A leading institution at the heart of the digital society

Challenges and Opportunities of WiFi-based V2X Communications

Prof. Dr. Jérôme HÄRRI^{*}, Dr. Friedbert Berens⁺ ^{*} EURECOM, France

+ FBConsulting, Luxembourg

VDI Conference on Digital Infrastructure & Automotive Mobility Berlin, July 6th 2017

WiFi-based V2X Communication in a Nutshell IEEE 802.11p / ITS-G5

- Specification completed in 2010 (IEEE 802.11p-2010)
 - Later integrated in IEEE 802.11-2012

Key PHY characteristics

- > 5.9 GHz frequency domain
- Based on IEEE 802.11a (OFDM PHY)
- > 10 MHz channel bandwidth
- Rates: 3, 4.5, 6, 9, 12, 18, 24, 27 Mbps

Key MAC characteristics

Classic 802.11 WLAN

Synchronizing

Scanning

Authentication

Association

Communication

Concept of Basic Service Sets (BSS)

"Communication outside of the context of the BSS"

08/07/2017 -

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications - VDI Conference on Digital Infrastructure & Automotive Mobility

DSRC/ITS-G5

OPTIONAL HIGHER LAYER Synchronization NO Scanning HIGHER LAYER Authentication IMPLICIT Association DIRECT Communication

Dissection of ETSI ITS-G5 main standards (published 2016)

EN 302 571

Harmonized Standard for Radio-communications equipment operating in the 5 855 MHz to 5 925 MHz frequency band;

EN 302 663

Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band

TS 102 724

Harmonized Channel Specifications for Intelligent Transport Systems operating in the 5 GHz frequency band
New since 2016 II

			dBm/MHz	33dB	m e.i.r.	.p. ir	n all	char	nels
Name	Center Frequency	Туре	30			•	-		
SCH6	5920		10	SCH2	СН1	ССН			
SCH5	5910	ITS-G5D - Future ITS		3013	SCH2				
SCH4	5860	ITS-G5B - Non-Safety	10						1
SCH3	5870	related	SCH4	ITS-G5B ITS	-G5A ITS-G5A	ITS-G5A	SCH5 ITS-G5D	SCH6 ITS-G5D	
SCH2	5880		-20 5 850 5 860	 58705	 880 5890	 5 900	 5 910	 5 920	MHz
SCH1	5890	ITS-G5A - Safety-Related			@ E 47		5740		
ССН	5900	- RLAN (<u>EN 301</u> 893)							

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications - VDI Conference on Digital Infrastructure & Automotive Mobility

ITS-G5 main Focus: Safety Critical V2X

- Periodical GPS / speed / heading updates (CAM / BSM)
- Geographic <u>broadcast</u>: all of the road users in proximity are recipients
- Purpose: spread and acquire awareness
 - Delay-sensitive information
- Building block for Cooperative Intelligent Transportation Systems (C-ITS)

08/07/2017 -

Challenges of ITS-G5 for V2X Communications

- Challenging Safety-critical V2X Communications:
 - Safety-critical application require 'periodic
 - DSRC has been optimized for busty traffic
 - Unacknowledged broadcast traffic reliable for low traffic density
 - All cars TX at 10Hz up to 500m congested channel
 - Hidden Terminal DSRC cannot detect a transmission on the channel
 - Solutions exist for Unicast; not for **Broadcast**
 - Low mutual mobility & Similar transmit range
 - Recurring hidden terminal on same nodes
- The underlying challenge:
 - Dependable 1-hop broadcast !!
 - In space & in time

Parisi, Permission required for use

5

RNOT

ITS-G5 Challenge - Dependable 1-Hop Broadcast

<u>Reminder</u>: WLAN and does not provide real QoS services

- Using broadcast: not any feedback on correct transmission !
- Need to 'trust' WLAN

Rule of thumb:

- > The IEEE 802.11p system works fine at 'medium' channel load
- What is 'medium??

08/07/2017 -

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications - VDI Conference on Digital Infrastructure & Automotive Mobility

Decentralized Congestion Control for Dependable 1-Hop Broadcast for ITS-G5

RNOI

om & Société numérique

- Bernhard Kloiber, Jérôme Härri, Thomas Strang, Stefan Sand, Cristina Rico García, Random Transmit Power Control for \geq DSRC and its Application to Cooperative Safety, IEEE Transaction of Dependable and Secured Communication, 2015
- Bernhard Kloiber, Jérôme Härri, Thomas Strang, Dice the TX power Improving awareness quality in VANETs by Random Transmit Power Selection, IEEE Vehicular Networking Conference (VNC), 2012. \geq
- Fatma Hrizi, Jérôme Härri, Christian Bonnet, Can Mobility Predictions be Compatible with Cooperative Active Safety for VANET?, Prof of the 9th ACM Workshop on VehiculAr Inter-NETworking, Systems, and Applications (VANET), 2012.
- Miguel Sepulcre, Javier Gonzalvez, Jérôme Härri, Hannes Hartenstein, Contextual Communications Congestion Control for Cooperative Vehicular Networks, IEEE Transaction on Mobile Computing. 2011.

08/07/2017 -

Decentralized Congestion Control for Dependable 1-Hop Broadcast for Cellular Ad-Hoc LTE-V2X

LTE-V2X Radio Resource Management

- Supervised: centralized RRM/CC (eNB)
- Unsupervised: distributed RRM/CC
 - Challenge: avoid collision !!
- Resource Allocation Mechanism:
 - Random Optical Orthogonal Codes

frequency

- <u>TDMA</u> – Self-Organized TDMA

Packet reception rate

Offered channel load

LTE-V2X Mode 4 (unsupervised)

- Advantage:
 - Does not rely on any infrastructure
- Drawback
 - Synchronization
 - Half-duplex

Selected Publications:

. . .

- Laurent Gallo, Jérôme Härri, Unsupervised LTE D2D --- Case Study for Safety-Critical V2X Communications, IEEE Vehicular Technology Magazine, 2017.
- Laurent Gallo, Jérôme Härri, Analytical Study of Self-organizing TDMA for V2X Communications, 1st IEEE ICC Workshop on Dependable Vehicular Communications, 2015
- Gallo, Laurent; Härri, Jérôme, Short paper: A LTE-direct broadcast mechanism for periodic vehicular safety communications, IEEE Vehicular Networking Conference (VNC), 2013.

ETSI DCC Architecture (TS 103 175, TS 102 687, TS 102 636-4-2)

- The Wireless Vehicular Radio Channel has limited resource
 - > WiFi is only best effort
 - In Ad-hoc (OCB): requires coordinated access
- DCC controls the load with various mechanisms
 - Adjust Tx Rate DCC FAC
 - Adjust Tx Power DCC NET
 - Adjust Modulation (MCS) DCC FAC
 - Adjust Sensing Threshold DCC ACC

08/07/2017 -

Offloading on different channels – DCC MGMT

9

RNOT com & Société numérique

ITS-G5 RELEASE 2

08/07/2017 -

ITS-G5 – competition from LTE-V2X

Source: J. Kenney et al., ITS-World Congress 2016

Is ITS-G5 doomed?

RNOT

om & Société numérique

No, as LTE enhanced PHY features also exist in SotA WLAN

08/07/2017 -

ITS-G5 release 2 – design directions

- In November 2016, the CAR 2 CAR initiated a WI on ITS-G5 Rel. 2
 - CAR 2 CAR white paper "Enhanced 11p Investigations and Proposal"
- Design directions:
 - Enhanced channel usage (modulation, congestion control)
 - Enhanced information exchange (Tx what is 'required')
 - Enhanced PHY & MAC
- Input currently under discussions at the CAR 2 CAR
 - Objective: > 5dB gain

08/07/2017 -

ITS-G5 rel. 2 – Enhanced Channel Usage

- ETSI EN 302 571 specifies a default QPSK ½ modulation (6mbps) modulation on CCH
 - > Why? Seminal work (2008)
 - D. Jiang, Q. Chen, L. Delgrossi, "Optimal data rate selection for vehicle safety communications", Proc. ACM international workshop on VehiculAr Inter-NETworking (VANET), San Francisco, California, USA, pp. 30-38, 15 Sept. 2008.
 - Hypothesis: Constant TX power
 - Hypothesis no longer valid...

What is then the 'optimal' data rate for CCH?

- Recent paper (2017):
 - M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing, Early Access, 2017.
- Conclusions: default data rate can go up to 18 Mbps on CCH
 - Up to 3x channel capacity of ITS-G5 rel. 1

ITS-G5 rel. 2 – Enhanced Channel Usage

Principle:

- Joint adjustment of Tx power and data rate to optimize the channel occupancy 'footprint'
 - In a nutshell: considers the impact of Tx power in perturbing remote neighbors
- Objective: adjusting Tx power (and modulation) to guarantee a 95% PDR at a given TX range

ITS-G5 default 18 mbps on CCH

- The Channel Load (CBR) is reduced by 9%-16% as function of the intended distance
- The Packet Delivery Ratio is improved by 16%-47%

Source: M. Sepulcre, J. Gozalvez, B. Coll-Perales "Why 6Mbps is not (always) the Optimum Data Rate for Beaconing in Vehicular Networks", IEEE Transactions on Mobile Computing

08/07/2017 -

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications
 VDI Conference on Digital Infrastructure & Automotive Mobility

ITS-G5 rel. 2 – Enhanced Information Exchange

- V2X Safety-related Communication is all about CAM (Cooperative Awareness Message)
 - Periodic transmission of the sender's GPS + Speed + other info
 - Day 1 10Hz default Tx rate
 - Require congestion control to keep good performance
 - Day 2 aims at > 30Hz Tx rate
 - CCH might not sustain it...but is it the real objective?

Objective: all neighbors know the highly precise (> 25cm) position of a sender

- Generic figure: at 20m/s, requires 100Hz
 - Yet, GPS has 2-20m error
 - Seeking higher rate does not make any sense !
- New messages are being discussed
 - CAM for baseline TX
 - Tiny CAM (<< CAM) for enhanced position

& Société numérique

Standard CAM (Actually "fat" due to location info)

"Tiny CAM"* (Just the ID / ~ping message)

15

08/07/2017 -

ITS-G5 rel. 2 – Enhanced Information Exchange

Source: Hoang, Denis, Härri, and Slock, On communication aspects of particle-based cooperative positioning in GPS-aided VANETs, IEEE Intelligent Vehicles Symposium, June 19-22, 2016,

08/07/2017 -

ITS-G5 Rel. 2 - Enhanced PHY

- Main limitations of the ITS-G5 PHY:
 - Convolutional Encoder
 - > No Antenna Diversity
 - MIMO not applicable, but basic antenna diversity OK

Channel estimation

- Estimation only before packet Tx
- Time allocation (OFDM)
 - No Frequency allocation (OFDMA)
- Subject to hidden terminals
 - Graceful degradation with distance
- Capacity limits (27Mbps)

Source: IEEE 802.11-2012

08/07/2017 -

ITS-G5 Rel. 2 - Enhanced PHY Enhanced 802.11ac overview

Some History:

- Amendment to IEEE 802.11-2012
 - Integrated in 2014
- Objective: 1Gbps

Main features

8 Société numérique

- > Physical Layer:
 - LDPC coding
 - STBC code (antenna diversity)
 - Enhanced channels width: 80Mhz, 160Mhz

(a) Regular LDPC

Bit Nodes

Check Nodes

Source: IEEE 802.11-2012

Ħ

FFT

→ Receiver

Slice

08/07/2017 -

ITS-G5 Rel. 2 - Enhanced PHY Enhanced 802.11ac overview

- LDPC vs. Conv. Codes Comparison
- LDPC codes get closer to optimal Shannon capacity
 - At Pe = 10⁻⁵ the LDPC code is <1.5dB from Capacity.</p>

Challenges in V2X:

- High Mobile Channel...
 - LDPC might need specific codes
 - LDPC: might not be adapted..
- To be investigated in CAR 2 CAR in 2017/2018

08/07/2017 -

ITS-G5 Rel. 2 - Enhanced PHY Enhanced 802.11ac overview

- **STBC Alamouti Space-Time** Schema:
 - $\succ S = \begin{pmatrix} S_1 & S_2 \\ S_2^* & S_1^* \end{pmatrix}$
 - Time domain: two symbols transmitted in two time slots
 - Frequency domain: complex conjugate next/previous symbol

STBC provides an enhanced BER

- already 2-3 dB gain in a 2Tx, 1RX configuration
- Potentially better for 2x2 MIMO...

Challenges in V2X:

& Société numérique

- None..it can already be done !!
 - Most cars have 2 antennas
 - CohdaWireless claims it can do it already
 - will test it on our campus...

08/07/2017 -

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications - VDI Conference on Digital Infrastructure & Automotive Mobility

ITS-G5 Rel. 2 - Enhanced PHY/MAC IEEE 802.11ax overview

Some History:

- Amendment to IEEE 802.11-2012
 - To be integrated in 2019
- Objective: 10Gbps

Main features:

- > Physical Layer:
 - OFDMA
 - 1024 QAM & MU-MIMO

08/07/2017 -

- Sub-Carrier-based modulation/allocation

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications
 VDI Conference on Digital Infrastructure & Automotive Mobility

²¹ EURECOM

ITS-G5 Rel. 2 – Enhanced MAC Self-Organizing TDMA

- Optimized MAC for periodic resource allocation
 - Provides bounds to channel access time
- Already applied in airborne / shipborne operations for periodical position reporting

Context-aware channel access

- Access delay bounds !!
- Challenge in V2X:
 - None...considered by ETSI as alternative to CSMA/CA [TR102861]

08/07/2017 -

ITS-G5 Rel. 2 – Enhanced MAC Self-Organizing TDMA

S-TDMA – analytical evaluation

Still provides 80% PDR at 100% Channel Load

08/07/2017 -

J. Härri, F. Berens, Challenges and Opportunities of WiFi-based V2X Communications - VDI Conference on Digital Infrastructure & Automotive Mobility

ITS-G5 Rel. 2 – Opportunities

Short Term Opportunities

Increased/adaptive default ITS-G5 modulation (18 mbps)

- Up to 40% PDR at 300m
- Antenna Diversity 2 Tx antennas, 1 Rx antenna
 - Up to 4dB gain (increased range & reliability)
- Differentiated packet transmissions (CAM + tiny CAM)
 - 1/5 channel capacity at same location precision

Medium Term Opportunities

- LDPC support (with backward compatibilities)
 - Up to 3dB gain
- STBC (Alamouti) 2x2
 - Up to 3dB gain

Longer Term Opportunities

optimized MAC

& Société numérique

Key Message – ITS-G5 is not the issue; rather the way we use it !!

08/07/2017 -

V2X Communication Redundancy

Future HAD will be critically based on V2X communication

- So far, one technology only (ITS-G5) !
 - can fail, can be hacked, can be jammed

Parallel to Avionics

- Redundant Paths each communication path is redundant !!
- Functional Redundancy each function is redundant !!
 - Example: Speed measurement: 3 probes from at least two constructors
- Design Diversity different computer design, different software development tools, etc...

What about future Autonomous Cars (cars in 'autopilot') ?

Will also need similar strategies....

LTE-V2X and ITS-G5 two different technologies aiming at providing a similar service...

Friends or Foes ?

ITS-G5 & LTE-V2X – Friends or Foes ?

criticality					
Close Range	Short Range	Long Range Range			
radar	ITS-G5				
lidar		LTE/5G			
camera					
	distance				

Redundant V2X Communication

- Required for fully dependable V2X communication
- Based on Design Diversity
 - Different Technology
 - Different Protocols
 - Different Frequency Range

Coexistence ITS-G5 – LTE-V2X

- 5GAA White Paper (under work)...
- Based on the technology neutrality of the ITS-G5 band
 - Both ITS-G5 and LTE-V2X could be granted access

Three phases coexistence:

- Phase 1 LTE-V2X and ITS-G5 on different 10Mhz isolated bands
- Phase 2 LTE-V2X and ITS-G5 may coexist on additional shared band based on 'detect and avoid'
- Phase 3 LTE-V2X and ITS-G5 coexist on the full ITS-G5 band based on the detect and avoid mechanism

Challenges for V2X (and ITS-G5):

- 10Mhz space not sufficient to avoid co-channel interference
- LTE-V2X and ITS-G5 would need to be synchronized even in different channels
 - ITS-G5 signal will blind LTE-V2X when active..
- Separation antennas (on board of cars) not sufficient for dual TX

08/07/2017 -

RNO1

com & Société numérique

Conclusions

- ITS-G5 is the <u>only current technology</u> than can provide <u>critical safety</u> <u>communication</u> at that time..
 - > ITS-G5 is available now !!
- ITS-G5 has limitations...
 - The CAR 2 CAR Consortium initiated work on a ITS-G5 release 2
 - Objective: release 2 ready when LTE-V2X will be ready

Yet, LTE-V2X is a promising technology

- The current 'fight' between LTE-V2X and ITS-G5 is senseless...
- LTE-V2X and ITS-G5 should instead be seen as two complementary technologies required for future HAD
 - HAD will not work with only one of them...both are required !!

ITS-G5 roll-out is actually an asset for LTE-V2X

will make it better !!

Jérôme Härri, haerri@eurecom.fr

Friedbert Berens, friedbert.berens@me.com

08/07/2017 -

BACKUP SLIDES

08/07/2017 -

ITS-G5 & LTE-V2X – Friends or Foes ?

	criticality				
	Close Range	Short Range	Long Range Range		
	radar	ITS-G5			
	lidar		LTE/5G		
	camera	LIC-V2X			
0	distance				

08/07/2017 -

