
Verifiable Document Redacting

Hervé Chabanne1,2, Rodolphe Hugel1, and Julien Keuffer1,3

1 Morpho, Issy-les-Moulineaux, France
2 Telecom ParisTech, Paris, France

3 Eurecom, Biot, France
{herve.chabanne,rodolphe.hugel,julien.keuffer}@morpho.com

Abstract. In 2016, Naveh and Tromer introduced PhotoProof, a novel
approach to image authentication based on cryptographic proofs. We
here show how to simplify PhotoProof to get a protocol closely related to
redactable signature schemes. From an authenticated breeder document,
we only keep the necessary fields to prove what its owner wants to assert
and black out all the others to remove sensitive data from the document.
We efficiently instantiate our scheme and give implementation results
that show its practicality.

Keywords: data privacy, zk-SNARK, redactable signatures

1 Introduction

Motivation. People are frequently asked for information such as their place of
residence, a source of income or a proof of employment in order to get e.g. a
traveling visa or an identity card. They can provide a document, called a breeder
document, which will be accepted as a proof as long as the document provider
is trusted by the service which needs the paper. Nevertheless, these documents
might contain private information that the owner does not want to share with
the service provider asking for a justification. The problem addressed in this
paper is to determine whether it is possible to keep sensitive information private
on a document while giving a third party assurance that the redacted document
was built from an authentic one.

To illustrate the relevance of the latter problem, we below give some examples
where a document contains private information useless for the required justifi-
cation:

– giving a pay stub to justify employment indeed gives the name and address
of the employer but also reveals a sensitive and useless information for this
goal, namely the salary amount,

– someone can prove he has earnings by providing the balance of his bank
statement (in order to get a visa for instance) but the detail of all the transac-
tions written in the statement does not concern the entity needing a revenue
justification,

2 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

– in some countries, for the issuance of documents like driver license or identity
card, an individual has to prove his place of residence with a bill (e.g. an
electricity bill) where his name is written. However, the bill can also mention
the name of the partner, which has no connection with the original request.

Even if removing the sensitive information from the document looks as a nat-
ural and efficient solution to our problematic, service providers fear fraudulent
document forgery and often ask to bring the original document.

In this paper, we argue that documents digitization opens the possibility
to use cryptographic techniques such as signature to guarantee integrity and
authenticity of the document issued by the trusted provider. Still, a problem
remains: if the user makes redaction on a signed document, the signature cannot
be verified with the new modified document. The client could ask the document
issuer to edit a new redacted and signed version of the original document but
this reveals which information is sensitive and thus is a privacy loss.

Our contribution. We propose a protocol to issue a redacted document from
an original and authenticated document. Our protocol involves three parties: the
issuer of the original document, the client that wants to redact the document and
the document user who makes a request to the client. The protocol gives strong
guarantees that nothing has been modified from the original document except
the redacted parts. Moreover it links the redacted document to the original one
while keeping the original one private. It should also be noticed that the issuer
of the document has minimal work to do: after generating a document, he only
has to compute a hash value and a signature. No further work is needed during
the redaction or the verification of the document.

The main tool for building this protocol is verifiable computation [18]. In ver-
ifiable computation, a verifier delegates a computation to an untrusted prover.
The prover sends back the result of the computation and a proof that the com-
putation is correct. Several implementations of verifiable computation have been
proposed [26, 7, 12, 15]. Among these schemes, we need the one having two addi-
tional properties: being non-interactive and providing zero-knowledge proofs for
inputs supplied by the prover. Basically, our protocol is the following: the issuer
first generates a document, signs a hash computed from the original document
and sends the document, the hash and its signature to the client. The client
then redacts some parts of the document and computes a non-interactive zero-
knowledge proof, proving that only the redacted parts have been modified from
the original document. The signature of the redacted document consists of the
original signature and the proof. This signature has constant size and thus does
not depend on the proportion of the document that has been redacted. The zero-
knowledge property of the proof ensures that no information about the original
document is contained in the proof. The client can then send the redacted doc-
ument and its signature to the document user, along with some other elements
needed to verify the proof. If the proof is correct, the document user can accept
the redacted document with confidence. We stress that the document is publicly
verifiable: the scheme produces verification keys and anyone with access to these

Verifiable Document Redacting 3

keys can verify the validity of the proof. Moreover since the proof has a constant
short size, the verification is quick.

Related works. In France, the most recent proposition to secure breeder docu-
ment is called 2D-DOC [1]. It is a protocol to secure physical breeder document
such as electricity bill, bank statement or phone bill. The most relevant informa-
tion of the document are gathered and form a blob that is digitally signed. The
blob and its signature are represented as a 2D bar-code and printed on the docu-
ment.This guarantees the authenticity and integrity of the document. However,
if the document is redacted the signature is no longer valid with the information
left. Moreover, since the 2D bar-code contains the most relevant information of
the document, private data appear on the bar-code and redacting the bar-code
destroys the authenticity proof of the document.

Photoproof [25] is a recent protocol enabling the authentication of images
that have been modified from an original one as long as the transformations be-
long to a well defined set. It builds on the notion of proof carrying data (PCD)
[14] which are data along with a proof of some property satisfied by the data.
PCD enable a data to be sequentially modified, the proof containing a proof of
the current property and also a proof that all the previous data modifications
have satisfied the required properties. PCD can be instantiated but the compu-
tational overhead for the prover is consequent: for example in Photoproof [25],
limiting the set of transformation to cropping, rotating, transposing, bit flipping
and modifying the brightness of the image, the authors report 300 seconds to
build a proof for a 128× 128 (pixels) image. The size of the public key used to
build the proof is 2 GB; in contrast the verification is less than half a second long.
So, even if the requirement of integrity and of confidentiality are satisfied, there
is a need to simplify the above scheme in order to reach some efficiency and to
be able to deal with larger images. Indeed, an A4 format bill scanned at 100 dpi
produces a 1169×827 image. Our scheme also enables image authentication, but
since we only allow redaction, we obtain much better proving time. Our scheme
can therefore more easily scale on image size. See Sect. 4.2 for implementation
results.

Redactable signatures are strongly related to our proposal. A redactable sig-
nature allows a party to remove parts of a signed document and to update the
signature without possession of the signer’s secret key. Moreover, the validation
of the updated signature is still possible with the signer’s public key. Redactable
signatures have been independantly introduced by [29] and [23]; there has been
a large body of work since, e.g. [13, 28, 17]. Our proposal shares some security
goals with redactable signatures such as privacy of the redacted content and un-
forgeability of the signature. A notable difference is that everyone can redact a
document in redactable signatures schemes while in our protocol only the owner
of the document can perform redaction. Indeed some private inputs of the proof
computed by the redactor cannot be supplied unless being in possession of both
the original document and some value used to compute the hash. Our protocol
enables redacting an image, a use case for which the existing redactable schemes

4 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

would be impractical due to the length of the obtained signature or the time to
generate the signature. Indeed in redactable signature schemes the length of the
signature depends on the number of message blocks n and has at best a length
of O(n). In the redaction of an image each pixel can be potentially redacted
and therefore a block for an image to redact is a pixel. In contrast, our redacted
signature has constant size. We finally note that our scheme cannot satisfy the
transparency property as defined in [13], which states that it should be unfea-
sible to decide whether a signature directly comes from the signer or has been
generated after some redaction. Indeed, we give places where redaction happened
to the verifier and thus transparency cannot be reached. This fits however to our
use case since the redacted document is given to the verifier and redacted places
are thus visible to the verifier.

Organization of the paper. We define the protocol syntax and its security
in Sect. 2. We give background on verifiable computation in Sect. 3. We thus
instantiate our protocol in the case of document represented as images and give
experimental results in Sect. 4.

2 Our protocol for redacting documents

2.1 High level description

Let the document issuer (DI), the client (CL) and the service provider (SP) be
the three parties involved in the scheme. The document issuer first generates
a document D, computes a hash value C from D and a random value r. DI
then signs the hash value to authenticate it and sends the client D, C, r and
the signature of C. To give the possibility to redact the document to the client
while keeping a link with the original document, we use a verifiable computation
scheme to produce a proof of the statement below. In the statement, MOD is
a set describing all the redacted places of the document D. In our motivating
example, MOD would be the coordinates of all the pixels of the image that are
turned black.

There exists a document D and a set of coordinates MOD such that the
redacted document Dred only differs from D in places defined by the set MOD.

In the proof, the original document D stays private using a property of veri-
fiable computing schemes: the prover can supply a private input in the compu-
tation and build a zero-knowledge proof of the computation. The verifier thus
cannot infer information about the prover’s input by examining the proof. To en-
sure that the proof has been built with the original document, a hash computed
from the original document is added to the computation. Since this hash will be
sent to the verifier of the redacted document it cannot be only the hash of the
document, otherwise this would give an oracle for the verifier to test the redacted
parts of the document. This is why the random value r is computed by the doc-
ument issuer and concatenated to the document before the hash computation.
Using the same notations, the statement to be proved now becomes:

Verifiable Document Redacting 5

There exists a document D and a value r such that the hash of D ‖ r equals C
and such that Dred only differs from D in places defined by the set MOD.

Denoting by π the proof, the client thus passes π,Dred,MOD,C and its signature
σ to SP. The service provider first verifies that the signature σ of C is correct
to be sure that the hash of the original document is authentic. He then uses
C,Dred and MOD to verify the proof π. We stress that π ties the hash value
computed and authenticated by the document issuer to the original document
because it proves (in zero-knowledge) that this document, concatenated with the
value r hashes into C. Thus, the correct verification of the signature of C and
of the proof π guarantees that the original document is authentic. In the next
section, we give a more formal description of the scheme.

2.2 The verifiable document redacting protocol

In this section we define the syntax and the security of our scheme. As it was
mentioned in the introduction, the security goals of our scheme are close to the
redactable signatures goals [29].

Protocol syntax. Let (Gen, Sign, Ver) be a signature scheme [11], H be a hash
function and let the triple of algorithms (Setup, Prove, Verify) be a zk-SNARK
[7]. See Sect. 3 for details on the zk-SNARK algorithms.
The protocol participants are the Document Issuer (DI), the Client (CL) and
the Service Provider (SP). Let M = (m1, . . . ,mn) be a message composed of n
sub-messages. We use a special symbol # to denote the redaction of a sub-
message. When a message M is redacted, the resulting message is denoted
Mred = (mred

1 , . . . ,mred
n). Our verifiable document redacting (VDR) scheme

is a tuple of four polynomial time algorithms:

KeyGen(1λ,F) : this probabilistic algorithm takes a security parameter λ and
runs the Gen algorithm to output a secret/public signing key pair (SK,PK).
It then takes λ and an arithmetic circuit over a finite field Fp, runs the
Setup algorithm and outputs a pair of public proving and verification keys
(EKF , V KF) for the circuit F .

Authent(M,SK) : this probabilistic algorithm, run by DI, takes a document
M , a secret signing key SK and computes:

• r $← {0, 1}128
• C ← H(M ‖ r)
• σ ← Sign(C, SK)

Output: (C, r, σ)
Redact(M,C, r, σ, EKF) : this probabilistic algorithm, run by CL, takes a doc-

ument M , the output (C, r, σ) computed by Authent and the evaluation key
EKF and computes:
• d← Ver(C, σ, PK)
• If d = 0, then abort.
• Else:

6 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

• define the set MOD of the redacted sub-messages, MOD is a subset
of {1, . . . , n},

• define Mred such that: ∀i ∈MOD,Mred(i) = #
• π ← Prove(([M, r] , C,Mred,MOD), EKF), where the value between

brackets, namely the original document and the randomness used to
compute C, are privately supplied by the prover and the circuit F
used in Prove is built to verify the following statement:

∃M, r such thatH(M ‖ r) = C

∀j ∈MOD,mj = #

∀j /∈MOD,mj = mred
j

Output: (Mred,MOD,C, σ, π) – the signature of Mred is the pair (σ, π).
DocVerif(Mred,MOD, σ, π, V KF , PK) : this deterministic algorithm, run by

SP, takes a redacted document Mred, a set of redacted sub-messages index
MOD, a signature σ, a proof π and the signing public key and the verification
key. It outputs a bit d such that:
• d← Ver(C, σ, PK)
• d← d× Verify(π, (Mred, C,MOD), V KF)

Protocol security. We now define the security goals of our scheme, adapting
security notions defined in [13]. Our first goal is to reach privacy of the redacted
document, informally meaning that no PPT adversary only in possession of the
redacted message and its proof can recover information about the redacted parts
of the message. Our second goal is unforgeability of the proof: a PPT adversary
not being in possession of the original message cannot create a redacted docu-
ment and a proof that will be accepted by the verifier. We formalize these goals
below.

Privacy : a VDR scheme (KeyGen, Authent, Redact, DocVerif) is private if for
all PPT adversaries A, the probability that the experiment Leak evaluates
to 1 is negligibly close to 1

2 .

The Leak experiment:
• b← {0, 1}
• (M0,M1, i)← A

with (M0,M1, i) such that ∀j 6= i, M0
j = M1

j and M0
i 6= M1

i

• (M b
red, Cb, σb, πb)← OAuth/Redact

• b? ← A(PK,EKF , V KF ,M
b
red, Cb, σb, πb)

• Return 1 if b? = b

The adversary’s advantage is defined as: AdvALeak =
∣∣Pr[LeakExp = 1]− 1

2

∣∣
A VDR scheme is private if AdvALeak is negligible for all PPT adversaries.

Unforgeability : a VDR scheme (KeyGen, Authent, Redact, DocVerif) is un-
forgeable if for all PPT adversaries A, the probability that the experiment
Forge evaluates to 1 is negligible.

Verifiable Document Redacting 7

The Forge(λ) experiment:
• (SK,PK,EKF , V KF)← KeyGen(λ)
• For i = 1, . . . , q: (M i

red,MODi, σi, πi)← OAuth/Redact

• (Mred,MOD, σ, π)← A
• Return 1 if:
• DocVerif(Mred,MOD, σ, π, V KF , PK) = 1 and
• (Mred,MOD, σ, π) 6= (M i

red,MODi, σi, πi),∀i ∈ {1, . . . , q}.

We define the advantage of the adversary as: AdvAForge = |Pr[ForgeExp = 1]|
The VDR scheme is unforgeable if AdvAForge is negligible for all PPT adver-
saries.

Definition 1. A VDR scheme is secure if it is private and unforgeable as de-
fined above.

Theorem 1. If the signature scheme is existentially unforgeable under chosen
message attack (EUF-CMA), the verifiable computing scheme is secure and the
hash function is such that H(., r) is a secure PRF then the VDR scheme is
secure.

Proof. The proof is detailed in Appendix A.

3 Verifiable Computation

With the advent of cloud computing, efficient schemes for delegation of compu-
tation have been proposed [20, 22], building on the PCP theorem [4]. Despite
the improvements made, these schemes were lacking either expressiveness (only
a restricted class of computation could be delegated) or concrete efficiency (con-
stants too high in the asymptotics). Few practical-oriented constructions have
been proposed by Groth [21] or Setty et al. [27] but the breakthrough of Gennaro
et al. [18] really opened the way to near practical and general purpose verifiable
computation schemes. Gennaro et al. introduced quadratic arithmetic programs
(QAPs), an efficient way of encoding the arithmetic circuit satisfiability problem.
Parno et al. [26] embedded QAPs into a bilinear group, producing a Succinct
Non-interactive ARGument (SNARG) that can be turned into a zero-knowledge
Succinct Non-interactive ARgument of Knowledge (zk-SNARK) with almost no
additional costs. The protocol, called Pinocchio, is also publicly verifiable: public
evaluation and verification keys are computed from the QAPs and anyone with
access to the verification key can validate the proof. Note that in order to have
an efficient verifier, SNARKs built on QAPs use an expensive pre-processing
phase where evaluation and verification keys are computed, enabling to produce
a constant size proof and to get a constant verification time.

There exists several zk-SNARK implemented systems, all building on QAPs.
They compile a program written with a high-level language into a circuit, turning
the latter into a QAP and then applying a cryptographic machinery to get a

8 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

SNARK [30, 7, 26, 16]. These systems make different trade-offs between efficiency
for the prover and expressivity of the computations to be verified, comparisons
can be found in the survey [31].

In the following sections, we sketch the QAP construction and the Pinocchio
verifiable computing protocol. Additional details on the Pinocchio protocol and
on the other zk-SNARK protocols can be found in the original papers [7, 16, 26,
30].

3.1 Public Verifiability

We first recall the definitions of non-interactive publicly verifiable computing
(see for instance [18]). Let f be a function, expressed as an arithmetic circuit
over a finite field F and λ be a security parameter. The Setup procedure produces
two public keys, an evaluation key EKf and a verification key V Kf . These keys
depend on the function f , but not on the inputs. The setup phase might be done
once for all, and the keys are reusable for all future inputs:

(EKf , V Kf)← Setup(1λ, f).

Then a prover, given some input x and the evaluation key EKf , computes y =
f(x) and generates a proof of correctness π for this result:

(y, π)← Prove(EKf , x).

Anyone, given the input/output (x, y), the proof π and the verification key V Kf

can check the proof:

d ∈ {0, 1} ← Verify(V Kf , x, y, π).

Regarding the security properties such a scheme should satisfy, honestly gener-
ated proofs should be accepted (correctness), and a cheating prover should not
convince a verifier of a false computation (soundness). Formal definitions and
security proofs can be found in [26].

3.2 Quadratic Arithmetic Programs

To be able to perform verifiable computation on a function f , this function has
first to be expressed as an arithmetic circuit F . Given an arithmetic circuit F
over Fp with fan-in 2 gates, each multiplication gate is thus described thanks
to 3 families of polynomials respectively coding the left input, the right input
and the output of the gate. Addition gates, and multiplication-by-constant gates,
are taken into account in these polynomials. The constraints between inputs and
outputs of every gates of the circuit are captured in three families of polynomials,
denoted V = (vi(x))i, W = (wi(x))i, Y = (yi(x))i, and a target polynomial,
denoted T . All these polynomials basically form a QAP. An arbitrary root rg ∈
Fp is picked for each multiplication gate g in F and the target polynomial is

Verifiable Document Redacting 9

defined as T (x) =
∏
g∈F

(x− rg). Then, an index is assigned to each input of the

circuit and to each output from a multiplication gate. During the evaluation of
the circuit, the prover computes all the intermediate values of the circuit, here
denoted ci. He then computes the polynomial P (x) = (

∑
civi(x))(

∑
ciwi(x))−

(
∑
ciyi(x)). If P vanishes at a root rg picked for a multiplicative gate g, the

definitions of the polynomial families implies that:

0 = cvrg · cwrg
− cyrg ⇔ cvrg · cwrg

= cyrg (1)

(1) describes the multiplicative relation between input and output values of the
gate. As a consequence, checking that T divides P is equivalent to check if P
vanishes at all the roots of T and thus comes down to check all the multiplicative
relations within the circuit.

3.3 The Pinocchio protocol

A full version of the protocol is given in the original paper [26]. We just sketch
here its principle. Each set of polynomials V, W, Y of the QAP is mapped to
an element in a bilinear group. For instance, let Vk ∈ V for some k, we have
Vk ∈ Fp[X]. An element of the form gVk(s) is added to the public evaluation key,
where g is a generator of the group and s is a secret value randomly chosen at the
setup. Then, for a given input, the prover evaluates the circuit directly to obtain
the output and the values of the internal circuit wires. These values are then used
to build the coefficients of the QAP polynomial P , see Sect.3.2. Let ci denote
these coefficients. The prover evaluates gV (s) =

∏
k(gVk(s))ck , and similarly for

gW (s), gY (s). After computing H = P/T , he is able to compute gH(s) thanks
to some elements in the evaluation key. The proof sent to the verifier roughly
consists of (gV (s), gW (s), gY (s), gH(s)). The verifier uses a bilinear pairing to check
the consistency of the proof. Some additional relations and checks are added in
order to ensure that the inputs have been integrated in the circuit by the prover,
otherwise he could cheat.

3.4 Making a proof a zk-SNARK

In the Pinocchio protocol, the proof can be turned into a zk-SNARK with little
additional computations. Let assume that the computation to verify is y =
f(x,w), where x is an input supplied by the verifier, f is the function on which
the verifier and the prover agreed and w is a private input of the prover. Loosely
speaking, in a zero-knowledge proof the prover can convince the verifier that
he knows some value w such that : y = f(x,w). This is done without giving
information about w to the verifier, nevertheless the proof is still verifiable.
Technically, this goal is achieved by adding a random multiple of the target
polynomial T to every polynomial of (V,W,Y), in such a way that the checks
still hold if, and only if, the circuit with the given input/output is satisfied.

10 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

3.5 Expressivity of zk-SNARK schemes

Even if efficient zk-SNARKs protocols exist, there are still several challenges
to be solved to reach full practicality. One of them is the expressiveness of the
protocols, i.e. their capacity to verify large class of programs. The Pinocchio
protocol cannot verify data dependant loops and is not efficient in branching
programs because it has to evaluate both branches. Note that some protocols
like TinyRAM [7] or Buffet [30] solve this issue but the representation of these
computations as arithmetic circuits generates overheads.

3.6 Security

The q-power knowledge of exponent (q-PKE) and q-power Diffie-Hellman (q-
PDH assumptions) have been defined by Groth [21] and the q-strong Diffie-
Hellman (q-SDH) by Boneh and Boyen [10].

Parno et al. [26] show that if the QAP computed from the circuit to verify has
d multiplicative gates, their protocol is sound (see Sect. 3.1) under the d-PKE,
(4d+4)-PDH and (8d+8)-SDH assumptions.

4 An instantiation of the VDR scheme

We now introduce a possible instantiation of the VDR scheme, keeping in mind
that we seek efficiency for the prover. We consider that documents are repre-
sented as gray-scale images, modeled as matrices of n × n pixels. Pixels values
vary between 0 (black) and 255 (white). Redacting a part of the document thus
means that pixels of the redacted area are turned black, so the symbol # defined
in Sect. 2.2 is the pixel value 0. The set MOD of redacted parts of the image is
therefore a set of coordinates, which locates the redacted pixels positions.

We consider implemented verifiable computation schemes to instantiate our
scheme, more specifically the scheme base on Parno et al. protocol [26, 7]. The
verification is efficient and the schemes based on QAPs (Sect. 3) have a short,
constant-length proof that is quick to verify. The difficulty is the prover’s com-
putational overhead, which is linked to the number of multiplication gates in the
arithmetic circuit representing the function to verify. More precisely, the prover’s
work has complexity O(N log2N), where N is the circuit size [26]. Therefore an
efficient arithmetic circuit has first to be designed to limit the number of multi-
plicative gates.

4.1 The arithmetic circuit design.

To build the proof used in the Redact algorithm of the VDR scheme (Sect. 2.2),
an arithmetic circuit representing the computation to verify has to be designed
in order to apply the Parno et al. protocol [26] (some background on this protocol
can be found in Sect. 3). A high level view of this circuit is described in Fig. 1. It
contains two sub-circuits verifying respectively the value of the hash passed by

Verifiable Document Redacting 11

H r D MOD Dred

H(D ‖ r) ?
= H redact(D,MOD)

?
= Dred

×

0/1 0/1

0/1

Fig. 1. Arithmetic circuit computing the proof in Redact. A dashed arrow means that
the input is private (and supplied by the prover).

the document issuer to the client and the comparison between the original and
the redacted documents. The operations involved in the sub-circuits are crucial
for the prover efficiency. The circuit has to be carefully designed to be able to
redact several document on different places and to amortize the key generation
cost over several proof computation. Moreover, if the circuit which verify the
correct redaction in the Redact algorithm is changed for some document, the
evaluation and verification keys will change and have thus to be exchanged with
the service provider. We designed a circuit able to prove the correct redaction
for every document modeled as an image of size n×m.

The verification of the hash signature used by the document issuer is not
part of the proof for efficiency reasons. Backes et al. [5] present a verifiable
computing scheme suited for working with authenticated data but, even if the
performance are better than verifiying signature with the Pinocchio scheme [26],
the verification of the signature is way more efficient if it is done outside the
proof. Besides, since the proof requires the hash of the document there is an
explicit link between the redacted document and the original one. The addition
of the hash to the proof only slightly increases the length of the proof. The
verifier thus first verify the signature of the hash value to test whether it indeed
correspond to a value generated by the document issuer. If the verification passes,
the verifier can use this hash value as input for the proof verification.

Document Redaction Since the document to redact is modeled as a matrix,
the proof described in Sect. 2.2 can be represented as an arithmetic circuit using
a boolean matrix for the MOD set. The function in the verifiable computing
scheme for which we compute a proof takes as input a redacted document Dred, a
hash value H and a set MOD. We denote by di,j (resp. dredi,j) the pixel in position

12 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

(i, j) of D (resp. Dred). The prover supplies as private input the document D
and the value r, the function f returns the value d ∈ {0, 1} which is the product

of the following boolean tests:

∃r,D such that: C

?
= H(D ‖ r)

∀(i, j) ∈MOD : dredi,j
?
= 0

∀(i, j) 6∈MOD : di,j − dredi,j
?
= 0

Using a boolean matrix M as a mask, we can rewrite the two last set of tests
in a more uniform way. We define the matrix M = (mi,j) as: mi,j = 0 if pixel
(i, j) is redacted and mi,j = 1 otherwise. The tests can thus be rewritten as:

∀(i, j) ∈ {1, . . . , n}2, di,j ×mi,j
?
= 0. This leads to a small arithmetic sub-circuit

to check if the redacted document has not been modified in other places that
the given ones.

Hash function. The proof computed by Redact contains the verification of
the hash value computed from the original document so we need to choose a
hash function efficiently verifiable i.e. a function which can be represented as
an arithmetic circuit with few gates. Hash function building on the subset sum
problem are well suited for arithmetic circuits [12, 8]. They were introduced
by Ajtai [3] and proved collision-resistant by Goldreich et al. [19]. The collision
resistance of the hash function relies on the hardness of the Short Integer Solution
(SIS) problem. We first recall the Ajtai hash function.

Definition 2. Let m,n be positive integers and q a prime number. For a ran-
domly picked matrix A ∈ Zn×mq , the Ajtai hash Hn,m,q : {0, 1}m → Znq is defined
as:

∀x ∈ {0, 1}m, Hn,m,q = A× x mod q (2)

A concrete hardness evaluation is studied by Kosba et al. in [24]. Choosing
Fp, with p ≈ 2254 to be the field where the computations of the arithmetic circuit
are done leads to the following parameters for approximately 100 bit of security:

n = 3,m = 1524, q = p ≈ 2254.

We also used another finite field in our experiments with a lower security level of
80 bit for the associated elliptic curve. Following the method of [24], we obtained
the following parameters:

n = 2,m = 724, q = p ≈ 2181.

Few gates are needed to implement an arithmetic circuit for this hash function:
to hash m bits, n × m multiplicative gates are needed. With the parameters
selected in [24], this means that 4572 gates are needed to hash 1524 bits. As
a comparison, Ben-Sasson et al. designed a hand-optimized arithmetic circuit
to verify the compression function of SHA-256 [6]. Their arithmetic circuit can
therefore hash 512 bits and has about 27000 gates.

Verifiable Document Redacting 13

4.2 Experimental results

We implemented our protocol and benchmarked the verifiable computing part
of the scheme since time consumption of the other parts is negligible compared
to this one. Verifiable computation is implemented using the libsnark library
[2]. The tests were run on a two different machines. The first one, denoted by
machine 1 in the tables, is running at 3.6 GHz with 4 GB of RAM, with no
parallelisation. The second one, denoted machine 2, is more powerful: it has 8
cores running at 2.9 GHz with 16 GB of RAM and uses parallelisation. We first
implemented our scheme for images of size 128 × 128 and chose elliptic curves
at a 128 bit and 80 bit security level [9]. The size of the proof is constant and
short (less than 300 bytes) and thus the verification is fast. Table 1 summarizes
the implementation results with machine 1. The column Constraints reports the
number of constraints needed to check the satisfiability of the circuit implement-
ing the proof redaction. For each security level of the proof, we implemented our
scheme with the SHA256 hash and the Ajtai hash functions for comparison.

Table 1. Benchmark of verifiable computation in the VDR scheme (128×128 images,
machine 1)

Security Hash fct Constraints EK size V K size KeyGen Redact.Prove DocVerif

128 bit Ajtai 19435 7.1 MB 1.3 MB 5.6 s 3.4 s 0.07 s

128 bit SHA256 43920 13.7 MB 1.3 MB 9.2 s 4.7 s 0.07 s

80 bit Ajtai 17834 5.4 MB 1.0 MB 5.5 s 2.4 s 0.07 s

80 bit SHA256 43920 10.8 MB 1.0 MB 9.7 s 3.5 s 0.07 s

Table 2 reports implementation of the proving scheme using Ajtai hash func-
tion and a soundness security of 80 bit with variation on the image size. Table
3 reports the same implementation running on machine 2, with parallelisation.
Note that even if the proof has constant size, the verification time increases with
the image size. This is due to the time to parse the input redacted image to
compute some elements to verify the proof. We continued our experiments until
we reached approximately the size of an A4 document scanned at 100 dpi: we
tested a 1200× 800 image while the true size of an A4 document scanned at 100
dpi would be 1169× 827.

The prover has most of the computational work to do with the Redact al-
gorithm. However, this does not affect the practicality of the VDR scheme in
the case of image redaction. Indeed, the proof is non-interactive and the client
can prepare its redacted document, compute the related proof and submit both
later to a service provider. On the service provider side, the verification is fast
and does not require to share any secret with the client. The time to verify the
signature of the hash value C has to be added to the verification time given in
Table 1. Using a simple benchmark on OpenSSL, the time reported for signature
verification is less than 1 ms for RSA signatures and ECDSA signatures with

14 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

the same computer. We conclude that the VDR scheme is compatible with a
practical use.

Table 2. Scaling experiment of the proving part in the VDR scheme (machine 1 +
no parallelisation)

Image size Constraints EK size V K size KeyGen Redact.Prove DocVerif

128× 128 17834 5.4 MB 1.0 MB 5.6 s 2.4 s 0.07 s

400× 400 161450 47.9 MB 9.9 MB 38.8 s 20.7 s 0.51 s

500× 500 251450 74.0 MB 15.5 MB 58.2 s 32.8 s 0.89 s

600× 600 361450 106.0 MB 22.3 MB 81.1 s 50.8 s 1.3 s

1200× 800 961450 286.4 MB 59.5 MB 201.3 s 124.5 s 3.3 s

Table 3. Scaling experiment of the proving part in the VDR scheme (machine 2 +
parallelisation)

Image size Constraints EK size V K size KeyGen Redact.Prove DocVerif

128× 128 17834 5.4 MB 1.0 MB 1.9 s 0.8 s 0.07 s

400× 400 161450 47.9 MB 9.9 MB 12.4 s 5.9 s 0.5 s

500× 500 251450 74.0 MB 15.5 MB 19.7 s 9.9 s 0.82 s

600× 600 361450 106.0 MB 22.3 MB 26.2 s 14.5 s 1.17 s

1200× 800 961450 286.4 MB 59.5 MB 66.8 s 39.7 s 3.3 s

5 Conclusion

We designed a new scheme to redact an authenticated document, with the goal
to hide sensitive or private data on document digitized as images. Our scheme
is related to redactable signatures schemes but allow to get a much shorter
signature which does not depend on the size of the redaction on the original
document. Moreover, most of the existing redactable signature schemes could
not be deployed in the image redaction use case we described. In contrast, the
running time of our implementation shows that the protocol is practical for the
different participants. We also note that every progress made in the efficiency of
verifiable computation schemes would lead to performance improvement for our
scheme.

Acknowledgments. The authors would like to thank Gäıd Revaud for her
precious programming assistance and the anonymous reviewers of ESORICS for

Verifiable Document Redacting 15

their valuable feedback and comments. The authors would also like to thank Em-
manuel Prouff for helpful comments that improved the quality of this manuscript.
This work was partly supported by the TREDISEC project (G.A. no 644412),
funded by the European Union (EU) under the Information and Communication
Technologies (ICT) theme of the Horizon 2020 (H2020) research and innovation
programme.

References

1. 2D-Doc. https://ants.gouv.fr/Les-solutions/2D-Doc, accessed: 2017-01-10

2. Libsnark. Available at https://github.com/scipr-lab/libsnark, accessed:
2017-04-19

3. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp. 99–108 (1996)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
J. ACM 45(1), 70–122 (1998)

5. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. pp. 271–286
(2015)

6. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21,
2014. pp. 459–474 (2014)

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for C: veri-
fying program executions succinctly and in zero knowledge. In: Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II. pp. 90–108 (2013)

8. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cy-
cles of elliptic curves. In: Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceed-
ings, Part II. pp. 276–294 (2014)

9. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von neumann architecture. In: Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014.
pp. 781–796 (2014), https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/ben-sasson

10. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Advances in
Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings. pp. 56–73 (2004)

11. Boneh, D., Shoup, V.: A graduate course in applied cryptography, version 0.3.
http://cryptobook.us Accessed: 2017-01-15

12. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: ACM SIGOPS 24th Symposium on Oper-
ating Systems Principles, SOSP’13, Farmington, PA, USA, November 3-6, 2013.
pp. 341–357 (2013)

16 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

13. Brzuska, C., Busch, H., Dagdelen, Ö., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signa-
tures for tree-structured data: Definitions and constructions. In: Applied Cryptog-
raphy and Network Security, 8th International Conference, ACNS 2010, Beijing,
China, June 22-25, 2010. Proceedings. pp. 87–104 (2010)

14. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signa-
ture cards. In: Innovations in Computer Science - ICS 2010, Tsinghua University,
Beijing, China, January 5-7, 2010. Proceedings. pp. 310–331 (2010)

15. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012. pp. 90–112 (2012)

16. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile verifiable computation. In: 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015. pp. 253–270 (2015)

17. Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for
redactable signatures and new constructions. In: Information Security and Cryptol-
ogy - ICISC 2015 - 18th International Conference, Seoul, South Korea, November
25-27, 2015, Revised Selected Papers. pp. 3–19 (2015)

18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. pp. 626–645
(2013)

19. Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice prob-
lems. Electronic Colloquium on Computational Complexity (ECCC) 3(42) (1996),
http://eccc.hpi-web.de/eccc-reports/1996/TR96-042/index.html

20. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing, Victoria, British Columbia, Canada, May 17-20, 2008. pp. 113–122
(2008)

21. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Ad-
vances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, De-
cember 5-9, 2010. Proceedings. pp. 321–340 (2010)

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short pcps.
In: 22nd Annual IEEE Conference on Computational Complexity (CCC 2007),
13-16 June 2007, San Diego, California, USA. pp. 278–291 (2007)

23. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic signature schemes.
In: Topics in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA
Conference, 2002, San Jose, CA, USA, February 18-22, 2002, Proceedings. pp.
244–262 (2002)

24. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
abhi shelat, Shi, E.: C∅c∅: A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Report 2015/1093 (2015), http://eprint.

iacr.org/2015/1093

25. Naveh, A., Tromer, E.: Photoproof: Cryptographic image authentication for any
set of permissible transformations. In: IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016. pp. 255–271 (2016)

Verifiable Document Redacting 17

26. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013. pp. 238–252 (2013)

27. Setty, S.T.V., McPherson, R., Blumberg, A.J., Walfish, M.: Making argument sys-
tems for outsourced computation practical (sometimes). In: 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, California,
USA, February 5-8, 2012 (2012)

28. Slamanig, D., Rass, S.: Generalizations and extensions of redactable signatures
with applications to electronic healthcare. In: Communications and Multimedia
Security, 11th IFIP TC 6/TC 11 International Conference, CMS 2010, Linz, Aus-
tria, May 31 - June 2, 2010. Proceedings. pp. 201–213 (2010)

29. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Information
Security and Cryptology - ICISC 2001, 4th International Conference Seoul, Korea,
December 6-7, 2001, Proceedings. pp. 285–304 (2001)

30. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015 (2015)

31. Walfish, M., Blumberg, A.J.: Verifying computations without reexecuting them.
Commun. ACM 58(2), 74–84 (Jan 2015), http://doi.acm.org/10.1145/2641562

A Appendix

We prove Theorem 1 in this section. We will prove that our VDR scheme is
private (Lemma 1) and unforgeable (Lemma 2), which will imply Theorem 1.

Lemma 1. If the VC scheme provides (statistical) zero-knowledge proofs and
the hash function H is such that Hr := H(., r) is a secure PRF then the VDR
scheme is private.

Proof. We will bound the advantage of a PPT adversary attacking the privacy of
the scheme using a sequence of games. More precisely we will show that AdvALeak
is negligible.

Game 0 This is the original Leak game.
Game 1 Same as Game 0 but here the oracle OAuth/Redact picks a random value

h, signs it and returns the couple h, σ, instead of Cb, σ. Let S1 be the event
that b? = b in Game 1. Since H(., r) is assumed to be a secure PRF, we have
that: Pr [S0]− Pr [S1] 6 εPRF , where εPRF is the PRF advantage.

Game 2 Same as Game 1, but the part of the oracle OAuth/Redact computing
the proof is replaced by the simulator. Let S2 be the event that b? = b in
Game 2. We have that Pr [S2] = Pr [S1]

Game 3 Same as Game 2, but the simulator of the oracle OAuth/Redact outputs
its proof π without having knowledge of the messages Mc, c ∈ {0, 1}. Let S3

be the event that b? = b in Game 3. Since the VC scheme is assumed to be
zero-knowledge, we have that there exists a negligible function εSZK such

18 Hervé Chabanne, Rodolphe Hugel, Julien Keuffer

that: Pr [S3]−Pr [S2] 6 εSZK . Since the signature is now only composed of
random elements, we have Pr [S3] = 1

2 .
Gathering the results of all the games, we finally conclude that:

|Pr [S0]− 1

2
| 6 εPRF + εSZK (3)

Therefore the VDR scheme is secure. ut

Lemma 2. If the VC scheme is sound and the signature scheme is EUF-CMA,
then the VDR scheme is unforgeable.

Proof (sketch). We show if there exists an efficient adversary succeeding in
the Forge experiment, denoted by AForge, we can build an efficient adversary
AEUF−CMA breaking the EUF-CMA property of the signature or an efficient ad-
versary AVC breaking the soundness of the verifiable computing scheme. These
adversaries are built by forwarding the queries made by AForge. At the end,
AForge outputs a redacted forged document, which is not part of the queries
made before. This redacted forged document is also a forgery for the signature
scheme or for the verifiable computation scheme.

