. Sur la détection d’une at-
taque ciblant la vulnérabilité connue du serveur Web, le système re-
dirige l’attaquant à un serveur non corrigé mais isolé du serveur d’ori-
gine. Les auteurs ont étendu leur système de “honey-patches” avec
un compilateur instrumenté qui nettoie automatiquement les infor-
mations d’identification dans le serveur non corrigé [15].

Le travail dans cette thèse diffère des travaux ci-dessus parce que
nous nous concentrons sur la détection d’attaque au lieu de l’atténua-
tion d’attaque. Malheureusement, notre étude souligne que la plupart
des travaux précédents dans la détection de l’attaque basée sur la di-
version/leurre n’ont pas fourni d’expérimentation ou d’évaluations
sur les techniques proposées. Par conséquent, dans le Chapitre 6 nous
présentons deux expérimentations que nous avons conduites pour

134 appendix

évaluer l’efficacité et le taux de faux positifs de protection d’applica-
tion web basée sur la diversion/leurre.

a.4 conclusions et travaux futurs

Cette thèse a discuté de plusieurs directions qu’un hébergeur de
services peut suivre, en plus de simplement sécuriser son infrastruc-
ture, pour fournir une meilleure sécurité pour ses clients. Un certain
nombre de techniques ont été proposées, depuis le point de vue d’un
hébergeur de services, pour améliorer sa capacité à mesurer et sur-
veiller les menaces contre la sécurité – y compris les abus possibles,
les serveurs compromis et les attaques externes.

La thèse a d’abord proposé une étude systématique pour confir-
mer que l’hébergeur de service cloud a été abusé par des attaquants
pour héberger une partie de leur infrastructure malveillante, et mieux
comprendre l’ampleur de ce phénomène. En effectuant une analyse
à grande échelle d’environ un million d’échantillons de logiciels mal-
veillants, nos résultats ont montré que les cybercriminels soutenaient
des opérations de longue durée à travers l’utilisation de services cloud
public. De plus, nous avons observé une tendance à la hausse de
nombre de domaines cloud malveillants et dédiés de 2008 à 2014.
Les mécanismes de sécurité existants employés par les hébergeurs de
services étaient insuffisants pour mesurer et détecter correctement ce
type d’abus.

La deuxième partie de la thèse a exploré les informations précieuses
auxquelles l’hébergeur de services a accès, qui peuvent être utilisées
pour analyser les attaques en temps réel – en mettant l’accent sur
les attaques par hameçonnage précédemment étudiées par des cher-
cheurs externes dans une portée plus limitée. En particulier, nous
avons présenté la conception et la mise en œuvre de PhishEye, un
système spécialement conçu pour analyser les kits d’hameçonnage
de manière éthique. En utilisant ce système, nous avons effectué une
expérimentation durant cinq mois qui nous a permis pour la pre-
mière fois de comprendre et de mesurer l’ensemble du cycle de vie
de ce type d’attaque. Nous étions capable de distinguer les victimes
des attaquants et des autres visiteurs tiers. Nos résultats ont montré
que la majeure partie des activités de victimes se déroulent à la pre-
mière période après l’installation du kit d’hameçonnage, et avant la
communauté de la sécurité découvre son existence.

Enfin, nous avons discuté des techniques de diversion/leurre qu’un
hébergeur de services peut employer afin d’ajouter une couche de sé-
curité supplémentaire pour ses applications client. Nous avons étudié
les techniques de diversion/leurre existantes et proposé une classifi-
cation complète qui nous a permis d’identifier les directions de re-
cherche ouvertes – y compris la conception et la modélisation des
techniques de diversion/leurre, leur déploiement et l’évaluation de

a.4 conclusions et travaux futurs 135

ces techniques. De plus, nous avons présenté la conception et l’éva-
luation d’une approche basée sur la diversion/leurre pour protéger
les applications Web des clients. Les résultats d’une expérimentation
offensive ont montré que notre approche était capable de détecter 64%
des participants qui ont réussi à exploiter au moins une vulnérabilité.
Dans une autre expérimentation séparée dans un environnement de
production, nous avons mis en œuvre des techniques de diversion/-
leurres similaires dans un système qui était couramment utilisé par
258 utilisateurs différents. Pendant une période de sept mois, zéro
fausse alerte était élevée par le système.

La sécurité du point de vue d’un hébergeur de services a attiré peu
d’attention parmi les chercheurs en sécurité auparavant. Le travail
dans cette thèse a d’abord révélé le phénomène que les cybercrimi-
nels ont utilisé les services de cloud public pour héberger leur infra-
structure malveillante et que les mécanismes de sécurité existants ont
été incapables de détecter en temps opportun ce type d’abus. Les hé-
bergeurs de services sont toujours réticents à mener des recherches
sur cette direction en raison de la préoccupation des clients sur la pro-
tection de la vie privée et de leurs données. Il serait intéressant de tra-
vailler avec les hébergeurs de services cloud public pour comprendre
pleinement le rôle précis de ces services abusifs, ce qui permettrait
aux chercheurs de construire rapidement un moyen de détection de
ce type de menace. Dans notre étude, nous avons seulement regardé
les données de la communication réseau, mais il serait intéressant
pour un hébergeur de services de combiner les données réseau avec
les informations système telles que l’utilisation du processeur et les
compteurs de performance pour mesurer et détecter les clients mal-
veillants.

Récemment, quelques travaux ont émergé qui proposaient de me-
surer et de comprendre le rôle des hébergeurs de services dans les
différents cas d’abus, principalement sur le stockage cloud. Une autre
extension intéressante de notre travail consisterait à étudier le rôle de
l’hébergeur de services dans d’autres types d’attaques – telles que les
services par déni de service distribué ou la distribution de logiciels
malveillants. Ce genre d’étude finirait par sensibiliser la communauté
scientifique à l’importance de ce phénomène et aider les autres héber-
geurs à détecter les attaques connexes.

Le deuxième travail dans cette thèse a mis en évidence la capacité
d’un hébergeur de services à surveiller des attaques par hameçon-
nage pour l’ensemble de leur cycle de vie, ce qui était précédemment
inconnu aux chercheurs externes. Notre étude a illustré la possibilité
qu’un hébergeur de services d’application peut surveiller la sécurité
des ses client d’une manière éthique. Alors que dans notre travail,
nous avons eu recours à une implémentation d’un pot de miel, il se-
rait intéressant que les hébergeurs de services implémentent notre
système dans les environnements de production du monde réel.

136 appendix

En outre, d’autres études pourraient être menées pour comprendre
d’autres types d’attaque qui étaient autrement difficiles à analyser
pour des chercheurs externes, y compris l’utilisation de kits d’ex-
ploitation dans la nature. Cela permettrait aux chercheurs d’obtenir
un aperçu des différents acteurs, de leurs comportements et de l’en-
semble du cycle de vie d’un kit d’exploit.

La dernière partie de la thèse a appliqué des techniques de diver-
sion/leurre pour permettre aux hébergeurs de services de proposer
une couche supplémentaire de sécurité pour les applications Web de
leurs clients. Nous avons mené deux expérimentations où nous avons
obtenu un taux de détection raisonnable sans faux positifs. Les ré-
sultats semblent soutenir notre hypothèse que les hébergeurs de ser-
vices sont capables de fournir une meilleure sécurité pour leurs ap-
plications client, mais plus d’expérimentations sont nécessaires pour
étudier comment le déploiement des éléments de diversion/leurre
affecte le taux de détection d’attaque. Ce serait aussi intéressant d’ap-
pliquer des techniques similaires sur d’autres services tels que FTP,
email, et bases de données. De plus, il n’y a pas encore de consen-
sus parmi les chercheurs sur la façon de déployer et d’évaluer les
techniques de diversion/leurre quand elles sont utilisées comme un
mécanisme de défense. Plus d’expérimentations sont réellement né-
cessaires pour évaluer ces techniques dans divers environnements
d’application.

En conclusion, cette thèse a étudié de différentes directions dans
lesquelles un hébergeur de services peut mesurer l’infrastructure mal-
veillante, surveiller les attaques par hameçonnage installées sur des
services compromis, et enfin protéger les applications clients utili-
sant des techniques de diversion/leurre. Cependant, nous regardons
seulement la pointe de l’iceberg et nous n’avons pas pleinement ex-
ploré tous les informations auxquelles un hébergeur de services a
accès, ce qui pourrait nous aider à enquêter sur d’autres attaques ou
proposer d’autres mécanismes de protection. Par conséquent, nous
croyons que les hébergeurs de services joueront un rôle de plus en
plus important pour fournir des services sécurisés aux clients et aux
autres utilisateurs d’Internet.

B I B L I O G R A P H Y

[1] Greg Aaron and Ronnie Manning. APWG Global Phishing Re-
port 2014. http://apwg.org/download/document/245/APWG_
Global_Phishing_Report_2H_2014.pdf. 2014.

[2] Greg Aaron and Ronnie Manning. APWG Phishing Activity
Trends Report 2015. https://docs.apwg.org/reports/apwg_
trends_report_q1-q3_2015.pdf. 2015.

[3] Giuseppe Aceto, Alessio Botta, Walter De Donato, and Anto-
nio Pescapè. « Cloud monitoring: A survey. » In: Computer Net-
works 57.9 (2013), pp. 2093–2115.

[4] Mitsuaki Akiyama, Takeshi Yagi, Kazufumi Aoki, Takeo Hariu,
and Youki Kadobayashi. « Active credential leakage for observ-
ing web-based attack cycle. » In: International Workshop on Re-
cent Advances in Intrusion Detection. 2013.

[5] Boniface Kayode Alese, FM Dahunsi, RA Akingbola, OS Ade-
wale, and TJ Ogundele. « Improving deception in honeynet:
Through data manipulation. » In: Internet Technology and Se-
cured Transactions (ICITST), 2014 9th International Conference for.
IEEE. 2014, pp. 198–204.

[6] Mohammed H Almeshekah. « Using deception to enhance se-
curity: A Taxonomy, Model, and Novel Uses. » PhD thesis.
2015.

[7] Mohammed H Almeshekah and Eugene H Spafford. « Plan-
ning and integrating deception into computer security defenses. »
In: ACM Workshop on New Security Paradigms Workshop (NSPW).
2014.

[8] Mohammed Almeshekah and Eugene Spafford. « The case of
using negative (deceiving) information in data protection. » In:
International Conference on Cyber Warfare and Security. 2014.

[9] Lance Alt, Robert Beverly, and Alberto Dainotti. « Uncover-
ing network tarpits with degreaser. » In: Proceedings of the 30th
Annual Computer Security Applications Conference. ACM. 2014,
pp. 156–165.

[10] Amazon Web Services. Shared Responsibility Model. https://
aws.amazon.com/compliance/shared-responsibility-model/.
2017.

[11] EC Amazon. Amazon elastic compute cloud (Amazon EC2). http:
//aws.amazon.com/ec2/. 2010.

http://apwg.org/download/document/245/APWG_Global_Phishing_Report_2H_2014.pdf
http://apwg.org/download/document/245/APWG_Global_Phishing_Report_2H_2014.pdf
https://docs.apwg.org/reports/apwg_trends_report_q1-q3_2015.pdf
https://docs.apwg.org/reports/apwg_trends_report_q1-q3_2015.pdf
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

138 bibliography

[12] Kostas G Anagnostakis, Stelios Sidiroglou, Periklis Akritidis,
Konstantinos Xinidis, Evangelos P Markatos, and Angelos D
Keromytis. « Detecting Targeted Attacks Using Shadow Hon-
eypots. » In: Usenix Security. 2005.

[13] Chuvakin Anton. “Deception as Detection" or Give Deception a
Chance? http://blogs.gartner.com/anton-chuvakin/2016/

01/08/deception- as- detection- or- give- deception- a-

chance. 2016.

[14] Jacob Appelbaum, Dino Dai Zovi, and Karsten Nohl. Crippling
Crypto: The Debian OpenSSL Debacle. https://trailofbits.
files.wordpress.com/2008/07/hope-08-openssl.pdf. 2008.

[15] Frederico Araujo and Kevin W Hamlen. « Compiler-instrumented,
Dynamic Secret-Redaction of Legacy Processes for Attacker
Deception. » In: USENIX Security. 2015.

[16] Frederico Araujo, Kevin W Hamlen, Sebastian Biedermann,
and Stefan Katzenbeisser. « From patches to honey-patches:
Lightweight attacker misdirection, deception, and disinforma-
tion. » In: Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security. 2014.

[17] Rana Aamir Raza Ashfaq, Xi-Zhao Wang, Joshua Zhexue Huang,
Haider Abbas, and Yu-Lin He. « Fuzziness based semi-supervised
learning approach for intrusion detection system. » In: Informa-
tion Sciences (2017).

[18] Windows Azure. Microsoft’s cloud platform. http://azure.microsoft.
com/. 2013.

[19] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek,
Christopher Kruegel, and Engin Kirda. « Scalable, Behavior-
Based Malware Clustering. » In: NDSS. Vol. 9. 2009, pp. 8–11.

[20] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. « TTAna-
lyze: A tool for analyzing malware. » In: 15th European Institute
for Computer Antivirus Research (EICAR 2006) Annual Conference.
2006.

[21] Malek Ben Salem and Salvatore J. Stolfo. « Decoy document
deployment for effective masquerade attack detection. » In: De-
tection of Intrusions and Malware, and Vulnerability Assessment.
2011.

[22] Maya Bercovitch, Meir Renford, Lior Hasson, Asaf Shabtai,
Lior Rokach, and Yuval Elovici. « HoneyGen: An automated
honeytokens generator. » In: Proceedings of 2011 IEEE Interna-
tional Conference on Intelligence and Security Informatics, ISI 2011
(2011).

http://blogs.gartner.com/anton-chuvakin/2016/01/08/deception-as-detection-or-give-deception-a-chance
http://blogs.gartner.com/anton-chuvakin/2016/01/08/deception-as-detection-or-give-deception-a-chance
http://blogs.gartner.com/anton-chuvakin/2016/01/08/deception-as-detection-or-give-deception-a-chance
https://trailofbits.files.wordpress.com/2008/07/hope-08-openssl.pdf
https://trailofbits.files.wordpress.com/2008/07/hope-08-openssl.pdf
http://azure.microsoft.com/
http://azure.microsoft.com/

bibliography 139

[23] Dmitry Bestuzhev. Financial data stealing Malware now on Ama-
zon Web Services Cloud. http://www.securelist.com/en/blog/
208188099 / Financial _ data _ stealing _ Malware _ now _ on _

Amazon_Web_Services_Cloud. [accessed 15-May-2014]. 2011.

[24] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda,
and Christopher Kruegel. « Disclosure: detecting botnet com-
mand and control servers through large-scale netflow analy-
sis. » In: Proceedings of the 28th Annual Computer Security Appli-
cations Conference. ACM. 2012, pp. 129–138.

[25] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh.
« Kamouflage: Loss-Resistant Password Management. » In: Eu-
ropean Symposium on Research in Computer Security. 2010.

[26] Kevin Borders, Laura Falk, and Atul Prakash. « OpenFire: Us-
ing deception to reduce network attacks. » In: Security and Pri-
vacy in Communications Networks and the Workshops. 2007.

[27] Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis,
and Salvatore J. Stolfo. « Baiting inside attackers using decoy
documents. » In: International Conference on Security and Privacy
in Communication Systems (2009).

[28] Brian M Bowen, Vasileios P Kemerlis, Pratap Prabhu, Angelos
D Keromytis, and Salvatore J Stolfo. « Automating the Injec-
tion of Believable Decoys to Detect Snooping. » In: Proceedings
of the Third ACM Conference on Wireless Network Security (2010).

[29] Brian M Bowen, Pratap Prabhu, Vasileios P Kemerlis, Stelios
Sidiroglou, Angelos D Keromytis, and Salvatore J Stolfo. « Botswindler:
Tamper resistant injection of believable decoys in vm-based
hosts for crimeware detection. » In: International Workshop on
Recent Advances in Intrusion Detection. 2010.

[30] Douglas Brewer, Kang Li, Laksmish Ramaswamy, and Calton
Pu. « A link obfuscation service to detect webbots. » In: Inter-
national Conference on Services Computing (SCC) (2010).

[31] Carl Brooks. Amazon EC2 email blocked by antispam group Spamhaus.
http://searchaws.techtarget.com/news/1371369/Amazon-

EC2-email-blocked-by-antispam-group-Spamhaus. 2009.

[32] Elie Bursztein, Borbala Benko, Daniel Margolis, Tadek Pietraszek,
Andy Archer, Allan Aquino, Andreas Pitsillidis, and Stefan
Savage. « Handcrafted fraud and extortion: Manual account hi-
jacking in the wild. » In: Internet Measurement Conference (IMC).
2014.

[33] Juan Caballero, Chris Grier, Christian Kreibich, and Vern Pax-
son. « Measuring Pay-per-Install: The Commoditization of Mal-
ware Distribution. » In: 20th USENIX conference on Security.
2011.

http://www.securelist.com/en/blog/208188099/Financial_data_stealing_Malware_now_on_Amazon_Web_Services_Cloud
http://www.securelist.com/en/blog/208188099/Financial_data_stealing_Malware_now_on_Amazon_Web_Services_Cloud
http://www.securelist.com/en/blog/208188099/Financial_data_stealing_Malware_now_on_Amazon_Web_Services_Cloud
http://searchaws.techtarget.com/news/1371369/Amazon-EC2-email-blocked-by-antispam-group-Spamhaus
http://searchaws.techtarget.com/news/1371369/Amazon-EC2-email-blocked-by-antispam-group-Spamhaus

140 bibliography

[34] Serdar Cabuk, Chris I Dalton, HariGovind Ramasamy, and
Matthias Schunter. « Towards automated provisioning of se-
cure virtualized networks. » In: Proceedings of the 14th ACM
conference on Computer and communications security. ACM. 2007,
pp. 235–245.

[35] Davide Canali and Davide Balzarotti. « Behind the Scenes of
Online Attacks: an Analysis of Exploitation Behaviors on the
Web. » In: Annual Network and Distributed System Security Sym-
posium (NDSS). 2013.

[36] Davide Canali, Davide Balzarotti, and Aurélien Francillon. « The
role of web hosting providers in detecting compromised web-
sites. » In: Proceedings of the 22nd international conference on World
Wide Web. International World Wide Web Conferences Steering
Committee. 2013, pp. 177–188.

[37] Thomas E Carroll and Daniel Grosu. « A game theoretic in-
vestigation of deception in network security. » In: Security and
Communication Networks (2011).

[38] A Čenys, D Rainys, L Radvilavičius, and N Goranin. « Imple-
mentation of Honeytoken Module In DBMS Oracle 9ir2 En-
terprise Edition for Internal Malicious Activity Detection. » In:
IEEE Computer Society’s TC on Security and Privacy. 2005.

[39] Sambuddho Chakravarty, Georgios Portokalidis, Michalis Poly-
chronakis, and Angelos D. Keromytis. « Detecting traffic snoop-
ing in tor using decoys. » In: Workshop on Recent Advances in
Intrusion Detection (2011).

[40] Neil Chou, Robert Ledesma, Yuka Teraguchi, and John C Mitchell.
« Client-Side Defense Against Web-Based Identity Theft. » In:
Annual Network and Distributed System Security Symposium (NDSS).
2004.

[41] Richard Clayton, Tyler Moore, and Nicolas Christin. « Concen-
trating Correctly on Cybercrime Concentration. » In: Workshop
on the Economics of Information Security. 2015.

[42] Fred Cohen. « A note on the role of deception in information
protection. » In: Computers & Security (1998).

[43] Fred Cohen et al. « The deception toolkit. » In: Risks Digest 19

(1998).

[44] Fred Cohen. The Use of Deception Techniques: Honeypots and De-
coys. 2006.

[45] Fred Cohen and Deanna Koike. « Leading Attackers Through
Attack Graphs with Deceptions The Attack Graph. » In: Com-
puters & Security (2002).

bibliography 141

[46] Fred Cohen, Dave Lambert, Charles Preston, Nina Berry, Corbin
Stewart, and Eric Thomas. « A framework for deception. » In:
National Security Issues in Science, Law, and Technology (2001).

[47] Fred Cohen, Irwin Marin, Jeanne Sappington, Corbin Stewart,
and Eric Thomas. Red teaming experiments with deception tech-
nologies. 2001.

[48] Reuven Cohen. « The Cloud Hits the Mainstream: More than
Half of U.S. Businesses Now Use Cloud Computing. » In: Forbes
magazine. 2013.

[49] Marco Cova, Christopher Kruegel, and Giovanni Vigna. « There
Is No Free Phish: An Analysis of “Free" and Live Phishing
Kits. » In: Workshop on Offensive Technologies (WOOT). 2008.

[50] Stephen Crane, Per Larsen, Stefan Brunthaler, and Michael
Franz. « Booby trapping software. » In: Proceedings of the 2013
workshop on New security paradigms workshop. 2013.

[51] Emiliano De Cristofaro, Arik Friedman, Guillaume Jourjon,
Mohamed Ali Kaafar, and M Zubair Shafiq. « Paying for likes?:
Understanding facebook like fraud using honeypots. » In: Pro-
ceedings of the 2014 Conference on Internet Measurement Confer-
ence. 2014.

[52] Cristiano De Faveri and Ana Moreira. « Designing Adaptive
Deception Strategies. » In: Software Quality, Reliability and Secu-
rity Companion (QRS-C), 2016 IEEE International Conference on.
IEEE. 2016, pp. 77–84.

[53] Cristiano De Faveri, Ana Moreira, and Vasco Amaral. « Goal-
driven deception tactics design. » In: Software Reliability En-
gineering (ISSRE), 2016 IEEE 27th International Symposium on.
IEEE. 2016, pp. 264–275.

[54] Rachna Dhamija and J Doug Tygar. « The battle against phish-
ing: Dynamic security skins. » In: Symposium on Usable Privacy
and Security. 2005.

[55] Rachna Dhamija, J Doug Tygar, and Marti Hearst. « Why phish-
ing works. » In: SIGCHI conference on Human Factors in comput-
ing systems. 2006.

[56] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon
Giffin, and Wenke Lee. « Virtuoso: Narrowing the semantic
gap in virtual machine introspection. » In: Security and Privacy
(SP), 2011 IEEE Symposium on. IEEE. 2011, pp. 297–312.

[57] Ecommerce Foundation. Global B2C E-commerce Report 2016.
https://www.ecommercewiki.org/wikis/www.ecommercewiki.

org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf.
2016.

https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf
https://www.ecommercewiki.org/wikis/www.ecommercewiki.org/images/5/56/Global_B2C_Ecommerce_Report_2016.pdf

142 bibliography

[58] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christo-
pher Kruegel. « A survey on automated dynamic malware-
analysis techniques and tools. » In: ACM Computing Surveys
(CSUR) 44.2 (2012), p. 6.

[59] Serge Egelman, Lorrie Faith Cranor, and Jason Hong. « You’ve
been warned: an empirical study of the effectiveness of web
browser phishing warnings. » In: SIGCHI Conference on Human
Factors in Computing Systems. 2008.

[60] Methusela Cebrian Ferrer. Zeus in the cloud. http://community.
ca.com/blogs/securityadvisor/archive/2009/12/09/zeus-

in-the-cloud.aspx. 2009.

[61] Ian Fette, Norman Sadeh, and Anthony Tomasic. « Learning
to detect phishing emails. » In: World Wide Web (WWW) Con-
ference. 2007.

[62] Sujata Garera, Niels Provos, Monica Chew, and Aviel D Rubin.
« A framework for detection and measurement of phishing at-
tacks. » In: Workshop on Recurring malcode. 2007.

[63] Simson Garfinkel. « Anti-forensics: Techniques, detection and
countermeasures. » In: 2007.

[64] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and
Dan Boneh. « Terra: A virtual machine-based platform for trusted
computing. » In: ACM SIGOPS Operating Systems Review. Vol. 37.
5. ACM. 2003, pp. 193–206.

[65] Dimitris Gavrilis, Ioannis Chatzis, and Evangelos Dermatas.
« Flash crowd detection using decoy hyperlinks. » In: Inter-
national Conference on Networking, Sensing and Control (ICNSC)
(2007).

[66] Carl Gebhardt and Allan Tomlinson. « Secure virtual disk im-
ages for grid computing. » In: Trusted Infrastructure Technolo-
gies Conference, 2008. APTC’08. Third Asia-Pacific. IEEE. 2008,
pp. 19–29.

[67] Han C Goh. Intrusion deception in defense of computer systems.
Tech. rep. 2007.

[68] Guofei Gu, Junjie Zhang, and Wenke Lee. « BotSniffer: Detect-
ing botnet command and control channels in network traffic. »
In: Annual Network and Distributed System Security Symposium
(NDSS). 2008.

[69] Swastik Gupta and Ponnurangam Kumaraguru. « Emerging
phishing trends and effectiveness of the anti-phishing landing
page. » In: Electronic Crime Research (eCrime). 2014.

http://community.ca.com/blogs/securityadvisor/archive/2009/12/09/zeus-in-the-cloud.aspx
http://community.ca.com/blogs/securityadvisor/archive/2009/12/09/zeus-in-the-cloud.aspx
http://community.ca.com/blogs/securityadvisor/archive/2009/12/09/zeus-in-the-cloud.aspx

bibliography 143

[70] Christopher N Gutierrez, Saurabh Bagchi, H Mohammed, and
Jeff Avery. « Modeling Deception In Information Security As A
Hypergame–A Primer. » In: Proceedings of the 16th Annual Infor-
mation Security Symposium. CERIAS-Purdue University. 2015.

[71] Yasir Ahmed Hamza and Marwan Dahar Omar. « Cloud Com-
puting Security: Abuse and Nefarious Use of Cloud Comput-
ing. » In: International Journal of Computational Engineering Re-
search. Ed. by 03. 2013.

[72] Xiao Han, Nizar Kheir, and Davide Balzarotti. « The role of
cloud services in malicious software: Trends and insights. » In:
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA). 2015.

[73] Sharif Hassan and Ratan Guha. « Modelling of the State of Sys-
tems with Defensive Deception. » In: Computational Science and
Computational Intelligence (CSCI), 2016 International Conference
on. IEEE. 2016, pp. 1031–1036.

[74] Keqiang He, Alexis Fisher, Liang Wang, Aaron Gember, Aditya
Akella, and Thomas Ristenpart. « Next stop, the cloud: under-
standing modern web service deployment in EC2 and Azure. »
In: ACM Internet Measurement Conference (IMC). 2013.

[75] Kristin E Heckman, Frank J Stech, Ben S Schmoker, and Roshan
K Thomas. « Denial and Deception in Cyber Defense. » In:
Computer 48.4 (2015), pp. 36–44.

[76] Kristin E Heckman, Michael J Walsh, Frank J Stech, Todd A
O’boyle, Stephen R DiCato, and Audra F Herber. « Active cy-
ber defense with denial and deception: A cyber-wargame ex-
periment. » In: computers & security 37 (2013), pp. 72–77.

[77] Kelly Jackson Higgins. Dropbox, WordPress Used As Cloud Cover
In New APT Attacks. http://www.darkreading.com/attacks-
breaches/dropbox- wordpress- used- as- cloud- cover- in-

new-apt-attacks/d/d-id/1140098?. [accessed 15-May-2014].
2013.

[78] Jason Hong. « The state of phishing attacks. » In: Communica-
tions of the ACM (2012).

[79] Kenneth Houkjær, Kristian Torp, and Rico Wind. « Simple and
realistic data generation. » In: Proceedings of the 32nd interna-
tional conference on Very large data bases. VLDB Endowment.
2006, pp. 1243–1246.

[80] AVTest Institute. Malware statistics & Trends report. http://www.
av-test.org/en/statistics/malware/. 2014.

[81] Internet Live Stats. Total number of Websites. http://www.internetlivestats.
com/total-number-of-websites/. 2017.

http://www.darkreading.com/attacks-breaches/dropbox-wordpress-used-as-cloud-cover-in-new-apt-attacks/d/d-id/1140098?
http://www.darkreading.com/attacks-breaches/dropbox-wordpress-used-as-cloud-cover-in-new-apt-attacks/d/d-id/1140098?
http://www.darkreading.com/attacks-breaches/dropbox-wordpress-used-as-cloud-cover-in-new-apt-attacks/d/d-id/1140098?
http://www.av-test.org/en/statistics/malware/
http://www.av-test.org/en/statistics/malware/
http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/total-number-of-websites/

144 bibliography

[82] Tom N Jagatic, Nathaniel A Johnson, Markus Jakobsson, and
Filippo Menczer. « Social phishing. » In: Communications of the
ACM (2007).

[83] Sushil Jajodia, VS Subrahmanian, Vipin Swarup, and Cliff Wang.
Cyber Deception: Building the Scientific Foundation. 2016.

[84] Markus Jakobsson and Steven Myers. Phishing and countermea-
sures: understanding the increasing problem of electronic identity
theft. Wiley-Interscience, 2006.

[85] Markus Jakobsson and Jacob Ratkiewicz. « Designing ethical
phishing experiments: a study of (ROT13) rOnl query features. »
In: World Wide Web (WWW) Conference. 2006.

[86] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. « Stealthy mal-
ware detection through vmm-based out-of-the-box semantic
view reconstruction. » In: Proceedings of the 14th ACM conference
on Computer and communications security. ACM. 2007, pp. 128–
138.

[87] Priyanka Jogdand and Puja Padiya. « Survey of different IDS
using honeytoken based techniques to mitigate cyber threats. »
In: Electrical, Electronics, and Optimization Techniques (ICEEOT),
International Conference on. IEEE. 2016, pp. 802–807.

[88] Yogesh Joshi, Samir Saklikar, Debabrata Das, and Subir Saha.
« PhishGuard: a browser plug-in for protection from phish-
ing. » In: Internet Multimedia Services Architecture and Applica-
tions (IMSAA). 2008.

[89] Ari Juels and Thomas Ristenpart. « Honey encryption: Secu-
rity beyond the brute-force bound. » In: Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. 2014.

[90] Ari Juels and Ronald L Rivest. « Honeywords: Making password-
cracking detectable. » In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 2013.

[91] Ari Juels and Cornell Tech. « A Bodyguard of Lies : The Use of
Honey Objects in Information Security. » In: Proceedings of the
19th ACM symposium on Access control models and technologies -
SACMAT ’14 (2014).

[92] Donald P Julian. « Delaying Type Response for Use By Soft-
ware Decoys. » PhD thesis. 2002.

[93] Parisa Kaghazgaran and Hassan Takabi. « Toward an Insider
Threat Detection Framework Using Honey Permissions. » In:
Journal of Internet Services and Information Security (JISIS) (2015).

bibliography 145

[94] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christo-
pher Kruegel, Giovanni Vigna, and Vern Paxson. « Hulk: Elic-
iting Malicious Behavior in Browser Extensions. » In: USENIX
Security. 2014.

[95] Kaspersky. Top 7 Cyberthreats to Watch Out for in 2015-2016.
http://usa.kaspersky.com/internet- security- center/

threats/top-7-cyberthreats. 2015.

[96] Constantine Katsinis and Brijesh Kumar. « A Security Mech-
anism for Web Servers Based on Deception. » In: Proceedings
of the The 2012 International Conference on Internet Computing -
ICOMP’12 (2012).

[97] Constantine Katsinis, Brijesh Kumar, Security Technology, and
Rapidsoft Systems. « A Framework for Intrusion Deception on
Web Servers. » In: International Conference on Internet Comput-
ing, ICOMP’13. 2013.

[98] Gene H Kim and Eugene H Spafford. « Experiences with trip-
wire: Using integrity checkers for intrusion detection. » In: Sys-
tem Administration, Networking, and Security Conference. 1994.

[99] Gene H Kim and Eugene H Spafford. « The design and im-
plementation of tripwire: A file system integrity checker. »
In: ACM Conference on Computer and Communications Security.
ACM. 1994.

[100] Ryan KL Ko, Peter Jagadpramana, Miranda Mowbray, Siani
Pearson, Markus Kirchberg, Qianhui Liang, and Bu Sung Lee.
« TrustCloud: A framework for accountability and trust in cloud
computing. » In: Services (SERVICES), 2011 IEEE World Congress
on. IEEE. 2011, pp. 584–588.

[101] Georgios Kontaxis, Michalis Polychronakis, and Angelos D
Keromytis. « Computational Decoys for Cloud Security. » In:
Secure Cloud Computing. 2014.

[102] Ponnurangam Kumaraguru, Lorrie Faith Cranor, and Laura
Mather. « Anti-phishing landing page: Turning a 404 into a
teachable moment for end users. » In: Conference on Email and
Anti-Spam (CEAS). 2009.

[103] Ponnurangam Kumaraguru, Yong Rhee, Steve Sheng, Sharique
Hasan, Alessandro Acquisti, Lorrie Faith Cranor, and Jason
Hong. « Getting users to pay attention to anti-phishing edu-
cation: evaluation of retention and transfer. » In: Anti-phishing
working groups annual eCrime researchers summit. 2007.

[104] Ponnurangam Kumaraguru, Steve Sheng, Alessandro Acquisti,
Lorrie Faith Cranor, and Jason Hong. « Teaching Johnny not
to fall for phish. » In: ACM Transactions on Internet Technology
(TOIT) (2010).

http://usa.kaspersky.com/internet-security-center/threats/top-7-cyberthreats
http://usa.kaspersky.com/internet-security-center/threats/top-7-cyberthreats

146 bibliography

[105] Spitzner Lance. The Value of Honeypots, Part One: Definitions
and Values of Honeypots. https://www.symantec.com/connect/
articles/value- honeypots- part- one- definitions- and-

values-honeypots. 2001.

[106] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael
Franz. « SoK: Automated software diversity. » In: Security and
Privacy (SP), 2014 IEEE Symposium on. 2014.

[107] Martin Lazarov, Jeremiah Onaolapo, and Gianluca Stringh-
ini. « Honey Sheets: What Happens To Leaked Google Spread-
sheets? » In: USENIX Workshop on Cyber Security Experimenta-
tion and Test (CSET). 2016.

[108] Martin Lazarov, Jeremiah Onaolapo, and Gianluca Stringh-
ini. « Honey Sheets: What Happens To Leaked Google Spread-
sheets ? » In: Usenix Cset (2016).

[109] Erwan Le Malécot. « MitiBox: camouflage and deception for
network scan mitigation. » In: Proceedings of the 4th USENIX
Workshop on Hot Topics in Security (HotSec). 2009.

[110] Anh Le, Athina Markopoulou, and Michalis Faloutsos. « Phishdef:
Url names say it all. » In: Conference on Computer Communica-
tions (INFOCOM). 2011.

[111] Chaz Lever, Platon Kotzias, Davide Balzarotti, Juan Caballero,
and Manos Antonakakis. « A Lustrum of Malware Network
Communication: Evolution and Insights. » In: Security and Pri-
vacy (SP), 2017 IEEE Symposium on. IEEE. 2017, pp. 788–804.

[112] Xiaowei Li and Yuan Xue. « A Survey on Server-side Approaches
to Securing Web Applications. » In: ACM Comput. Surv. (2014).

[113] Zhou Li, Sumayah Alrwais, Yinglian Xie, Fang Yu, and Xi-
aoFeng Wang. « Finding the linchpins of the dark web: a study
on topologically dedicated hosts on malicious web infrastruc-
tures. » In: Security and Privacy (S&P). 2013.

[114] Xiaojing Liao, Sumayah Alrwais, Kan Yuan, Luyi Xing, Xi-
aoFeng Wang, Shuang Hao, and Raheem Beyah. « Lurking
Malice in the Cloud: Understanding and Detecting Cloud Repos-
itory as a Malicious Service. » In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security.
ACM. 2016, pp. 1541–1552.

[115] Xiaojing Liao, Chang Liu, Damon McCoy, Elaine Shi, Shuang
Hao, and Raheem Beyah. « Characterizing long-tail SEO spam
on cloud web hosting services. » In: Proceedings of the 25th In-
ternational Conference on World Wide Web. International World
Wide Web Conferences Steering Committee. 2016, pp. 321–332.

[116] Tom Liston. « LaBrea:“Sticky” Honeypot and IDS. » In: (2001).

https://www.symantec.com/connect/articles/value-honeypots-part-one-definitions-and-values-honeypots
https://www.symantec.com/connect/articles/value-honeypots-part-one-definitions-and-values-honeypots
https://www.symantec.com/connect/articles/value-honeypots-part-one-definitions-and-values-honeypots

bibliography 147

[117] Bingshuang Liu, Zhaoyang Liu, Jianyu Zhang, Tao Wei, and
Wei Zou. « How many eyes are spying on your shared fold-
ers? » In: Proceedings of the 2012 ACM workshop on Privacy in the
electronic society. 2012.

[118] Rafal Los, Dave Shackleford, and Bryan Sullivan. « The Noto-
rious Nine Cloud Computing Top Threats in 2013. » In: Cloud
Security Alliance. 2013.

[119] Christian Ludl, Sean McAllister, Engin Kirda, and Christopher
Kruegel. « On the effectiveness of techniques to detect phish-
ing sites. » In: Detection of Intrusions and Malware & Vulnerabil-
ity Assessment (DIMVA). 2007.

[120] D Kevin McGrath and Minaxi Gupta. « Behind Phishing: An
Examination of Phisher Modi Operandi. » In: Workshop on Large-
Scale Exploits and Emergent Threats (LEET). 2008.

[121] Craig M. McRae and Rayford B. Vaughn. « Phighting the phisher:
Using Web bugs and honeytokens to investigate the source of
phishing attacks. » In: Proceedings of the Annual Hawaii Interna-
tional Conference on System Sciences (2007).

[122] Eric Medvet, Engin Kirda, and Christopher Kruegel. « Visual-
similarity-based phishing detection. » In: Security and Privacy
in Communication Netowrks Conference. 2008.

[123] B Michael, M Auguston, N Rowe, and R Riehle. « Software
Decoys: Intrusion Detection and Countermeasures. » In: Pro-
ceedings of the IEEE Workshop on Information Assurance. 2002.

[124] Miniwatts Marketing Group. Internet Usage and World Popula-
tion Statistics. http://www.internetworldstats.com/stats.
htm. 2017.

[125] Tyler Moore and Richard Clayton. « Examining the impact
of website take-down on phishing. » In: Anti-phishing working
groups annual eCrime researchers summit. 2007.

[126] Tyler Moore and Richard Clayton. « Evil searching: Compro-
mise and recompromise of internet hosts for phishing. » In:
Financial Cryptography and Data Security. 2009.

[127] Tyler Moore and Richard Clayton. « Discovering phishing drop-
boxes using email metadata. » In: eCrime Researchers Summit
(eCrime). 2012.

[128] Tyler Moore and Richard Clayton. « Ethical dilemmas in take-
down research. » In: Financial Cryptography and Data Security.
2012.

[129] Tyler Moore, Richard Clayton, and Henry Stern. « Temporal
Correlations between Spam and Phishing Websites. » In: Work-
shop on Large-Scale Exploits and Emergent Threats (LEET). 2009.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

148 bibliography

[130] Sherry Murphy, Todd McDonald, and Robert Mills. « An Ap-
plication of Deception in Cyberspace: Operating System Ob-
fuscation. » In: International Conference on Information Warfare
and Security. 2010.

[131] MushMush Foundation. Glastopf. https://github.com/mushorg/
glastopf/blob/master/glastopf/requests.xml. 2017.

[132] Antonio Nappa, M. Zubair Rafique, and Juan Caballero. « Driv-
ing in the Cloud: An Analysis of Drive-by Download Opera-
tions and Abuse Reporting. » In: Proceedings of the 10th Confer-
ence on Detection of Intrusions and Malware & Vulnerability As-
sessment. Berlin, Germany, July 2013.

[133] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Chris-
tian Keil, and Jochen Schönfelder. « A Survey on Honeypot
Software and Data Analysis. » In: arXiv preprint arXiv:1608.06249
(2016).

[134] Jose Nazario. « PhoneyC: A Virtual Client Honeypot. » In: LEET
(2009).

[135] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff
Shirley, and David Evans. « Automatically hardening web ap-
plications using precise tainting. » In: Security and Privacy in
the Age of Ubiquitous Computing (2005), pp. 295–307.

[136] Nick Nikiforakis, Marco Balduzzi, Steven Van Acker, Wouter
Joosen, and Davide Balzarotti. « Exposing the Lack of Privacy
in File Hosting Services. » In: LEET. 2011.

[137] ADAM NOSSITER, David E. Sanger, and Nicole Perlroth. Hack-
ers Came, but the French Were Prepared. https://www.nytimes.
com/2017/05/09/world/europe/hackers- came- but- the-

french-were-prepared.html. 2017.

[138] Jeremiah Onaolapo, Enrico Mariconti, and Gianluca Stringh-
ini. « What Happens After You Are Pwnd: Understanding the
Use of Leaked Webmail Credentials in the Wild. » In: ACM
SIGCOMM Internet Measurement Conference. 2016.

[139] Kaan Onarlioglu, U Ozan Yilmaz, Davide Balzarotti, and En-
gin Kirda. « Insights into user behavior in dealing with inter-
net attacks. » In: Annual Network and Distributed System Security
Symposium (NDSS). 2012.

[140] OWASP. Testing Guide v4. https://www.owasp.org/images/1/
19/OTGv4.pdf. 2014.

[141] OWASP. AppSensor Project Guide. https://www.owasp.org/
index.php/File:Owasp-appsensor-guide-v2.pdf. 2015.

[142] Keshnee Padayachee. « Aspectising honeytokens to contain
the insider threat. » In: IET Information Security 9.4 (2014), pp. 240–
247.

https://github.com/mushorg/glastopf/blob/master/glastopf/requests.xml
https://github.com/mushorg/glastopf/blob/master/glastopf/requests.xml
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html
https://www.nytimes.com/2017/05/09/world/europe/hackers-came-but-the-french-were-prepared.html
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.owasp.org/images/1/19/OTGv4.pdf
https://www.owasp.org/index.php/File:Owasp-appsensor-guide-v2.pdf
https://www.owasp.org/index.php/File:Owasp-appsensor-guide-v2.pdf

bibliography 149

[143] Augusto Paes de Barros. RES: Protocol Anomaly Detection IDS
- Honeypots. http://seclists.org/focus-ids/2003/Feb/95.
2003.

[144] Ying Pan and Xuhua Ding. « Anomaly based web phishing
page detection. » In: Annual Computer Security Applications Con-
ference (ACSAC). 2006.

[145] Younghee Park and Salvatore J Stolfo. « Software decoys for
insider threat. » In: Proceedings of the 7th ACM Symposium on
Information, Computer and Communications Security. 2012.

[146] Roberto Perdisci, Wenke Lee, and Nick Feamster. « Behavioral
Clustering of HTTP-Based Malware and Signature Generation
Using Malicious Network Traces. » In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 2010.

[147] AB Robert Petrunić. « Honeytokens as active defense. » In:
38th International Convention on Information and Communication
Technology, Electronics and Microelectronics, MIPRO 2015 - Pro-
ceedings (2015).

[148] Christy Pettey and Laurence Goasduff. Gartner Says Worldwide
Public Cloud Services Market to Grow 18 Percent in 2017. http:
//www.gartner.com/newsroom/id/3616417. 2017.

[149] Lawrence Pingree. « Emerging Technology Analysis: Decep-
tion Techniques and Technologies Create Security Technology
Business Opportunities. » In: Gartner, Inc (2015).

[150] Niels Provos et al. « A Virtual Honeypot Framework. » In:
USENIX Security Symposium. 2004.

[151] Greg Reimer. Hoxy. http://greim.github.io/hoxy/. 2015.

[152] Ryan Riley, Xuxian Jiang, and Dongyan Xu. « Guest-transparent
prevention of kernel rootkits with vmm-based memory shad-
owing. » In: International Workshop on Recent Advances in Intru-
sion Detection. Springer. 2008, pp. 1–20.

[153] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. « Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. » In: Proceedings of the
16th ACM conference on Computer and communications security.
ACM. 2009, pp. 199–212.

[154] Neil Rowe. « Planning cost-effective deceptive resource denial
in defense to cyber-attacks. » In: Proceedings of the 2nd Interna-
tional Conference on Information Warfare & Security. 2007.

[155] Neil C Rowe. « Designing good deceptions in defense of infor-
mation systems. » In: Computer Security Applications Conference.
IEEE. 2004.

http://seclists.org/focus-ids/2003/Feb/95
http://www.gartner.com/newsroom/id/3616417
http://www.gartner.com/newsroom/id/3616417
http://greim.github.io/hoxy/

150 bibliography

[156] Neil C Rowe. « Measuring the effectiveness of honeypot counter-
counterdeception. » In: Proceedings of the 39th Annual Hawaii In-
ternational Conference on System Sciences (HICSS). Vol. 6. IEEE.
2006, pp. 129c–129c.

[157] Neil C Rowe. « Deception in Defense of Computer Systems
from Cyber Attack. » In: Cyber Warfare and Cyber Terrorism (2008).

[158] Neil C Rowe, Binh T Duong, and E Custy. « Fake Honeypots:
A Defensive Tactic for Cyberspace. » In: IEEE Information As-
surance Workshop. 2006.

[159] Neil C Rowe and Hy S Rothstein. « Two taxonomies of decep-
tion for attacks on information systems. » In: (2004).

[160] Neil C Rowe and Julian Rrushi. Introduction to Cyberdeception.
Springer, 2016.

[161] Julian L. Rrushi. « An exploration of defensive deception in
industrial communication networks. » In: International Journal
of Critical Infrastructure Protection (2011).

[162] Julian L Rrushi. « NIC displays to thwart malware attacks
mounted from within the OS. » In: Computers & Security (2016).

[163] Karen Scarfone and Peter Mell. « Guide to intrusion detection
and prevention systems (idps). » In: NIST special publication
(2007).

[164] Asaf Shabtai, Maya Bercovitch, Lior Rokach, Ya’akov (Kobi)
Gal, Yuval Elovici, and Erez Shmueli. « Behavioral Study of
Users When Interacting with Active Honeytokens. » In: ACM
Trans. Inf. Syst. Secur. (2016).

[165] Steve Sheng, Mandy Holbrook, Ponnurangam Kumaraguru,
Lorrie Faith Cranor, and Julie Downs. « Who falls for phish?:
a demographic analysis of phishing susceptibility and effec-
tiveness of interventions. » In: SIGCHI Conference on Human
Factors in Computing Systems. 2010.

[166] Steve Sheng, Brad Wardman, Gary Warner, Lorrie Faith Cra-
nor, Jason Hong, and Chengshan Zhang. « An empirical anal-
ysis of phishing blacklists. » In: Conference on Email and Anti-
Spam (CEAS). 2009.

[167] Leslie Shing. « An improved tarpit for network deception. »
MA thesis. Monterey, California: Naval Postgraduate School,
2016.

[168] Matthew Smart, G Robert Malan, and Farnam Jahanian. « De-
feating TCP/IP Stack Fingerprinting. » In: Usenix Security Sym-
posium. 2000.

bibliography 151

[169] Solutionary. Security Engineering Research Team (SERT) Quar-
terly Threat Intelligence Report. http://www.solutionary.com/
_assets/pdf/research/sert-q4-2013-threat-intelligence.

pdf. [accessed 15-May-2014]. 2014.

[170] Lance Spitzner. « Honeypots : Catching the Insider Threat. »
In: Annual Computer Security Applications Conference. 2003.

[171] Lance Spitzner. Honeytokens: The other honeypot. http://www.
securityfocus.com/infocus/1713. 2003.

[172] Lance Spitzner. « The honeynet project: Trapping the hack-
ers. » In: IEEE Security & Privacy (2003).

[173] Cliff Stoll. The cuckoo’s egg: tracking a spy through the maze of
computer espionage. 1989.

[174] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna.
« Detecting spammers on social networks. » In: Proceedings of
the 26th annual computer security applications conference. 2010.

[175] Subashini Subashini and Veeraruna Kavitha. « A survey on se-
curity issues in service delivery models of cloud computing. »
In: Journal of network and computer applications 34.1 (2011), pp. 1–
11.

[176] Symantec. Internet Security Threat Report. https://www.symantec.
com/content/dam/symantec/docs/reports/istr-21-2016-

en.pdf. 2016.

[177] Samaneh Tajalizadehkhoob, Carlos Gañán, Arman Noroozian,
and Michel van Eeten. « The Role of Hosting Providers in
Fighting Command and Control Infrastructure of Financial
Malware. » In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security. ACM. 2017, pp. 575–
586.

[178] The Dino. Best Pay-Per-Install Affiliate Program Reviews. http:
//pay-per-install.com. 2007.

[179] Samuel T Trassare. « A technique for presenting a deceptive
dynamic network topology. » In: (2013).

[180] Trusteer. Measuring the Effectiveness of In-the-Wild Phishing At-
tacks. https://web.archive.org/web/20120324061250/http:
//www.trusteer.com/sites/default/files/Phishing-Statistics-

Dec-2009-FIN.pdf. 2009.

[181] UK Government Digital Service. How digital and technology trans-
formation saved £1.7bn last year. https://gds.blog.gov.uk/
2015/10/23/how-digital-and-technology-transformation-

saved-1-7bn-last-year/. 2015.

[182] Roman Unuchek. GCM in malicious attachments. http://www.
securelist.com/en/blog/8113/GCM_in_malicious_attachments.
[accessed 15-May-2014]. 2013.

http://www.solutionary.com/_assets/pdf/research/sert-q4-2013-threat-intelligence.pdf
http://www.solutionary.com/_assets/pdf/research/sert-q4-2013-threat-intelligence.pdf
http://www.solutionary.com/_assets/pdf/research/sert-q4-2013-threat-intelligence.pdf
http://www.securityfocus.com/infocus/1713
http://www.securityfocus.com/infocus/1713
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://pay-per-install.com
http://pay-per-install.com
https://web.archive.org/web/20120324061250/http://www.trusteer.com/sites/default/files/Phishing-Statistics-Dec-2009-FIN.pdf
https://web.archive.org/web/20120324061250/http://www.trusteer.com/sites/default/files/Phishing-Statistics-Dec-2009-FIN.pdf
https://web.archive.org/web/20120324061250/http://www.trusteer.com/sites/default/files/Phishing-Statistics-Dec-2009-FIN.pdf
https://gds.blog.gov.uk/2015/10/23/how-digital-and-technology-transformation-saved-1-7bn-last-year/
https://gds.blog.gov.uk/2015/10/23/how-digital-and-technology-transformation-saved-1-7bn-last-year/
https://gds.blog.gov.uk/2015/10/23/how-digital-and-technology-transformation-saved-1-7bn-last-year/
http://www.securelist.com/en/blog/8113/GCM_in_malicious_attachments
http://www.securelist.com/en/blog/8113/GCM_in_malicious_attachments

152 bibliography

[183] Vincent E Urias, William MS Stout, and Han W Lin. « Gather-
ing threat intelligence through computer network deception. »
In: Technologies for Homeland Security (HST), 2016 IEEE Sympo-
sium on. 2016.

[184] Luis M Vaquero, Luis Rodero-Merino, and Daniel Morán. « Lock-
ing the sky: a survey on IaaS cloud security. » In: Computing
91.1 (2011), pp. 93–118.

[185] Nikos Virvilis, Bart Vanautgaerden, and Oscar Serrano Ser-
rano. « Changing the game: The art of deceiving sophisticated
attackers. » In: International Conference on Cyber Conflict, CY-
CON (2014).

[186] Jonathan Voris, Jill Jermyn, Nathaniel Boggs, and Salvatore
Stolfo. « Fox in the Trap : Thwarting Masqueraders via Auto-
mated Decoy Document Deployment. » In: Eurosec (2015).

[187] Jonathan Voris, Jill Jermyn, Angelos D Keromytis, and Salva-
tore J Stolfo. « Bait and snitch: Defending computer systems
with decoys. » In: Proceedings of the cyber infrastructure protec-
tion conference, Strategic Studies Institute, September. 2013.

[188] Liang Wang, Antonio Nappa, Juan Caballero, Thomas Risten-
part, and Aditya Akella. « WhoWas: A Platform for Measuring
Web Deployments on IaaS Clouds. » In: ACM Internet Measure-
ment Conference (IMC). 2014.

[189] Wei Wang, Jeffrey Bickford, Ilona Murynets, Ramesh Subbara-
man, Andrea G. Forte, and Gokul Singaraju. « Detecting Tar-
geted Attacks By Multilayer Deception. » In: Journal of Cyber
Security and Mobility (2013).

[190] David Watson, Thorsten Holz, and Sven Mueller. Know your en-
emy: Phishing. https://www.honeynet.org/papers/phishing.
2005.

[191] Steve Webb, James Caverlee, and Calton Pu. « Social Honey-
pots: Making Friends With A Spammer Near You. » In: CEAS.
2008.

[192] Jonathan White. « Creating personally identifiable honeytokens. »
In: Innovations and Advances in Computer Sciences and Engineer-
ing. Springer, 2010, pp. 227–232.

[193] Ben Whitham. « Automating the generation of fake documents
to detect network intruders. » In: International Journal of Cyber-
Security and Digital Forensics (IJCSDF) 2.1 (2013), pp. 103–118.

[194] Ben Whitham. « Automating the Generation of Enticing Text
Content for High-Interaction Honeyfiles. » In: Proceedings of the
50th Hawaii International Conference on System Sciences. 2017.

https://www.honeynet.org/papers/phishing

bibliography 153

[195] Colin Whittaker, Brian Ryner, and Marria Nazif. « Large-Scale
Automatic Classification of Phishing Pages. » In: Annual Net-
work and Distributed System Security Symposium (NDSS). 2010.

[196] Min Wu, Robert C Miller, and Simson L Garfinkel. « Do secu-
rity toolbars actually prevent phishing attacks? » In: SIGCHI
conference on Human Factors in computing systems. 2006.

[197] Guang Xiang and Jason I Hong. « A hybrid phish detection
approach by identity discovery and keywords retrieval. » In:
World Wide Web (WWW) conference. 2009.

[198] J. Yuill, M. Zappe, D. Denning, and F. Feer. « Honeyfiles: de-
ceptive files for intrusion detection. » In: Proceedings from the
Fifth Annual IEEE SMC Information Assurance Workshop, 2004.
(2004).

[199] James Joseph Yuill. « Defensive Computer-security Deception
Operations: Processes, Principles and Techniques. » PhD the-
sis. 2006.

[200] Jim Yuill, Dorothy E Denning, and Fred Feer. Using deception
to hide things from hackers: Processes, principles, and techniques.
Tech. rep. DTIC Document, 2006.

[201] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-
tenpart. « Cross-VM side channels and their use to extract pri-
vate keys. » In: Proceedings of the 2012 ACM conference on Com-
puter and communications security. ACM. 2012, pp. 305–316.

[202] Yue Zhang, Serge Egelman, Lorrie Cranor, and Jason Hong.
« Phinding phish: Evaluating anti-phishing tools. » In: Annual
Network and Distributed System Security Symposium (NDSS). 2007.

[203] Yue Zhang, Jason I Hong, and Lorrie F Cranor. « Cantina: a
content-based approach to detecting phishing web sites. » In:
World Wide Web (WWW) Conference. 2007.

	Acknowledgments
	Abstract
	List of Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Current Security Model
	1.2 Thesis Objective
	1.3 Thesis Overview
	1.4 Document Overview

	2 Related Work
	2.1 Nefarious Use of Cloud Services
	2.2 Understanding Phishing Attacks
	2.2.1 Anatomy of Phishing
	2.2.2 Anti-Phishing Techniques
	2.2.3 Evaluation of Anti-Phishing Techniques

	2.3 Deception Techniques in Computer Security
	2.3.1 Previous Surveys
	2.3.2 Previous Classifications
	2.3.3 Deception-Based Web Application Protection

	3 Role of Cloud Services for Malicious Software
	3.1 Approach
	3.1.1 Platform Description

	3.2 Experiments
	3.2.1 Role of Public Cloud Services in Malware Infrastructures
	3.2.2 Dedicated Domains Lifetime Estimation

	3.3 Discussion
	3.4 Conclusion

	4 Live Monitoring of Phishing Attacks
	4.1 Background
	4.2 Data Collection
	4.3 Sandbox and PK Neutralization
	4.3.1 Design Goals
	4.3.2 System Overview
	4.3.3 Implementation

	4.4 Phishing Attack Global Picture
	4.4.1 Attackers Behavior
	4.4.2 Victims Behavior
	4.4.3 PK Lifetime
	4.4.4 Effectiveness of Phishing Blacklist
	4.4.5 Measurement Bias

	4.5 Case Studies
	4.5.1 Dropping Techniques
	4.5.2 Blacklist Evasion
	4.5.3 Victim Time Distribution
	4.5.4 Real-time Email Detection

	4.6 Conclusions

	5 Deception Techniques in Computer Security: a Research Perspective
	5.1 Definition & Scope
	5.1.1 Deception techniques: concept and terminology
	5.1.2 Scope of this survey

	5.2 Classification
	5.2.1 Multi-Dimension Classification
	5.2.2 Overview of Intrusion Deception Techniques

	5.3 Modeling
	5.3.1 Deception Planning
	5.3.2 Interactions between Attackers and Deception Techniques

	5.4 Deployment
	5.4.1 Mode of Deployment
	5.4.2 Placement
	5.4.3 Realistic Generation
	5.4.4 Monitoring

	5.5 Measurement & Evaluation
	5.5.1 Evaluation of Deception Placement
	5.5.2 Evaluation of Deception Generation
	5.5.3 Evaluation of Deception Effectiveness
	5.5.4 False Alarms Evaluations
	5.5.5 Summary

	5.6 Conclusions

	6 Evaluation of Deception-based Web Attacks Detection
	6.1 Methodology
	6.1.1 Deceptive Elements
	6.1.2 Deception Framework
	6.1.3 Deployment Strategy

	6.2 Experiment Design
	6.2.1 Use of Deception in a Real Content Management System
	6.2.2 Use of Deception in a Capture-The-Flag Competition

	6.3 Results
	6.3.1 CMS Experiment
	6.3.2 CTF Experiment

	6.4 Discussion

	7 Conclusions and Future Work
	a Appendix
	a.1 Résumé
	a.2 Introduction
	a.2.1 Modèle de sécurité actuel
	a.2.2 Objectif de la thèse
	a.2.3 Aperçu de la thèse
	a.2.4 Synthèse du manuscrit

	a.3 État de l'art
	a.3.1 Utilisation néfaste des services cloud
	a.3.2 Comprendre les attaques par hameçonnage
	a.3.3 Évaluation de techniques d'anti-hameçonnage
	a.3.4 Techniques de diversion/leurre dans la sécurité informatique

	a.4 Conclusions et travaux futurs

	 Bibliography

